ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  subrgdvds GIF version

Theorem subrgdvds 14164
Description: If an element divides another in a subring, then it also divides the other in the parent ring. (Contributed by Mario Carneiro, 4-Dec-2014.)
Hypotheses
Ref Expression
subrgdvds.1 𝑆 = (𝑅s 𝐴)
subrgdvds.2 = (∥r𝑅)
subrgdvds.3 𝐸 = (∥r𝑆)
Assertion
Ref Expression
subrgdvds (𝐴 ∈ (SubRing‘𝑅) → 𝐸 )

Proof of Theorem subrgdvds
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 subrgdvds.1 . . . . 5 𝑆 = (𝑅s 𝐴)
21subrgring 14153 . . . 4 (𝐴 ∈ (SubRing‘𝑅) → 𝑆 ∈ Ring)
3 ringsrg 13976 . . . 4 (𝑆 ∈ Ring → 𝑆 ∈ SRing)
42, 3syl 14 . . 3 (𝐴 ∈ (SubRing‘𝑅) → 𝑆 ∈ SRing)
5 reldvdsrsrg 14021 . . . 4 (𝑆 ∈ SRing → Rel (∥r𝑆))
6 subrgdvds.3 . . . . 5 𝐸 = (∥r𝑆)
76releqi 4779 . . . 4 (Rel 𝐸 ↔ Rel (∥r𝑆))
85, 7sylibr 134 . . 3 (𝑆 ∈ SRing → Rel 𝐸)
94, 8syl 14 . 2 (𝐴 ∈ (SubRing‘𝑅) → Rel 𝐸)
101subrgbas 14159 . . . . . . 7 (𝐴 ∈ (SubRing‘𝑅) → 𝐴 = (Base‘𝑆))
11 eqid 2209 . . . . . . . 8 (Base‘𝑅) = (Base‘𝑅)
1211subrgss 14151 . . . . . . 7 (𝐴 ∈ (SubRing‘𝑅) → 𝐴 ⊆ (Base‘𝑅))
1310, 12eqsstrrd 3241 . . . . . 6 (𝐴 ∈ (SubRing‘𝑅) → (Base‘𝑆) ⊆ (Base‘𝑅))
1413sseld 3203 . . . . 5 (𝐴 ∈ (SubRing‘𝑅) → (𝑥 ∈ (Base‘𝑆) → 𝑥 ∈ (Base‘𝑅)))
15 subrgrcl 14155 . . . . . . . . . 10 (𝐴 ∈ (SubRing‘𝑅) → 𝑅 ∈ Ring)
16 eqid 2209 . . . . . . . . . . 11 (.r𝑅) = (.r𝑅)
171, 16ressmulrg 13144 . . . . . . . . . 10 ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝑅 ∈ Ring) → (.r𝑅) = (.r𝑆))
1815, 17mpdan 421 . . . . . . . . 9 (𝐴 ∈ (SubRing‘𝑅) → (.r𝑅) = (.r𝑆))
1918oveqd 5991 . . . . . . . 8 (𝐴 ∈ (SubRing‘𝑅) → (𝑧(.r𝑅)𝑥) = (𝑧(.r𝑆)𝑥))
2019eqeq1d 2218 . . . . . . 7 (𝐴 ∈ (SubRing‘𝑅) → ((𝑧(.r𝑅)𝑥) = 𝑦 ↔ (𝑧(.r𝑆)𝑥) = 𝑦))
2120rexbidv 2511 . . . . . 6 (𝐴 ∈ (SubRing‘𝑅) → (∃𝑧 ∈ (Base‘𝑆)(𝑧(.r𝑅)𝑥) = 𝑦 ↔ ∃𝑧 ∈ (Base‘𝑆)(𝑧(.r𝑆)𝑥) = 𝑦))
22 ssrexv 3269 . . . . . . 7 ((Base‘𝑆) ⊆ (Base‘𝑅) → (∃𝑧 ∈ (Base‘𝑆)(𝑧(.r𝑅)𝑥) = 𝑦 → ∃𝑧 ∈ (Base‘𝑅)(𝑧(.r𝑅)𝑥) = 𝑦))
2313, 22syl 14 . . . . . 6 (𝐴 ∈ (SubRing‘𝑅) → (∃𝑧 ∈ (Base‘𝑆)(𝑧(.r𝑅)𝑥) = 𝑦 → ∃𝑧 ∈ (Base‘𝑅)(𝑧(.r𝑅)𝑥) = 𝑦))
2421, 23sylbird 170 . . . . 5 (𝐴 ∈ (SubRing‘𝑅) → (∃𝑧 ∈ (Base‘𝑆)(𝑧(.r𝑆)𝑥) = 𝑦 → ∃𝑧 ∈ (Base‘𝑅)(𝑧(.r𝑅)𝑥) = 𝑦))
2514, 24anim12d 335 . . . 4 (𝐴 ∈ (SubRing‘𝑅) → ((𝑥 ∈ (Base‘𝑆) ∧ ∃𝑧 ∈ (Base‘𝑆)(𝑧(.r𝑆)𝑥) = 𝑦) → (𝑥 ∈ (Base‘𝑅) ∧ ∃𝑧 ∈ (Base‘𝑅)(𝑧(.r𝑅)𝑥) = 𝑦)))
26 eqidd 2210 . . . . 5 (𝐴 ∈ (SubRing‘𝑅) → (Base‘𝑆) = (Base‘𝑆))
276a1i 9 . . . . 5 (𝐴 ∈ (SubRing‘𝑅) → 𝐸 = (∥r𝑆))
28 eqidd 2210 . . . . 5 (𝐴 ∈ (SubRing‘𝑅) → (.r𝑆) = (.r𝑆))
2926, 27, 4, 28dvdsrd 14023 . . . 4 (𝐴 ∈ (SubRing‘𝑅) → (𝑥𝐸𝑦 ↔ (𝑥 ∈ (Base‘𝑆) ∧ ∃𝑧 ∈ (Base‘𝑆)(𝑧(.r𝑆)𝑥) = 𝑦)))
30 eqidd 2210 . . . . 5 (𝐴 ∈ (SubRing‘𝑅) → (Base‘𝑅) = (Base‘𝑅))
31 subrgdvds.2 . . . . . 6 = (∥r𝑅)
3231a1i 9 . . . . 5 (𝐴 ∈ (SubRing‘𝑅) → = (∥r𝑅))
33 ringsrg 13976 . . . . . 6 (𝑅 ∈ Ring → 𝑅 ∈ SRing)
3415, 33syl 14 . . . . 5 (𝐴 ∈ (SubRing‘𝑅) → 𝑅 ∈ SRing)
35 eqidd 2210 . . . . 5 (𝐴 ∈ (SubRing‘𝑅) → (.r𝑅) = (.r𝑅))
3630, 32, 34, 35dvdsrd 14023 . . . 4 (𝐴 ∈ (SubRing‘𝑅) → (𝑥 𝑦 ↔ (𝑥 ∈ (Base‘𝑅) ∧ ∃𝑧 ∈ (Base‘𝑅)(𝑧(.r𝑅)𝑥) = 𝑦)))
3725, 29, 363imtr4d 203 . . 3 (𝐴 ∈ (SubRing‘𝑅) → (𝑥𝐸𝑦𝑥 𝑦))
38 df-br 4063 . . 3 (𝑥𝐸𝑦 ↔ ⟨𝑥, 𝑦⟩ ∈ 𝐸)
39 df-br 4063 . . 3 (𝑥 𝑦 ↔ ⟨𝑥, 𝑦⟩ ∈ )
4037, 38, 393imtr3g 204 . 2 (𝐴 ∈ (SubRing‘𝑅) → (⟨𝑥, 𝑦⟩ ∈ 𝐸 → ⟨𝑥, 𝑦⟩ ∈ ))
419, 40relssdv 4788 1 (𝐴 ∈ (SubRing‘𝑅) → 𝐸 )
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1375  wcel 2180  wrex 2489  wss 3177  cop 3649   class class class wbr 4062  Rel wrel 4701  cfv 5294  (class class class)co 5974  Basecbs 12998  s cress 12999  .rcmulr 13077  SRingcsrg 13892  Ringcrg 13925  rcdsr 14015  SubRingcsubrg 14146
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 713  ax-5 1473  ax-7 1474  ax-gen 1475  ax-ie1 1519  ax-ie2 1520  ax-8 1530  ax-10 1531  ax-11 1532  ax-i12 1533  ax-bndl 1535  ax-4 1536  ax-17 1552  ax-i9 1556  ax-ial 1560  ax-i5r 1561  ax-13 2182  ax-14 2183  ax-ext 2191  ax-coll 4178  ax-sep 4181  ax-pow 4237  ax-pr 4272  ax-un 4501  ax-setind 4606  ax-cnex 8058  ax-resscn 8059  ax-1cn 8060  ax-1re 8061  ax-icn 8062  ax-addcl 8063  ax-addrcl 8064  ax-mulcl 8065  ax-addcom 8067  ax-addass 8069  ax-i2m1 8072  ax-0lt1 8073  ax-0id 8075  ax-rnegex 8076  ax-pre-ltirr 8079  ax-pre-lttrn 8081  ax-pre-ltadd 8083
This theorem depends on definitions:  df-bi 117  df-3an 985  df-tru 1378  df-fal 1381  df-nf 1487  df-sb 1789  df-eu 2060  df-mo 2061  df-clab 2196  df-cleq 2202  df-clel 2205  df-nfc 2341  df-ne 2381  df-nel 2476  df-ral 2493  df-rex 2494  df-reu 2495  df-rmo 2496  df-rab 2497  df-v 2781  df-sbc 3009  df-csb 3105  df-dif 3179  df-un 3181  df-in 3183  df-ss 3190  df-nul 3472  df-pw 3631  df-sn 3652  df-pr 3653  df-op 3655  df-uni 3868  df-int 3903  df-iun 3946  df-br 4063  df-opab 4125  df-mpt 4126  df-id 4361  df-xp 4702  df-rel 4703  df-cnv 4704  df-co 4705  df-dm 4706  df-rn 4707  df-res 4708  df-ima 4709  df-iota 5254  df-fun 5296  df-fn 5297  df-f 5298  df-f1 5299  df-fo 5300  df-f1o 5301  df-fv 5302  df-riota 5927  df-ov 5977  df-oprab 5978  df-mpo 5979  df-pnf 8151  df-mnf 8152  df-ltxr 8154  df-inn 9079  df-2 9137  df-3 9138  df-ndx 13001  df-slot 13002  df-base 13004  df-sets 13005  df-iress 13006  df-plusg 13089  df-mulr 13090  df-0g 13257  df-mgm 13355  df-sgrp 13401  df-mnd 13416  df-grp 13502  df-minusg 13503  df-subg 13673  df-cmn 13789  df-abl 13790  df-mgp 13850  df-ur 13889  df-srg 13893  df-ring 13927  df-dvdsr 14018  df-subrg 14148
This theorem is referenced by:  subrguss  14165
  Copyright terms: Public domain W3C validator