Step | Hyp | Ref
| Expression |
1 | | neg1cn 9087 |
. . . 4
⊢ -1 ∈
ℂ |
2 | 1 | a1i 9 |
. . 3
⊢ (𝜑 → -1 ∈
ℂ) |
3 | | neg1ap0 9091 |
. . . 4
⊢ -1 #
0 |
4 | 3 | a1i 9 |
. . 3
⊢ (𝜑 → -1 # 0) |
5 | | lgseisen.1 |
. . . . . . . . . 10
⊢ (𝜑 → 𝑃 ∈ (ℙ ∖
{2})) |
6 | | lgsquad.4 |
. . . . . . . . . 10
⊢ 𝑀 = ((𝑃 − 1) / 2) |
7 | 5, 6 | gausslemma2dlem0b 15166 |
. . . . . . . . 9
⊢ (𝜑 → 𝑀 ∈ ℕ) |
8 | 7 | nnzd 9438 |
. . . . . . . 8
⊢ (𝜑 → 𝑀 ∈ ℤ) |
9 | | 2nn 9143 |
. . . . . . . 8
⊢ 2 ∈
ℕ |
10 | | znq 9689 |
. . . . . . . 8
⊢ ((𝑀 ∈ ℤ ∧ 2 ∈
ℕ) → (𝑀 / 2)
∈ ℚ) |
11 | 8, 9, 10 | sylancl 413 |
. . . . . . 7
⊢ (𝜑 → (𝑀 / 2) ∈ ℚ) |
12 | 11 | flqcld 10346 |
. . . . . 6
⊢ (𝜑 → (⌊‘(𝑀 / 2)) ∈
ℤ) |
13 | 12 | peano2zd 9442 |
. . . . 5
⊢ (𝜑 → ((⌊‘(𝑀 / 2)) + 1) ∈
ℤ) |
14 | 13, 8 | fzfigd 10502 |
. . . 4
⊢ (𝜑 → (((⌊‘(𝑀 / 2)) + 1)...𝑀) ∈ Fin) |
15 | | lgseisen.2 |
. . . . . . . . 9
⊢ (𝜑 → 𝑄 ∈ (ℙ ∖
{2})) |
16 | 15 | gausslemma2dlem0a 15165 |
. . . . . . . 8
⊢ (𝜑 → 𝑄 ∈ ℕ) |
17 | 16 | nnzd 9438 |
. . . . . . 7
⊢ (𝜑 → 𝑄 ∈ ℤ) |
18 | 5 | gausslemma2dlem0a 15165 |
. . . . . . . 8
⊢ (𝜑 → 𝑃 ∈ ℕ) |
19 | 18 | adantr 276 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) → 𝑃 ∈ ℕ) |
20 | | znq 9689 |
. . . . . . 7
⊢ ((𝑄 ∈ ℤ ∧ 𝑃 ∈ ℕ) → (𝑄 / 𝑃) ∈ ℚ) |
21 | 17, 19, 20 | syl2an2r 595 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) → (𝑄 / 𝑃) ∈ ℚ) |
22 | | 2z 9345 |
. . . . . . . 8
⊢ 2 ∈
ℤ |
23 | | elfzelz 10091 |
. . . . . . . . 9
⊢ (𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀) → 𝑢 ∈ ℤ) |
24 | 23 | adantl 277 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) → 𝑢 ∈ ℤ) |
25 | | zmulcl 9370 |
. . . . . . . 8
⊢ ((2
∈ ℤ ∧ 𝑢
∈ ℤ) → (2 · 𝑢) ∈ ℤ) |
26 | 22, 24, 25 | sylancr 414 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) → (2 · 𝑢) ∈ ℤ) |
27 | | zq 9691 |
. . . . . . 7
⊢ ((2
· 𝑢) ∈ ℤ
→ (2 · 𝑢)
∈ ℚ) |
28 | 26, 27 | syl 14 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) → (2 · 𝑢) ∈ ℚ) |
29 | | qmulcl 9702 |
. . . . . 6
⊢ (((𝑄 / 𝑃) ∈ ℚ ∧ (2 · 𝑢) ∈ ℚ) → ((𝑄 / 𝑃) · (2 · 𝑢)) ∈ ℚ) |
30 | 21, 28, 29 | syl2anc 411 |
. . . . 5
⊢ ((𝜑 ∧ 𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) → ((𝑄 / 𝑃) · (2 · 𝑢)) ∈ ℚ) |
31 | 30 | flqcld 10346 |
. . . 4
⊢ ((𝜑 ∧ 𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) → (⌊‘((𝑄 / 𝑃) · (2 · 𝑢))) ∈ ℤ) |
32 | 14, 31 | fsumzcl 11545 |
. . 3
⊢ (𝜑 → Σ𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)(⌊‘((𝑄 / 𝑃) · (2 · 𝑢))) ∈ ℤ) |
33 | 2, 4, 32 | expclzapd 10749 |
. 2
⊢ (𝜑 → (-1↑Σ𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)(⌊‘((𝑄 / 𝑃) · (2 · 𝑢)))) ∈ ℂ) |
34 | | lgsquad.6 |
. . . . . 6
⊢ 𝑆 = {〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ (1...𝑀) ∧ 𝑦 ∈ (1...𝑁)) ∧ (𝑦 · 𝑃) < (𝑥 · 𝑄))} |
35 | | 1zzd 9344 |
. . . . . . 7
⊢ (𝜑 → 1 ∈
ℤ) |
36 | 35, 8 | fzfigd 10502 |
. . . . . 6
⊢ (𝜑 → (1...𝑀) ∈ Fin) |
37 | | lgsquad.5 |
. . . . . . . . 9
⊢ 𝑁 = ((𝑄 − 1) / 2) |
38 | 15, 37 | gausslemma2dlem0b 15166 |
. . . . . . . 8
⊢ (𝜑 → 𝑁 ∈ ℕ) |
39 | 38 | nnzd 9438 |
. . . . . . 7
⊢ (𝜑 → 𝑁 ∈ ℤ) |
40 | 35, 39 | fzfigd 10502 |
. . . . . 6
⊢ (𝜑 → (1...𝑁) ∈ Fin) |
41 | | elfznn 10120 |
. . . . . . . . . . 11
⊢ (𝑦 ∈ (1...𝑁) → 𝑦 ∈ ℕ) |
42 | 41 | ad2antll 491 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑥 ∈ (1...𝑀) ∧ 𝑦 ∈ (1...𝑁))) → 𝑦 ∈ ℕ) |
43 | 18 | adantr 276 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑥 ∈ (1...𝑀) ∧ 𝑦 ∈ (1...𝑁))) → 𝑃 ∈ ℕ) |
44 | 42, 43 | nnmulcld 9031 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑥 ∈ (1...𝑀) ∧ 𝑦 ∈ (1...𝑁))) → (𝑦 · 𝑃) ∈ ℕ) |
45 | 44 | nnzd 9438 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑥 ∈ (1...𝑀) ∧ 𝑦 ∈ (1...𝑁))) → (𝑦 · 𝑃) ∈ ℤ) |
46 | | elfznn 10120 |
. . . . . . . . . . 11
⊢ (𝑥 ∈ (1...𝑀) → 𝑥 ∈ ℕ) |
47 | 46 | ad2antrl 490 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑥 ∈ (1...𝑀) ∧ 𝑦 ∈ (1...𝑁))) → 𝑥 ∈ ℕ) |
48 | 16 | adantr 276 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑥 ∈ (1...𝑀) ∧ 𝑦 ∈ (1...𝑁))) → 𝑄 ∈ ℕ) |
49 | 47, 48 | nnmulcld 9031 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑥 ∈ (1...𝑀) ∧ 𝑦 ∈ (1...𝑁))) → (𝑥 · 𝑄) ∈ ℕ) |
50 | 49 | nnzd 9438 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑥 ∈ (1...𝑀) ∧ 𝑦 ∈ (1...𝑁))) → (𝑥 · 𝑄) ∈ ℤ) |
51 | | zdclt 9394 |
. . . . . . . 8
⊢ (((𝑦 · 𝑃) ∈ ℤ ∧ (𝑥 · 𝑄) ∈ ℤ) →
DECID (𝑦
· 𝑃) < (𝑥 · 𝑄)) |
52 | 45, 50, 51 | syl2anc 411 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑥 ∈ (1...𝑀) ∧ 𝑦 ∈ (1...𝑁))) → DECID (𝑦 · 𝑃) < (𝑥 · 𝑄)) |
53 | 52 | ralrimivva 2576 |
. . . . . 6
⊢ (𝜑 → ∀𝑥 ∈ (1...𝑀)∀𝑦 ∈ (1...𝑁)DECID (𝑦 · 𝑃) < (𝑥 · 𝑄)) |
54 | 34, 36, 40, 53 | opabfi 6992 |
. . . . 5
⊢ (𝜑 → 𝑆 ∈ Fin) |
55 | | opabssxp 4733 |
. . . . . . . . . . . . 13
⊢
{〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ (1...𝑀) ∧ 𝑦 ∈ (1...𝑁)) ∧ (𝑦 · 𝑃) < (𝑥 · 𝑄))} ⊆ ((1...𝑀) × (1...𝑁)) |
56 | 34, 55 | eqsstri 3211 |
. . . . . . . . . . . 12
⊢ 𝑆 ⊆ ((1...𝑀) × (1...𝑁)) |
57 | 56 | sseli 3175 |
. . . . . . . . . . 11
⊢ (𝑧 ∈ 𝑆 → 𝑧 ∈ ((1...𝑀) × (1...𝑁))) |
58 | | xp1st 6218 |
. . . . . . . . . . 11
⊢ (𝑧 ∈ ((1...𝑀) × (1...𝑁)) → (1st ‘𝑧) ∈ (1...𝑀)) |
59 | 57, 58 | syl 14 |
. . . . . . . . . 10
⊢ (𝑧 ∈ 𝑆 → (1st ‘𝑧) ∈ (1...𝑀)) |
60 | 59 | elfzelzd 10092 |
. . . . . . . . 9
⊢ (𝑧 ∈ 𝑆 → (1st ‘𝑧) ∈
ℤ) |
61 | 60 | adantl 277 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑧 ∈ 𝑆) → (1st ‘𝑧) ∈
ℤ) |
62 | | dvdsdc 11941 |
. . . . . . . 8
⊢ ((2
∈ ℕ ∧ (1st ‘𝑧) ∈ ℤ) → DECID
2 ∥ (1st ‘𝑧)) |
63 | 9, 61, 62 | sylancr 414 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑧 ∈ 𝑆) → DECID 2 ∥
(1st ‘𝑧)) |
64 | | dcn 843 |
. . . . . . 7
⊢
(DECID 2 ∥ (1st ‘𝑧) → DECID
¬ 2 ∥ (1st ‘𝑧)) |
65 | 63, 64 | syl 14 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑧 ∈ 𝑆) → DECID ¬ 2
∥ (1st ‘𝑧)) |
66 | 65 | ralrimiva 2567 |
. . . . 5
⊢ (𝜑 → ∀𝑧 ∈ 𝑆 DECID ¬ 2 ∥
(1st ‘𝑧)) |
67 | 54, 66 | ssfirab 6990 |
. . . 4
⊢ (𝜑 → {𝑧 ∈ 𝑆 ∣ ¬ 2 ∥ (1st
‘𝑧)} ∈
Fin) |
68 | | hashcl 10852 |
. . . 4
⊢ ({𝑧 ∈ 𝑆 ∣ ¬ 2 ∥ (1st
‘𝑧)} ∈ Fin
→ (♯‘{𝑧
∈ 𝑆 ∣ ¬ 2
∥ (1st ‘𝑧)}) ∈
ℕ0) |
69 | 67, 68 | syl 14 |
. . 3
⊢ (𝜑 → (♯‘{𝑧 ∈ 𝑆 ∣ ¬ 2 ∥ (1st
‘𝑧)}) ∈
ℕ0) |
70 | | expcl 10628 |
. . 3
⊢ ((-1
∈ ℂ ∧ (♯‘{𝑧 ∈ 𝑆 ∣ ¬ 2 ∥ (1st
‘𝑧)}) ∈
ℕ0) → (-1↑(♯‘{𝑧 ∈ 𝑆 ∣ ¬ 2 ∥ (1st
‘𝑧)})) ∈
ℂ) |
71 | 1, 69, 70 | sylancr 414 |
. 2
⊢ (𝜑 →
(-1↑(♯‘{𝑧
∈ 𝑆 ∣ ¬ 2
∥ (1st ‘𝑧)})) ∈ ℂ) |
72 | 69 | nn0zd 9437 |
. . 3
⊢ (𝜑 → (♯‘{𝑧 ∈ 𝑆 ∣ ¬ 2 ∥ (1st
‘𝑧)}) ∈
ℤ) |
73 | 2, 4, 72 | expap0d 10750 |
. 2
⊢ (𝜑 →
(-1↑(♯‘{𝑧
∈ 𝑆 ∣ ¬ 2
∥ (1st ‘𝑧)})) # 0) |
74 | 71, 73 | recidapd 8802 |
. . . 4
⊢ (𝜑 →
((-1↑(♯‘{𝑧
∈ 𝑆 ∣ ¬ 2
∥ (1st ‘𝑧)})) · (1 /
(-1↑(♯‘{𝑧
∈ 𝑆 ∣ ¬ 2
∥ (1st ‘𝑧)})))) = 1) |
75 | | 1div1e1 8723 |
. . . . . . . . 9
⊢ (1 / 1) =
1 |
76 | 75 | negeqi 8213 |
. . . . . . . 8
⊢ -(1 / 1)
= -1 |
77 | | ax-1cn 7965 |
. . . . . . . . 9
⊢ 1 ∈
ℂ |
78 | | 1ap0 8609 |
. . . . . . . . 9
⊢ 1 #
0 |
79 | | divneg2ap 8755 |
. . . . . . . . 9
⊢ ((1
∈ ℂ ∧ 1 ∈ ℂ ∧ 1 # 0) → -(1 / 1) = (1 /
-1)) |
80 | 77, 77, 78, 79 | mp3an 1348 |
. . . . . . . 8
⊢ -(1 / 1)
= (1 / -1) |
81 | 76, 80 | eqtr3i 2216 |
. . . . . . 7
⊢ -1 = (1 /
-1) |
82 | 81 | oveq1i 5928 |
. . . . . 6
⊢
(-1↑(♯‘{𝑧 ∈ 𝑆 ∣ ¬ 2 ∥ (1st
‘𝑧)})) = ((1 /
-1)↑(♯‘{𝑧
∈ 𝑆 ∣ ¬ 2
∥ (1st ‘𝑧)})) |
83 | 2, 4, 72 | exprecapd 10752 |
. . . . . 6
⊢ (𝜑 → ((1 /
-1)↑(♯‘{𝑧
∈ 𝑆 ∣ ¬ 2
∥ (1st ‘𝑧)})) = (1 / (-1↑(♯‘{𝑧 ∈ 𝑆 ∣ ¬ 2 ∥ (1st
‘𝑧)})))) |
84 | 82, 83 | eqtrid 2238 |
. . . . 5
⊢ (𝜑 →
(-1↑(♯‘{𝑧
∈ 𝑆 ∣ ¬ 2
∥ (1st ‘𝑧)})) = (1 / (-1↑(♯‘{𝑧 ∈ 𝑆 ∣ ¬ 2 ∥ (1st
‘𝑧)})))) |
85 | 84 | oveq2d 5934 |
. . . 4
⊢ (𝜑 →
((-1↑(♯‘{𝑧
∈ 𝑆 ∣ ¬ 2
∥ (1st ‘𝑧)})) · (-1↑(♯‘{𝑧 ∈ 𝑆 ∣ ¬ 2 ∥ (1st
‘𝑧)}))) =
((-1↑(♯‘{𝑧
∈ 𝑆 ∣ ¬ 2
∥ (1st ‘𝑧)})) · (1 /
(-1↑(♯‘{𝑧
∈ 𝑆 ∣ ¬ 2
∥ (1st ‘𝑧)}))))) |
86 | 54 | adantr 276 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) → 𝑆 ∈ Fin) |
87 | 19 | nnzd 9438 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) → 𝑃 ∈ ℤ) |
88 | 87, 26 | zsubcld 9444 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) → (𝑃 − (2 · 𝑢)) ∈ ℤ) |
89 | | zdceq 9392 |
. . . . . . . . . . . . . 14
⊢
(((1st ‘𝑧) ∈ ℤ ∧ (𝑃 − (2 · 𝑢)) ∈ ℤ) →
DECID (1st ‘𝑧) = (𝑃 − (2 · 𝑢))) |
90 | 60, 88, 89 | syl2anr 290 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) ∧ 𝑧 ∈ 𝑆) → DECID
(1st ‘𝑧) =
(𝑃 − (2 ·
𝑢))) |
91 | 90 | ralrimiva 2567 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) → ∀𝑧 ∈ 𝑆 DECID (1st
‘𝑧) = (𝑃 − (2 · 𝑢))) |
92 | 86, 91 | ssfirab 6990 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) → {𝑧 ∈ 𝑆 ∣ (1st ‘𝑧) = (𝑃 − (2 · 𝑢))} ∈ Fin) |
93 | | fveqeq2 5563 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑧 = 𝑣 → ((1st ‘𝑧) = (𝑃 − (2 · 𝑢)) ↔ (1st ‘𝑣) = (𝑃 − (2 · 𝑢)))) |
94 | 93 | elrab 2916 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑣 ∈ {𝑧 ∈ 𝑆 ∣ (1st ‘𝑧) = (𝑃 − (2 · 𝑢))} ↔ (𝑣 ∈ 𝑆 ∧ (1st ‘𝑣) = (𝑃 − (2 · 𝑢)))) |
95 | 94 | simprbi 275 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑣 ∈ {𝑧 ∈ 𝑆 ∣ (1st ‘𝑧) = (𝑃 − (2 · 𝑢))} → (1st ‘𝑣) = (𝑃 − (2 · 𝑢))) |
96 | 95 | ad2antll 491 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ (𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀) ∧ 𝑣 ∈ {𝑧 ∈ 𝑆 ∣ (1st ‘𝑧) = (𝑃 − (2 · 𝑢))})) → (1st ‘𝑣) = (𝑃 − (2 · 𝑢))) |
97 | 96 | oveq2d 5934 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ (𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀) ∧ 𝑣 ∈ {𝑧 ∈ 𝑆 ∣ (1st ‘𝑧) = (𝑃 − (2 · 𝑢))})) → (𝑃 − (1st ‘𝑣)) = (𝑃 − (𝑃 − (2 · 𝑢)))) |
98 | 19 | nncnd 8996 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) → 𝑃 ∈ ℂ) |
99 | 98 | adantrr 479 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ (𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀) ∧ 𝑣 ∈ {𝑧 ∈ 𝑆 ∣ (1st ‘𝑧) = (𝑃 − (2 · 𝑢))})) → 𝑃 ∈ ℂ) |
100 | 26 | zcnd 9440 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) → (2 · 𝑢) ∈ ℂ) |
101 | 100 | adantrr 479 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ (𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀) ∧ 𝑣 ∈ {𝑧 ∈ 𝑆 ∣ (1st ‘𝑧) = (𝑃 − (2 · 𝑢))})) → (2 · 𝑢) ∈ ℂ) |
102 | 99, 101 | nncand 8335 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ (𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀) ∧ 𝑣 ∈ {𝑧 ∈ 𝑆 ∣ (1st ‘𝑧) = (𝑃 − (2 · 𝑢))})) → (𝑃 − (𝑃 − (2 · 𝑢))) = (2 · 𝑢)) |
103 | 97, 102 | eqtrd 2226 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ (𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀) ∧ 𝑣 ∈ {𝑧 ∈ 𝑆 ∣ (1st ‘𝑧) = (𝑃 − (2 · 𝑢))})) → (𝑃 − (1st ‘𝑣)) = (2 · 𝑢)) |
104 | 103 | oveq1d 5933 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ (𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀) ∧ 𝑣 ∈ {𝑧 ∈ 𝑆 ∣ (1st ‘𝑧) = (𝑃 − (2 · 𝑢))})) → ((𝑃 − (1st ‘𝑣)) / 2) = ((2 · 𝑢) / 2)) |
105 | 24 | zcnd 9440 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) → 𝑢 ∈ ℂ) |
106 | 105 | adantrr 479 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ (𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀) ∧ 𝑣 ∈ {𝑧 ∈ 𝑆 ∣ (1st ‘𝑧) = (𝑃 − (2 · 𝑢))})) → 𝑢 ∈ ℂ) |
107 | | 2cnd 9055 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ (𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀) ∧ 𝑣 ∈ {𝑧 ∈ 𝑆 ∣ (1st ‘𝑧) = (𝑃 − (2 · 𝑢))})) → 2 ∈
ℂ) |
108 | | 2ap0 9075 |
. . . . . . . . . . . . . . . 16
⊢ 2 #
0 |
109 | 108 | a1i 9 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ (𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀) ∧ 𝑣 ∈ {𝑧 ∈ 𝑆 ∣ (1st ‘𝑧) = (𝑃 − (2 · 𝑢))})) → 2 # 0) |
110 | 106, 107,
109 | divcanap3d 8814 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ (𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀) ∧ 𝑣 ∈ {𝑧 ∈ 𝑆 ∣ (1st ‘𝑧) = (𝑃 − (2 · 𝑢))})) → ((2 · 𝑢) / 2) = 𝑢) |
111 | 104, 110 | eqtrd 2226 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ (𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀) ∧ 𝑣 ∈ {𝑧 ∈ 𝑆 ∣ (1st ‘𝑧) = (𝑃 − (2 · 𝑢))})) → ((𝑃 − (1st ‘𝑣)) / 2) = 𝑢) |
112 | 111 | ralrimivva 2576 |
. . . . . . . . . . . 12
⊢ (𝜑 → ∀𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)∀𝑣 ∈ {𝑧 ∈ 𝑆 ∣ (1st ‘𝑧) = (𝑃 − (2 · 𝑢))} ((𝑃 − (1st ‘𝑣)) / 2) = 𝑢) |
113 | | invdisj 4023 |
. . . . . . . . . . . 12
⊢
(∀𝑢 ∈
(((⌊‘(𝑀 / 2)) +
1)...𝑀)∀𝑣 ∈ {𝑧 ∈ 𝑆 ∣ (1st ‘𝑧) = (𝑃 − (2 · 𝑢))} ((𝑃 − (1st ‘𝑣)) / 2) = 𝑢 → Disj 𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀){𝑧 ∈ 𝑆 ∣ (1st ‘𝑧) = (𝑃 − (2 · 𝑢))}) |
114 | 112, 113 | syl 14 |
. . . . . . . . . . 11
⊢ (𝜑 → Disj 𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀){𝑧 ∈ 𝑆 ∣ (1st ‘𝑧) = (𝑃 − (2 · 𝑢))}) |
115 | 14, 92, 114 | hashiun 11621 |
. . . . . . . . . 10
⊢ (𝜑 → (♯‘∪ 𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀){𝑧 ∈ 𝑆 ∣ (1st ‘𝑧) = (𝑃 − (2 · 𝑢))}) = Σ𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)(♯‘{𝑧 ∈ 𝑆 ∣ (1st ‘𝑧) = (𝑃 − (2 · 𝑢))})) |
116 | | iunrab 3960 |
. . . . . . . . . . . 12
⊢ ∪ 𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀){𝑧 ∈ 𝑆 ∣ (1st ‘𝑧) = (𝑃 − (2 · 𝑢))} = {𝑧 ∈ 𝑆 ∣ ∃𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)(1st ‘𝑧) = (𝑃 − (2 · 𝑢))} |
117 | | eldifsni 3747 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑃 ∈ (ℙ ∖ {2})
→ 𝑃 ≠
2) |
118 | 5, 117 | syl 14 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝜑 → 𝑃 ≠ 2) |
119 | 118 | necomd 2450 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝜑 → 2 ≠ 𝑃) |
120 | 119 | neneqd 2385 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝜑 → ¬ 2 = 𝑃) |
121 | 120 | ad2antrr 488 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝜑 ∧ 𝑧 ∈ 𝑆) ∧ 𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) → ¬ 2 = 𝑃) |
122 | | uzid 9606 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (2 ∈
ℤ → 2 ∈ (ℤ≥‘2)) |
123 | 22, 122 | ax-mp 5 |
. . . . . . . . . . . . . . . . . . . 20
⊢ 2 ∈
(ℤ≥‘2) |
124 | 5 | eldifad 3164 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝜑 → 𝑃 ∈ ℙ) |
125 | 124 | ad2antrr 488 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝜑 ∧ 𝑧 ∈ 𝑆) ∧ 𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) → 𝑃 ∈ ℙ) |
126 | | dvdsprm 12275 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((2
∈ (ℤ≥‘2) ∧ 𝑃 ∈ ℙ) → (2 ∥ 𝑃 ↔ 2 = 𝑃)) |
127 | 123, 125,
126 | sylancr 414 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝜑 ∧ 𝑧 ∈ 𝑆) ∧ 𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) → (2 ∥ 𝑃 ↔ 2 = 𝑃)) |
128 | 121, 127 | mtbird 674 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ 𝑧 ∈ 𝑆) ∧ 𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) → ¬ 2 ∥ 𝑃) |
129 | 18 | ad2antrr 488 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (((𝜑 ∧ 𝑧 ∈ 𝑆) ∧ 𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) → 𝑃 ∈ ℕ) |
130 | 129 | nncnd 8996 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝜑 ∧ 𝑧 ∈ 𝑆) ∧ 𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) → 𝑃 ∈ ℂ) |
131 | 26 | adantlr 477 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (((𝜑 ∧ 𝑧 ∈ 𝑆) ∧ 𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) → (2 · 𝑢) ∈ ℤ) |
132 | 131 | zcnd 9440 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝜑 ∧ 𝑧 ∈ 𝑆) ∧ 𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) → (2 · 𝑢) ∈ ℂ) |
133 | 130, 132 | npcand 8334 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝜑 ∧ 𝑧 ∈ 𝑆) ∧ 𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) → ((𝑃 − (2 · 𝑢)) + (2 · 𝑢)) = 𝑃) |
134 | 133 | breq2d 4041 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ 𝑧 ∈ 𝑆) ∧ 𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) → (2 ∥ ((𝑃 − (2 · 𝑢)) + (2 · 𝑢)) ↔ 2 ∥ 𝑃)) |
135 | 128, 134 | mtbird 674 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑧 ∈ 𝑆) ∧ 𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) → ¬ 2 ∥ ((𝑃 − (2 · 𝑢)) + (2 · 𝑢))) |
136 | 23 | adantl 277 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝜑 ∧ 𝑧 ∈ 𝑆) ∧ 𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) → 𝑢 ∈ ℤ) |
137 | | dvdsmul1 11956 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((2
∈ ℤ ∧ 𝑢
∈ ℤ) → 2 ∥ (2 · 𝑢)) |
138 | 22, 136, 137 | sylancr 414 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ 𝑧 ∈ 𝑆) ∧ 𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) → 2 ∥ (2 · 𝑢)) |
139 | 22 | a1i 9 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝜑 ∧ 𝑧 ∈ 𝑆) ∧ 𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) → 2 ∈ ℤ) |
140 | 129 | nnzd 9438 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝜑 ∧ 𝑧 ∈ 𝑆) ∧ 𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) → 𝑃 ∈ ℤ) |
141 | 140, 131 | zsubcld 9444 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝜑 ∧ 𝑧 ∈ 𝑆) ∧ 𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) → (𝑃 − (2 · 𝑢)) ∈ ℤ) |
142 | | dvds2add 11968 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((2
∈ ℤ ∧ (𝑃
− (2 · 𝑢))
∈ ℤ ∧ (2 · 𝑢) ∈ ℤ) → ((2 ∥ (𝑃 − (2 · 𝑢)) ∧ 2 ∥ (2 ·
𝑢)) → 2 ∥
((𝑃 − (2 ·
𝑢)) + (2 · 𝑢)))) |
143 | 139, 141,
131, 142 | syl3anc 1249 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ 𝑧 ∈ 𝑆) ∧ 𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) → ((2 ∥ (𝑃 − (2 · 𝑢)) ∧ 2 ∥ (2 · 𝑢)) → 2 ∥ ((𝑃 − (2 · 𝑢)) + (2 · 𝑢)))) |
144 | 138, 143 | mpan2d 428 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑧 ∈ 𝑆) ∧ 𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) → (2 ∥ (𝑃 − (2 · 𝑢)) → 2 ∥ ((𝑃 − (2 · 𝑢)) + (2 · 𝑢)))) |
145 | 135, 144 | mtod 664 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑧 ∈ 𝑆) ∧ 𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) → ¬ 2 ∥ (𝑃 − (2 · 𝑢))) |
146 | | breq2 4033 |
. . . . . . . . . . . . . . . . 17
⊢
((1st ‘𝑧) = (𝑃 − (2 · 𝑢)) → (2 ∥ (1st
‘𝑧) ↔ 2 ∥
(𝑃 − (2 ·
𝑢)))) |
147 | 146 | notbid 668 |
. . . . . . . . . . . . . . . 16
⊢
((1st ‘𝑧) = (𝑃 − (2 · 𝑢)) → (¬ 2 ∥ (1st
‘𝑧) ↔ ¬ 2
∥ (𝑃 − (2
· 𝑢)))) |
148 | 145, 147 | syl5ibrcom 157 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑧 ∈ 𝑆) ∧ 𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) → ((1st ‘𝑧) = (𝑃 − (2 · 𝑢)) → ¬ 2 ∥ (1st
‘𝑧))) |
149 | 148 | rexlimdva 2611 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑧 ∈ 𝑆) → (∃𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)(1st ‘𝑧) = (𝑃 − (2 · 𝑢)) → ¬ 2 ∥ (1st
‘𝑧))) |
150 | | simpr 110 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑧 ∈ 𝑆) → 𝑧 ∈ 𝑆) |
151 | 56, 150 | sselid 3177 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑧 ∈ 𝑆) → 𝑧 ∈ ((1...𝑀) × (1...𝑁))) |
152 | 151, 58 | syl 14 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑧 ∈ 𝑆) → (1st ‘𝑧) ∈ (1...𝑀)) |
153 | | elfzelz 10091 |
. . . . . . . . . . . . . . . 16
⊢
((1st ‘𝑧) ∈ (1...𝑀) → (1st ‘𝑧) ∈
ℤ) |
154 | | odd2np1 12014 |
. . . . . . . . . . . . . . . 16
⊢
((1st ‘𝑧) ∈ ℤ → (¬ 2 ∥
(1st ‘𝑧)
↔ ∃𝑛 ∈
ℤ ((2 · 𝑛) +
1) = (1st ‘𝑧))) |
155 | 152, 153,
154 | 3syl 17 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑧 ∈ 𝑆) → (¬ 2 ∥ (1st
‘𝑧) ↔
∃𝑛 ∈ ℤ ((2
· 𝑛) + 1) =
(1st ‘𝑧))) |
156 | 11 | ad2antrr 488 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝜑 ∧ 𝑧 ∈ 𝑆) ∧ (𝑛 ∈ ℤ ∧ ((2 · 𝑛) + 1) = (1st
‘𝑧))) → (𝑀 / 2) ∈
ℚ) |
157 | 156 | flqcld 10346 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝜑 ∧ 𝑧 ∈ 𝑆) ∧ (𝑛 ∈ ℤ ∧ ((2 · 𝑛) + 1) = (1st
‘𝑧))) →
(⌊‘(𝑀 / 2))
∈ ℤ) |
158 | 157 | peano2zd 9442 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ 𝑧 ∈ 𝑆) ∧ (𝑛 ∈ ℤ ∧ ((2 · 𝑛) + 1) = (1st
‘𝑧))) →
((⌊‘(𝑀 / 2)) +
1) ∈ ℤ) |
159 | 7 | ad2antrr 488 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝜑 ∧ 𝑧 ∈ 𝑆) ∧ (𝑛 ∈ ℤ ∧ ((2 · 𝑛) + 1) = (1st
‘𝑧))) → 𝑀 ∈
ℕ) |
160 | 159 | nnzd 9438 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ 𝑧 ∈ 𝑆) ∧ (𝑛 ∈ ℤ ∧ ((2 · 𝑛) + 1) = (1st
‘𝑧))) → 𝑀 ∈
ℤ) |
161 | | simprl 529 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝜑 ∧ 𝑧 ∈ 𝑆) ∧ (𝑛 ∈ ℤ ∧ ((2 · 𝑛) + 1) = (1st
‘𝑧))) → 𝑛 ∈
ℤ) |
162 | 160, 161 | zsubcld 9444 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ 𝑧 ∈ 𝑆) ∧ (𝑛 ∈ ℤ ∧ ((2 · 𝑛) + 1) = (1st
‘𝑧))) → (𝑀 − 𝑛) ∈ ℤ) |
163 | 157 | zred 9439 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝜑 ∧ 𝑧 ∈ 𝑆) ∧ (𝑛 ∈ ℤ ∧ ((2 · 𝑛) + 1) = (1st
‘𝑧))) →
(⌊‘(𝑀 / 2))
∈ ℝ) |
164 | 7 | nnred 8995 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝜑 → 𝑀 ∈ ℝ) |
165 | 164 | ad2antrr 488 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (((𝜑 ∧ 𝑧 ∈ 𝑆) ∧ (𝑛 ∈ ℤ ∧ ((2 · 𝑛) + 1) = (1st
‘𝑧))) → 𝑀 ∈
ℝ) |
166 | 165 | rehalfcld 9229 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝜑 ∧ 𝑧 ∈ 𝑆) ∧ (𝑛 ∈ ℤ ∧ ((2 · 𝑛) + 1) = (1st
‘𝑧))) → (𝑀 / 2) ∈
ℝ) |
167 | 162 | zred 9439 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝜑 ∧ 𝑧 ∈ 𝑆) ∧ (𝑛 ∈ ℤ ∧ ((2 · 𝑛) + 1) = (1st
‘𝑧))) → (𝑀 − 𝑛) ∈ ℝ) |
168 | | flqle 10347 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝑀 / 2) ∈ ℚ →
(⌊‘(𝑀 / 2))
≤ (𝑀 /
2)) |
169 | 156, 168 | syl 14 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝜑 ∧ 𝑧 ∈ 𝑆) ∧ (𝑛 ∈ ℤ ∧ ((2 · 𝑛) + 1) = (1st
‘𝑧))) →
(⌊‘(𝑀 / 2))
≤ (𝑀 /
2)) |
170 | | zre 9321 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑛 ∈ ℤ → 𝑛 ∈
ℝ) |
171 | 170 | ad2antrl 490 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (((𝜑 ∧ 𝑧 ∈ 𝑆) ∧ (𝑛 ∈ ℤ ∧ ((2 · 𝑛) + 1) = (1st
‘𝑧))) → 𝑛 ∈
ℝ) |
172 | | simprr 531 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (((𝜑 ∧ 𝑧 ∈ 𝑆) ∧ (𝑛 ∈ ℤ ∧ ((2 · 𝑛) + 1) = (1st
‘𝑧))) → ((2
· 𝑛) + 1) =
(1st ‘𝑧)) |
173 | 152 | adantr 276 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (((𝜑 ∧ 𝑧 ∈ 𝑆) ∧ (𝑛 ∈ ℤ ∧ ((2 · 𝑛) + 1) = (1st
‘𝑧))) →
(1st ‘𝑧)
∈ (1...𝑀)) |
174 | 172, 173 | eqeltrd 2270 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (((𝜑 ∧ 𝑧 ∈ 𝑆) ∧ (𝑛 ∈ ℤ ∧ ((2 · 𝑛) + 1) = (1st
‘𝑧))) → ((2
· 𝑛) + 1) ∈
(1...𝑀)) |
175 | | elfzle2 10094 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (((2
· 𝑛) + 1) ∈
(1...𝑀) → ((2 ·
𝑛) + 1) ≤ 𝑀) |
176 | 174, 175 | syl 14 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (((𝜑 ∧ 𝑧 ∈ 𝑆) ∧ (𝑛 ∈ ℤ ∧ ((2 · 𝑛) + 1) = (1st
‘𝑧))) → ((2
· 𝑛) + 1) ≤ 𝑀) |
177 | | zmulcl 9370 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ ((2
∈ ℤ ∧ 𝑛
∈ ℤ) → (2 · 𝑛) ∈ ℤ) |
178 | 22, 161, 177 | sylancr 414 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (((𝜑 ∧ 𝑧 ∈ 𝑆) ∧ (𝑛 ∈ ℤ ∧ ((2 · 𝑛) + 1) = (1st
‘𝑧))) → (2
· 𝑛) ∈
ℤ) |
179 | | zltp1le 9371 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (((2
· 𝑛) ∈ ℤ
∧ 𝑀 ∈ ℤ)
→ ((2 · 𝑛) <
𝑀 ↔ ((2 · 𝑛) + 1) ≤ 𝑀)) |
180 | 178, 160,
179 | syl2anc 411 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (((𝜑 ∧ 𝑧 ∈ 𝑆) ∧ (𝑛 ∈ ℤ ∧ ((2 · 𝑛) + 1) = (1st
‘𝑧))) → ((2
· 𝑛) < 𝑀 ↔ ((2 · 𝑛) + 1) ≤ 𝑀)) |
181 | 176, 180 | mpbird 167 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (((𝜑 ∧ 𝑧 ∈ 𝑆) ∧ (𝑛 ∈ ℤ ∧ ((2 · 𝑛) + 1) = (1st
‘𝑧))) → (2
· 𝑛) < 𝑀) |
182 | | 2re 9052 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ 2 ∈
ℝ |
183 | 182 | a1i 9 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (((𝜑 ∧ 𝑧 ∈ 𝑆) ∧ (𝑛 ∈ ℤ ∧ ((2 · 𝑛) + 1) = (1st
‘𝑧))) → 2 ∈
ℝ) |
184 | | 2pos 9073 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ 0 <
2 |
185 | 184 | a1i 9 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (((𝜑 ∧ 𝑧 ∈ 𝑆) ∧ (𝑛 ∈ ℤ ∧ ((2 · 𝑛) + 1) = (1st
‘𝑧))) → 0 <
2) |
186 | | ltmuldiv2 8894 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((𝑛 ∈ ℝ ∧ 𝑀 ∈ ℝ ∧ (2 ∈
ℝ ∧ 0 < 2)) → ((2 · 𝑛) < 𝑀 ↔ 𝑛 < (𝑀 / 2))) |
187 | 171, 165,
183, 185, 186 | syl112anc 1253 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (((𝜑 ∧ 𝑧 ∈ 𝑆) ∧ (𝑛 ∈ ℤ ∧ ((2 · 𝑛) + 1) = (1st
‘𝑧))) → ((2
· 𝑛) < 𝑀 ↔ 𝑛 < (𝑀 / 2))) |
188 | 181, 187 | mpbid 147 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (((𝜑 ∧ 𝑧 ∈ 𝑆) ∧ (𝑛 ∈ ℤ ∧ ((2 · 𝑛) + 1) = (1st
‘𝑧))) → 𝑛 < (𝑀 / 2)) |
189 | 166 | recnd 8048 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (((𝜑 ∧ 𝑧 ∈ 𝑆) ∧ (𝑛 ∈ ℤ ∧ ((2 · 𝑛) + 1) = (1st
‘𝑧))) → (𝑀 / 2) ∈
ℂ) |
190 | 7 | nncnd 8996 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (𝜑 → 𝑀 ∈ ℂ) |
191 | 190 | ad2antrr 488 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (((𝜑 ∧ 𝑧 ∈ 𝑆) ∧ (𝑛 ∈ ℤ ∧ ((2 · 𝑛) + 1) = (1st
‘𝑧))) → 𝑀 ∈
ℂ) |
192 | 191 | 2halvesd 9228 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (((𝜑 ∧ 𝑧 ∈ 𝑆) ∧ (𝑛 ∈ ℤ ∧ ((2 · 𝑛) + 1) = (1st
‘𝑧))) → ((𝑀 / 2) + (𝑀 / 2)) = 𝑀) |
193 | 189, 189,
192 | mvlraddd 8383 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (((𝜑 ∧ 𝑧 ∈ 𝑆) ∧ (𝑛 ∈ ℤ ∧ ((2 · 𝑛) + 1) = (1st
‘𝑧))) → (𝑀 / 2) = (𝑀 − (𝑀 / 2))) |
194 | 188, 193 | breqtrd 4055 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (((𝜑 ∧ 𝑧 ∈ 𝑆) ∧ (𝑛 ∈ ℤ ∧ ((2 · 𝑛) + 1) = (1st
‘𝑧))) → 𝑛 < (𝑀 − (𝑀 / 2))) |
195 | 171, 165,
166, 194 | ltsub13d 8570 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝜑 ∧ 𝑧 ∈ 𝑆) ∧ (𝑛 ∈ ℤ ∧ ((2 · 𝑛) + 1) = (1st
‘𝑧))) → (𝑀 / 2) < (𝑀 − 𝑛)) |
196 | 163, 166,
167, 169, 195 | lelttrd 8144 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝜑 ∧ 𝑧 ∈ 𝑆) ∧ (𝑛 ∈ ℤ ∧ ((2 · 𝑛) + 1) = (1st
‘𝑧))) →
(⌊‘(𝑀 / 2))
< (𝑀 − 𝑛)) |
197 | | zltp1le 9371 |
. . . . . . . . . . . . . . . . . . . 20
⊢
(((⌊‘(𝑀
/ 2)) ∈ ℤ ∧ (𝑀 − 𝑛) ∈ ℤ) →
((⌊‘(𝑀 / 2))
< (𝑀 − 𝑛) ↔ ((⌊‘(𝑀 / 2)) + 1) ≤ (𝑀 − 𝑛))) |
198 | 157, 162,
197 | syl2anc 411 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝜑 ∧ 𝑧 ∈ 𝑆) ∧ (𝑛 ∈ ℤ ∧ ((2 · 𝑛) + 1) = (1st
‘𝑧))) →
((⌊‘(𝑀 / 2))
< (𝑀 − 𝑛) ↔ ((⌊‘(𝑀 / 2)) + 1) ≤ (𝑀 − 𝑛))) |
199 | 196, 198 | mpbid 147 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ 𝑧 ∈ 𝑆) ∧ (𝑛 ∈ ℤ ∧ ((2 · 𝑛) + 1) = (1st
‘𝑧))) →
((⌊‘(𝑀 / 2)) +
1) ≤ (𝑀 − 𝑛)) |
200 | | 2t0e0 9141 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (2
· 0) = 0 |
201 | | 2cn 9053 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ 2 ∈
ℂ |
202 | | zcn 9322 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (𝑛 ∈ ℤ → 𝑛 ∈
ℂ) |
203 | 202 | ad2antrl 490 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (((𝜑 ∧ 𝑧 ∈ 𝑆) ∧ (𝑛 ∈ ℤ ∧ ((2 · 𝑛) + 1) = (1st
‘𝑧))) → 𝑛 ∈
ℂ) |
204 | | mulcl 7999 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((2
∈ ℂ ∧ 𝑛
∈ ℂ) → (2 · 𝑛) ∈ ℂ) |
205 | 201, 203,
204 | sylancr 414 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (((𝜑 ∧ 𝑧 ∈ 𝑆) ∧ (𝑛 ∈ ℤ ∧ ((2 · 𝑛) + 1) = (1st
‘𝑧))) → (2
· 𝑛) ∈
ℂ) |
206 | | pncan 8225 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (((2
· 𝑛) ∈ ℂ
∧ 1 ∈ ℂ) → (((2 · 𝑛) + 1) − 1) = (2 · 𝑛)) |
207 | 205, 77, 206 | sylancl 413 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (((𝜑 ∧ 𝑧 ∈ 𝑆) ∧ (𝑛 ∈ ℤ ∧ ((2 · 𝑛) + 1) = (1st
‘𝑧))) → (((2
· 𝑛) + 1) − 1)
= (2 · 𝑛)) |
208 | | elfznn 10120 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (((2
· 𝑛) + 1) ∈
(1...𝑀) → ((2 ·
𝑛) + 1) ∈
ℕ) |
209 | | nnm1nn0 9281 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (((2
· 𝑛) + 1) ∈
ℕ → (((2 · 𝑛) + 1) − 1) ∈
ℕ0) |
210 | 174, 208,
209 | 3syl 17 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (((𝜑 ∧ 𝑧 ∈ 𝑆) ∧ (𝑛 ∈ ℤ ∧ ((2 · 𝑛) + 1) = (1st
‘𝑧))) → (((2
· 𝑛) + 1) − 1)
∈ ℕ0) |
211 | 207, 210 | eqeltrrd 2271 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (((𝜑 ∧ 𝑧 ∈ 𝑆) ∧ (𝑛 ∈ ℤ ∧ ((2 · 𝑛) + 1) = (1st
‘𝑧))) → (2
· 𝑛) ∈
ℕ0) |
212 | 211 | nn0ge0d 9296 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (((𝜑 ∧ 𝑧 ∈ 𝑆) ∧ (𝑛 ∈ ℤ ∧ ((2 · 𝑛) + 1) = (1st
‘𝑧))) → 0 ≤
(2 · 𝑛)) |
213 | 200, 212 | eqbrtrid 4064 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝜑 ∧ 𝑧 ∈ 𝑆) ∧ (𝑛 ∈ ℤ ∧ ((2 · 𝑛) + 1) = (1st
‘𝑧))) → (2
· 0) ≤ (2 · 𝑛)) |
214 | | 0red 8020 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (((𝜑 ∧ 𝑧 ∈ 𝑆) ∧ (𝑛 ∈ ℤ ∧ ((2 · 𝑛) + 1) = (1st
‘𝑧))) → 0 ∈
ℝ) |
215 | | lemul2 8876 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((0
∈ ℝ ∧ 𝑛
∈ ℝ ∧ (2 ∈ ℝ ∧ 0 < 2)) → (0 ≤ 𝑛 ↔ (2 · 0) ≤ (2
· 𝑛))) |
216 | 214, 171,
183, 185, 215 | syl112anc 1253 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝜑 ∧ 𝑧 ∈ 𝑆) ∧ (𝑛 ∈ ℤ ∧ ((2 · 𝑛) + 1) = (1st
‘𝑧))) → (0 ≤
𝑛 ↔ (2 · 0)
≤ (2 · 𝑛))) |
217 | 213, 216 | mpbird 167 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝜑 ∧ 𝑧 ∈ 𝑆) ∧ (𝑛 ∈ ℤ ∧ ((2 · 𝑛) + 1) = (1st
‘𝑧))) → 0 ≤
𝑛) |
218 | 165, 171 | subge02d 8556 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝜑 ∧ 𝑧 ∈ 𝑆) ∧ (𝑛 ∈ ℤ ∧ ((2 · 𝑛) + 1) = (1st
‘𝑧))) → (0 ≤
𝑛 ↔ (𝑀 − 𝑛) ≤ 𝑀)) |
219 | 217, 218 | mpbid 147 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ 𝑧 ∈ 𝑆) ∧ (𝑛 ∈ ℤ ∧ ((2 · 𝑛) + 1) = (1st
‘𝑧))) → (𝑀 − 𝑛) ≤ 𝑀) |
220 | 158, 160,
162, 199, 219 | elfzd 10082 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑧 ∈ 𝑆) ∧ (𝑛 ∈ ℤ ∧ ((2 · 𝑛) + 1) = (1st
‘𝑧))) → (𝑀 − 𝑛) ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) |
221 | 124 | ad2antrr 488 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (((𝜑 ∧ 𝑧 ∈ 𝑆) ∧ (𝑛 ∈ ℤ ∧ ((2 · 𝑛) + 1) = (1st
‘𝑧))) → 𝑃 ∈
ℙ) |
222 | | prmnn 12248 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑃 ∈ ℙ → 𝑃 ∈
ℕ) |
223 | 221, 222 | syl 14 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝜑 ∧ 𝑧 ∈ 𝑆) ∧ (𝑛 ∈ ℤ ∧ ((2 · 𝑛) + 1) = (1st
‘𝑧))) → 𝑃 ∈
ℕ) |
224 | 223 | nncnd 8996 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝜑 ∧ 𝑧 ∈ 𝑆) ∧ (𝑛 ∈ ℤ ∧ ((2 · 𝑛) + 1) = (1st
‘𝑧))) → 𝑃 ∈
ℂ) |
225 | | peano2cn 8154 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((2
· 𝑛) ∈ ℂ
→ ((2 · 𝑛) + 1)
∈ ℂ) |
226 | 205, 225 | syl 14 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝜑 ∧ 𝑧 ∈ 𝑆) ∧ (𝑛 ∈ ℤ ∧ ((2 · 𝑛) + 1) = (1st
‘𝑧))) → ((2
· 𝑛) + 1) ∈
ℂ) |
227 | 224, 226 | nncand 8335 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ 𝑧 ∈ 𝑆) ∧ (𝑛 ∈ ℤ ∧ ((2 · 𝑛) + 1) = (1st
‘𝑧))) → (𝑃 − (𝑃 − ((2 · 𝑛) + 1))) = ((2 · 𝑛) + 1)) |
228 | | 1cnd 8035 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (((𝜑 ∧ 𝑧 ∈ 𝑆) ∧ (𝑛 ∈ ℤ ∧ ((2 · 𝑛) + 1) = (1st
‘𝑧))) → 1 ∈
ℂ) |
229 | 224, 205,
228 | sub32d 8362 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝜑 ∧ 𝑧 ∈ 𝑆) ∧ (𝑛 ∈ ℤ ∧ ((2 · 𝑛) + 1) = (1st
‘𝑧))) → ((𝑃 − (2 · 𝑛)) − 1) = ((𝑃 − 1) − (2 ·
𝑛))) |
230 | 224, 205,
228 | subsub4d 8361 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝜑 ∧ 𝑧 ∈ 𝑆) ∧ (𝑛 ∈ ℤ ∧ ((2 · 𝑛) + 1) = (1st
‘𝑧))) → ((𝑃 − (2 · 𝑛)) − 1) = (𝑃 − ((2 · 𝑛) + 1))) |
231 | | 2cnd 9055 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (((𝜑 ∧ 𝑧 ∈ 𝑆) ∧ (𝑛 ∈ ℤ ∧ ((2 · 𝑛) + 1) = (1st
‘𝑧))) → 2 ∈
ℂ) |
232 | 231, 191,
203 | subdid 8433 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (((𝜑 ∧ 𝑧 ∈ 𝑆) ∧ (𝑛 ∈ ℤ ∧ ((2 · 𝑛) + 1) = (1st
‘𝑧))) → (2
· (𝑀 − 𝑛)) = ((2 · 𝑀) − (2 · 𝑛))) |
233 | 6 | oveq2i 5929 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (2
· 𝑀) = (2 ·
((𝑃 − 1) /
2)) |
234 | 18 | nnzd 9438 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (𝜑 → 𝑃 ∈ ℤ) |
235 | 234 | ad2antrr 488 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (((𝜑 ∧ 𝑧 ∈ 𝑆) ∧ (𝑛 ∈ ℤ ∧ ((2 · 𝑛) + 1) = (1st
‘𝑧))) → 𝑃 ∈
ℤ) |
236 | | peano2zm 9355 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (𝑃 ∈ ℤ → (𝑃 − 1) ∈
ℤ) |
237 | 235, 236 | syl 14 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (((𝜑 ∧ 𝑧 ∈ 𝑆) ∧ (𝑛 ∈ ℤ ∧ ((2 · 𝑛) + 1) = (1st
‘𝑧))) → (𝑃 − 1) ∈
ℤ) |
238 | 237 | zcnd 9440 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (((𝜑 ∧ 𝑧 ∈ 𝑆) ∧ (𝑛 ∈ ℤ ∧ ((2 · 𝑛) + 1) = (1st
‘𝑧))) → (𝑃 − 1) ∈
ℂ) |
239 | 183, 185 | gt0ap0d 8648 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (((𝜑 ∧ 𝑧 ∈ 𝑆) ∧ (𝑛 ∈ ℤ ∧ ((2 · 𝑛) + 1) = (1st
‘𝑧))) → 2 #
0) |
240 | 238, 231,
239 | divcanap2d 8811 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (((𝜑 ∧ 𝑧 ∈ 𝑆) ∧ (𝑛 ∈ ℤ ∧ ((2 · 𝑛) + 1) = (1st
‘𝑧))) → (2
· ((𝑃 − 1) /
2)) = (𝑃 −
1)) |
241 | 233, 240 | eqtrid 2238 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (((𝜑 ∧ 𝑧 ∈ 𝑆) ∧ (𝑛 ∈ ℤ ∧ ((2 · 𝑛) + 1) = (1st
‘𝑧))) → (2
· 𝑀) = (𝑃 − 1)) |
242 | 241 | oveq1d 5933 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (((𝜑 ∧ 𝑧 ∈ 𝑆) ∧ (𝑛 ∈ ℤ ∧ ((2 · 𝑛) + 1) = (1st
‘𝑧))) → ((2
· 𝑀) − (2
· 𝑛)) = ((𝑃 − 1) − (2 ·
𝑛))) |
243 | 232, 242 | eqtr2d 2227 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝜑 ∧ 𝑧 ∈ 𝑆) ∧ (𝑛 ∈ ℤ ∧ ((2 · 𝑛) + 1) = (1st
‘𝑧))) → ((𝑃 − 1) − (2 ·
𝑛)) = (2 · (𝑀 − 𝑛))) |
244 | 229, 230,
243 | 3eqtr3d 2234 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝜑 ∧ 𝑧 ∈ 𝑆) ∧ (𝑛 ∈ ℤ ∧ ((2 · 𝑛) + 1) = (1st
‘𝑧))) → (𝑃 − ((2 · 𝑛) + 1)) = (2 · (𝑀 − 𝑛))) |
245 | 244 | oveq2d 5934 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ 𝑧 ∈ 𝑆) ∧ (𝑛 ∈ ℤ ∧ ((2 · 𝑛) + 1) = (1st
‘𝑧))) → (𝑃 − (𝑃 − ((2 · 𝑛) + 1))) = (𝑃 − (2 · (𝑀 − 𝑛)))) |
246 | 227, 245,
172 | 3eqtr3rd 2235 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑧 ∈ 𝑆) ∧ (𝑛 ∈ ℤ ∧ ((2 · 𝑛) + 1) = (1st
‘𝑧))) →
(1st ‘𝑧) =
(𝑃 − (2 ·
(𝑀 − 𝑛)))) |
247 | | oveq2 5926 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑢 = (𝑀 − 𝑛) → (2 · 𝑢) = (2 · (𝑀 − 𝑛))) |
248 | 247 | oveq2d 5934 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑢 = (𝑀 − 𝑛) → (𝑃 − (2 · 𝑢)) = (𝑃 − (2 · (𝑀 − 𝑛)))) |
249 | 248 | rspceeqv 2882 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝑀 − 𝑛) ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀) ∧ (1st ‘𝑧) = (𝑃 − (2 · (𝑀 − 𝑛)))) → ∃𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)(1st ‘𝑧) = (𝑃 − (2 · 𝑢))) |
250 | 220, 246,
249 | syl2anc 411 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑧 ∈ 𝑆) ∧ (𝑛 ∈ ℤ ∧ ((2 · 𝑛) + 1) = (1st
‘𝑧))) →
∃𝑢 ∈
(((⌊‘(𝑀 / 2)) +
1)...𝑀)(1st
‘𝑧) = (𝑃 − (2 · 𝑢))) |
251 | 250 | rexlimdvaa 2612 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑧 ∈ 𝑆) → (∃𝑛 ∈ ℤ ((2 · 𝑛) + 1) = (1st
‘𝑧) →
∃𝑢 ∈
(((⌊‘(𝑀 / 2)) +
1)...𝑀)(1st
‘𝑧) = (𝑃 − (2 · 𝑢)))) |
252 | 155, 251 | sylbid 150 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑧 ∈ 𝑆) → (¬ 2 ∥ (1st
‘𝑧) →
∃𝑢 ∈
(((⌊‘(𝑀 / 2)) +
1)...𝑀)(1st
‘𝑧) = (𝑃 − (2 · 𝑢)))) |
253 | 149, 252 | impbid 129 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑧 ∈ 𝑆) → (∃𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)(1st ‘𝑧) = (𝑃 − (2 · 𝑢)) ↔ ¬ 2 ∥ (1st
‘𝑧))) |
254 | 253 | rabbidva 2748 |
. . . . . . . . . . . 12
⊢ (𝜑 → {𝑧 ∈ 𝑆 ∣ ∃𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)(1st ‘𝑧) = (𝑃 − (2 · 𝑢))} = {𝑧 ∈ 𝑆 ∣ ¬ 2 ∥ (1st
‘𝑧)}) |
255 | 116, 254 | eqtrid 2238 |
. . . . . . . . . . 11
⊢ (𝜑 → ∪ 𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀){𝑧 ∈ 𝑆 ∣ (1st ‘𝑧) = (𝑃 − (2 · 𝑢))} = {𝑧 ∈ 𝑆 ∣ ¬ 2 ∥ (1st
‘𝑧)}) |
256 | 255 | fveq2d 5558 |
. . . . . . . . . 10
⊢ (𝜑 → (♯‘∪ 𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀){𝑧 ∈ 𝑆 ∣ (1st ‘𝑧) = (𝑃 − (2 · 𝑢))}) = (♯‘{𝑧 ∈ 𝑆 ∣ ¬ 2 ∥ (1st
‘𝑧)})) |
257 | | ssrab2 3264 |
. . . . . . . . . . . . . . 15
⊢ {𝑧 ∈ 𝑆 ∣ (1st ‘𝑧) = (𝑃 − (2 · 𝑢))} ⊆ 𝑆 |
258 | 34 | relopabiv 4785 |
. . . . . . . . . . . . . . 15
⊢ Rel 𝑆 |
259 | | relss 4746 |
. . . . . . . . . . . . . . 15
⊢ ({𝑧 ∈ 𝑆 ∣ (1st ‘𝑧) = (𝑃 − (2 · 𝑢))} ⊆ 𝑆 → (Rel 𝑆 → Rel {𝑧 ∈ 𝑆 ∣ (1st ‘𝑧) = (𝑃 − (2 · 𝑢))})) |
260 | 257, 258,
259 | mp2 16 |
. . . . . . . . . . . . . 14
⊢ Rel
{𝑧 ∈ 𝑆 ∣ (1st ‘𝑧) = (𝑃 − (2 · 𝑢))} |
261 | | relxp 4768 |
. . . . . . . . . . . . . 14
⊢ Rel
({(𝑃 − (2 ·
𝑢))} × (1...((2
· 𝑁) −
(⌊‘((𝑄 / 𝑃) · (2 · 𝑢)))))) |
262 | 34 | eleq2i 2260 |
. . . . . . . . . . . . . . . . . 18
⊢
(〈𝑥, 𝑦〉 ∈ 𝑆 ↔ 〈𝑥, 𝑦〉 ∈ {〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ (1...𝑀) ∧ 𝑦 ∈ (1...𝑁)) ∧ (𝑦 · 𝑃) < (𝑥 · 𝑄))}) |
263 | | opabidw 4287 |
. . . . . . . . . . . . . . . . . 18
⊢
(〈𝑥, 𝑦〉 ∈ {〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ (1...𝑀) ∧ 𝑦 ∈ (1...𝑁)) ∧ (𝑦 · 𝑃) < (𝑥 · 𝑄))} ↔ ((𝑥 ∈ (1...𝑀) ∧ 𝑦 ∈ (1...𝑁)) ∧ (𝑦 · 𝑃) < (𝑥 · 𝑄))) |
264 | 262, 263 | bitri 184 |
. . . . . . . . . . . . . . . . 17
⊢
(〈𝑥, 𝑦〉 ∈ 𝑆 ↔ ((𝑥 ∈ (1...𝑀) ∧ 𝑦 ∈ (1...𝑁)) ∧ (𝑦 · 𝑃) < (𝑥 · 𝑄))) |
265 | | anass 401 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝑦 ∈ ℕ ∧ 𝑦 ≤ 𝑁) ∧ (𝑦 · 𝑃) < ((𝑃 − (2 · 𝑢)) · 𝑄)) ↔ (𝑦 ∈ ℕ ∧ (𝑦 ≤ 𝑁 ∧ (𝑦 · 𝑃) < ((𝑃 − (2 · 𝑢)) · 𝑄)))) |
266 | 31 | peano2zd 9442 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ ((𝜑 ∧ 𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) → ((⌊‘((𝑄 / 𝑃) · (2 · 𝑢))) + 1) ∈ ℤ) |
267 | 266 | zred 9439 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ ((𝜑 ∧ 𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) → ((⌊‘((𝑄 / 𝑃) · (2 · 𝑢))) + 1) ∈ ℝ) |
268 | 267 | adantr 276 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (((𝜑 ∧ 𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) ∧ 𝑦 ∈ ℕ) →
((⌊‘((𝑄 / 𝑃) · (2 · 𝑢))) + 1) ∈
ℝ) |
269 | 16 | nnred 8995 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (𝜑 → 𝑄 ∈ ℝ) |
270 | 269 | ad2antrr 488 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (((𝜑 ∧ 𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) ∧ 𝑦 ∈ ℕ) → 𝑄 ∈ ℝ) |
271 | | nnre 8989 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (𝑦 ∈ ℕ → 𝑦 ∈
ℝ) |
272 | 271 | adantl 277 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (((𝜑 ∧ 𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) ∧ 𝑦 ∈ ℕ) → 𝑦 ∈ ℝ) |
273 | | lesub 8460 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢
((((⌊‘((𝑄 / 𝑃) · (2 · 𝑢))) + 1) ∈ ℝ ∧ 𝑄 ∈ ℝ ∧ 𝑦 ∈ ℝ) →
(((⌊‘((𝑄 /
𝑃) · (2 ·
𝑢))) + 1) ≤ (𝑄 − 𝑦) ↔ 𝑦 ≤ (𝑄 − ((⌊‘((𝑄 / 𝑃) · (2 · 𝑢))) + 1)))) |
274 | 268, 270,
272, 273 | syl3anc 1249 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (((𝜑 ∧ 𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) ∧ 𝑦 ∈ ℕ) →
(((⌊‘((𝑄 /
𝑃) · (2 ·
𝑢))) + 1) ≤ (𝑄 − 𝑦) ↔ 𝑦 ≤ (𝑄 − ((⌊‘((𝑄 / 𝑃) · (2 · 𝑢))) + 1)))) |
275 | 269 | adantr 276 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢ ((𝜑 ∧ 𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) → 𝑄 ∈ ℝ) |
276 | 275 | recnd 8048 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ ((𝜑 ∧ 𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) → 𝑄 ∈ ℂ) |
277 | 98, 276 | mulcomd 8041 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ ((𝜑 ∧ 𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) → (𝑃 · 𝑄) = (𝑄 · 𝑃)) |
278 | 100, 276 | mulcomd 8041 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ ((𝜑 ∧ 𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) → ((2 · 𝑢) · 𝑄) = (𝑄 · (2 · 𝑢))) |
279 | 19 | nnap0d 9028 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
⊢ ((𝜑 ∧ 𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) → 𝑃 # 0) |
280 | 276, 98, 279 | divcanap1d 8810 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢ ((𝜑 ∧ 𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) → ((𝑄 / 𝑃) · 𝑃) = 𝑄) |
281 | 280 | oveq1d 5933 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ ((𝜑 ∧ 𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) → (((𝑄 / 𝑃) · 𝑃) · (2 · 𝑢)) = (𝑄 · (2 · 𝑢))) |
282 | 269, 18 | nndivred 9032 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
34
⊢ (𝜑 → (𝑄 / 𝑃) ∈ ℝ) |
283 | 282 | adantr 276 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
⊢ ((𝜑 ∧ 𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) → (𝑄 / 𝑃) ∈ ℝ) |
284 | 283 | recnd 8048 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢ ((𝜑 ∧ 𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) → (𝑄 / 𝑃) ∈ ℂ) |
285 | 284, 98, 100 | mul32d 8172 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ ((𝜑 ∧ 𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) → (((𝑄 / 𝑃) · 𝑃) · (2 · 𝑢)) = (((𝑄 / 𝑃) · (2 · 𝑢)) · 𝑃)) |
286 | 278, 281,
285 | 3eqtr2d 2232 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ ((𝜑 ∧ 𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) → ((2 · 𝑢) · 𝑄) = (((𝑄 / 𝑃) · (2 · 𝑢)) · 𝑃)) |
287 | 277, 286 | oveq12d 5936 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ ((𝜑 ∧ 𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) → ((𝑃 · 𝑄) − ((2 · 𝑢) · 𝑄)) = ((𝑄 · 𝑃) − (((𝑄 / 𝑃) · (2 · 𝑢)) · 𝑃))) |
288 | 98, 100, 276 | subdird 8434 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ ((𝜑 ∧ 𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) → ((𝑃 − (2 · 𝑢)) · 𝑄) = ((𝑃 · 𝑄) − ((2 · 𝑢) · 𝑄))) |
289 | 26 | zred 9439 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢ ((𝜑 ∧ 𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) → (2 · 𝑢) ∈ ℝ) |
290 | 283, 289 | remulcld 8050 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ ((𝜑 ∧ 𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) → ((𝑄 / 𝑃) · (2 · 𝑢)) ∈ ℝ) |
291 | 290 | recnd 8048 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ ((𝜑 ∧ 𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) → ((𝑄 / 𝑃) · (2 · 𝑢)) ∈ ℂ) |
292 | 276, 291,
98 | subdird 8434 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ ((𝜑 ∧ 𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) → ((𝑄 − ((𝑄 / 𝑃) · (2 · 𝑢))) · 𝑃) = ((𝑄 · 𝑃) − (((𝑄 / 𝑃) · (2 · 𝑢)) · 𝑃))) |
293 | 287, 288,
292 | 3eqtr4d 2236 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ ((𝜑 ∧ 𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) → ((𝑃 − (2 · 𝑢)) · 𝑄) = ((𝑄 − ((𝑄 / 𝑃) · (2 · 𝑢))) · 𝑃)) |
294 | 293 | adantr 276 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (((𝜑 ∧ 𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) ∧ 𝑦 ∈ ℕ) → ((𝑃 − (2 · 𝑢)) · 𝑄) = ((𝑄 − ((𝑄 / 𝑃) · (2 · 𝑢))) · 𝑃)) |
295 | 294 | breq2d 4041 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (((𝜑 ∧ 𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) ∧ 𝑦 ∈ ℕ) → ((𝑦 · 𝑃) < ((𝑃 − (2 · 𝑢)) · 𝑄) ↔ (𝑦 · 𝑃) < ((𝑄 − ((𝑄 / 𝑃) · (2 · 𝑢))) · 𝑃))) |
296 | 290 | adantr 276 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ (((𝜑 ∧ 𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) ∧ 𝑦 ∈ ℕ) → ((𝑄 / 𝑃) · (2 · 𝑢)) ∈ ℝ) |
297 | 270, 296 | resubcld 8400 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (((𝜑 ∧ 𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) ∧ 𝑦 ∈ ℕ) → (𝑄 − ((𝑄 / 𝑃) · (2 · 𝑢))) ∈ ℝ) |
298 | 19 | adantr 276 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ (((𝜑 ∧ 𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) ∧ 𝑦 ∈ ℕ) → 𝑃 ∈ ℕ) |
299 | 298 | nnred 8995 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (((𝜑 ∧ 𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) ∧ 𝑦 ∈ ℕ) → 𝑃 ∈ ℝ) |
300 | 298 | nngt0d 9026 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (((𝜑 ∧ 𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) ∧ 𝑦 ∈ ℕ) → 0 < 𝑃) |
301 | | ltmul1 8611 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ ((𝑦 ∈ ℝ ∧ (𝑄 − ((𝑄 / 𝑃) · (2 · 𝑢))) ∈ ℝ ∧ (𝑃 ∈ ℝ ∧ 0 < 𝑃)) → (𝑦 < (𝑄 − ((𝑄 / 𝑃) · (2 · 𝑢))) ↔ (𝑦 · 𝑃) < ((𝑄 − ((𝑄 / 𝑃) · (2 · 𝑢))) · 𝑃))) |
302 | 272, 297,
299, 300, 301 | syl112anc 1253 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (((𝜑 ∧ 𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) ∧ 𝑦 ∈ ℕ) → (𝑦 < (𝑄 − ((𝑄 / 𝑃) · (2 · 𝑢))) ↔ (𝑦 · 𝑃) < ((𝑄 − ((𝑄 / 𝑃) · (2 · 𝑢))) · 𝑃))) |
303 | | ltsub13 8462 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ ((𝑦 ∈ ℝ ∧ 𝑄 ∈ ℝ ∧ ((𝑄 / 𝑃) · (2 · 𝑢)) ∈ ℝ) → (𝑦 < (𝑄 − ((𝑄 / 𝑃) · (2 · 𝑢))) ↔ ((𝑄 / 𝑃) · (2 · 𝑢)) < (𝑄 − 𝑦))) |
304 | 272, 270,
296, 303 | syl3anc 1249 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (((𝜑 ∧ 𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) ∧ 𝑦 ∈ ℕ) → (𝑦 < (𝑄 − ((𝑄 / 𝑃) · (2 · 𝑢))) ↔ ((𝑄 / 𝑃) · (2 · 𝑢)) < (𝑄 − 𝑦))) |
305 | 295, 302,
304 | 3bitr2d 216 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (((𝜑 ∧ 𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) ∧ 𝑦 ∈ ℕ) → ((𝑦 · 𝑃) < ((𝑃 − (2 · 𝑢)) · 𝑄) ↔ ((𝑄 / 𝑃) · (2 · 𝑢)) < (𝑄 − 𝑦))) |
306 | 16 | adantr 276 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ ((𝜑 ∧ 𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) → 𝑄 ∈ ℕ) |
307 | 306 | nnzd 9438 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ ((𝜑 ∧ 𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) → 𝑄 ∈ ℤ) |
308 | | nnz 9336 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (𝑦 ∈ ℕ → 𝑦 ∈
ℤ) |
309 | | zsubcl 9358 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ ((𝑄 ∈ ℤ ∧ 𝑦 ∈ ℤ) → (𝑄 − 𝑦) ∈ ℤ) |
310 | 307, 308,
309 | syl2an 289 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (((𝜑 ∧ 𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) ∧ 𝑦 ∈ ℕ) → (𝑄 − 𝑦) ∈ ℤ) |
311 | | flqlt 10352 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ ((((𝑄 / 𝑃) · (2 · 𝑢)) ∈ ℚ ∧ (𝑄 − 𝑦) ∈ ℤ) → (((𝑄 / 𝑃) · (2 · 𝑢)) < (𝑄 − 𝑦) ↔ (⌊‘((𝑄 / 𝑃) · (2 · 𝑢))) < (𝑄 − 𝑦))) |
312 | 30, 310, 311 | syl2an2r 595 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (((𝜑 ∧ 𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) ∧ 𝑦 ∈ ℕ) → (((𝑄 / 𝑃) · (2 · 𝑢)) < (𝑄 − 𝑦) ↔ (⌊‘((𝑄 / 𝑃) · (2 · 𝑢))) < (𝑄 − 𝑦))) |
313 | | zltp1le 9371 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢
(((⌊‘((𝑄
/ 𝑃) · (2 ·
𝑢))) ∈ ℤ ∧
(𝑄 − 𝑦) ∈ ℤ) →
((⌊‘((𝑄 / 𝑃) · (2 · 𝑢))) < (𝑄 − 𝑦) ↔ ((⌊‘((𝑄 / 𝑃) · (2 · 𝑢))) + 1) ≤ (𝑄 − 𝑦))) |
314 | 31, 310, 313 | syl2an2r 595 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (((𝜑 ∧ 𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) ∧ 𝑦 ∈ ℕ) →
((⌊‘((𝑄 / 𝑃) · (2 · 𝑢))) < (𝑄 − 𝑦) ↔ ((⌊‘((𝑄 / 𝑃) · (2 · 𝑢))) + 1) ≤ (𝑄 − 𝑦))) |
315 | 305, 312,
314 | 3bitrd 214 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (((𝜑 ∧ 𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) ∧ 𝑦 ∈ ℕ) → ((𝑦 · 𝑃) < ((𝑃 − (2 · 𝑢)) · 𝑄) ↔ ((⌊‘((𝑄 / 𝑃) · (2 · 𝑢))) + 1) ≤ (𝑄 − 𝑦))) |
316 | 37 | oveq2i 5929 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ (2
· 𝑁) = (2 ·
((𝑄 − 1) /
2)) |
317 | | peano2rem 8286 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢ (𝑄 ∈ ℝ → (𝑄 − 1) ∈
ℝ) |
318 | 275, 317 | syl 14 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ ((𝜑 ∧ 𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) → (𝑄 − 1) ∈ ℝ) |
319 | 318 | recnd 8048 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ ((𝜑 ∧ 𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) → (𝑄 − 1) ∈ ℂ) |
320 | | 2cnd 9055 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ ((𝜑 ∧ 𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) → 2 ∈ ℂ) |
321 | 108 | a1i 9 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ ((𝜑 ∧ 𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) → 2 # 0) |
322 | 319, 320,
321 | divcanap2d 8811 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ ((𝜑 ∧ 𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) → (2 · ((𝑄 − 1) / 2)) = (𝑄 − 1)) |
323 | 316, 322 | eqtrid 2238 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ ((𝜑 ∧ 𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) → (2 · 𝑁) = (𝑄 − 1)) |
324 | 323 | oveq1d 5933 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ ((𝜑 ∧ 𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) → ((2 · 𝑁) − (⌊‘((𝑄 / 𝑃) · (2 · 𝑢)))) = ((𝑄 − 1) − (⌊‘((𝑄 / 𝑃) · (2 · 𝑢))))) |
325 | | 1cnd 8035 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ ((𝜑 ∧ 𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) → 1 ∈ ℂ) |
326 | 31 | zcnd 9440 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ ((𝜑 ∧ 𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) → (⌊‘((𝑄 / 𝑃) · (2 · 𝑢))) ∈ ℂ) |
327 | 276, 325,
326 | sub32d 8362 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ ((𝜑 ∧ 𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) → ((𝑄 − 1) − (⌊‘((𝑄 / 𝑃) · (2 · 𝑢)))) = ((𝑄 − (⌊‘((𝑄 / 𝑃) · (2 · 𝑢)))) − 1)) |
328 | 276, 326,
325 | subsub4d 8361 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ ((𝜑 ∧ 𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) → ((𝑄 − (⌊‘((𝑄 / 𝑃) · (2 · 𝑢)))) − 1) = (𝑄 − ((⌊‘((𝑄 / 𝑃) · (2 · 𝑢))) + 1))) |
329 | 324, 327,
328 | 3eqtrd 2230 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ ((𝜑 ∧ 𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) → ((2 · 𝑁) − (⌊‘((𝑄 / 𝑃) · (2 · 𝑢)))) = (𝑄 − ((⌊‘((𝑄 / 𝑃) · (2 · 𝑢))) + 1))) |
330 | 329 | adantr 276 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (((𝜑 ∧ 𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) ∧ 𝑦 ∈ ℕ) → ((2 · 𝑁) − (⌊‘((𝑄 / 𝑃) · (2 · 𝑢)))) = (𝑄 − ((⌊‘((𝑄 / 𝑃) · (2 · 𝑢))) + 1))) |
331 | 330 | breq2d 4041 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (((𝜑 ∧ 𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) ∧ 𝑦 ∈ ℕ) → (𝑦 ≤ ((2 · 𝑁) − (⌊‘((𝑄 / 𝑃) · (2 · 𝑢)))) ↔ 𝑦 ≤ (𝑄 − ((⌊‘((𝑄 / 𝑃) · (2 · 𝑢))) + 1)))) |
332 | 274, 315,
331 | 3bitr4d 220 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (((𝜑 ∧ 𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) ∧ 𝑦 ∈ ℕ) → ((𝑦 · 𝑃) < ((𝑃 − (2 · 𝑢)) · 𝑄) ↔ 𝑦 ≤ ((2 · 𝑁) − (⌊‘((𝑄 / 𝑃) · (2 · 𝑢)))))) |
333 | 332 | anbi2d 464 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (((𝜑 ∧ 𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) ∧ 𝑦 ∈ ℕ) → ((𝑦 ≤ 𝑁 ∧ (𝑦 · 𝑃) < ((𝑃 − (2 · 𝑢)) · 𝑄)) ↔ (𝑦 ≤ 𝑁 ∧ 𝑦 ≤ ((2 · 𝑁) − (⌊‘((𝑄 / 𝑃) · (2 · 𝑢))))))) |
334 | | nnmulcl 9003 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ ((2
∈ ℕ ∧ 𝑁
∈ ℕ) → (2 · 𝑁) ∈ ℕ) |
335 | 9, 38, 334 | sylancr 414 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ (𝜑 → (2 · 𝑁) ∈
ℕ) |
336 | 335 | adantr 276 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ ((𝜑 ∧ 𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) → (2 · 𝑁) ∈ ℕ) |
337 | 336 | nnred 8995 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ ((𝜑 ∧ 𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) → (2 · 𝑁) ∈ ℝ) |
338 | 38 | adantr 276 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ ((𝜑 ∧ 𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) → 𝑁 ∈ ℕ) |
339 | 338 | nnred 8995 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ ((𝜑 ∧ 𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) → 𝑁 ∈ ℝ) |
340 | 31 | zred 9439 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ ((𝜑 ∧ 𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) → (⌊‘((𝑄 / 𝑃) · (2 · 𝑢))) ∈ ℝ) |
341 | 38 | nncnd 8996 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ (𝜑 → 𝑁 ∈ ℂ) |
342 | 341 | adantr 276 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ ((𝜑 ∧ 𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) → 𝑁 ∈ ℂ) |
343 | 342 | 2timesd 9225 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ ((𝜑 ∧ 𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) → (2 · 𝑁) = (𝑁 + 𝑁)) |
344 | 342, 342,
343 | mvrladdd 8386 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ ((𝜑 ∧ 𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) → ((2 · 𝑁) − 𝑁) = 𝑁) |
345 | 275 | rehalfcld 9229 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ ((𝜑 ∧ 𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) → (𝑄 / 2) ∈ ℝ) |
346 | 275 | ltm1d 8951 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢ ((𝜑 ∧ 𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) → (𝑄 − 1) < 𝑄) |
347 | 182 | a1i 9 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
⊢ ((𝜑 ∧ 𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) → 2 ∈ ℝ) |
348 | 184 | a1i 9 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
⊢ ((𝜑 ∧ 𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) → 0 < 2) |
349 | | ltdiv1 8887 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
⊢ (((𝑄 − 1) ∈ ℝ ∧
𝑄 ∈ ℝ ∧ (2
∈ ℝ ∧ 0 < 2)) → ((𝑄 − 1) < 𝑄 ↔ ((𝑄 − 1) / 2) < (𝑄 / 2))) |
350 | 318, 275,
347, 348, 349 | syl112anc 1253 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢ ((𝜑 ∧ 𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) → ((𝑄 − 1) < 𝑄 ↔ ((𝑄 − 1) / 2) < (𝑄 / 2))) |
351 | 346, 350 | mpbid 147 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ ((𝜑 ∧ 𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) → ((𝑄 − 1) / 2) < (𝑄 / 2)) |
352 | 37, 351 | eqbrtrid 4064 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ ((𝜑 ∧ 𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) → 𝑁 < (𝑄 / 2)) |
353 | 339, 345,
352 | ltled 8138 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ ((𝜑 ∧ 𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) → 𝑁 ≤ (𝑄 / 2)) |
354 | 276, 320,
98, 321 | div32apd 8833 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢ ((𝜑 ∧ 𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) → ((𝑄 / 2) · 𝑃) = (𝑄 · (𝑃 / 2))) |
355 | 164 | adantr 276 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . 40
⊢ ((𝜑 ∧ 𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) → 𝑀 ∈ ℝ) |
356 | 355 | rehalfcld 9229 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . 39
⊢ ((𝜑 ∧ 𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) → (𝑀 / 2) ∈ ℝ) |
357 | 13 | adantr 276 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . 40
⊢ ((𝜑 ∧ 𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) → ((⌊‘(𝑀 / 2)) + 1) ∈ ℤ) |
358 | 357 | zred 9439 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . 39
⊢ ((𝜑 ∧ 𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) → ((⌊‘(𝑀 / 2)) + 1) ∈ ℝ) |
359 | 24 | zred 9439 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . 39
⊢ ((𝜑 ∧ 𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) → 𝑢 ∈ ℝ) |
360 | 11 | adantr 276 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . 40
⊢ ((𝜑 ∧ 𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) → (𝑀 / 2) ∈ ℚ) |
361 | | flqltp1 10348 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . 40
⊢ ((𝑀 / 2) ∈ ℚ →
(𝑀 / 2) <
((⌊‘(𝑀 / 2)) +
1)) |
362 | 360, 361 | syl 14 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . 39
⊢ ((𝜑 ∧ 𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) → (𝑀 / 2) < ((⌊‘(𝑀 / 2)) + 1)) |
363 | | elfzle1 10093 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . 40
⊢ (𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀) → ((⌊‘(𝑀 / 2)) + 1) ≤ 𝑢) |
364 | 363 | adantl 277 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . 39
⊢ ((𝜑 ∧ 𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) → ((⌊‘(𝑀 / 2)) + 1) ≤ 𝑢) |
365 | 356, 358,
359, 362, 364 | ltletrd 8442 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . 38
⊢ ((𝜑 ∧ 𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) → (𝑀 / 2) < 𝑢) |
366 | | ltdivmul 8895 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . 39
⊢ ((𝑀 ∈ ℝ ∧ 𝑢 ∈ ℝ ∧ (2 ∈
ℝ ∧ 0 < 2)) → ((𝑀 / 2) < 𝑢 ↔ 𝑀 < (2 · 𝑢))) |
367 | 355, 359,
347, 348, 366 | syl112anc 1253 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . 38
⊢ ((𝜑 ∧ 𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) → ((𝑀 / 2) < 𝑢 ↔ 𝑀 < (2 · 𝑢))) |
368 | 365, 367 | mpbid 147 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . 37
⊢ ((𝜑 ∧ 𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) → 𝑀 < (2 · 𝑢)) |
369 | 6, 368 | eqbrtrrid 4065 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . 36
⊢ ((𝜑 ∧ 𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) → ((𝑃 − 1) / 2) < (2 · 𝑢)) |
370 | 19 | nnred 8995 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . 38
⊢ ((𝜑 ∧ 𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) → 𝑃 ∈ ℝ) |
371 | | peano2rem 8286 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . 38
⊢ (𝑃 ∈ ℝ → (𝑃 − 1) ∈
ℝ) |
372 | 370, 371 | syl 14 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . 37
⊢ ((𝜑 ∧ 𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) → (𝑃 − 1) ∈ ℝ) |
373 | | ltdivmul 8895 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . 37
⊢ (((𝑃 − 1) ∈ ℝ ∧
(2 · 𝑢) ∈
ℝ ∧ (2 ∈ ℝ ∧ 0 < 2)) → (((𝑃 − 1) / 2) < (2 · 𝑢) ↔ (𝑃 − 1) < (2 · (2 ·
𝑢)))) |
374 | 372, 289,
347, 348, 373 | syl112anc 1253 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . 36
⊢ ((𝜑 ∧ 𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) → (((𝑃 − 1) / 2) < (2 · 𝑢) ↔ (𝑃 − 1) < (2 · (2 ·
𝑢)))) |
375 | 369, 374 | mpbid 147 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. 35
⊢ ((𝜑 ∧ 𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) → (𝑃 − 1) < (2 · (2 ·
𝑢))) |
376 | | zmulcl 9370 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . 37
⊢ ((2
∈ ℤ ∧ (2 · 𝑢) ∈ ℤ) → (2 · (2
· 𝑢)) ∈
ℤ) |
377 | 22, 26, 376 | sylancr 414 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . 36
⊢ ((𝜑 ∧ 𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) → (2 · (2 · 𝑢)) ∈
ℤ) |
378 | | zlem1lt 9373 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . 36
⊢ ((𝑃 ∈ ℤ ∧ (2
· (2 · 𝑢))
∈ ℤ) → (𝑃
≤ (2 · (2 · 𝑢)) ↔ (𝑃 − 1) < (2 · (2 ·
𝑢)))) |
379 | 234, 377,
378 | syl2an2r 595 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. 35
⊢ ((𝜑 ∧ 𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) → (𝑃 ≤ (2 · (2 · 𝑢)) ↔ (𝑃 − 1) < (2 · (2 ·
𝑢)))) |
380 | 375, 379 | mpbird 167 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
34
⊢ ((𝜑 ∧ 𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) → 𝑃 ≤ (2 · (2 · 𝑢))) |
381 | | ledivmul 8896 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. 35
⊢ ((𝑃 ∈ ℝ ∧ (2
· 𝑢) ∈ ℝ
∧ (2 ∈ ℝ ∧ 0 < 2)) → ((𝑃 / 2) ≤ (2 · 𝑢) ↔ 𝑃 ≤ (2 · (2 · 𝑢)))) |
382 | 370, 289,
347, 348, 381 | syl112anc 1253 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
34
⊢ ((𝜑 ∧ 𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) → ((𝑃 / 2) ≤ (2 · 𝑢) ↔ 𝑃 ≤ (2 · (2 · 𝑢)))) |
383 | 380, 382 | mpbird 167 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
⊢ ((𝜑 ∧ 𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) → (𝑃 / 2) ≤ (2 · 𝑢)) |
384 | 370 | rehalfcld 9229 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
34
⊢ ((𝜑 ∧ 𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) → (𝑃 / 2) ∈ ℝ) |
385 | 306 | nngt0d 9026 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
34
⊢ ((𝜑 ∧ 𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) → 0 < 𝑄) |
386 | | lemul2 8876 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
34
⊢ (((𝑃 / 2) ∈ ℝ ∧ (2
· 𝑢) ∈ ℝ
∧ (𝑄 ∈ ℝ
∧ 0 < 𝑄)) →
((𝑃 / 2) ≤ (2 ·
𝑢) ↔ (𝑄 · (𝑃 / 2)) ≤ (𝑄 · (2 · 𝑢)))) |
387 | 384, 289,
275, 385, 386 | syl112anc 1253 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
⊢ ((𝜑 ∧ 𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) → ((𝑃 / 2) ≤ (2 · 𝑢) ↔ (𝑄 · (𝑃 / 2)) ≤ (𝑄 · (2 · 𝑢)))) |
388 | 383, 387 | mpbid 147 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢ ((𝜑 ∧ 𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) → (𝑄 · (𝑃 / 2)) ≤ (𝑄 · (2 · 𝑢))) |
389 | 354, 388 | eqbrtrd 4051 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ ((𝜑 ∧ 𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) → ((𝑄 / 2) · 𝑃) ≤ (𝑄 · (2 · 𝑢))) |
390 | 275, 289 | remulcld 8050 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢ ((𝜑 ∧ 𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) → (𝑄 · (2 · 𝑢)) ∈ ℝ) |
391 | 19 | nngt0d 9026 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢ ((𝜑 ∧ 𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) → 0 < 𝑃) |
392 | | lemuldiv 8900 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢ (((𝑄 / 2) ∈ ℝ ∧
(𝑄 · (2 ·
𝑢)) ∈ ℝ ∧
(𝑃 ∈ ℝ ∧ 0
< 𝑃)) → (((𝑄 / 2) · 𝑃) ≤ (𝑄 · (2 · 𝑢)) ↔ (𝑄 / 2) ≤ ((𝑄 · (2 · 𝑢)) / 𝑃))) |
393 | 345, 390,
370, 391, 392 | syl112anc 1253 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ ((𝜑 ∧ 𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) → (((𝑄 / 2) · 𝑃) ≤ (𝑄 · (2 · 𝑢)) ↔ (𝑄 / 2) ≤ ((𝑄 · (2 · 𝑢)) / 𝑃))) |
394 | 389, 393 | mpbid 147 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ ((𝜑 ∧ 𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) → (𝑄 / 2) ≤ ((𝑄 · (2 · 𝑢)) / 𝑃)) |
395 | 276, 100,
98, 279 | div23apd 8847 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ ((𝜑 ∧ 𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) → ((𝑄 · (2 · 𝑢)) / 𝑃) = ((𝑄 / 𝑃) · (2 · 𝑢))) |
396 | 394, 395 | breqtrd 4055 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ ((𝜑 ∧ 𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) → (𝑄 / 2) ≤ ((𝑄 / 𝑃) · (2 · 𝑢))) |
397 | 339, 345,
290, 353, 396 | letrd 8143 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ ((𝜑 ∧ 𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) → 𝑁 ≤ ((𝑄 / 𝑃) · (2 · 𝑢))) |
398 | 39 | adantr 276 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ ((𝜑 ∧ 𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) → 𝑁 ∈ ℤ) |
399 | | flqge 10351 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ ((((𝑄 / 𝑃) · (2 · 𝑢)) ∈ ℚ ∧ 𝑁 ∈ ℤ) → (𝑁 ≤ ((𝑄 / 𝑃) · (2 · 𝑢)) ↔ 𝑁 ≤ (⌊‘((𝑄 / 𝑃) · (2 · 𝑢))))) |
400 | 30, 398, 399 | syl2anc 411 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ ((𝜑 ∧ 𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) → (𝑁 ≤ ((𝑄 / 𝑃) · (2 · 𝑢)) ↔ 𝑁 ≤ (⌊‘((𝑄 / 𝑃) · (2 · 𝑢))))) |
401 | 397, 400 | mpbid 147 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ ((𝜑 ∧ 𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) → 𝑁 ≤ (⌊‘((𝑄 / 𝑃) · (2 · 𝑢)))) |
402 | 344, 401 | eqbrtrd 4051 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ ((𝜑 ∧ 𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) → ((2 · 𝑁) − 𝑁) ≤ (⌊‘((𝑄 / 𝑃) · (2 · 𝑢)))) |
403 | 337, 339,
340, 402 | subled 8567 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((𝜑 ∧ 𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) → ((2 · 𝑁) − (⌊‘((𝑄 / 𝑃) · (2 · 𝑢)))) ≤ 𝑁) |
404 | 403 | adantr 276 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (((𝜑 ∧ 𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) ∧ 𝑦 ∈ ℕ) → ((2 · 𝑁) − (⌊‘((𝑄 / 𝑃) · (2 · 𝑢)))) ≤ 𝑁) |
405 | 336 | nnzd 9438 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ ((𝜑 ∧ 𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) → (2 · 𝑁) ∈ ℤ) |
406 | 405, 31 | zsubcld 9444 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ ((𝜑 ∧ 𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) → ((2 · 𝑁) − (⌊‘((𝑄 / 𝑃) · (2 · 𝑢)))) ∈ ℤ) |
407 | 406 | adantr 276 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (((𝜑 ∧ 𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) ∧ 𝑦 ∈ ℕ) → ((2 · 𝑁) − (⌊‘((𝑄 / 𝑃) · (2 · 𝑢)))) ∈ ℤ) |
408 | 407 | zred 9439 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (((𝜑 ∧ 𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) ∧ 𝑦 ∈ ℕ) → ((2 · 𝑁) − (⌊‘((𝑄 / 𝑃) · (2 · 𝑢)))) ∈ ℝ) |
409 | 38 | ad2antrr 488 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (((𝜑 ∧ 𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) ∧ 𝑦 ∈ ℕ) → 𝑁 ∈ ℕ) |
410 | 409 | nnred 8995 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (((𝜑 ∧ 𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) ∧ 𝑦 ∈ ℕ) → 𝑁 ∈ ℝ) |
411 | | letr 8102 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((𝑦 ∈ ℝ ∧ ((2
· 𝑁) −
(⌊‘((𝑄 / 𝑃) · (2 · 𝑢)))) ∈ ℝ ∧ 𝑁 ∈ ℝ) → ((𝑦 ≤ ((2 · 𝑁) − (⌊‘((𝑄 / 𝑃) · (2 · 𝑢)))) ∧ ((2 · 𝑁) − (⌊‘((𝑄 / 𝑃) · (2 · 𝑢)))) ≤ 𝑁) → 𝑦 ≤ 𝑁)) |
412 | 272, 408,
410, 411 | syl3anc 1249 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (((𝜑 ∧ 𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) ∧ 𝑦 ∈ ℕ) → ((𝑦 ≤ ((2 · 𝑁) − (⌊‘((𝑄 / 𝑃) · (2 · 𝑢)))) ∧ ((2 · 𝑁) − (⌊‘((𝑄 / 𝑃) · (2 · 𝑢)))) ≤ 𝑁) → 𝑦 ≤ 𝑁)) |
413 | 404, 412 | mpan2d 428 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (((𝜑 ∧ 𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) ∧ 𝑦 ∈ ℕ) → (𝑦 ≤ ((2 · 𝑁) − (⌊‘((𝑄 / 𝑃) · (2 · 𝑢)))) → 𝑦 ≤ 𝑁)) |
414 | 413 | pm4.71rd 394 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (((𝜑 ∧ 𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) ∧ 𝑦 ∈ ℕ) → (𝑦 ≤ ((2 · 𝑁) − (⌊‘((𝑄 / 𝑃) · (2 · 𝑢)))) ↔ (𝑦 ≤ 𝑁 ∧ 𝑦 ≤ ((2 · 𝑁) − (⌊‘((𝑄 / 𝑃) · (2 · 𝑢))))))) |
415 | 333, 414 | bitr4d 191 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (((𝜑 ∧ 𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) ∧ 𝑦 ∈ ℕ) → ((𝑦 ≤ 𝑁 ∧ (𝑦 · 𝑃) < ((𝑃 − (2 · 𝑢)) · 𝑄)) ↔ 𝑦 ≤ ((2 · 𝑁) − (⌊‘((𝑄 / 𝑃) · (2 · 𝑢)))))) |
416 | 415 | pm5.32da 452 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝜑 ∧ 𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) → ((𝑦 ∈ ℕ ∧ (𝑦 ≤ 𝑁 ∧ (𝑦 · 𝑃) < ((𝑃 − (2 · 𝑢)) · 𝑄))) ↔ (𝑦 ∈ ℕ ∧ 𝑦 ≤ ((2 · 𝑁) − (⌊‘((𝑄 / 𝑃) · (2 · 𝑢))))))) |
417 | 416 | adantr 276 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝜑 ∧ 𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) ∧ 𝑥 = (𝑃 − (2 · 𝑢))) → ((𝑦 ∈ ℕ ∧ (𝑦 ≤ 𝑁 ∧ (𝑦 · 𝑃) < ((𝑃 − (2 · 𝑢)) · 𝑄))) ↔ (𝑦 ∈ ℕ ∧ 𝑦 ≤ ((2 · 𝑁) − (⌊‘((𝑄 / 𝑃) · (2 · 𝑢))))))) |
418 | 265, 417 | bitrid 192 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ 𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) ∧ 𝑥 = (𝑃 − (2 · 𝑢))) → (((𝑦 ∈ ℕ ∧ 𝑦 ≤ 𝑁) ∧ (𝑦 · 𝑃) < ((𝑃 − (2 · 𝑢)) · 𝑄)) ↔ (𝑦 ∈ ℕ ∧ 𝑦 ≤ ((2 · 𝑁) − (⌊‘((𝑄 / 𝑃) · (2 · 𝑢))))))) |
419 | | simpr 110 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (((𝜑 ∧ 𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) ∧ 𝑥 = (𝑃 − (2 · 𝑢))) → 𝑥 = (𝑃 − (2 · 𝑢))) |
420 | 234 | adantr 276 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ ((𝜑 ∧ 𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) → 𝑃 ∈ ℤ) |
421 | 420, 26 | zsubcld 9444 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((𝜑 ∧ 𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) → (𝑃 − (2 · 𝑢)) ∈ ℤ) |
422 | | elfzle2 10094 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ (𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀) → 𝑢 ≤ 𝑀) |
423 | 422 | adantl 277 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ ((𝜑 ∧ 𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) → 𝑢 ≤ 𝑀) |
424 | 423, 6 | breqtrdi 4070 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ ((𝜑 ∧ 𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) → 𝑢 ≤ ((𝑃 − 1) / 2)) |
425 | | lemuldiv2 8901 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ ((𝑢 ∈ ℝ ∧ (𝑃 − 1) ∈ ℝ ∧
(2 ∈ ℝ ∧ 0 < 2)) → ((2 · 𝑢) ≤ (𝑃 − 1) ↔ 𝑢 ≤ ((𝑃 − 1) / 2))) |
426 | 359, 372,
347, 348, 425 | syl112anc 1253 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ ((𝜑 ∧ 𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) → ((2 · 𝑢) ≤ (𝑃 − 1) ↔ 𝑢 ≤ ((𝑃 − 1) / 2))) |
427 | 424, 426 | mpbird 167 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ ((𝜑 ∧ 𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) → (2 · 𝑢) ≤ (𝑃 − 1)) |
428 | 370 | ltm1d 8951 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ ((𝜑 ∧ 𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) → (𝑃 − 1) < 𝑃) |
429 | 289, 372,
370, 427, 428 | lelttrd 8144 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ ((𝜑 ∧ 𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) → (2 · 𝑢) < 𝑃) |
430 | 289, 370 | posdifd 8551 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ ((𝜑 ∧ 𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) → ((2 · 𝑢) < 𝑃 ↔ 0 < (𝑃 − (2 · 𝑢)))) |
431 | 429, 430 | mpbid 147 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((𝜑 ∧ 𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) → 0 < (𝑃 − (2 · 𝑢))) |
432 | | elnnz 9327 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((𝑃 − (2 · 𝑢)) ∈ ℕ ↔ ((𝑃 − (2 · 𝑢)) ∈ ℤ ∧ 0 <
(𝑃 − (2 ·
𝑢)))) |
433 | 421, 431,
432 | sylanbrc 417 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((𝜑 ∧ 𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) → (𝑃 − (2 · 𝑢)) ∈ ℕ) |
434 | 98, 100, 325 | sub32d 8362 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ ((𝜑 ∧ 𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) → ((𝑃 − (2 · 𝑢)) − 1) = ((𝑃 − 1) − (2 · 𝑢))) |
435 | 6, 6 | oveq12i 5930 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ (𝑀 + 𝑀) = (((𝑃 − 1) / 2) + ((𝑃 − 1) / 2)) |
436 | 87, 236 | syl 14 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
⊢ ((𝜑 ∧ 𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) → (𝑃 − 1) ∈ ℤ) |
437 | 436 | zcnd 9440 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢ ((𝜑 ∧ 𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) → (𝑃 − 1) ∈ ℂ) |
438 | 437 | 2halvesd 9228 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ ((𝜑 ∧ 𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) → (((𝑃 − 1) / 2) + ((𝑃 − 1) / 2)) = (𝑃 − 1)) |
439 | 435, 438 | eqtrid 2238 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ ((𝜑 ∧ 𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) → (𝑀 + 𝑀) = (𝑃 − 1)) |
440 | 439 | oveq1d 5933 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ ((𝜑 ∧ 𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) → ((𝑀 + 𝑀) − 𝑀) = ((𝑃 − 1) − 𝑀)) |
441 | 190 | adantr 276 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ ((𝜑 ∧ 𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) → 𝑀 ∈ ℂ) |
442 | 441, 441 | pncan2d 8332 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ ((𝜑 ∧ 𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) → ((𝑀 + 𝑀) − 𝑀) = 𝑀) |
443 | 440, 442 | eqtr3d 2228 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ ((𝜑 ∧ 𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) → ((𝑃 − 1) − 𝑀) = 𝑀) |
444 | 443, 368 | eqbrtrd 4051 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ ((𝜑 ∧ 𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) → ((𝑃 − 1) − 𝑀) < (2 · 𝑢)) |
445 | 372, 355,
289, 444 | ltsub23d 8569 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ ((𝜑 ∧ 𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) → ((𝑃 − 1) − (2 · 𝑢)) < 𝑀) |
446 | 434, 445 | eqbrtrd 4051 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((𝜑 ∧ 𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) → ((𝑃 − (2 · 𝑢)) − 1) < 𝑀) |
447 | 7 | adantr 276 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ ((𝜑 ∧ 𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) → 𝑀 ∈ ℕ) |
448 | 447 | nnzd 9438 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ ((𝜑 ∧ 𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) → 𝑀 ∈ ℤ) |
449 | | zlem1lt 9373 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (((𝑃 − (2 · 𝑢)) ∈ ℤ ∧ 𝑀 ∈ ℤ) → ((𝑃 − (2 · 𝑢)) ≤ 𝑀 ↔ ((𝑃 − (2 · 𝑢)) − 1) < 𝑀)) |
450 | 421, 448,
449 | syl2anc 411 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((𝜑 ∧ 𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) → ((𝑃 − (2 · 𝑢)) ≤ 𝑀 ↔ ((𝑃 − (2 · 𝑢)) − 1) < 𝑀)) |
451 | 446, 450 | mpbird 167 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((𝜑 ∧ 𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) → (𝑃 − (2 · 𝑢)) ≤ 𝑀) |
452 | | fznn 10155 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (𝑀 ∈ ℤ → ((𝑃 − (2 · 𝑢)) ∈ (1...𝑀) ↔ ((𝑃 − (2 · 𝑢)) ∈ ℕ ∧ (𝑃 − (2 · 𝑢)) ≤ 𝑀))) |
453 | 448, 452 | syl 14 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((𝜑 ∧ 𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) → ((𝑃 − (2 · 𝑢)) ∈ (1...𝑀) ↔ ((𝑃 − (2 · 𝑢)) ∈ ℕ ∧ (𝑃 − (2 · 𝑢)) ≤ 𝑀))) |
454 | 433, 451,
453 | mpbir2and 946 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝜑 ∧ 𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) → (𝑃 − (2 · 𝑢)) ∈ (1...𝑀)) |
455 | 454 | adantr 276 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (((𝜑 ∧ 𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) ∧ 𝑥 = (𝑃 − (2 · 𝑢))) → (𝑃 − (2 · 𝑢)) ∈ (1...𝑀)) |
456 | 419, 455 | eqeltrd 2270 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (((𝜑 ∧ 𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) ∧ 𝑥 = (𝑃 − (2 · 𝑢))) → 𝑥 ∈ (1...𝑀)) |
457 | 456 | biantrurd 305 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝜑 ∧ 𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) ∧ 𝑥 = (𝑃 − (2 · 𝑢))) → (𝑦 ∈ (1...𝑁) ↔ (𝑥 ∈ (1...𝑀) ∧ 𝑦 ∈ (1...𝑁)))) |
458 | 39 | ad2antrr 488 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (((𝜑 ∧ 𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) ∧ 𝑥 = (𝑃 − (2 · 𝑢))) → 𝑁 ∈ ℤ) |
459 | | fznn 10155 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑁 ∈ ℤ → (𝑦 ∈ (1...𝑁) ↔ (𝑦 ∈ ℕ ∧ 𝑦 ≤ 𝑁))) |
460 | 458, 459 | syl 14 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝜑 ∧ 𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) ∧ 𝑥 = (𝑃 − (2 · 𝑢))) → (𝑦 ∈ (1...𝑁) ↔ (𝑦 ∈ ℕ ∧ 𝑦 ≤ 𝑁))) |
461 | 457, 460 | bitr3d 190 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝜑 ∧ 𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) ∧ 𝑥 = (𝑃 − (2 · 𝑢))) → ((𝑥 ∈ (1...𝑀) ∧ 𝑦 ∈ (1...𝑁)) ↔ (𝑦 ∈ ℕ ∧ 𝑦 ≤ 𝑁))) |
462 | 419 | oveq1d 5933 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝜑 ∧ 𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) ∧ 𝑥 = (𝑃 − (2 · 𝑢))) → (𝑥 · 𝑄) = ((𝑃 − (2 · 𝑢)) · 𝑄)) |
463 | 462 | breq2d 4041 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝜑 ∧ 𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) ∧ 𝑥 = (𝑃 − (2 · 𝑢))) → ((𝑦 · 𝑃) < (𝑥 · 𝑄) ↔ (𝑦 · 𝑃) < ((𝑃 − (2 · 𝑢)) · 𝑄))) |
464 | 461, 463 | anbi12d 473 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ 𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) ∧ 𝑥 = (𝑃 − (2 · 𝑢))) → (((𝑥 ∈ (1...𝑀) ∧ 𝑦 ∈ (1...𝑁)) ∧ (𝑦 · 𝑃) < (𝑥 · 𝑄)) ↔ ((𝑦 ∈ ℕ ∧ 𝑦 ≤ 𝑁) ∧ (𝑦 · 𝑃) < ((𝑃 − (2 · 𝑢)) · 𝑄)))) |
465 | 406 | adantr 276 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝜑 ∧ 𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) ∧ 𝑥 = (𝑃 − (2 · 𝑢))) → ((2 · 𝑁) − (⌊‘((𝑄 / 𝑃) · (2 · 𝑢)))) ∈ ℤ) |
466 | | fznn 10155 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((2
· 𝑁) −
(⌊‘((𝑄 / 𝑃) · (2 · 𝑢)))) ∈ ℤ →
(𝑦 ∈ (1...((2 ·
𝑁) −
(⌊‘((𝑄 / 𝑃) · (2 · 𝑢))))) ↔ (𝑦 ∈ ℕ ∧ 𝑦 ≤ ((2 · 𝑁) − (⌊‘((𝑄 / 𝑃) · (2 · 𝑢))))))) |
467 | 465, 466 | syl 14 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ 𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) ∧ 𝑥 = (𝑃 − (2 · 𝑢))) → (𝑦 ∈ (1...((2 · 𝑁) − (⌊‘((𝑄 / 𝑃) · (2 · 𝑢))))) ↔ (𝑦 ∈ ℕ ∧ 𝑦 ≤ ((2 · 𝑁) − (⌊‘((𝑄 / 𝑃) · (2 · 𝑢))))))) |
468 | 418, 464,
467 | 3bitr4d 220 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) ∧ 𝑥 = (𝑃 − (2 · 𝑢))) → (((𝑥 ∈ (1...𝑀) ∧ 𝑦 ∈ (1...𝑁)) ∧ (𝑦 · 𝑃) < (𝑥 · 𝑄)) ↔ 𝑦 ∈ (1...((2 · 𝑁) − (⌊‘((𝑄 / 𝑃) · (2 · 𝑢))))))) |
469 | 264, 468 | bitrid 192 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) ∧ 𝑥 = (𝑃 − (2 · 𝑢))) → (〈𝑥, 𝑦〉 ∈ 𝑆 ↔ 𝑦 ∈ (1...((2 · 𝑁) − (⌊‘((𝑄 / 𝑃) · (2 · 𝑢))))))) |
470 | 469 | pm5.32da 452 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) → ((𝑥 = (𝑃 − (2 · 𝑢)) ∧ 〈𝑥, 𝑦〉 ∈ 𝑆) ↔ (𝑥 = (𝑃 − (2 · 𝑢)) ∧ 𝑦 ∈ (1...((2 · 𝑁) − (⌊‘((𝑄 / 𝑃) · (2 · 𝑢)))))))) |
471 | | vex 2763 |
. . . . . . . . . . . . . . . . . . 19
⊢ 𝑥 ∈ V |
472 | | vex 2763 |
. . . . . . . . . . . . . . . . . . 19
⊢ 𝑦 ∈ V |
473 | 471, 472 | op1std 6201 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑧 = 〈𝑥, 𝑦〉 → (1st ‘𝑧) = 𝑥) |
474 | 473 | eqeq1d 2202 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑧 = 〈𝑥, 𝑦〉 → ((1st ‘𝑧) = (𝑃 − (2 · 𝑢)) ↔ 𝑥 = (𝑃 − (2 · 𝑢)))) |
475 | 474 | elrab 2916 |
. . . . . . . . . . . . . . . 16
⊢
(〈𝑥, 𝑦〉 ∈ {𝑧 ∈ 𝑆 ∣ (1st ‘𝑧) = (𝑃 − (2 · 𝑢))} ↔ (〈𝑥, 𝑦〉 ∈ 𝑆 ∧ 𝑥 = (𝑃 − (2 · 𝑢)))) |
476 | 475 | biancomi 270 |
. . . . . . . . . . . . . . 15
⊢
(〈𝑥, 𝑦〉 ∈ {𝑧 ∈ 𝑆 ∣ (1st ‘𝑧) = (𝑃 − (2 · 𝑢))} ↔ (𝑥 = (𝑃 − (2 · 𝑢)) ∧ 〈𝑥, 𝑦〉 ∈ 𝑆)) |
477 | | opelxp 4689 |
. . . . . . . . . . . . . . . 16
⊢
(〈𝑥, 𝑦〉 ∈ ({(𝑃 − (2 · 𝑢))} × (1...((2 ·
𝑁) −
(⌊‘((𝑄 / 𝑃) · (2 · 𝑢)))))) ↔ (𝑥 ∈ {(𝑃 − (2 · 𝑢))} ∧ 𝑦 ∈ (1...((2 · 𝑁) − (⌊‘((𝑄 / 𝑃) · (2 · 𝑢))))))) |
478 | | velsn 3635 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑥 ∈ {(𝑃 − (2 · 𝑢))} ↔ 𝑥 = (𝑃 − (2 · 𝑢))) |
479 | 478 | anbi1i 458 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑥 ∈ {(𝑃 − (2 · 𝑢))} ∧ 𝑦 ∈ (1...((2 · 𝑁) − (⌊‘((𝑄 / 𝑃) · (2 · 𝑢)))))) ↔ (𝑥 = (𝑃 − (2 · 𝑢)) ∧ 𝑦 ∈ (1...((2 · 𝑁) − (⌊‘((𝑄 / 𝑃) · (2 · 𝑢))))))) |
480 | 477, 479 | bitri 184 |
. . . . . . . . . . . . . . 15
⊢
(〈𝑥, 𝑦〉 ∈ ({(𝑃 − (2 · 𝑢))} × (1...((2 ·
𝑁) −
(⌊‘((𝑄 / 𝑃) · (2 · 𝑢)))))) ↔ (𝑥 = (𝑃 − (2 · 𝑢)) ∧ 𝑦 ∈ (1...((2 · 𝑁) − (⌊‘((𝑄 / 𝑃) · (2 · 𝑢))))))) |
481 | 470, 476,
480 | 3bitr4g 223 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) → (〈𝑥, 𝑦〉 ∈ {𝑧 ∈ 𝑆 ∣ (1st ‘𝑧) = (𝑃 − (2 · 𝑢))} ↔ 〈𝑥, 𝑦〉 ∈ ({(𝑃 − (2 · 𝑢))} × (1...((2 · 𝑁) − (⌊‘((𝑄 / 𝑃) · (2 · 𝑢)))))))) |
482 | 260, 261,
481 | eqrelrdv 4755 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) → {𝑧 ∈ 𝑆 ∣ (1st ‘𝑧) = (𝑃 − (2 · 𝑢))} = ({(𝑃 − (2 · 𝑢))} × (1...((2 · 𝑁) − (⌊‘((𝑄 / 𝑃) · (2 · 𝑢))))))) |
483 | 482 | fveq2d 5558 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) → (♯‘{𝑧 ∈ 𝑆 ∣ (1st ‘𝑧) = (𝑃 − (2 · 𝑢))}) = (♯‘({(𝑃 − (2 · 𝑢))} × (1...((2 · 𝑁) − (⌊‘((𝑄 / 𝑃) · (2 · 𝑢)))))))) |
484 | | 1zzd 9344 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) → 1 ∈ ℤ) |
485 | 484, 406 | fzfigd 10502 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) → (1...((2 · 𝑁) − (⌊‘((𝑄 / 𝑃) · (2 · 𝑢))))) ∈ Fin) |
486 | | xpsnen2g 6883 |
. . . . . . . . . . . . . 14
⊢ (((𝑃 − (2 · 𝑢)) ∈ ℤ ∧ (1...((2
· 𝑁) −
(⌊‘((𝑄 / 𝑃) · (2 · 𝑢))))) ∈ Fin) →
({(𝑃 − (2 ·
𝑢))} × (1...((2
· 𝑁) −
(⌊‘((𝑄 / 𝑃) · (2 · 𝑢)))))) ≈ (1...((2 ·
𝑁) −
(⌊‘((𝑄 / 𝑃) · (2 · 𝑢)))))) |
487 | 421, 485,
486 | syl2anc 411 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) → ({(𝑃 − (2 · 𝑢))} × (1...((2 · 𝑁) − (⌊‘((𝑄 / 𝑃) · (2 · 𝑢)))))) ≈ (1...((2 · 𝑁) − (⌊‘((𝑄 / 𝑃) · (2 · 𝑢)))))) |
488 | 482, 92 | eqeltrrd 2271 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) → ({(𝑃 − (2 · 𝑢))} × (1...((2 · 𝑁) − (⌊‘((𝑄 / 𝑃) · (2 · 𝑢)))))) ∈ Fin) |
489 | | hashen 10855 |
. . . . . . . . . . . . . 14
⊢
((({(𝑃 − (2
· 𝑢))} ×
(1...((2 · 𝑁)
− (⌊‘((𝑄
/ 𝑃) · (2 ·
𝑢)))))) ∈ Fin ∧
(1...((2 · 𝑁)
− (⌊‘((𝑄
/ 𝑃) · (2 ·
𝑢))))) ∈ Fin) →
((♯‘({(𝑃
− (2 · 𝑢))}
× (1...((2 · 𝑁) − (⌊‘((𝑄 / 𝑃) · (2 · 𝑢))))))) = (♯‘(1...((2 ·
𝑁) −
(⌊‘((𝑄 / 𝑃) · (2 · 𝑢)))))) ↔ ({(𝑃 − (2 · 𝑢))} × (1...((2 ·
𝑁) −
(⌊‘((𝑄 / 𝑃) · (2 · 𝑢)))))) ≈ (1...((2 ·
𝑁) −
(⌊‘((𝑄 / 𝑃) · (2 · 𝑢))))))) |
490 | 488, 485,
489 | syl2anc 411 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) → ((♯‘({(𝑃 − (2 · 𝑢))} × (1...((2 ·
𝑁) −
(⌊‘((𝑄 / 𝑃) · (2 · 𝑢))))))) =
(♯‘(1...((2 · 𝑁) − (⌊‘((𝑄 / 𝑃) · (2 · 𝑢)))))) ↔ ({(𝑃 − (2 · 𝑢))} × (1...((2 · 𝑁) − (⌊‘((𝑄 / 𝑃) · (2 · 𝑢)))))) ≈ (1...((2 · 𝑁) − (⌊‘((𝑄 / 𝑃) · (2 · 𝑢))))))) |
491 | 487, 490 | mpbird 167 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) → (♯‘({(𝑃 − (2 · 𝑢))} × (1...((2 ·
𝑁) −
(⌊‘((𝑄 / 𝑃) · (2 · 𝑢))))))) =
(♯‘(1...((2 · 𝑁) − (⌊‘((𝑄 / 𝑃) · (2 · 𝑢))))))) |
492 | | ltmul2 8875 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (((2
· 𝑢) ∈ ℝ
∧ 𝑃 ∈ ℝ
∧ (𝑄 ∈ ℝ
∧ 0 < 𝑄)) → ((2
· 𝑢) < 𝑃 ↔ (𝑄 · (2 · 𝑢)) < (𝑄 · 𝑃))) |
493 | 289, 370,
275, 385, 492 | syl112anc 1253 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝜑 ∧ 𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) → ((2 · 𝑢) < 𝑃 ↔ (𝑄 · (2 · 𝑢)) < (𝑄 · 𝑃))) |
494 | 429, 493 | mpbid 147 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ 𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) → (𝑄 · (2 · 𝑢)) < (𝑄 · 𝑃)) |
495 | | ltdivmul2 8897 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝑄 · (2 · 𝑢)) ∈ ℝ ∧ 𝑄 ∈ ℝ ∧ (𝑃 ∈ ℝ ∧ 0 <
𝑃)) → (((𝑄 · (2 · 𝑢)) / 𝑃) < 𝑄 ↔ (𝑄 · (2 · 𝑢)) < (𝑄 · 𝑃))) |
496 | 390, 275,
370, 391, 495 | syl112anc 1253 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ 𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) → (((𝑄 · (2 · 𝑢)) / 𝑃) < 𝑄 ↔ (𝑄 · (2 · 𝑢)) < (𝑄 · 𝑃))) |
497 | 494, 496 | mpbird 167 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) → ((𝑄 · (2 · 𝑢)) / 𝑃) < 𝑄) |
498 | 395, 497 | eqbrtrrd 4053 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) → ((𝑄 / 𝑃) · (2 · 𝑢)) < 𝑄) |
499 | | flqlt 10352 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝑄 / 𝑃) · (2 · 𝑢)) ∈ ℚ ∧ 𝑄 ∈ ℤ) → (((𝑄 / 𝑃) · (2 · 𝑢)) < 𝑄 ↔ (⌊‘((𝑄 / 𝑃) · (2 · 𝑢))) < 𝑄)) |
500 | 30, 307, 499 | syl2anc 411 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) → (((𝑄 / 𝑃) · (2 · 𝑢)) < 𝑄 ↔ (⌊‘((𝑄 / 𝑃) · (2 · 𝑢))) < 𝑄)) |
501 | 498, 500 | mpbid 147 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) → (⌊‘((𝑄 / 𝑃) · (2 · 𝑢))) < 𝑄) |
502 | | zltlem1 9374 |
. . . . . . . . . . . . . . . . 17
⊢
(((⌊‘((𝑄
/ 𝑃) · (2 ·
𝑢))) ∈ ℤ ∧
𝑄 ∈ ℤ) →
((⌊‘((𝑄 / 𝑃) · (2 · 𝑢))) < 𝑄 ↔ (⌊‘((𝑄 / 𝑃) · (2 · 𝑢))) ≤ (𝑄 − 1))) |
503 | 31, 307, 502 | syl2anc 411 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) → ((⌊‘((𝑄 / 𝑃) · (2 · 𝑢))) < 𝑄 ↔ (⌊‘((𝑄 / 𝑃) · (2 · 𝑢))) ≤ (𝑄 − 1))) |
504 | 501, 503 | mpbid 147 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) → (⌊‘((𝑄 / 𝑃) · (2 · 𝑢))) ≤ (𝑄 − 1)) |
505 | 504, 323 | breqtrrd 4057 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) → (⌊‘((𝑄 / 𝑃) · (2 · 𝑢))) ≤ (2 · 𝑁)) |
506 | | eluz2 9598 |
. . . . . . . . . . . . . 14
⊢ ((2
· 𝑁) ∈
(ℤ≥‘(⌊‘((𝑄 / 𝑃) · (2 · 𝑢)))) ↔ ((⌊‘((𝑄 / 𝑃) · (2 · 𝑢))) ∈ ℤ ∧ (2 · 𝑁) ∈ ℤ ∧
(⌊‘((𝑄 / 𝑃) · (2 · 𝑢))) ≤ (2 · 𝑁))) |
507 | 31, 405, 505, 506 | syl3anbrc 1183 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) → (2 · 𝑁) ∈
(ℤ≥‘(⌊‘((𝑄 / 𝑃) · (2 · 𝑢))))) |
508 | | uznn0sub 9624 |
. . . . . . . . . . . . 13
⊢ ((2
· 𝑁) ∈
(ℤ≥‘(⌊‘((𝑄 / 𝑃) · (2 · 𝑢)))) → ((2 · 𝑁) − (⌊‘((𝑄 / 𝑃) · (2 · 𝑢)))) ∈
ℕ0) |
509 | | hashfz1 10854 |
. . . . . . . . . . . . 13
⊢ (((2
· 𝑁) −
(⌊‘((𝑄 / 𝑃) · (2 · 𝑢)))) ∈ ℕ0
→ (♯‘(1...((2 · 𝑁) − (⌊‘((𝑄 / 𝑃) · (2 · 𝑢)))))) = ((2 · 𝑁) − (⌊‘((𝑄 / 𝑃) · (2 · 𝑢))))) |
510 | 507, 508,
509 | 3syl 17 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) → (♯‘(1...((2 ·
𝑁) −
(⌊‘((𝑄 / 𝑃) · (2 · 𝑢)))))) = ((2 · 𝑁) − (⌊‘((𝑄 / 𝑃) · (2 · 𝑢))))) |
511 | 483, 491,
510 | 3eqtrd 2230 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) → (♯‘{𝑧 ∈ 𝑆 ∣ (1st ‘𝑧) = (𝑃 − (2 · 𝑢))}) = ((2 · 𝑁) − (⌊‘((𝑄 / 𝑃) · (2 · 𝑢))))) |
512 | 511 | sumeq2dv 11511 |
. . . . . . . . . 10
⊢ (𝜑 → Σ𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)(♯‘{𝑧 ∈ 𝑆 ∣ (1st ‘𝑧) = (𝑃 − (2 · 𝑢))}) = Σ𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)((2 · 𝑁) − (⌊‘((𝑄 / 𝑃) · (2 · 𝑢))))) |
513 | 115, 256,
512 | 3eqtr3rd 2235 |
. . . . . . . . 9
⊢ (𝜑 → Σ𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)((2 · 𝑁) − (⌊‘((𝑄 / 𝑃) · (2 · 𝑢)))) = (♯‘{𝑧 ∈ 𝑆 ∣ ¬ 2 ∥ (1st
‘𝑧)})) |
514 | 335 | nncnd 8996 |
. . . . . . . . . . 11
⊢ (𝜑 → (2 · 𝑁) ∈
ℂ) |
515 | 514 | adantr 276 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) → (2 · 𝑁) ∈ ℂ) |
516 | 14, 515, 326 | fsumsub 11595 |
. . . . . . . . 9
⊢ (𝜑 → Σ𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)((2 · 𝑁) − (⌊‘((𝑄 / 𝑃) · (2 · 𝑢)))) = (Σ𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)(2 · 𝑁) − Σ𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)(⌊‘((𝑄 / 𝑃) · (2 · 𝑢))))) |
517 | 513, 516 | eqtr3d 2228 |
. . . . . . . 8
⊢ (𝜑 → (♯‘{𝑧 ∈ 𝑆 ∣ ¬ 2 ∥ (1st
‘𝑧)}) = (Σ𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)(2 · 𝑁) − Σ𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)(⌊‘((𝑄 / 𝑃) · (2 · 𝑢))))) |
518 | 517 | oveq2d 5934 |
. . . . . . 7
⊢ (𝜑 → (Σ𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)(⌊‘((𝑄 / 𝑃) · (2 · 𝑢))) + (♯‘{𝑧 ∈ 𝑆 ∣ ¬ 2 ∥ (1st
‘𝑧)})) =
(Σ𝑢 ∈
(((⌊‘(𝑀 / 2)) +
1)...𝑀)(⌊‘((𝑄 / 𝑃) · (2 · 𝑢))) + (Σ𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)(2 · 𝑁) − Σ𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)(⌊‘((𝑄 / 𝑃) · (2 · 𝑢)))))) |
519 | 32 | zcnd 9440 |
. . . . . . . 8
⊢ (𝜑 → Σ𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)(⌊‘((𝑄 / 𝑃) · (2 · 𝑢))) ∈ ℂ) |
520 | 14, 405 | fsumzcl 11545 |
. . . . . . . . 9
⊢ (𝜑 → Σ𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)(2 · 𝑁) ∈ ℤ) |
521 | 520 | zcnd 9440 |
. . . . . . . 8
⊢ (𝜑 → Σ𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)(2 · 𝑁) ∈ ℂ) |
522 | 519, 521 | pncan3d 8333 |
. . . . . . 7
⊢ (𝜑 → (Σ𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)(⌊‘((𝑄 / 𝑃) · (2 · 𝑢))) + (Σ𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)(2 · 𝑁) − Σ𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)(⌊‘((𝑄 / 𝑃) · (2 · 𝑢))))) = Σ𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)(2 · 𝑁)) |
523 | | fsumconst 11597 |
. . . . . . . . 9
⊢
(((((⌊‘(𝑀 / 2)) + 1)...𝑀) ∈ Fin ∧ (2 · 𝑁) ∈ ℂ) →
Σ𝑢 ∈
(((⌊‘(𝑀 / 2)) +
1)...𝑀)(2 · 𝑁) =
((♯‘(((⌊‘(𝑀 / 2)) + 1)...𝑀)) · (2 · 𝑁))) |
524 | 14, 514, 523 | syl2anc 411 |
. . . . . . . 8
⊢ (𝜑 → Σ𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)(2 · 𝑁) = ((♯‘(((⌊‘(𝑀 / 2)) + 1)...𝑀)) · (2 · 𝑁))) |
525 | | hashcl 10852 |
. . . . . . . . . . 11
⊢
((((⌊‘(𝑀
/ 2)) + 1)...𝑀) ∈ Fin
→ (♯‘(((⌊‘(𝑀 / 2)) + 1)...𝑀)) ∈
ℕ0) |
526 | 14, 525 | syl 14 |
. . . . . . . . . 10
⊢ (𝜑 →
(♯‘(((⌊‘(𝑀 / 2)) + 1)...𝑀)) ∈
ℕ0) |
527 | 526 | nn0cnd 9295 |
. . . . . . . . 9
⊢ (𝜑 →
(♯‘(((⌊‘(𝑀 / 2)) + 1)...𝑀)) ∈ ℂ) |
528 | | 2cnd 9055 |
. . . . . . . . 9
⊢ (𝜑 → 2 ∈
ℂ) |
529 | 527, 528,
341 | mul12d 8171 |
. . . . . . . 8
⊢ (𝜑 →
((♯‘(((⌊‘(𝑀 / 2)) + 1)...𝑀)) · (2 · 𝑁)) = (2 ·
((♯‘(((⌊‘(𝑀 / 2)) + 1)...𝑀)) · 𝑁))) |
530 | 524, 529 | eqtrd 2226 |
. . . . . . 7
⊢ (𝜑 → Σ𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)(2 · 𝑁) = (2 ·
((♯‘(((⌊‘(𝑀 / 2)) + 1)...𝑀)) · 𝑁))) |
531 | 518, 522,
530 | 3eqtrd 2230 |
. . . . . 6
⊢ (𝜑 → (Σ𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)(⌊‘((𝑄 / 𝑃) · (2 · 𝑢))) + (♯‘{𝑧 ∈ 𝑆 ∣ ¬ 2 ∥ (1st
‘𝑧)})) = (2 ·
((♯‘(((⌊‘(𝑀 / 2)) + 1)...𝑀)) · 𝑁))) |
532 | 531 | oveq2d 5934 |
. . . . 5
⊢ (𝜑 → (-1↑(Σ𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)(⌊‘((𝑄 / 𝑃) · (2 · 𝑢))) + (♯‘{𝑧 ∈ 𝑆 ∣ ¬ 2 ∥ (1st
‘𝑧)}))) = (-1↑(2
· ((♯‘(((⌊‘(𝑀 / 2)) + 1)...𝑀)) · 𝑁)))) |
533 | 22 | a1i 9 |
. . . . . 6
⊢ (𝜑 → 2 ∈
ℤ) |
534 | 526 | nn0zd 9437 |
. . . . . . 7
⊢ (𝜑 →
(♯‘(((⌊‘(𝑀 / 2)) + 1)...𝑀)) ∈ ℤ) |
535 | 534, 39 | zmulcld 9445 |
. . . . . 6
⊢ (𝜑 →
((♯‘(((⌊‘(𝑀 / 2)) + 1)...𝑀)) · 𝑁) ∈ ℤ) |
536 | | expmulzap 10656 |
. . . . . 6
⊢ (((-1
∈ ℂ ∧ -1 # 0) ∧ (2 ∈ ℤ ∧
((♯‘(((⌊‘(𝑀 / 2)) + 1)...𝑀)) · 𝑁) ∈ ℤ)) → (-1↑(2
· ((♯‘(((⌊‘(𝑀 / 2)) + 1)...𝑀)) · 𝑁))) =
((-1↑2)↑((♯‘(((⌊‘(𝑀 / 2)) + 1)...𝑀)) · 𝑁))) |
537 | 2, 4, 533, 535, 536 | syl22anc 1250 |
. . . . 5
⊢ (𝜑 → (-1↑(2 ·
((♯‘(((⌊‘(𝑀 / 2)) + 1)...𝑀)) · 𝑁))) =
((-1↑2)↑((♯‘(((⌊‘(𝑀 / 2)) + 1)...𝑀)) · 𝑁))) |
538 | | neg1sqe1 10705 |
. . . . . . 7
⊢
(-1↑2) = 1 |
539 | 538 | oveq1i 5928 |
. . . . . 6
⊢
((-1↑2)↑((♯‘(((⌊‘(𝑀 / 2)) + 1)...𝑀)) · 𝑁)) =
(1↑((♯‘(((⌊‘(𝑀 / 2)) + 1)...𝑀)) · 𝑁)) |
540 | | 1exp 10639 |
. . . . . . 7
⊢
(((♯‘(((⌊‘(𝑀 / 2)) + 1)...𝑀)) · 𝑁) ∈ ℤ →
(1↑((♯‘(((⌊‘(𝑀 / 2)) + 1)...𝑀)) · 𝑁)) = 1) |
541 | 535, 540 | syl 14 |
. . . . . 6
⊢ (𝜑 →
(1↑((♯‘(((⌊‘(𝑀 / 2)) + 1)...𝑀)) · 𝑁)) = 1) |
542 | 539, 541 | eqtrid 2238 |
. . . . 5
⊢ (𝜑 →
((-1↑2)↑((♯‘(((⌊‘(𝑀 / 2)) + 1)...𝑀)) · 𝑁)) = 1) |
543 | 532, 537,
542 | 3eqtrd 2230 |
. . . 4
⊢ (𝜑 → (-1↑(Σ𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)(⌊‘((𝑄 / 𝑃) · (2 · 𝑢))) + (♯‘{𝑧 ∈ 𝑆 ∣ ¬ 2 ∥ (1st
‘𝑧)}))) =
1) |
544 | 74, 85, 543 | 3eqtr4d 2236 |
. . 3
⊢ (𝜑 →
((-1↑(♯‘{𝑧
∈ 𝑆 ∣ ¬ 2
∥ (1st ‘𝑧)})) · (-1↑(♯‘{𝑧 ∈ 𝑆 ∣ ¬ 2 ∥ (1st
‘𝑧)}))) =
(-1↑(Σ𝑢 ∈
(((⌊‘(𝑀 / 2)) +
1)...𝑀)(⌊‘((𝑄 / 𝑃) · (2 · 𝑢))) + (♯‘{𝑧 ∈ 𝑆 ∣ ¬ 2 ∥ (1st
‘𝑧)})))) |
545 | | expaddzap 10654 |
. . . 4
⊢ (((-1
∈ ℂ ∧ -1 # 0) ∧ (Σ𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)(⌊‘((𝑄 / 𝑃) · (2 · 𝑢))) ∈ ℤ ∧
(♯‘{𝑧 ∈
𝑆 ∣ ¬ 2 ∥
(1st ‘𝑧)})
∈ ℤ)) → (-1↑(Σ𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)(⌊‘((𝑄 / 𝑃) · (2 · 𝑢))) + (♯‘{𝑧 ∈ 𝑆 ∣ ¬ 2 ∥ (1st
‘𝑧)}))) =
((-1↑Σ𝑢 ∈
(((⌊‘(𝑀 / 2)) +
1)...𝑀)(⌊‘((𝑄 / 𝑃) · (2 · 𝑢)))) · (-1↑(♯‘{𝑧 ∈ 𝑆 ∣ ¬ 2 ∥ (1st
‘𝑧)})))) |
546 | 2, 4, 32, 72, 545 | syl22anc 1250 |
. . 3
⊢ (𝜑 → (-1↑(Σ𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)(⌊‘((𝑄 / 𝑃) · (2 · 𝑢))) + (♯‘{𝑧 ∈ 𝑆 ∣ ¬ 2 ∥ (1st
‘𝑧)}))) =
((-1↑Σ𝑢 ∈
(((⌊‘(𝑀 / 2)) +
1)...𝑀)(⌊‘((𝑄 / 𝑃) · (2 · 𝑢)))) · (-1↑(♯‘{𝑧 ∈ 𝑆 ∣ ¬ 2 ∥ (1st
‘𝑧)})))) |
547 | 544, 546 | eqtr2d 2227 |
. 2
⊢ (𝜑 → ((-1↑Σ𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)(⌊‘((𝑄 / 𝑃) · (2 · 𝑢)))) · (-1↑(♯‘{𝑧 ∈ 𝑆 ∣ ¬ 2 ∥ (1st
‘𝑧)}))) =
((-1↑(♯‘{𝑧
∈ 𝑆 ∣ ¬ 2
∥ (1st ‘𝑧)})) · (-1↑(♯‘{𝑧 ∈ 𝑆 ∣ ¬ 2 ∥ (1st
‘𝑧)})))) |
548 | 33, 71, 71, 73, 547 | mulcanap2ad 8683 |
1
⊢ (𝜑 → (-1↑Σ𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)(⌊‘((𝑄 / 𝑃) · (2 · 𝑢)))) = (-1↑(♯‘{𝑧 ∈ 𝑆 ∣ ¬ 2 ∥ (1st
‘𝑧)}))) |