Step | Hyp | Ref
| Expression |
1 | | subrgdvds.1 |
. . . . 5
⊢ 𝑆 = (𝑅 ↾s 𝐴) |
2 | 1 | subrgring 13350 |
. . . 4
⊢ (𝐴 ∈ (SubRing‘𝑅) → 𝑆 ∈ Ring) |
3 | | ringsrg 13229 |
. . . 4
⊢ (𝑆 ∈ Ring → 𝑆 ∈ SRing) |
4 | 2, 3 | syl 14 |
. . 3
⊢ (𝐴 ∈ (SubRing‘𝑅) → 𝑆 ∈ SRing) |
5 | | reldvdsrsrg 13266 |
. . . 4
⊢ (𝑆 ∈ SRing → Rel
(∥r‘𝑆)) |
6 | | subrgdvds.3 |
. . . . 5
⊢ 𝐸 =
(∥r‘𝑆) |
7 | 6 | releqi 4711 |
. . . 4
⊢ (Rel
𝐸 ↔ Rel
(∥r‘𝑆)) |
8 | 5, 7 | sylibr 134 |
. . 3
⊢ (𝑆 ∈ SRing → Rel 𝐸) |
9 | 4, 8 | syl 14 |
. 2
⊢ (𝐴 ∈ (SubRing‘𝑅) → Rel 𝐸) |
10 | 1 | subrgbas 13356 |
. . . . . . 7
⊢ (𝐴 ∈ (SubRing‘𝑅) → 𝐴 = (Base‘𝑆)) |
11 | | eqid 2177 |
. . . . . . . 8
⊢
(Base‘𝑅) =
(Base‘𝑅) |
12 | 11 | subrgss 13348 |
. . . . . . 7
⊢ (𝐴 ∈ (SubRing‘𝑅) → 𝐴 ⊆ (Base‘𝑅)) |
13 | 10, 12 | eqsstrrd 3194 |
. . . . . 6
⊢ (𝐴 ∈ (SubRing‘𝑅) → (Base‘𝑆) ⊆ (Base‘𝑅)) |
14 | 13 | sseld 3156 |
. . . . 5
⊢ (𝐴 ∈ (SubRing‘𝑅) → (𝑥 ∈ (Base‘𝑆) → 𝑥 ∈ (Base‘𝑅))) |
15 | | subrgrcl 13352 |
. . . . . . . . . 10
⊢ (𝐴 ∈ (SubRing‘𝑅) → 𝑅 ∈ Ring) |
16 | | eqid 2177 |
. . . . . . . . . . 11
⊢
(.r‘𝑅) = (.r‘𝑅) |
17 | 1, 16 | ressmulrg 12605 |
. . . . . . . . . 10
⊢ ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝑅 ∈ Ring) →
(.r‘𝑅) =
(.r‘𝑆)) |
18 | 15, 17 | mpdan 421 |
. . . . . . . . 9
⊢ (𝐴 ∈ (SubRing‘𝑅) →
(.r‘𝑅) =
(.r‘𝑆)) |
19 | 18 | oveqd 5894 |
. . . . . . . 8
⊢ (𝐴 ∈ (SubRing‘𝑅) → (𝑧(.r‘𝑅)𝑥) = (𝑧(.r‘𝑆)𝑥)) |
20 | 19 | eqeq1d 2186 |
. . . . . . 7
⊢ (𝐴 ∈ (SubRing‘𝑅) → ((𝑧(.r‘𝑅)𝑥) = 𝑦 ↔ (𝑧(.r‘𝑆)𝑥) = 𝑦)) |
21 | 20 | rexbidv 2478 |
. . . . . 6
⊢ (𝐴 ∈ (SubRing‘𝑅) → (∃𝑧 ∈ (Base‘𝑆)(𝑧(.r‘𝑅)𝑥) = 𝑦 ↔ ∃𝑧 ∈ (Base‘𝑆)(𝑧(.r‘𝑆)𝑥) = 𝑦)) |
22 | | ssrexv 3222 |
. . . . . . 7
⊢
((Base‘𝑆)
⊆ (Base‘𝑅)
→ (∃𝑧 ∈
(Base‘𝑆)(𝑧(.r‘𝑅)𝑥) = 𝑦 → ∃𝑧 ∈ (Base‘𝑅)(𝑧(.r‘𝑅)𝑥) = 𝑦)) |
23 | 13, 22 | syl 14 |
. . . . . 6
⊢ (𝐴 ∈ (SubRing‘𝑅) → (∃𝑧 ∈ (Base‘𝑆)(𝑧(.r‘𝑅)𝑥) = 𝑦 → ∃𝑧 ∈ (Base‘𝑅)(𝑧(.r‘𝑅)𝑥) = 𝑦)) |
24 | 21, 23 | sylbird 170 |
. . . . 5
⊢ (𝐴 ∈ (SubRing‘𝑅) → (∃𝑧 ∈ (Base‘𝑆)(𝑧(.r‘𝑆)𝑥) = 𝑦 → ∃𝑧 ∈ (Base‘𝑅)(𝑧(.r‘𝑅)𝑥) = 𝑦)) |
25 | 14, 24 | anim12d 335 |
. . . 4
⊢ (𝐴 ∈ (SubRing‘𝑅) → ((𝑥 ∈ (Base‘𝑆) ∧ ∃𝑧 ∈ (Base‘𝑆)(𝑧(.r‘𝑆)𝑥) = 𝑦) → (𝑥 ∈ (Base‘𝑅) ∧ ∃𝑧 ∈ (Base‘𝑅)(𝑧(.r‘𝑅)𝑥) = 𝑦))) |
26 | | eqidd 2178 |
. . . . 5
⊢ (𝐴 ∈ (SubRing‘𝑅) → (Base‘𝑆) = (Base‘𝑆)) |
27 | 6 | a1i 9 |
. . . . 5
⊢ (𝐴 ∈ (SubRing‘𝑅) → 𝐸 = (∥r‘𝑆)) |
28 | | eqidd 2178 |
. . . . 5
⊢ (𝐴 ∈ (SubRing‘𝑅) →
(.r‘𝑆) =
(.r‘𝑆)) |
29 | 26, 27, 4, 28 | dvdsrd 13268 |
. . . 4
⊢ (𝐴 ∈ (SubRing‘𝑅) → (𝑥𝐸𝑦 ↔ (𝑥 ∈ (Base‘𝑆) ∧ ∃𝑧 ∈ (Base‘𝑆)(𝑧(.r‘𝑆)𝑥) = 𝑦))) |
30 | | eqidd 2178 |
. . . . 5
⊢ (𝐴 ∈ (SubRing‘𝑅) → (Base‘𝑅) = (Base‘𝑅)) |
31 | | subrgdvds.2 |
. . . . . 6
⊢ ∥ =
(∥r‘𝑅) |
32 | 31 | a1i 9 |
. . . . 5
⊢ (𝐴 ∈ (SubRing‘𝑅) → ∥ =
(∥r‘𝑅)) |
33 | | ringsrg 13229 |
. . . . . 6
⊢ (𝑅 ∈ Ring → 𝑅 ∈ SRing) |
34 | 15, 33 | syl 14 |
. . . . 5
⊢ (𝐴 ∈ (SubRing‘𝑅) → 𝑅 ∈ SRing) |
35 | | eqidd 2178 |
. . . . 5
⊢ (𝐴 ∈ (SubRing‘𝑅) →
(.r‘𝑅) =
(.r‘𝑅)) |
36 | 30, 32, 34, 35 | dvdsrd 13268 |
. . . 4
⊢ (𝐴 ∈ (SubRing‘𝑅) → (𝑥 ∥ 𝑦 ↔ (𝑥 ∈ (Base‘𝑅) ∧ ∃𝑧 ∈ (Base‘𝑅)(𝑧(.r‘𝑅)𝑥) = 𝑦))) |
37 | 25, 29, 36 | 3imtr4d 203 |
. . 3
⊢ (𝐴 ∈ (SubRing‘𝑅) → (𝑥𝐸𝑦 → 𝑥 ∥ 𝑦)) |
38 | | df-br 4006 |
. . 3
⊢ (𝑥𝐸𝑦 ↔ 〈𝑥, 𝑦〉 ∈ 𝐸) |
39 | | df-br 4006 |
. . 3
⊢ (𝑥 ∥ 𝑦 ↔ 〈𝑥, 𝑦〉 ∈ ∥ ) |
40 | 37, 38, 39 | 3imtr3g 204 |
. 2
⊢ (𝐴 ∈ (SubRing‘𝑅) → (〈𝑥, 𝑦〉 ∈ 𝐸 → 〈𝑥, 𝑦〉 ∈ ∥ )) |
41 | 9, 40 | relssdv 4720 |
1
⊢ (𝐴 ∈ (SubRing‘𝑅) → 𝐸 ⊆ ∥ ) |