ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  subrgdvds GIF version

Theorem subrgdvds 13361
Description: If an element divides another in a subring, then it also divides the other in the parent ring. (Contributed by Mario Carneiro, 4-Dec-2014.)
Hypotheses
Ref Expression
subrgdvds.1 𝑆 = (𝑅s 𝐴)
subrgdvds.2 = (∥r𝑅)
subrgdvds.3 𝐸 = (∥r𝑆)
Assertion
Ref Expression
subrgdvds (𝐴 ∈ (SubRing‘𝑅) → 𝐸 )

Proof of Theorem subrgdvds
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 subrgdvds.1 . . . . 5 𝑆 = (𝑅s 𝐴)
21subrgring 13350 . . . 4 (𝐴 ∈ (SubRing‘𝑅) → 𝑆 ∈ Ring)
3 ringsrg 13229 . . . 4 (𝑆 ∈ Ring → 𝑆 ∈ SRing)
42, 3syl 14 . . 3 (𝐴 ∈ (SubRing‘𝑅) → 𝑆 ∈ SRing)
5 reldvdsrsrg 13266 . . . 4 (𝑆 ∈ SRing → Rel (∥r𝑆))
6 subrgdvds.3 . . . . 5 𝐸 = (∥r𝑆)
76releqi 4711 . . . 4 (Rel 𝐸 ↔ Rel (∥r𝑆))
85, 7sylibr 134 . . 3 (𝑆 ∈ SRing → Rel 𝐸)
94, 8syl 14 . 2 (𝐴 ∈ (SubRing‘𝑅) → Rel 𝐸)
101subrgbas 13356 . . . . . . 7 (𝐴 ∈ (SubRing‘𝑅) → 𝐴 = (Base‘𝑆))
11 eqid 2177 . . . . . . . 8 (Base‘𝑅) = (Base‘𝑅)
1211subrgss 13348 . . . . . . 7 (𝐴 ∈ (SubRing‘𝑅) → 𝐴 ⊆ (Base‘𝑅))
1310, 12eqsstrrd 3194 . . . . . 6 (𝐴 ∈ (SubRing‘𝑅) → (Base‘𝑆) ⊆ (Base‘𝑅))
1413sseld 3156 . . . . 5 (𝐴 ∈ (SubRing‘𝑅) → (𝑥 ∈ (Base‘𝑆) → 𝑥 ∈ (Base‘𝑅)))
15 subrgrcl 13352 . . . . . . . . . 10 (𝐴 ∈ (SubRing‘𝑅) → 𝑅 ∈ Ring)
16 eqid 2177 . . . . . . . . . . 11 (.r𝑅) = (.r𝑅)
171, 16ressmulrg 12605 . . . . . . . . . 10 ((𝐴 ∈ (SubRing‘𝑅) ∧ 𝑅 ∈ Ring) → (.r𝑅) = (.r𝑆))
1815, 17mpdan 421 . . . . . . . . 9 (𝐴 ∈ (SubRing‘𝑅) → (.r𝑅) = (.r𝑆))
1918oveqd 5894 . . . . . . . 8 (𝐴 ∈ (SubRing‘𝑅) → (𝑧(.r𝑅)𝑥) = (𝑧(.r𝑆)𝑥))
2019eqeq1d 2186 . . . . . . 7 (𝐴 ∈ (SubRing‘𝑅) → ((𝑧(.r𝑅)𝑥) = 𝑦 ↔ (𝑧(.r𝑆)𝑥) = 𝑦))
2120rexbidv 2478 . . . . . 6 (𝐴 ∈ (SubRing‘𝑅) → (∃𝑧 ∈ (Base‘𝑆)(𝑧(.r𝑅)𝑥) = 𝑦 ↔ ∃𝑧 ∈ (Base‘𝑆)(𝑧(.r𝑆)𝑥) = 𝑦))
22 ssrexv 3222 . . . . . . 7 ((Base‘𝑆) ⊆ (Base‘𝑅) → (∃𝑧 ∈ (Base‘𝑆)(𝑧(.r𝑅)𝑥) = 𝑦 → ∃𝑧 ∈ (Base‘𝑅)(𝑧(.r𝑅)𝑥) = 𝑦))
2313, 22syl 14 . . . . . 6 (𝐴 ∈ (SubRing‘𝑅) → (∃𝑧 ∈ (Base‘𝑆)(𝑧(.r𝑅)𝑥) = 𝑦 → ∃𝑧 ∈ (Base‘𝑅)(𝑧(.r𝑅)𝑥) = 𝑦))
2421, 23sylbird 170 . . . . 5 (𝐴 ∈ (SubRing‘𝑅) → (∃𝑧 ∈ (Base‘𝑆)(𝑧(.r𝑆)𝑥) = 𝑦 → ∃𝑧 ∈ (Base‘𝑅)(𝑧(.r𝑅)𝑥) = 𝑦))
2514, 24anim12d 335 . . . 4 (𝐴 ∈ (SubRing‘𝑅) → ((𝑥 ∈ (Base‘𝑆) ∧ ∃𝑧 ∈ (Base‘𝑆)(𝑧(.r𝑆)𝑥) = 𝑦) → (𝑥 ∈ (Base‘𝑅) ∧ ∃𝑧 ∈ (Base‘𝑅)(𝑧(.r𝑅)𝑥) = 𝑦)))
26 eqidd 2178 . . . . 5 (𝐴 ∈ (SubRing‘𝑅) → (Base‘𝑆) = (Base‘𝑆))
276a1i 9 . . . . 5 (𝐴 ∈ (SubRing‘𝑅) → 𝐸 = (∥r𝑆))
28 eqidd 2178 . . . . 5 (𝐴 ∈ (SubRing‘𝑅) → (.r𝑆) = (.r𝑆))
2926, 27, 4, 28dvdsrd 13268 . . . 4 (𝐴 ∈ (SubRing‘𝑅) → (𝑥𝐸𝑦 ↔ (𝑥 ∈ (Base‘𝑆) ∧ ∃𝑧 ∈ (Base‘𝑆)(𝑧(.r𝑆)𝑥) = 𝑦)))
30 eqidd 2178 . . . . 5 (𝐴 ∈ (SubRing‘𝑅) → (Base‘𝑅) = (Base‘𝑅))
31 subrgdvds.2 . . . . . 6 = (∥r𝑅)
3231a1i 9 . . . . 5 (𝐴 ∈ (SubRing‘𝑅) → = (∥r𝑅))
33 ringsrg 13229 . . . . . 6 (𝑅 ∈ Ring → 𝑅 ∈ SRing)
3415, 33syl 14 . . . . 5 (𝐴 ∈ (SubRing‘𝑅) → 𝑅 ∈ SRing)
35 eqidd 2178 . . . . 5 (𝐴 ∈ (SubRing‘𝑅) → (.r𝑅) = (.r𝑅))
3630, 32, 34, 35dvdsrd 13268 . . . 4 (𝐴 ∈ (SubRing‘𝑅) → (𝑥 𝑦 ↔ (𝑥 ∈ (Base‘𝑅) ∧ ∃𝑧 ∈ (Base‘𝑅)(𝑧(.r𝑅)𝑥) = 𝑦)))
3725, 29, 363imtr4d 203 . . 3 (𝐴 ∈ (SubRing‘𝑅) → (𝑥𝐸𝑦𝑥 𝑦))
38 df-br 4006 . . 3 (𝑥𝐸𝑦 ↔ ⟨𝑥, 𝑦⟩ ∈ 𝐸)
39 df-br 4006 . . 3 (𝑥 𝑦 ↔ ⟨𝑥, 𝑦⟩ ∈ )
4037, 38, 393imtr3g 204 . 2 (𝐴 ∈ (SubRing‘𝑅) → (⟨𝑥, 𝑦⟩ ∈ 𝐸 → ⟨𝑥, 𝑦⟩ ∈ ))
419, 40relssdv 4720 1 (𝐴 ∈ (SubRing‘𝑅) → 𝐸 )
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1353  wcel 2148  wrex 2456  wss 3131  cop 3597   class class class wbr 4005  Rel wrel 4633  cfv 5218  (class class class)co 5877  Basecbs 12464  s cress 12465  .rcmulr 12539  SRingcsrg 13151  Ringcrg 13184  rcdsr 13260  SubRingcsubrg 13343
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-coll 4120  ax-sep 4123  ax-pow 4176  ax-pr 4211  ax-un 4435  ax-setind 4538  ax-cnex 7904  ax-resscn 7905  ax-1cn 7906  ax-1re 7907  ax-icn 7908  ax-addcl 7909  ax-addrcl 7910  ax-mulcl 7911  ax-addcom 7913  ax-addass 7915  ax-i2m1 7918  ax-0lt1 7919  ax-0id 7921  ax-rnegex 7922  ax-pre-ltirr 7925  ax-pre-lttrn 7927  ax-pre-ltadd 7929
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-nel 2443  df-ral 2460  df-rex 2461  df-reu 2462  df-rmo 2463  df-rab 2464  df-v 2741  df-sbc 2965  df-csb 3060  df-dif 3133  df-un 3135  df-in 3137  df-ss 3144  df-nul 3425  df-pw 3579  df-sn 3600  df-pr 3601  df-op 3603  df-uni 3812  df-int 3847  df-iun 3890  df-br 4006  df-opab 4067  df-mpt 4068  df-id 4295  df-xp 4634  df-rel 4635  df-cnv 4636  df-co 4637  df-dm 4638  df-rn 4639  df-res 4640  df-ima 4641  df-iota 5180  df-fun 5220  df-fn 5221  df-f 5222  df-f1 5223  df-fo 5224  df-f1o 5225  df-fv 5226  df-riota 5833  df-ov 5880  df-oprab 5881  df-mpo 5882  df-pnf 7996  df-mnf 7997  df-ltxr 7999  df-inn 8922  df-2 8980  df-3 8981  df-ndx 12467  df-slot 12468  df-base 12470  df-sets 12471  df-iress 12472  df-plusg 12551  df-mulr 12552  df-0g 12712  df-mgm 12780  df-sgrp 12813  df-mnd 12823  df-grp 12885  df-minusg 12886  df-subg 13035  df-cmn 13095  df-abl 13096  df-mgp 13136  df-ur 13148  df-srg 13152  df-ring 13186  df-dvdsr 13263  df-subrg 13345
This theorem is referenced by:  subrguss  13362
  Copyright terms: Public domain W3C validator