ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  subrgdvds GIF version

Theorem subrgdvds 13734
Description: If an element divides another in a subring, then it also divides the other in the parent ring. (Contributed by Mario Carneiro, 4-Dec-2014.)
Hypotheses
Ref Expression
subrgdvds.1 𝑆 = (𝑅s 𝐴)
subrgdvds.2 = (∥r𝑅)
subrgdvds.3 𝐸 = (∥r𝑆)
Assertion
Ref Expression
subrgdvds (𝐴 ∈ (SubRing‘𝑅) → 𝐸 )

Proof of Theorem subrgdvds
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 subrgdvds.1 . . . . 5 𝑆 = (𝑅s 𝐴)
21subrgring 13723 . . . 4 (𝐴 ∈ (SubRing‘𝑅) → 𝑆 ∈ Ring)
3 ringsrg 13546 . . . 4 (𝑆 ∈ Ring → 𝑆 ∈ SRing)
42, 3syl 14 . . 3 (𝐴 ∈ (SubRing‘𝑅) → 𝑆 ∈ SRing)
5 reldvdsrsrg 13591 . . . 4 (𝑆 ∈ SRing → Rel (∥r𝑆))
6 subrgdvds.3 . . . . 5 𝐸 = (∥r𝑆)
76releqi 4743 . . . 4 (Rel 𝐸 ↔ Rel (∥r𝑆))
85, 7sylibr 134 . . 3 (𝑆 ∈ SRing → Rel 𝐸)
94, 8syl 14 . 2 (𝐴 ∈ (SubRing‘𝑅) → Rel 𝐸)
101subrgbas 13729 . . . . . . 7 (𝐴 ∈ (SubRing‘𝑅) → 𝐴 = (Base‘𝑆))
11 eqid 2193 . . . . . . . 8 (Base‘𝑅) = (Base‘𝑅)
1211subrgss 13721 . . . . . . 7 (𝐴 ∈ (SubRing‘𝑅) → 𝐴 ⊆ (Base‘𝑅))
1310, 12eqsstrrd 3217 . . . . . 6 (𝐴 ∈ (SubRing‘𝑅) → (Base‘𝑆) ⊆ (Base‘𝑅))
1413sseld 3179 . . . . 5 (𝐴 ∈ (SubRing‘𝑅) → (𝑥 ∈ (Base‘𝑆) → 𝑥 ∈ (Base‘𝑅)))
15 subrgrcl 13725 . . . . . . . . . 10 (𝐴 ∈ (SubRing‘𝑅) → 𝑅 ∈ Ring)
16 eqid 2193 . . . . . . . . . . 11 (.r𝑅) = (.r𝑅)
171, 16ressmulrg 12765 . . . . . . . . . 10 ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝑅 ∈ Ring) → (.r𝑅) = (.r𝑆))
1815, 17mpdan 421 . . . . . . . . 9 (𝐴 ∈ (SubRing‘𝑅) → (.r𝑅) = (.r𝑆))
1918oveqd 5936 . . . . . . . 8 (𝐴 ∈ (SubRing‘𝑅) → (𝑧(.r𝑅)𝑥) = (𝑧(.r𝑆)𝑥))
2019eqeq1d 2202 . . . . . . 7 (𝐴 ∈ (SubRing‘𝑅) → ((𝑧(.r𝑅)𝑥) = 𝑦 ↔ (𝑧(.r𝑆)𝑥) = 𝑦))
2120rexbidv 2495 . . . . . 6 (𝐴 ∈ (SubRing‘𝑅) → (∃𝑧 ∈ (Base‘𝑆)(𝑧(.r𝑅)𝑥) = 𝑦 ↔ ∃𝑧 ∈ (Base‘𝑆)(𝑧(.r𝑆)𝑥) = 𝑦))
22 ssrexv 3245 . . . . . . 7 ((Base‘𝑆) ⊆ (Base‘𝑅) → (∃𝑧 ∈ (Base‘𝑆)(𝑧(.r𝑅)𝑥) = 𝑦 → ∃𝑧 ∈ (Base‘𝑅)(𝑧(.r𝑅)𝑥) = 𝑦))
2313, 22syl 14 . . . . . 6 (𝐴 ∈ (SubRing‘𝑅) → (∃𝑧 ∈ (Base‘𝑆)(𝑧(.r𝑅)𝑥) = 𝑦 → ∃𝑧 ∈ (Base‘𝑅)(𝑧(.r𝑅)𝑥) = 𝑦))
2421, 23sylbird 170 . . . . 5 (𝐴 ∈ (SubRing‘𝑅) → (∃𝑧 ∈ (Base‘𝑆)(𝑧(.r𝑆)𝑥) = 𝑦 → ∃𝑧 ∈ (Base‘𝑅)(𝑧(.r𝑅)𝑥) = 𝑦))
2514, 24anim12d 335 . . . 4 (𝐴 ∈ (SubRing‘𝑅) → ((𝑥 ∈ (Base‘𝑆) ∧ ∃𝑧 ∈ (Base‘𝑆)(𝑧(.r𝑆)𝑥) = 𝑦) → (𝑥 ∈ (Base‘𝑅) ∧ ∃𝑧 ∈ (Base‘𝑅)(𝑧(.r𝑅)𝑥) = 𝑦)))
26 eqidd 2194 . . . . 5 (𝐴 ∈ (SubRing‘𝑅) → (Base‘𝑆) = (Base‘𝑆))
276a1i 9 . . . . 5 (𝐴 ∈ (SubRing‘𝑅) → 𝐸 = (∥r𝑆))
28 eqidd 2194 . . . . 5 (𝐴 ∈ (SubRing‘𝑅) → (.r𝑆) = (.r𝑆))
2926, 27, 4, 28dvdsrd 13593 . . . 4 (𝐴 ∈ (SubRing‘𝑅) → (𝑥𝐸𝑦 ↔ (𝑥 ∈ (Base‘𝑆) ∧ ∃𝑧 ∈ (Base‘𝑆)(𝑧(.r𝑆)𝑥) = 𝑦)))
30 eqidd 2194 . . . . 5 (𝐴 ∈ (SubRing‘𝑅) → (Base‘𝑅) = (Base‘𝑅))
31 subrgdvds.2 . . . . . 6 = (∥r𝑅)
3231a1i 9 . . . . 5 (𝐴 ∈ (SubRing‘𝑅) → = (∥r𝑅))
33 ringsrg 13546 . . . . . 6 (𝑅 ∈ Ring → 𝑅 ∈ SRing)
3415, 33syl 14 . . . . 5 (𝐴 ∈ (SubRing‘𝑅) → 𝑅 ∈ SRing)
35 eqidd 2194 . . . . 5 (𝐴 ∈ (SubRing‘𝑅) → (.r𝑅) = (.r𝑅))
3630, 32, 34, 35dvdsrd 13593 . . . 4 (𝐴 ∈ (SubRing‘𝑅) → (𝑥 𝑦 ↔ (𝑥 ∈ (Base‘𝑅) ∧ ∃𝑧 ∈ (Base‘𝑅)(𝑧(.r𝑅)𝑥) = 𝑦)))
3725, 29, 363imtr4d 203 . . 3 (𝐴 ∈ (SubRing‘𝑅) → (𝑥𝐸𝑦𝑥 𝑦))
38 df-br 4031 . . 3 (𝑥𝐸𝑦 ↔ ⟨𝑥, 𝑦⟩ ∈ 𝐸)
39 df-br 4031 . . 3 (𝑥 𝑦 ↔ ⟨𝑥, 𝑦⟩ ∈ )
4037, 38, 393imtr3g 204 . 2 (𝐴 ∈ (SubRing‘𝑅) → (⟨𝑥, 𝑦⟩ ∈ 𝐸 → ⟨𝑥, 𝑦⟩ ∈ ))
419, 40relssdv 4752 1 (𝐴 ∈ (SubRing‘𝑅) → 𝐸 )
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1364  wcel 2164  wrex 2473  wss 3154  cop 3622   class class class wbr 4030  Rel wrel 4665  cfv 5255  (class class class)co 5919  Basecbs 12621  s cress 12622  .rcmulr 12699  SRingcsrg 13462  Ringcrg 13495  rcdsr 13585  SubRingcsubrg 13716
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-coll 4145  ax-sep 4148  ax-pow 4204  ax-pr 4239  ax-un 4465  ax-setind 4570  ax-cnex 7965  ax-resscn 7966  ax-1cn 7967  ax-1re 7968  ax-icn 7969  ax-addcl 7970  ax-addrcl 7971  ax-mulcl 7972  ax-addcom 7974  ax-addass 7976  ax-i2m1 7979  ax-0lt1 7980  ax-0id 7982  ax-rnegex 7983  ax-pre-ltirr 7986  ax-pre-lttrn 7988  ax-pre-ltadd 7990
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-nel 2460  df-ral 2477  df-rex 2478  df-reu 2479  df-rmo 2480  df-rab 2481  df-v 2762  df-sbc 2987  df-csb 3082  df-dif 3156  df-un 3158  df-in 3160  df-ss 3167  df-nul 3448  df-pw 3604  df-sn 3625  df-pr 3626  df-op 3628  df-uni 3837  df-int 3872  df-iun 3915  df-br 4031  df-opab 4092  df-mpt 4093  df-id 4325  df-xp 4666  df-rel 4667  df-cnv 4668  df-co 4669  df-dm 4670  df-rn 4671  df-res 4672  df-ima 4673  df-iota 5216  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-riota 5874  df-ov 5922  df-oprab 5923  df-mpo 5924  df-pnf 8058  df-mnf 8059  df-ltxr 8061  df-inn 8985  df-2 9043  df-3 9044  df-ndx 12624  df-slot 12625  df-base 12627  df-sets 12628  df-iress 12629  df-plusg 12711  df-mulr 12712  df-0g 12872  df-mgm 12942  df-sgrp 12988  df-mnd 13001  df-grp 13078  df-minusg 13079  df-subg 13243  df-cmn 13359  df-abl 13360  df-mgp 13420  df-ur 13459  df-srg 13463  df-ring 13497  df-dvdsr 13588  df-subrg 13718
This theorem is referenced by:  subrguss  13735
  Copyright terms: Public domain W3C validator