ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  subrgdvds GIF version

Theorem subrgdvds 14207
Description: If an element divides another in a subring, then it also divides the other in the parent ring. (Contributed by Mario Carneiro, 4-Dec-2014.)
Hypotheses
Ref Expression
subrgdvds.1 𝑆 = (𝑅s 𝐴)
subrgdvds.2 = (∥r𝑅)
subrgdvds.3 𝐸 = (∥r𝑆)
Assertion
Ref Expression
subrgdvds (𝐴 ∈ (SubRing‘𝑅) → 𝐸 )

Proof of Theorem subrgdvds
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 subrgdvds.1 . . . . 5 𝑆 = (𝑅s 𝐴)
21subrgring 14196 . . . 4 (𝐴 ∈ (SubRing‘𝑅) → 𝑆 ∈ Ring)
3 ringsrg 14018 . . . 4 (𝑆 ∈ Ring → 𝑆 ∈ SRing)
42, 3syl 14 . . 3 (𝐴 ∈ (SubRing‘𝑅) → 𝑆 ∈ SRing)
5 reldvdsrsrg 14064 . . . 4 (𝑆 ∈ SRing → Rel (∥r𝑆))
6 subrgdvds.3 . . . . 5 𝐸 = (∥r𝑆)
76releqi 4802 . . . 4 (Rel 𝐸 ↔ Rel (∥r𝑆))
85, 7sylibr 134 . . 3 (𝑆 ∈ SRing → Rel 𝐸)
94, 8syl 14 . 2 (𝐴 ∈ (SubRing‘𝑅) → Rel 𝐸)
101subrgbas 14202 . . . . . . 7 (𝐴 ∈ (SubRing‘𝑅) → 𝐴 = (Base‘𝑆))
11 eqid 2229 . . . . . . . 8 (Base‘𝑅) = (Base‘𝑅)
1211subrgss 14194 . . . . . . 7 (𝐴 ∈ (SubRing‘𝑅) → 𝐴 ⊆ (Base‘𝑅))
1310, 12eqsstrrd 3261 . . . . . 6 (𝐴 ∈ (SubRing‘𝑅) → (Base‘𝑆) ⊆ (Base‘𝑅))
1413sseld 3223 . . . . 5 (𝐴 ∈ (SubRing‘𝑅) → (𝑥 ∈ (Base‘𝑆) → 𝑥 ∈ (Base‘𝑅)))
15 subrgrcl 14198 . . . . . . . . . 10 (𝐴 ∈ (SubRing‘𝑅) → 𝑅 ∈ Ring)
16 eqid 2229 . . . . . . . . . . 11 (.r𝑅) = (.r𝑅)
171, 16ressmulrg 13186 . . . . . . . . . 10 ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝑅 ∈ Ring) → (.r𝑅) = (.r𝑆))
1815, 17mpdan 421 . . . . . . . . 9 (𝐴 ∈ (SubRing‘𝑅) → (.r𝑅) = (.r𝑆))
1918oveqd 6024 . . . . . . . 8 (𝐴 ∈ (SubRing‘𝑅) → (𝑧(.r𝑅)𝑥) = (𝑧(.r𝑆)𝑥))
2019eqeq1d 2238 . . . . . . 7 (𝐴 ∈ (SubRing‘𝑅) → ((𝑧(.r𝑅)𝑥) = 𝑦 ↔ (𝑧(.r𝑆)𝑥) = 𝑦))
2120rexbidv 2531 . . . . . 6 (𝐴 ∈ (SubRing‘𝑅) → (∃𝑧 ∈ (Base‘𝑆)(𝑧(.r𝑅)𝑥) = 𝑦 ↔ ∃𝑧 ∈ (Base‘𝑆)(𝑧(.r𝑆)𝑥) = 𝑦))
22 ssrexv 3289 . . . . . . 7 ((Base‘𝑆) ⊆ (Base‘𝑅) → (∃𝑧 ∈ (Base‘𝑆)(𝑧(.r𝑅)𝑥) = 𝑦 → ∃𝑧 ∈ (Base‘𝑅)(𝑧(.r𝑅)𝑥) = 𝑦))
2313, 22syl 14 . . . . . 6 (𝐴 ∈ (SubRing‘𝑅) → (∃𝑧 ∈ (Base‘𝑆)(𝑧(.r𝑅)𝑥) = 𝑦 → ∃𝑧 ∈ (Base‘𝑅)(𝑧(.r𝑅)𝑥) = 𝑦))
2421, 23sylbird 170 . . . . 5 (𝐴 ∈ (SubRing‘𝑅) → (∃𝑧 ∈ (Base‘𝑆)(𝑧(.r𝑆)𝑥) = 𝑦 → ∃𝑧 ∈ (Base‘𝑅)(𝑧(.r𝑅)𝑥) = 𝑦))
2514, 24anim12d 335 . . . 4 (𝐴 ∈ (SubRing‘𝑅) → ((𝑥 ∈ (Base‘𝑆) ∧ ∃𝑧 ∈ (Base‘𝑆)(𝑧(.r𝑆)𝑥) = 𝑦) → (𝑥 ∈ (Base‘𝑅) ∧ ∃𝑧 ∈ (Base‘𝑅)(𝑧(.r𝑅)𝑥) = 𝑦)))
26 eqidd 2230 . . . . 5 (𝐴 ∈ (SubRing‘𝑅) → (Base‘𝑆) = (Base‘𝑆))
276a1i 9 . . . . 5 (𝐴 ∈ (SubRing‘𝑅) → 𝐸 = (∥r𝑆))
28 eqidd 2230 . . . . 5 (𝐴 ∈ (SubRing‘𝑅) → (.r𝑆) = (.r𝑆))
2926, 27, 4, 28dvdsrd 14066 . . . 4 (𝐴 ∈ (SubRing‘𝑅) → (𝑥𝐸𝑦 ↔ (𝑥 ∈ (Base‘𝑆) ∧ ∃𝑧 ∈ (Base‘𝑆)(𝑧(.r𝑆)𝑥) = 𝑦)))
30 eqidd 2230 . . . . 5 (𝐴 ∈ (SubRing‘𝑅) → (Base‘𝑅) = (Base‘𝑅))
31 subrgdvds.2 . . . . . 6 = (∥r𝑅)
3231a1i 9 . . . . 5 (𝐴 ∈ (SubRing‘𝑅) → = (∥r𝑅))
33 ringsrg 14018 . . . . . 6 (𝑅 ∈ Ring → 𝑅 ∈ SRing)
3415, 33syl 14 . . . . 5 (𝐴 ∈ (SubRing‘𝑅) → 𝑅 ∈ SRing)
35 eqidd 2230 . . . . 5 (𝐴 ∈ (SubRing‘𝑅) → (.r𝑅) = (.r𝑅))
3630, 32, 34, 35dvdsrd 14066 . . . 4 (𝐴 ∈ (SubRing‘𝑅) → (𝑥 𝑦 ↔ (𝑥 ∈ (Base‘𝑅) ∧ ∃𝑧 ∈ (Base‘𝑅)(𝑧(.r𝑅)𝑥) = 𝑦)))
3725, 29, 363imtr4d 203 . . 3 (𝐴 ∈ (SubRing‘𝑅) → (𝑥𝐸𝑦𝑥 𝑦))
38 df-br 4084 . . 3 (𝑥𝐸𝑦 ↔ ⟨𝑥, 𝑦⟩ ∈ 𝐸)
39 df-br 4084 . . 3 (𝑥 𝑦 ↔ ⟨𝑥, 𝑦⟩ ∈ )
4037, 38, 393imtr3g 204 . 2 (𝐴 ∈ (SubRing‘𝑅) → (⟨𝑥, 𝑦⟩ ∈ 𝐸 → ⟨𝑥, 𝑦⟩ ∈ ))
419, 40relssdv 4811 1 (𝐴 ∈ (SubRing‘𝑅) → 𝐸 )
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1395  wcel 2200  wrex 2509  wss 3197  cop 3669   class class class wbr 4083  Rel wrel 4724  cfv 5318  (class class class)co 6007  Basecbs 13040  s cress 13041  .rcmulr 13119  SRingcsrg 13934  Ringcrg 13967  rcdsr 14057  SubRingcsubrg 14189
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-coll 4199  ax-sep 4202  ax-pow 4258  ax-pr 4293  ax-un 4524  ax-setind 4629  ax-cnex 8098  ax-resscn 8099  ax-1cn 8100  ax-1re 8101  ax-icn 8102  ax-addcl 8103  ax-addrcl 8104  ax-mulcl 8105  ax-addcom 8107  ax-addass 8109  ax-i2m1 8112  ax-0lt1 8113  ax-0id 8115  ax-rnegex 8116  ax-pre-ltirr 8119  ax-pre-lttrn 8121  ax-pre-ltadd 8123
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-reu 2515  df-rmo 2516  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-int 3924  df-iun 3967  df-br 4084  df-opab 4146  df-mpt 4147  df-id 4384  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-rn 4730  df-res 4731  df-ima 4732  df-iota 5278  df-fun 5320  df-fn 5321  df-f 5322  df-f1 5323  df-fo 5324  df-f1o 5325  df-fv 5326  df-riota 5960  df-ov 6010  df-oprab 6011  df-mpo 6012  df-pnf 8191  df-mnf 8192  df-ltxr 8194  df-inn 9119  df-2 9177  df-3 9178  df-ndx 13043  df-slot 13044  df-base 13046  df-sets 13047  df-iress 13048  df-plusg 13131  df-mulr 13132  df-0g 13299  df-mgm 13397  df-sgrp 13443  df-mnd 13458  df-grp 13544  df-minusg 13545  df-subg 13715  df-cmn 13831  df-abl 13832  df-mgp 13892  df-ur 13931  df-srg 13935  df-ring 13969  df-dvdsr 14060  df-subrg 14191
This theorem is referenced by:  subrguss  14208
  Copyright terms: Public domain W3C validator