ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  lgsquadlem1 GIF version

Theorem lgsquadlem1 15328
Description: Lemma for lgsquad 15331. Count the members of 𝑆 with odd coordinates. (Contributed by Mario Carneiro, 19-Jun-2015.)
Hypotheses
Ref Expression
lgseisen.1 (𝜑𝑃 ∈ (ℙ ∖ {2}))
lgseisen.2 (𝜑𝑄 ∈ (ℙ ∖ {2}))
lgseisen.3 (𝜑𝑃𝑄)
lgsquad.4 𝑀 = ((𝑃 − 1) / 2)
lgsquad.5 𝑁 = ((𝑄 − 1) / 2)
lgsquad.6 𝑆 = {⟨𝑥, 𝑦⟩ ∣ ((𝑥 ∈ (1...𝑀) ∧ 𝑦 ∈ (1...𝑁)) ∧ (𝑦 · 𝑃) < (𝑥 · 𝑄))}
Assertion
Ref Expression
lgsquadlem1 (𝜑 → (-1↑Σ𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)(⌊‘((𝑄 / 𝑃) · (2 · 𝑢)))) = (-1↑(♯‘{𝑧𝑆 ∣ ¬ 2 ∥ (1st𝑧)})))
Distinct variable groups:   𝑥,𝑢,𝑦,𝑧,𝑃   𝜑,𝑢,𝑥,𝑦,𝑧   𝑢,𝑀,𝑦,𝑧   𝑢,𝑁,𝑥,𝑦,𝑧   𝑢,𝑄,𝑥,𝑦,𝑧   𝑢,𝑆,𝑥,𝑧   𝑥,𝑀   𝑦,𝑆

Proof of Theorem lgsquadlem1
Dummy variables 𝑛 𝑣 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 neg1cn 9097 . . . 4 -1 ∈ ℂ
21a1i 9 . . 3 (𝜑 → -1 ∈ ℂ)
3 neg1ap0 9101 . . . 4 -1 # 0
43a1i 9 . . 3 (𝜑 → -1 # 0)
5 lgseisen.1 . . . . . . . . . 10 (𝜑𝑃 ∈ (ℙ ∖ {2}))
6 lgsquad.4 . . . . . . . . . 10 𝑀 = ((𝑃 − 1) / 2)
75, 6gausslemma2dlem0b 15301 . . . . . . . . 9 (𝜑𝑀 ∈ ℕ)
87nnzd 9449 . . . . . . . 8 (𝜑𝑀 ∈ ℤ)
9 2nn 9154 . . . . . . . 8 2 ∈ ℕ
10 znq 9700 . . . . . . . 8 ((𝑀 ∈ ℤ ∧ 2 ∈ ℕ) → (𝑀 / 2) ∈ ℚ)
118, 9, 10sylancl 413 . . . . . . 7 (𝜑 → (𝑀 / 2) ∈ ℚ)
1211flqcld 10369 . . . . . 6 (𝜑 → (⌊‘(𝑀 / 2)) ∈ ℤ)
1312peano2zd 9453 . . . . 5 (𝜑 → ((⌊‘(𝑀 / 2)) + 1) ∈ ℤ)
1413, 8fzfigd 10525 . . . 4 (𝜑 → (((⌊‘(𝑀 / 2)) + 1)...𝑀) ∈ Fin)
15 lgseisen.2 . . . . . . . . 9 (𝜑𝑄 ∈ (ℙ ∖ {2}))
1615gausslemma2dlem0a 15300 . . . . . . . 8 (𝜑𝑄 ∈ ℕ)
1716nnzd 9449 . . . . . . 7 (𝜑𝑄 ∈ ℤ)
185gausslemma2dlem0a 15300 . . . . . . . 8 (𝜑𝑃 ∈ ℕ)
1918adantr 276 . . . . . . 7 ((𝜑𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) → 𝑃 ∈ ℕ)
20 znq 9700 . . . . . . 7 ((𝑄 ∈ ℤ ∧ 𝑃 ∈ ℕ) → (𝑄 / 𝑃) ∈ ℚ)
2117, 19, 20syl2an2r 595 . . . . . 6 ((𝜑𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) → (𝑄 / 𝑃) ∈ ℚ)
22 2z 9356 . . . . . . . 8 2 ∈ ℤ
23 elfzelz 10102 . . . . . . . . 9 (𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀) → 𝑢 ∈ ℤ)
2423adantl 277 . . . . . . . 8 ((𝜑𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) → 𝑢 ∈ ℤ)
25 zmulcl 9381 . . . . . . . 8 ((2 ∈ ℤ ∧ 𝑢 ∈ ℤ) → (2 · 𝑢) ∈ ℤ)
2622, 24, 25sylancr 414 . . . . . . 7 ((𝜑𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) → (2 · 𝑢) ∈ ℤ)
27 zq 9702 . . . . . . 7 ((2 · 𝑢) ∈ ℤ → (2 · 𝑢) ∈ ℚ)
2826, 27syl 14 . . . . . 6 ((𝜑𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) → (2 · 𝑢) ∈ ℚ)
29 qmulcl 9713 . . . . . 6 (((𝑄 / 𝑃) ∈ ℚ ∧ (2 · 𝑢) ∈ ℚ) → ((𝑄 / 𝑃) · (2 · 𝑢)) ∈ ℚ)
3021, 28, 29syl2anc 411 . . . . 5 ((𝜑𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) → ((𝑄 / 𝑃) · (2 · 𝑢)) ∈ ℚ)
3130flqcld 10369 . . . 4 ((𝜑𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) → (⌊‘((𝑄 / 𝑃) · (2 · 𝑢))) ∈ ℤ)
3214, 31fsumzcl 11569 . . 3 (𝜑 → Σ𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)(⌊‘((𝑄 / 𝑃) · (2 · 𝑢))) ∈ ℤ)
332, 4, 32expclzapd 10772 . 2 (𝜑 → (-1↑Σ𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)(⌊‘((𝑄 / 𝑃) · (2 · 𝑢)))) ∈ ℂ)
34 lgseisen.3 . . . . 5 (𝜑𝑃𝑄)
35 lgsquad.5 . . . . 5 𝑁 = ((𝑄 − 1) / 2)
36 lgsquad.6 . . . . 5 𝑆 = {⟨𝑥, 𝑦⟩ ∣ ((𝑥 ∈ (1...𝑀) ∧ 𝑦 ∈ (1...𝑁)) ∧ (𝑦 · 𝑃) < (𝑥 · 𝑄))}
375, 15, 34, 6, 35, 36lgsquadlemofi 15327 . . . 4 (𝜑 → {𝑧𝑆 ∣ ¬ 2 ∥ (1st𝑧)} ∈ Fin)
38 hashcl 10875 . . . 4 ({𝑧𝑆 ∣ ¬ 2 ∥ (1st𝑧)} ∈ Fin → (♯‘{𝑧𝑆 ∣ ¬ 2 ∥ (1st𝑧)}) ∈ ℕ0)
3937, 38syl 14 . . 3 (𝜑 → (♯‘{𝑧𝑆 ∣ ¬ 2 ∥ (1st𝑧)}) ∈ ℕ0)
40 expcl 10651 . . 3 ((-1 ∈ ℂ ∧ (♯‘{𝑧𝑆 ∣ ¬ 2 ∥ (1st𝑧)}) ∈ ℕ0) → (-1↑(♯‘{𝑧𝑆 ∣ ¬ 2 ∥ (1st𝑧)})) ∈ ℂ)
411, 39, 40sylancr 414 . 2 (𝜑 → (-1↑(♯‘{𝑧𝑆 ∣ ¬ 2 ∥ (1st𝑧)})) ∈ ℂ)
4239nn0zd 9448 . . 3 (𝜑 → (♯‘{𝑧𝑆 ∣ ¬ 2 ∥ (1st𝑧)}) ∈ ℤ)
432, 4, 42expap0d 10773 . 2 (𝜑 → (-1↑(♯‘{𝑧𝑆 ∣ ¬ 2 ∥ (1st𝑧)})) # 0)
4441, 43recidapd 8812 . . . 4 (𝜑 → ((-1↑(♯‘{𝑧𝑆 ∣ ¬ 2 ∥ (1st𝑧)})) · (1 / (-1↑(♯‘{𝑧𝑆 ∣ ¬ 2 ∥ (1st𝑧)})))) = 1)
45 1div1e1 8733 . . . . . . . . 9 (1 / 1) = 1
4645negeqi 8222 . . . . . . . 8 -(1 / 1) = -1
47 ax-1cn 7974 . . . . . . . . 9 1 ∈ ℂ
48 1ap0 8619 . . . . . . . . 9 1 # 0
49 divneg2ap 8765 . . . . . . . . 9 ((1 ∈ ℂ ∧ 1 ∈ ℂ ∧ 1 # 0) → -(1 / 1) = (1 / -1))
5047, 47, 48, 49mp3an 1348 . . . . . . . 8 -(1 / 1) = (1 / -1)
5146, 50eqtr3i 2219 . . . . . . 7 -1 = (1 / -1)
5251oveq1i 5933 . . . . . 6 (-1↑(♯‘{𝑧𝑆 ∣ ¬ 2 ∥ (1st𝑧)})) = ((1 / -1)↑(♯‘{𝑧𝑆 ∣ ¬ 2 ∥ (1st𝑧)}))
532, 4, 42exprecapd 10775 . . . . . 6 (𝜑 → ((1 / -1)↑(♯‘{𝑧𝑆 ∣ ¬ 2 ∥ (1st𝑧)})) = (1 / (-1↑(♯‘{𝑧𝑆 ∣ ¬ 2 ∥ (1st𝑧)}))))
5452, 53eqtrid 2241 . . . . 5 (𝜑 → (-1↑(♯‘{𝑧𝑆 ∣ ¬ 2 ∥ (1st𝑧)})) = (1 / (-1↑(♯‘{𝑧𝑆 ∣ ¬ 2 ∥ (1st𝑧)}))))
5554oveq2d 5939 . . . 4 (𝜑 → ((-1↑(♯‘{𝑧𝑆 ∣ ¬ 2 ∥ (1st𝑧)})) · (-1↑(♯‘{𝑧𝑆 ∣ ¬ 2 ∥ (1st𝑧)}))) = ((-1↑(♯‘{𝑧𝑆 ∣ ¬ 2 ∥ (1st𝑧)})) · (1 / (-1↑(♯‘{𝑧𝑆 ∣ ¬ 2 ∥ (1st𝑧)})))))
565, 15, 34, 6, 35, 36lgsquadlemsfi 15326 . . . . . . . . . . . . 13 (𝜑𝑆 ∈ Fin)
5756adantr 276 . . . . . . . . . . . 12 ((𝜑𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) → 𝑆 ∈ Fin)
58 opabssxp 4738 . . . . . . . . . . . . . . . . . 18 {⟨𝑥, 𝑦⟩ ∣ ((𝑥 ∈ (1...𝑀) ∧ 𝑦 ∈ (1...𝑁)) ∧ (𝑦 · 𝑃) < (𝑥 · 𝑄))} ⊆ ((1...𝑀) × (1...𝑁))
5936, 58eqsstri 3216 . . . . . . . . . . . . . . . . 17 𝑆 ⊆ ((1...𝑀) × (1...𝑁))
6059sseli 3180 . . . . . . . . . . . . . . . 16 (𝑧𝑆𝑧 ∈ ((1...𝑀) × (1...𝑁)))
61 xp1st 6224 . . . . . . . . . . . . . . . 16 (𝑧 ∈ ((1...𝑀) × (1...𝑁)) → (1st𝑧) ∈ (1...𝑀))
6260, 61syl 14 . . . . . . . . . . . . . . 15 (𝑧𝑆 → (1st𝑧) ∈ (1...𝑀))
6362elfzelzd 10103 . . . . . . . . . . . . . 14 (𝑧𝑆 → (1st𝑧) ∈ ℤ)
6419nnzd 9449 . . . . . . . . . . . . . . 15 ((𝜑𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) → 𝑃 ∈ ℤ)
6564, 26zsubcld 9455 . . . . . . . . . . . . . 14 ((𝜑𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) → (𝑃 − (2 · 𝑢)) ∈ ℤ)
66 zdceq 9403 . . . . . . . . . . . . . 14 (((1st𝑧) ∈ ℤ ∧ (𝑃 − (2 · 𝑢)) ∈ ℤ) → DECID (1st𝑧) = (𝑃 − (2 · 𝑢)))
6763, 65, 66syl2anr 290 . . . . . . . . . . . . 13 (((𝜑𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) ∧ 𝑧𝑆) → DECID (1st𝑧) = (𝑃 − (2 · 𝑢)))
6867ralrimiva 2570 . . . . . . . . . . . 12 ((𝜑𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) → ∀𝑧𝑆 DECID (1st𝑧) = (𝑃 − (2 · 𝑢)))
6957, 68ssfirab 6998 . . . . . . . . . . 11 ((𝜑𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) → {𝑧𝑆 ∣ (1st𝑧) = (𝑃 − (2 · 𝑢))} ∈ Fin)
70 fveqeq2 5568 . . . . . . . . . . . . . . . . . . . 20 (𝑧 = 𝑣 → ((1st𝑧) = (𝑃 − (2 · 𝑢)) ↔ (1st𝑣) = (𝑃 − (2 · 𝑢))))
7170elrab 2920 . . . . . . . . . . . . . . . . . . 19 (𝑣 ∈ {𝑧𝑆 ∣ (1st𝑧) = (𝑃 − (2 · 𝑢))} ↔ (𝑣𝑆 ∧ (1st𝑣) = (𝑃 − (2 · 𝑢))))
7271simprbi 275 . . . . . . . . . . . . . . . . . 18 (𝑣 ∈ {𝑧𝑆 ∣ (1st𝑧) = (𝑃 − (2 · 𝑢))} → (1st𝑣) = (𝑃 − (2 · 𝑢)))
7372ad2antll 491 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ (𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀) ∧ 𝑣 ∈ {𝑧𝑆 ∣ (1st𝑧) = (𝑃 − (2 · 𝑢))})) → (1st𝑣) = (𝑃 − (2 · 𝑢)))
7473oveq2d 5939 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀) ∧ 𝑣 ∈ {𝑧𝑆 ∣ (1st𝑧) = (𝑃 − (2 · 𝑢))})) → (𝑃 − (1st𝑣)) = (𝑃 − (𝑃 − (2 · 𝑢))))
7519nncnd 9006 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) → 𝑃 ∈ ℂ)
7675adantrr 479 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ (𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀) ∧ 𝑣 ∈ {𝑧𝑆 ∣ (1st𝑧) = (𝑃 − (2 · 𝑢))})) → 𝑃 ∈ ℂ)
7726zcnd 9451 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) → (2 · 𝑢) ∈ ℂ)
7877adantrr 479 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ (𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀) ∧ 𝑣 ∈ {𝑧𝑆 ∣ (1st𝑧) = (𝑃 − (2 · 𝑢))})) → (2 · 𝑢) ∈ ℂ)
7976, 78nncand 8344 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀) ∧ 𝑣 ∈ {𝑧𝑆 ∣ (1st𝑧) = (𝑃 − (2 · 𝑢))})) → (𝑃 − (𝑃 − (2 · 𝑢))) = (2 · 𝑢))
8074, 79eqtrd 2229 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀) ∧ 𝑣 ∈ {𝑧𝑆 ∣ (1st𝑧) = (𝑃 − (2 · 𝑢))})) → (𝑃 − (1st𝑣)) = (2 · 𝑢))
8180oveq1d 5938 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀) ∧ 𝑣 ∈ {𝑧𝑆 ∣ (1st𝑧) = (𝑃 − (2 · 𝑢))})) → ((𝑃 − (1st𝑣)) / 2) = ((2 · 𝑢) / 2))
8224zcnd 9451 . . . . . . . . . . . . . . . 16 ((𝜑𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) → 𝑢 ∈ ℂ)
8382adantrr 479 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀) ∧ 𝑣 ∈ {𝑧𝑆 ∣ (1st𝑧) = (𝑃 − (2 · 𝑢))})) → 𝑢 ∈ ℂ)
84 2cnd 9065 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀) ∧ 𝑣 ∈ {𝑧𝑆 ∣ (1st𝑧) = (𝑃 − (2 · 𝑢))})) → 2 ∈ ℂ)
85 2ap0 9085 . . . . . . . . . . . . . . . 16 2 # 0
8685a1i 9 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀) ∧ 𝑣 ∈ {𝑧𝑆 ∣ (1st𝑧) = (𝑃 − (2 · 𝑢))})) → 2 # 0)
8783, 84, 86divcanap3d 8824 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀) ∧ 𝑣 ∈ {𝑧𝑆 ∣ (1st𝑧) = (𝑃 − (2 · 𝑢))})) → ((2 · 𝑢) / 2) = 𝑢)
8881, 87eqtrd 2229 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀) ∧ 𝑣 ∈ {𝑧𝑆 ∣ (1st𝑧) = (𝑃 − (2 · 𝑢))})) → ((𝑃 − (1st𝑣)) / 2) = 𝑢)
8988ralrimivva 2579 . . . . . . . . . . . 12 (𝜑 → ∀𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)∀𝑣 ∈ {𝑧𝑆 ∣ (1st𝑧) = (𝑃 − (2 · 𝑢))} ((𝑃 − (1st𝑣)) / 2) = 𝑢)
90 invdisj 4028 . . . . . . . . . . . 12 (∀𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)∀𝑣 ∈ {𝑧𝑆 ∣ (1st𝑧) = (𝑃 − (2 · 𝑢))} ((𝑃 − (1st𝑣)) / 2) = 𝑢Disj 𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀){𝑧𝑆 ∣ (1st𝑧) = (𝑃 − (2 · 𝑢))})
9189, 90syl 14 . . . . . . . . . . 11 (𝜑Disj 𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀){𝑧𝑆 ∣ (1st𝑧) = (𝑃 − (2 · 𝑢))})
9214, 69, 91hashiun 11645 . . . . . . . . . 10 (𝜑 → (♯‘ 𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀){𝑧𝑆 ∣ (1st𝑧) = (𝑃 − (2 · 𝑢))}) = Σ𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)(♯‘{𝑧𝑆 ∣ (1st𝑧) = (𝑃 − (2 · 𝑢))}))
93 iunrab 3965 . . . . . . . . . . . 12 𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀){𝑧𝑆 ∣ (1st𝑧) = (𝑃 − (2 · 𝑢))} = {𝑧𝑆 ∣ ∃𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)(1st𝑧) = (𝑃 − (2 · 𝑢))}
94 eldifsni 3752 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑃 ∈ (ℙ ∖ {2}) → 𝑃 ≠ 2)
955, 94syl 14 . . . . . . . . . . . . . . . . . . . . . 22 (𝜑𝑃 ≠ 2)
9695necomd 2453 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → 2 ≠ 𝑃)
9796neneqd 2388 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → ¬ 2 = 𝑃)
9897ad2antrr 488 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑧𝑆) ∧ 𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) → ¬ 2 = 𝑃)
99 uzid 9617 . . . . . . . . . . . . . . . . . . . . 21 (2 ∈ ℤ → 2 ∈ (ℤ‘2))
10022, 99ax-mp 5 . . . . . . . . . . . . . . . . . . . 20 2 ∈ (ℤ‘2)
1015eldifad 3168 . . . . . . . . . . . . . . . . . . . . 21 (𝜑𝑃 ∈ ℙ)
102101ad2antrr 488 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑧𝑆) ∧ 𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) → 𝑃 ∈ ℙ)
103 dvdsprm 12315 . . . . . . . . . . . . . . . . . . . 20 ((2 ∈ (ℤ‘2) ∧ 𝑃 ∈ ℙ) → (2 ∥ 𝑃 ↔ 2 = 𝑃))
104100, 102, 103sylancr 414 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑧𝑆) ∧ 𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) → (2 ∥ 𝑃 ↔ 2 = 𝑃))
10598, 104mtbird 674 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑧𝑆) ∧ 𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) → ¬ 2 ∥ 𝑃)
10618ad2antrr 488 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑧𝑆) ∧ 𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) → 𝑃 ∈ ℕ)
107106nncnd 9006 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑧𝑆) ∧ 𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) → 𝑃 ∈ ℂ)
10826adantlr 477 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑧𝑆) ∧ 𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) → (2 · 𝑢) ∈ ℤ)
109108zcnd 9451 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑧𝑆) ∧ 𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) → (2 · 𝑢) ∈ ℂ)
110107, 109npcand 8343 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑧𝑆) ∧ 𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) → ((𝑃 − (2 · 𝑢)) + (2 · 𝑢)) = 𝑃)
111110breq2d 4046 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑧𝑆) ∧ 𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) → (2 ∥ ((𝑃 − (2 · 𝑢)) + (2 · 𝑢)) ↔ 2 ∥ 𝑃))
112105, 111mtbird 674 . . . . . . . . . . . . . . . . 17 (((𝜑𝑧𝑆) ∧ 𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) → ¬ 2 ∥ ((𝑃 − (2 · 𝑢)) + (2 · 𝑢)))
11323adantl 277 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑧𝑆) ∧ 𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) → 𝑢 ∈ ℤ)
114 dvdsmul1 11980 . . . . . . . . . . . . . . . . . . 19 ((2 ∈ ℤ ∧ 𝑢 ∈ ℤ) → 2 ∥ (2 · 𝑢))
11522, 113, 114sylancr 414 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑧𝑆) ∧ 𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) → 2 ∥ (2 · 𝑢))
11622a1i 9 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑧𝑆) ∧ 𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) → 2 ∈ ℤ)
117106nnzd 9449 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑧𝑆) ∧ 𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) → 𝑃 ∈ ℤ)
118117, 108zsubcld 9455 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑧𝑆) ∧ 𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) → (𝑃 − (2 · 𝑢)) ∈ ℤ)
119 dvds2add 11992 . . . . . . . . . . . . . . . . . . 19 ((2 ∈ ℤ ∧ (𝑃 − (2 · 𝑢)) ∈ ℤ ∧ (2 · 𝑢) ∈ ℤ) → ((2 ∥ (𝑃 − (2 · 𝑢)) ∧ 2 ∥ (2 · 𝑢)) → 2 ∥ ((𝑃 − (2 · 𝑢)) + (2 · 𝑢))))
120116, 118, 108, 119syl3anc 1249 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑧𝑆) ∧ 𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) → ((2 ∥ (𝑃 − (2 · 𝑢)) ∧ 2 ∥ (2 · 𝑢)) → 2 ∥ ((𝑃 − (2 · 𝑢)) + (2 · 𝑢))))
121115, 120mpan2d 428 . . . . . . . . . . . . . . . . 17 (((𝜑𝑧𝑆) ∧ 𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) → (2 ∥ (𝑃 − (2 · 𝑢)) → 2 ∥ ((𝑃 − (2 · 𝑢)) + (2 · 𝑢))))
122112, 121mtod 664 . . . . . . . . . . . . . . . 16 (((𝜑𝑧𝑆) ∧ 𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) → ¬ 2 ∥ (𝑃 − (2 · 𝑢)))
123 breq2 4038 . . . . . . . . . . . . . . . . 17 ((1st𝑧) = (𝑃 − (2 · 𝑢)) → (2 ∥ (1st𝑧) ↔ 2 ∥ (𝑃 − (2 · 𝑢))))
124123notbid 668 . . . . . . . . . . . . . . . 16 ((1st𝑧) = (𝑃 − (2 · 𝑢)) → (¬ 2 ∥ (1st𝑧) ↔ ¬ 2 ∥ (𝑃 − (2 · 𝑢))))
125122, 124syl5ibrcom 157 . . . . . . . . . . . . . . 15 (((𝜑𝑧𝑆) ∧ 𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) → ((1st𝑧) = (𝑃 − (2 · 𝑢)) → ¬ 2 ∥ (1st𝑧)))
126125rexlimdva 2614 . . . . . . . . . . . . . 14 ((𝜑𝑧𝑆) → (∃𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)(1st𝑧) = (𝑃 − (2 · 𝑢)) → ¬ 2 ∥ (1st𝑧)))
127 simpr 110 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑧𝑆) → 𝑧𝑆)
12859, 127sselid 3182 . . . . . . . . . . . . . . . . 17 ((𝜑𝑧𝑆) → 𝑧 ∈ ((1...𝑀) × (1...𝑁)))
129128, 61syl 14 . . . . . . . . . . . . . . . 16 ((𝜑𝑧𝑆) → (1st𝑧) ∈ (1...𝑀))
130 elfzelz 10102 . . . . . . . . . . . . . . . 16 ((1st𝑧) ∈ (1...𝑀) → (1st𝑧) ∈ ℤ)
131 odd2np1 12040 . . . . . . . . . . . . . . . 16 ((1st𝑧) ∈ ℤ → (¬ 2 ∥ (1st𝑧) ↔ ∃𝑛 ∈ ℤ ((2 · 𝑛) + 1) = (1st𝑧)))
132129, 130, 1313syl 17 . . . . . . . . . . . . . . 15 ((𝜑𝑧𝑆) → (¬ 2 ∥ (1st𝑧) ↔ ∃𝑛 ∈ ℤ ((2 · 𝑛) + 1) = (1st𝑧)))
13311ad2antrr 488 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑧𝑆) ∧ (𝑛 ∈ ℤ ∧ ((2 · 𝑛) + 1) = (1st𝑧))) → (𝑀 / 2) ∈ ℚ)
134133flqcld 10369 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑧𝑆) ∧ (𝑛 ∈ ℤ ∧ ((2 · 𝑛) + 1) = (1st𝑧))) → (⌊‘(𝑀 / 2)) ∈ ℤ)
135134peano2zd 9453 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑧𝑆) ∧ (𝑛 ∈ ℤ ∧ ((2 · 𝑛) + 1) = (1st𝑧))) → ((⌊‘(𝑀 / 2)) + 1) ∈ ℤ)
1367ad2antrr 488 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑧𝑆) ∧ (𝑛 ∈ ℤ ∧ ((2 · 𝑛) + 1) = (1st𝑧))) → 𝑀 ∈ ℕ)
137136nnzd 9449 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑧𝑆) ∧ (𝑛 ∈ ℤ ∧ ((2 · 𝑛) + 1) = (1st𝑧))) → 𝑀 ∈ ℤ)
138 simprl 529 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑧𝑆) ∧ (𝑛 ∈ ℤ ∧ ((2 · 𝑛) + 1) = (1st𝑧))) → 𝑛 ∈ ℤ)
139137, 138zsubcld 9455 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑧𝑆) ∧ (𝑛 ∈ ℤ ∧ ((2 · 𝑛) + 1) = (1st𝑧))) → (𝑀𝑛) ∈ ℤ)
140134zred 9450 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑧𝑆) ∧ (𝑛 ∈ ℤ ∧ ((2 · 𝑛) + 1) = (1st𝑧))) → (⌊‘(𝑀 / 2)) ∈ ℝ)
1417nnred 9005 . . . . . . . . . . . . . . . . . . . . . 22 (𝜑𝑀 ∈ ℝ)
142141ad2antrr 488 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑧𝑆) ∧ (𝑛 ∈ ℤ ∧ ((2 · 𝑛) + 1) = (1st𝑧))) → 𝑀 ∈ ℝ)
143142rehalfcld 9240 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑧𝑆) ∧ (𝑛 ∈ ℤ ∧ ((2 · 𝑛) + 1) = (1st𝑧))) → (𝑀 / 2) ∈ ℝ)
144139zred 9450 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑧𝑆) ∧ (𝑛 ∈ ℤ ∧ ((2 · 𝑛) + 1) = (1st𝑧))) → (𝑀𝑛) ∈ ℝ)
145 flqle 10370 . . . . . . . . . . . . . . . . . . . . 21 ((𝑀 / 2) ∈ ℚ → (⌊‘(𝑀 / 2)) ≤ (𝑀 / 2))
146133, 145syl 14 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑧𝑆) ∧ (𝑛 ∈ ℤ ∧ ((2 · 𝑛) + 1) = (1st𝑧))) → (⌊‘(𝑀 / 2)) ≤ (𝑀 / 2))
147 zre 9332 . . . . . . . . . . . . . . . . . . . . . 22 (𝑛 ∈ ℤ → 𝑛 ∈ ℝ)
148147ad2antrl 490 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑧𝑆) ∧ (𝑛 ∈ ℤ ∧ ((2 · 𝑛) + 1) = (1st𝑧))) → 𝑛 ∈ ℝ)
149 simprr 531 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝜑𝑧𝑆) ∧ (𝑛 ∈ ℤ ∧ ((2 · 𝑛) + 1) = (1st𝑧))) → ((2 · 𝑛) + 1) = (1st𝑧))
150129adantr 276 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝜑𝑧𝑆) ∧ (𝑛 ∈ ℤ ∧ ((2 · 𝑛) + 1) = (1st𝑧))) → (1st𝑧) ∈ (1...𝑀))
151149, 150eqeltrd 2273 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝜑𝑧𝑆) ∧ (𝑛 ∈ ℤ ∧ ((2 · 𝑛) + 1) = (1st𝑧))) → ((2 · 𝑛) + 1) ∈ (1...𝑀))
152 elfzle2 10105 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((2 · 𝑛) + 1) ∈ (1...𝑀) → ((2 · 𝑛) + 1) ≤ 𝑀)
153151, 152syl 14 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝜑𝑧𝑆) ∧ (𝑛 ∈ ℤ ∧ ((2 · 𝑛) + 1) = (1st𝑧))) → ((2 · 𝑛) + 1) ≤ 𝑀)
154 zmulcl 9381 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((2 ∈ ℤ ∧ 𝑛 ∈ ℤ) → (2 · 𝑛) ∈ ℤ)
15522, 138, 154sylancr 414 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝜑𝑧𝑆) ∧ (𝑛 ∈ ℤ ∧ ((2 · 𝑛) + 1) = (1st𝑧))) → (2 · 𝑛) ∈ ℤ)
156 zltp1le 9382 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((2 · 𝑛) ∈ ℤ ∧ 𝑀 ∈ ℤ) → ((2 · 𝑛) < 𝑀 ↔ ((2 · 𝑛) + 1) ≤ 𝑀))
157155, 137, 156syl2anc 411 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝜑𝑧𝑆) ∧ (𝑛 ∈ ℤ ∧ ((2 · 𝑛) + 1) = (1st𝑧))) → ((2 · 𝑛) < 𝑀 ↔ ((2 · 𝑛) + 1) ≤ 𝑀))
158153, 157mpbird 167 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜑𝑧𝑆) ∧ (𝑛 ∈ ℤ ∧ ((2 · 𝑛) + 1) = (1st𝑧))) → (2 · 𝑛) < 𝑀)
159 2re 9062 . . . . . . . . . . . . . . . . . . . . . . . . 25 2 ∈ ℝ
160159a1i 9 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝜑𝑧𝑆) ∧ (𝑛 ∈ ℤ ∧ ((2 · 𝑛) + 1) = (1st𝑧))) → 2 ∈ ℝ)
161 2pos 9083 . . . . . . . . . . . . . . . . . . . . . . . . 25 0 < 2
162161a1i 9 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝜑𝑧𝑆) ∧ (𝑛 ∈ ℤ ∧ ((2 · 𝑛) + 1) = (1st𝑧))) → 0 < 2)
163 ltmuldiv2 8904 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑛 ∈ ℝ ∧ 𝑀 ∈ ℝ ∧ (2 ∈ ℝ ∧ 0 < 2)) → ((2 · 𝑛) < 𝑀𝑛 < (𝑀 / 2)))
164148, 142, 160, 162, 163syl112anc 1253 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜑𝑧𝑆) ∧ (𝑛 ∈ ℤ ∧ ((2 · 𝑛) + 1) = (1st𝑧))) → ((2 · 𝑛) < 𝑀𝑛 < (𝑀 / 2)))
165158, 164mpbid 147 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑𝑧𝑆) ∧ (𝑛 ∈ ℤ ∧ ((2 · 𝑛) + 1) = (1st𝑧))) → 𝑛 < (𝑀 / 2))
166143recnd 8057 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜑𝑧𝑆) ∧ (𝑛 ∈ ℤ ∧ ((2 · 𝑛) + 1) = (1st𝑧))) → (𝑀 / 2) ∈ ℂ)
1677nncnd 9006 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝜑𝑀 ∈ ℂ)
168167ad2antrr 488 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝜑𝑧𝑆) ∧ (𝑛 ∈ ℤ ∧ ((2 · 𝑛) + 1) = (1st𝑧))) → 𝑀 ∈ ℂ)
1691682halvesd 9239 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜑𝑧𝑆) ∧ (𝑛 ∈ ℤ ∧ ((2 · 𝑛) + 1) = (1st𝑧))) → ((𝑀 / 2) + (𝑀 / 2)) = 𝑀)
170166, 166, 169mvlraddd 8392 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑𝑧𝑆) ∧ (𝑛 ∈ ℤ ∧ ((2 · 𝑛) + 1) = (1st𝑧))) → (𝑀 / 2) = (𝑀 − (𝑀 / 2)))
171165, 170breqtrd 4060 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑧𝑆) ∧ (𝑛 ∈ ℤ ∧ ((2 · 𝑛) + 1) = (1st𝑧))) → 𝑛 < (𝑀 − (𝑀 / 2)))
172148, 142, 143, 171ltsub13d 8580 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑧𝑆) ∧ (𝑛 ∈ ℤ ∧ ((2 · 𝑛) + 1) = (1st𝑧))) → (𝑀 / 2) < (𝑀𝑛))
173140, 143, 144, 146, 172lelttrd 8153 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑧𝑆) ∧ (𝑛 ∈ ℤ ∧ ((2 · 𝑛) + 1) = (1st𝑧))) → (⌊‘(𝑀 / 2)) < (𝑀𝑛))
174 zltp1le 9382 . . . . . . . . . . . . . . . . . . . 20 (((⌊‘(𝑀 / 2)) ∈ ℤ ∧ (𝑀𝑛) ∈ ℤ) → ((⌊‘(𝑀 / 2)) < (𝑀𝑛) ↔ ((⌊‘(𝑀 / 2)) + 1) ≤ (𝑀𝑛)))
175134, 139, 174syl2anc 411 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑧𝑆) ∧ (𝑛 ∈ ℤ ∧ ((2 · 𝑛) + 1) = (1st𝑧))) → ((⌊‘(𝑀 / 2)) < (𝑀𝑛) ↔ ((⌊‘(𝑀 / 2)) + 1) ≤ (𝑀𝑛)))
176173, 175mpbid 147 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑧𝑆) ∧ (𝑛 ∈ ℤ ∧ ((2 · 𝑛) + 1) = (1st𝑧))) → ((⌊‘(𝑀 / 2)) + 1) ≤ (𝑀𝑛))
177 2t0e0 9152 . . . . . . . . . . . . . . . . . . . . 21 (2 · 0) = 0
178 2cn 9063 . . . . . . . . . . . . . . . . . . . . . . . . 25 2 ∈ ℂ
179 zcn 9333 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑛 ∈ ℤ → 𝑛 ∈ ℂ)
180179ad2antrl 490 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝜑𝑧𝑆) ∧ (𝑛 ∈ ℤ ∧ ((2 · 𝑛) + 1) = (1st𝑧))) → 𝑛 ∈ ℂ)
181 mulcl 8008 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((2 ∈ ℂ ∧ 𝑛 ∈ ℂ) → (2 · 𝑛) ∈ ℂ)
182178, 180, 181sylancr 414 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝜑𝑧𝑆) ∧ (𝑛 ∈ ℤ ∧ ((2 · 𝑛) + 1) = (1st𝑧))) → (2 · 𝑛) ∈ ℂ)
183 pncan 8234 . . . . . . . . . . . . . . . . . . . . . . . 24 (((2 · 𝑛) ∈ ℂ ∧ 1 ∈ ℂ) → (((2 · 𝑛) + 1) − 1) = (2 · 𝑛))
184182, 47, 183sylancl 413 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜑𝑧𝑆) ∧ (𝑛 ∈ ℤ ∧ ((2 · 𝑛) + 1) = (1st𝑧))) → (((2 · 𝑛) + 1) − 1) = (2 · 𝑛))
185 elfznn 10131 . . . . . . . . . . . . . . . . . . . . . . . 24 (((2 · 𝑛) + 1) ∈ (1...𝑀) → ((2 · 𝑛) + 1) ∈ ℕ)
186 nnm1nn0 9292 . . . . . . . . . . . . . . . . . . . . . . . 24 (((2 · 𝑛) + 1) ∈ ℕ → (((2 · 𝑛) + 1) − 1) ∈ ℕ0)
187151, 185, 1863syl 17 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜑𝑧𝑆) ∧ (𝑛 ∈ ℤ ∧ ((2 · 𝑛) + 1) = (1st𝑧))) → (((2 · 𝑛) + 1) − 1) ∈ ℕ0)
188184, 187eqeltrrd 2274 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑𝑧𝑆) ∧ (𝑛 ∈ ℤ ∧ ((2 · 𝑛) + 1) = (1st𝑧))) → (2 · 𝑛) ∈ ℕ0)
189188nn0ge0d 9307 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑧𝑆) ∧ (𝑛 ∈ ℤ ∧ ((2 · 𝑛) + 1) = (1st𝑧))) → 0 ≤ (2 · 𝑛))
190177, 189eqbrtrid 4069 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑧𝑆) ∧ (𝑛 ∈ ℤ ∧ ((2 · 𝑛) + 1) = (1st𝑧))) → (2 · 0) ≤ (2 · 𝑛))
191 0red 8029 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑧𝑆) ∧ (𝑛 ∈ ℤ ∧ ((2 · 𝑛) + 1) = (1st𝑧))) → 0 ∈ ℝ)
192 lemul2 8886 . . . . . . . . . . . . . . . . . . . . 21 ((0 ∈ ℝ ∧ 𝑛 ∈ ℝ ∧ (2 ∈ ℝ ∧ 0 < 2)) → (0 ≤ 𝑛 ↔ (2 · 0) ≤ (2 · 𝑛)))
193191, 148, 160, 162, 192syl112anc 1253 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑧𝑆) ∧ (𝑛 ∈ ℤ ∧ ((2 · 𝑛) + 1) = (1st𝑧))) → (0 ≤ 𝑛 ↔ (2 · 0) ≤ (2 · 𝑛)))
194190, 193mpbird 167 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑧𝑆) ∧ (𝑛 ∈ ℤ ∧ ((2 · 𝑛) + 1) = (1st𝑧))) → 0 ≤ 𝑛)
195142, 148subge02d 8566 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑧𝑆) ∧ (𝑛 ∈ ℤ ∧ ((2 · 𝑛) + 1) = (1st𝑧))) → (0 ≤ 𝑛 ↔ (𝑀𝑛) ≤ 𝑀))
196194, 195mpbid 147 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑧𝑆) ∧ (𝑛 ∈ ℤ ∧ ((2 · 𝑛) + 1) = (1st𝑧))) → (𝑀𝑛) ≤ 𝑀)
197135, 137, 139, 176, 196elfzd 10093 . . . . . . . . . . . . . . . . 17 (((𝜑𝑧𝑆) ∧ (𝑛 ∈ ℤ ∧ ((2 · 𝑛) + 1) = (1st𝑧))) → (𝑀𝑛) ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀))
198101ad2antrr 488 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑧𝑆) ∧ (𝑛 ∈ ℤ ∧ ((2 · 𝑛) + 1) = (1st𝑧))) → 𝑃 ∈ ℙ)
199 prmnn 12288 . . . . . . . . . . . . . . . . . . . . 21 (𝑃 ∈ ℙ → 𝑃 ∈ ℕ)
200198, 199syl 14 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑧𝑆) ∧ (𝑛 ∈ ℤ ∧ ((2 · 𝑛) + 1) = (1st𝑧))) → 𝑃 ∈ ℕ)
201200nncnd 9006 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑧𝑆) ∧ (𝑛 ∈ ℤ ∧ ((2 · 𝑛) + 1) = (1st𝑧))) → 𝑃 ∈ ℂ)
202 peano2cn 8163 . . . . . . . . . . . . . . . . . . . 20 ((2 · 𝑛) ∈ ℂ → ((2 · 𝑛) + 1) ∈ ℂ)
203182, 202syl 14 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑧𝑆) ∧ (𝑛 ∈ ℤ ∧ ((2 · 𝑛) + 1) = (1st𝑧))) → ((2 · 𝑛) + 1) ∈ ℂ)
204201, 203nncand 8344 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑧𝑆) ∧ (𝑛 ∈ ℤ ∧ ((2 · 𝑛) + 1) = (1st𝑧))) → (𝑃 − (𝑃 − ((2 · 𝑛) + 1))) = ((2 · 𝑛) + 1))
205 1cnd 8044 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑧𝑆) ∧ (𝑛 ∈ ℤ ∧ ((2 · 𝑛) + 1) = (1st𝑧))) → 1 ∈ ℂ)
206201, 182, 205sub32d 8371 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑧𝑆) ∧ (𝑛 ∈ ℤ ∧ ((2 · 𝑛) + 1) = (1st𝑧))) → ((𝑃 − (2 · 𝑛)) − 1) = ((𝑃 − 1) − (2 · 𝑛)))
207201, 182, 205subsub4d 8370 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑧𝑆) ∧ (𝑛 ∈ ℤ ∧ ((2 · 𝑛) + 1) = (1st𝑧))) → ((𝑃 − (2 · 𝑛)) − 1) = (𝑃 − ((2 · 𝑛) + 1)))
208 2cnd 9065 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑𝑧𝑆) ∧ (𝑛 ∈ ℤ ∧ ((2 · 𝑛) + 1) = (1st𝑧))) → 2 ∈ ℂ)
209208, 168, 180subdid 8442 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑧𝑆) ∧ (𝑛 ∈ ℤ ∧ ((2 · 𝑛) + 1) = (1st𝑧))) → (2 · (𝑀𝑛)) = ((2 · 𝑀) − (2 · 𝑛)))
2106oveq2i 5934 . . . . . . . . . . . . . . . . . . . . . . 23 (2 · 𝑀) = (2 · ((𝑃 − 1) / 2))
21118nnzd 9449 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝜑𝑃 ∈ ℤ)
212211ad2antrr 488 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝜑𝑧𝑆) ∧ (𝑛 ∈ ℤ ∧ ((2 · 𝑛) + 1) = (1st𝑧))) → 𝑃 ∈ ℤ)
213 peano2zm 9366 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑃 ∈ ℤ → (𝑃 − 1) ∈ ℤ)
214212, 213syl 14 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝜑𝑧𝑆) ∧ (𝑛 ∈ ℤ ∧ ((2 · 𝑛) + 1) = (1st𝑧))) → (𝑃 − 1) ∈ ℤ)
215214zcnd 9451 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝜑𝑧𝑆) ∧ (𝑛 ∈ ℤ ∧ ((2 · 𝑛) + 1) = (1st𝑧))) → (𝑃 − 1) ∈ ℂ)
216160, 162gt0ap0d 8658 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝜑𝑧𝑆) ∧ (𝑛 ∈ ℤ ∧ ((2 · 𝑛) + 1) = (1st𝑧))) → 2 # 0)
217215, 208, 216divcanap2d 8821 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜑𝑧𝑆) ∧ (𝑛 ∈ ℤ ∧ ((2 · 𝑛) + 1) = (1st𝑧))) → (2 · ((𝑃 − 1) / 2)) = (𝑃 − 1))
218210, 217eqtrid 2241 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑𝑧𝑆) ∧ (𝑛 ∈ ℤ ∧ ((2 · 𝑛) + 1) = (1st𝑧))) → (2 · 𝑀) = (𝑃 − 1))
219218oveq1d 5938 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑧𝑆) ∧ (𝑛 ∈ ℤ ∧ ((2 · 𝑛) + 1) = (1st𝑧))) → ((2 · 𝑀) − (2 · 𝑛)) = ((𝑃 − 1) − (2 · 𝑛)))
220209, 219eqtr2d 2230 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑧𝑆) ∧ (𝑛 ∈ ℤ ∧ ((2 · 𝑛) + 1) = (1st𝑧))) → ((𝑃 − 1) − (2 · 𝑛)) = (2 · (𝑀𝑛)))
221206, 207, 2203eqtr3d 2237 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑧𝑆) ∧ (𝑛 ∈ ℤ ∧ ((2 · 𝑛) + 1) = (1st𝑧))) → (𝑃 − ((2 · 𝑛) + 1)) = (2 · (𝑀𝑛)))
222221oveq2d 5939 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑧𝑆) ∧ (𝑛 ∈ ℤ ∧ ((2 · 𝑛) + 1) = (1st𝑧))) → (𝑃 − (𝑃 − ((2 · 𝑛) + 1))) = (𝑃 − (2 · (𝑀𝑛))))
223204, 222, 1493eqtr3rd 2238 . . . . . . . . . . . . . . . . 17 (((𝜑𝑧𝑆) ∧ (𝑛 ∈ ℤ ∧ ((2 · 𝑛) + 1) = (1st𝑧))) → (1st𝑧) = (𝑃 − (2 · (𝑀𝑛))))
224 oveq2 5931 . . . . . . . . . . . . . . . . . . 19 (𝑢 = (𝑀𝑛) → (2 · 𝑢) = (2 · (𝑀𝑛)))
225224oveq2d 5939 . . . . . . . . . . . . . . . . . 18 (𝑢 = (𝑀𝑛) → (𝑃 − (2 · 𝑢)) = (𝑃 − (2 · (𝑀𝑛))))
226225rspceeqv 2886 . . . . . . . . . . . . . . . . 17 (((𝑀𝑛) ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀) ∧ (1st𝑧) = (𝑃 − (2 · (𝑀𝑛)))) → ∃𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)(1st𝑧) = (𝑃 − (2 · 𝑢)))
227197, 223, 226syl2anc 411 . . . . . . . . . . . . . . . 16 (((𝜑𝑧𝑆) ∧ (𝑛 ∈ ℤ ∧ ((2 · 𝑛) + 1) = (1st𝑧))) → ∃𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)(1st𝑧) = (𝑃 − (2 · 𝑢)))
228227rexlimdvaa 2615 . . . . . . . . . . . . . . 15 ((𝜑𝑧𝑆) → (∃𝑛 ∈ ℤ ((2 · 𝑛) + 1) = (1st𝑧) → ∃𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)(1st𝑧) = (𝑃 − (2 · 𝑢))))
229132, 228sylbid 150 . . . . . . . . . . . . . 14 ((𝜑𝑧𝑆) → (¬ 2 ∥ (1st𝑧) → ∃𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)(1st𝑧) = (𝑃 − (2 · 𝑢))))
230126, 229impbid 129 . . . . . . . . . . . . 13 ((𝜑𝑧𝑆) → (∃𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)(1st𝑧) = (𝑃 − (2 · 𝑢)) ↔ ¬ 2 ∥ (1st𝑧)))
231230rabbidva 2751 . . . . . . . . . . . 12 (𝜑 → {𝑧𝑆 ∣ ∃𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)(1st𝑧) = (𝑃 − (2 · 𝑢))} = {𝑧𝑆 ∣ ¬ 2 ∥ (1st𝑧)})
23293, 231eqtrid 2241 . . . . . . . . . . 11 (𝜑 𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀){𝑧𝑆 ∣ (1st𝑧) = (𝑃 − (2 · 𝑢))} = {𝑧𝑆 ∣ ¬ 2 ∥ (1st𝑧)})
233232fveq2d 5563 . . . . . . . . . 10 (𝜑 → (♯‘ 𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀){𝑧𝑆 ∣ (1st𝑧) = (𝑃 − (2 · 𝑢))}) = (♯‘{𝑧𝑆 ∣ ¬ 2 ∥ (1st𝑧)}))
234 ssrab2 3269 . . . . . . . . . . . . . . 15 {𝑧𝑆 ∣ (1st𝑧) = (𝑃 − (2 · 𝑢))} ⊆ 𝑆
23536relopabiv 4790 . . . . . . . . . . . . . . 15 Rel 𝑆
236 relss 4751 . . . . . . . . . . . . . . 15 ({𝑧𝑆 ∣ (1st𝑧) = (𝑃 − (2 · 𝑢))} ⊆ 𝑆 → (Rel 𝑆 → Rel {𝑧𝑆 ∣ (1st𝑧) = (𝑃 − (2 · 𝑢))}))
237234, 235, 236mp2 16 . . . . . . . . . . . . . 14 Rel {𝑧𝑆 ∣ (1st𝑧) = (𝑃 − (2 · 𝑢))}
238 relxp 4773 . . . . . . . . . . . . . 14 Rel ({(𝑃 − (2 · 𝑢))} × (1...((2 · 𝑁) − (⌊‘((𝑄 / 𝑃) · (2 · 𝑢))))))
23936eleq2i 2263 . . . . . . . . . . . . . . . . . 18 (⟨𝑥, 𝑦⟩ ∈ 𝑆 ↔ ⟨𝑥, 𝑦⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ ((𝑥 ∈ (1...𝑀) ∧ 𝑦 ∈ (1...𝑁)) ∧ (𝑦 · 𝑃) < (𝑥 · 𝑄))})
240 opabidw 4292 . . . . . . . . . . . . . . . . . 18 (⟨𝑥, 𝑦⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ ((𝑥 ∈ (1...𝑀) ∧ 𝑦 ∈ (1...𝑁)) ∧ (𝑦 · 𝑃) < (𝑥 · 𝑄))} ↔ ((𝑥 ∈ (1...𝑀) ∧ 𝑦 ∈ (1...𝑁)) ∧ (𝑦 · 𝑃) < (𝑥 · 𝑄)))
241239, 240bitri 184 . . . . . . . . . . . . . . . . 17 (⟨𝑥, 𝑦⟩ ∈ 𝑆 ↔ ((𝑥 ∈ (1...𝑀) ∧ 𝑦 ∈ (1...𝑁)) ∧ (𝑦 · 𝑃) < (𝑥 · 𝑄)))
242 anass 401 . . . . . . . . . . . . . . . . . . 19 (((𝑦 ∈ ℕ ∧ 𝑦𝑁) ∧ (𝑦 · 𝑃) < ((𝑃 − (2 · 𝑢)) · 𝑄)) ↔ (𝑦 ∈ ℕ ∧ (𝑦𝑁 ∧ (𝑦 · 𝑃) < ((𝑃 − (2 · 𝑢)) · 𝑄))))
24331peano2zd 9453 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝜑𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) → ((⌊‘((𝑄 / 𝑃) · (2 · 𝑢))) + 1) ∈ ℤ)
244243zred 9450 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝜑𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) → ((⌊‘((𝑄 / 𝑃) · (2 · 𝑢))) + 1) ∈ ℝ)
245244adantr 276 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝜑𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) ∧ 𝑦 ∈ ℕ) → ((⌊‘((𝑄 / 𝑃) · (2 · 𝑢))) + 1) ∈ ℝ)
24616nnred 9005 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝜑𝑄 ∈ ℝ)
247246ad2antrr 488 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝜑𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) ∧ 𝑦 ∈ ℕ) → 𝑄 ∈ ℝ)
248 nnre 8999 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑦 ∈ ℕ → 𝑦 ∈ ℝ)
249248adantl 277 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝜑𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) ∧ 𝑦 ∈ ℕ) → 𝑦 ∈ ℝ)
250 lesub 8470 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((⌊‘((𝑄 / 𝑃) · (2 · 𝑢))) + 1) ∈ ℝ ∧ 𝑄 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (((⌊‘((𝑄 / 𝑃) · (2 · 𝑢))) + 1) ≤ (𝑄𝑦) ↔ 𝑦 ≤ (𝑄 − ((⌊‘((𝑄 / 𝑃) · (2 · 𝑢))) + 1))))
251245, 247, 249, 250syl3anc 1249 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝜑𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) ∧ 𝑦 ∈ ℕ) → (((⌊‘((𝑄 / 𝑃) · (2 · 𝑢))) + 1) ≤ (𝑄𝑦) ↔ 𝑦 ≤ (𝑄 − ((⌊‘((𝑄 / 𝑃) · (2 · 𝑢))) + 1))))
252246adantr 276 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((𝜑𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) → 𝑄 ∈ ℝ)
253252recnd 8057 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((𝜑𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) → 𝑄 ∈ ℂ)
25475, 253mulcomd 8050 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((𝜑𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) → (𝑃 · 𝑄) = (𝑄 · 𝑃))
25577, 253mulcomd 8050 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((𝜑𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) → ((2 · 𝑢) · 𝑄) = (𝑄 · (2 · 𝑢)))
25619nnap0d 9038 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 ((𝜑𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) → 𝑃 # 0)
257253, 75, 256divcanap1d 8820 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((𝜑𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) → ((𝑄 / 𝑃) · 𝑃) = 𝑄)
258257oveq1d 5938 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((𝜑𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) → (((𝑄 / 𝑃) · 𝑃) · (2 · 𝑢)) = (𝑄 · (2 · 𝑢)))
259246, 18nndivred 9042 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (𝜑 → (𝑄 / 𝑃) ∈ ℝ)
260259adantr 276 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 ((𝜑𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) → (𝑄 / 𝑃) ∈ ℝ)
261260recnd 8057 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((𝜑𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) → (𝑄 / 𝑃) ∈ ℂ)
262261, 75, 77mul32d 8181 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((𝜑𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) → (((𝑄 / 𝑃) · 𝑃) · (2 · 𝑢)) = (((𝑄 / 𝑃) · (2 · 𝑢)) · 𝑃))
263255, 258, 2623eqtr2d 2235 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((𝜑𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) → ((2 · 𝑢) · 𝑄) = (((𝑄 / 𝑃) · (2 · 𝑢)) · 𝑃))
264254, 263oveq12d 5941 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((𝜑𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) → ((𝑃 · 𝑄) − ((2 · 𝑢) · 𝑄)) = ((𝑄 · 𝑃) − (((𝑄 / 𝑃) · (2 · 𝑢)) · 𝑃)))
26575, 77, 253subdird 8443 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((𝜑𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) → ((𝑃 − (2 · 𝑢)) · 𝑄) = ((𝑃 · 𝑄) − ((2 · 𝑢) · 𝑄)))
26626zred 9450 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((𝜑𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) → (2 · 𝑢) ∈ ℝ)
267260, 266remulcld 8059 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((𝜑𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) → ((𝑄 / 𝑃) · (2 · 𝑢)) ∈ ℝ)
268267recnd 8057 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((𝜑𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) → ((𝑄 / 𝑃) · (2 · 𝑢)) ∈ ℂ)
269253, 268, 75subdird 8443 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((𝜑𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) → ((𝑄 − ((𝑄 / 𝑃) · (2 · 𝑢))) · 𝑃) = ((𝑄 · 𝑃) − (((𝑄 / 𝑃) · (2 · 𝑢)) · 𝑃)))
270264, 265, 2693eqtr4d 2239 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝜑𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) → ((𝑃 − (2 · 𝑢)) · 𝑄) = ((𝑄 − ((𝑄 / 𝑃) · (2 · 𝑢))) · 𝑃))
271270adantr 276 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((𝜑𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) ∧ 𝑦 ∈ ℕ) → ((𝑃 − (2 · 𝑢)) · 𝑄) = ((𝑄 − ((𝑄 / 𝑃) · (2 · 𝑢))) · 𝑃))
272271breq2d 4046 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝜑𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) ∧ 𝑦 ∈ ℕ) → ((𝑦 · 𝑃) < ((𝑃 − (2 · 𝑢)) · 𝑄) ↔ (𝑦 · 𝑃) < ((𝑄 − ((𝑄 / 𝑃) · (2 · 𝑢))) · 𝑃)))
273267adantr 276 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((𝜑𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) ∧ 𝑦 ∈ ℕ) → ((𝑄 / 𝑃) · (2 · 𝑢)) ∈ ℝ)
274247, 273resubcld 8409 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((𝜑𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) ∧ 𝑦 ∈ ℕ) → (𝑄 − ((𝑄 / 𝑃) · (2 · 𝑢))) ∈ ℝ)
27519adantr 276 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((𝜑𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) ∧ 𝑦 ∈ ℕ) → 𝑃 ∈ ℕ)
276275nnred 9005 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((𝜑𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) ∧ 𝑦 ∈ ℕ) → 𝑃 ∈ ℝ)
277275nngt0d 9036 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((𝜑𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) ∧ 𝑦 ∈ ℕ) → 0 < 𝑃)
278 ltmul1 8621 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝑦 ∈ ℝ ∧ (𝑄 − ((𝑄 / 𝑃) · (2 · 𝑢))) ∈ ℝ ∧ (𝑃 ∈ ℝ ∧ 0 < 𝑃)) → (𝑦 < (𝑄 − ((𝑄 / 𝑃) · (2 · 𝑢))) ↔ (𝑦 · 𝑃) < ((𝑄 − ((𝑄 / 𝑃) · (2 · 𝑢))) · 𝑃)))
279249, 274, 276, 277, 278syl112anc 1253 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝜑𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) ∧ 𝑦 ∈ ℕ) → (𝑦 < (𝑄 − ((𝑄 / 𝑃) · (2 · 𝑢))) ↔ (𝑦 · 𝑃) < ((𝑄 − ((𝑄 / 𝑃) · (2 · 𝑢))) · 𝑃)))
280 ltsub13 8472 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝑦 ∈ ℝ ∧ 𝑄 ∈ ℝ ∧ ((𝑄 / 𝑃) · (2 · 𝑢)) ∈ ℝ) → (𝑦 < (𝑄 − ((𝑄 / 𝑃) · (2 · 𝑢))) ↔ ((𝑄 / 𝑃) · (2 · 𝑢)) < (𝑄𝑦)))
281249, 247, 273, 280syl3anc 1249 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝜑𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) ∧ 𝑦 ∈ ℕ) → (𝑦 < (𝑄 − ((𝑄 / 𝑃) · (2 · 𝑢))) ↔ ((𝑄 / 𝑃) · (2 · 𝑢)) < (𝑄𝑦)))
282272, 279, 2813bitr2d 216 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝜑𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) ∧ 𝑦 ∈ ℕ) → ((𝑦 · 𝑃) < ((𝑃 − (2 · 𝑢)) · 𝑄) ↔ ((𝑄 / 𝑃) · (2 · 𝑢)) < (𝑄𝑦)))
28316adantr 276 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝜑𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) → 𝑄 ∈ ℕ)
284283nnzd 9449 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝜑𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) → 𝑄 ∈ ℤ)
285 nnz 9347 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑦 ∈ ℕ → 𝑦 ∈ ℤ)
286 zsubcl 9369 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝑄 ∈ ℤ ∧ 𝑦 ∈ ℤ) → (𝑄𝑦) ∈ ℤ)
287284, 285, 286syl2an 289 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝜑𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) ∧ 𝑦 ∈ ℕ) → (𝑄𝑦) ∈ ℤ)
288 flqlt 10375 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((((𝑄 / 𝑃) · (2 · 𝑢)) ∈ ℚ ∧ (𝑄𝑦) ∈ ℤ) → (((𝑄 / 𝑃) · (2 · 𝑢)) < (𝑄𝑦) ↔ (⌊‘((𝑄 / 𝑃) · (2 · 𝑢))) < (𝑄𝑦)))
28930, 287, 288syl2an2r 595 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝜑𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) ∧ 𝑦 ∈ ℕ) → (((𝑄 / 𝑃) · (2 · 𝑢)) < (𝑄𝑦) ↔ (⌊‘((𝑄 / 𝑃) · (2 · 𝑢))) < (𝑄𝑦)))
290 zltp1le 9382 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((⌊‘((𝑄 / 𝑃) · (2 · 𝑢))) ∈ ℤ ∧ (𝑄𝑦) ∈ ℤ) → ((⌊‘((𝑄 / 𝑃) · (2 · 𝑢))) < (𝑄𝑦) ↔ ((⌊‘((𝑄 / 𝑃) · (2 · 𝑢))) + 1) ≤ (𝑄𝑦)))
29131, 287, 290syl2an2r 595 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝜑𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) ∧ 𝑦 ∈ ℕ) → ((⌊‘((𝑄 / 𝑃) · (2 · 𝑢))) < (𝑄𝑦) ↔ ((⌊‘((𝑄 / 𝑃) · (2 · 𝑢))) + 1) ≤ (𝑄𝑦)))
292282, 289, 2913bitrd 214 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝜑𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) ∧ 𝑦 ∈ ℕ) → ((𝑦 · 𝑃) < ((𝑃 − (2 · 𝑢)) · 𝑄) ↔ ((⌊‘((𝑄 / 𝑃) · (2 · 𝑢))) + 1) ≤ (𝑄𝑦)))
29335oveq2i 5934 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (2 · 𝑁) = (2 · ((𝑄 − 1) / 2))
294 peano2rem 8295 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (𝑄 ∈ ℝ → (𝑄 − 1) ∈ ℝ)
295252, 294syl 14 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((𝜑𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) → (𝑄 − 1) ∈ ℝ)
296295recnd 8057 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((𝜑𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) → (𝑄 − 1) ∈ ℂ)
297 2cnd 9065 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((𝜑𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) → 2 ∈ ℂ)
29885a1i 9 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((𝜑𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) → 2 # 0)
299296, 297, 298divcanap2d 8821 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((𝜑𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) → (2 · ((𝑄 − 1) / 2)) = (𝑄 − 1))
300293, 299eqtrid 2241 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝜑𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) → (2 · 𝑁) = (𝑄 − 1))
301300oveq1d 5938 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝜑𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) → ((2 · 𝑁) − (⌊‘((𝑄 / 𝑃) · (2 · 𝑢)))) = ((𝑄 − 1) − (⌊‘((𝑄 / 𝑃) · (2 · 𝑢)))))
302 1cnd 8044 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝜑𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) → 1 ∈ ℂ)
30331zcnd 9451 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝜑𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) → (⌊‘((𝑄 / 𝑃) · (2 · 𝑢))) ∈ ℂ)
304253, 302, 303sub32d 8371 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝜑𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) → ((𝑄 − 1) − (⌊‘((𝑄 / 𝑃) · (2 · 𝑢)))) = ((𝑄 − (⌊‘((𝑄 / 𝑃) · (2 · 𝑢)))) − 1))
305253, 303, 302subsub4d 8370 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝜑𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) → ((𝑄 − (⌊‘((𝑄 / 𝑃) · (2 · 𝑢)))) − 1) = (𝑄 − ((⌊‘((𝑄 / 𝑃) · (2 · 𝑢))) + 1)))
306301, 304, 3053eqtrd 2233 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝜑𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) → ((2 · 𝑁) − (⌊‘((𝑄 / 𝑃) · (2 · 𝑢)))) = (𝑄 − ((⌊‘((𝑄 / 𝑃) · (2 · 𝑢))) + 1)))
307306adantr 276 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝜑𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) ∧ 𝑦 ∈ ℕ) → ((2 · 𝑁) − (⌊‘((𝑄 / 𝑃) · (2 · 𝑢)))) = (𝑄 − ((⌊‘((𝑄 / 𝑃) · (2 · 𝑢))) + 1)))
308307breq2d 4046 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝜑𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) ∧ 𝑦 ∈ ℕ) → (𝑦 ≤ ((2 · 𝑁) − (⌊‘((𝑄 / 𝑃) · (2 · 𝑢)))) ↔ 𝑦 ≤ (𝑄 − ((⌊‘((𝑄 / 𝑃) · (2 · 𝑢))) + 1))))
309251, 292, 3083bitr4d 220 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜑𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) ∧ 𝑦 ∈ ℕ) → ((𝑦 · 𝑃) < ((𝑃 − (2 · 𝑢)) · 𝑄) ↔ 𝑦 ≤ ((2 · 𝑁) − (⌊‘((𝑄 / 𝑃) · (2 · 𝑢))))))
310309anbi2d 464 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) ∧ 𝑦 ∈ ℕ) → ((𝑦𝑁 ∧ (𝑦 · 𝑃) < ((𝑃 − (2 · 𝑢)) · 𝑄)) ↔ (𝑦𝑁𝑦 ≤ ((2 · 𝑁) − (⌊‘((𝑄 / 𝑃) · (2 · 𝑢)))))))
31115, 35gausslemma2dlem0b 15301 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝜑𝑁 ∈ ℕ)
312 nnmulcl 9013 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((2 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (2 · 𝑁) ∈ ℕ)
3139, 311, 312sylancr 414 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝜑 → (2 · 𝑁) ∈ ℕ)
314313adantr 276 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝜑𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) → (2 · 𝑁) ∈ ℕ)
315314nnred 9005 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝜑𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) → (2 · 𝑁) ∈ ℝ)
316311adantr 276 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝜑𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) → 𝑁 ∈ ℕ)
317316nnred 9005 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝜑𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) → 𝑁 ∈ ℝ)
31831zred 9450 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝜑𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) → (⌊‘((𝑄 / 𝑃) · (2 · 𝑢))) ∈ ℝ)
319311nncnd 9006 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝜑𝑁 ∈ ℂ)
320319adantr 276 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝜑𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) → 𝑁 ∈ ℂ)
3213202timesd 9236 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝜑𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) → (2 · 𝑁) = (𝑁 + 𝑁))
322320, 320, 321mvrladdd 8395 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝜑𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) → ((2 · 𝑁) − 𝑁) = 𝑁)
323252rehalfcld 9240 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((𝜑𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) → (𝑄 / 2) ∈ ℝ)
324252ltm1d 8961 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((𝜑𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) → (𝑄 − 1) < 𝑄)
325159a1i 9 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 ((𝜑𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) → 2 ∈ ℝ)
326161a1i 9 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 ((𝜑𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) → 0 < 2)
327 ltdiv1 8897 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (((𝑄 − 1) ∈ ℝ ∧ 𝑄 ∈ ℝ ∧ (2 ∈ ℝ ∧ 0 < 2)) → ((𝑄 − 1) < 𝑄 ↔ ((𝑄 − 1) / 2) < (𝑄 / 2)))
328295, 252, 325, 326, 327syl112anc 1253 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((𝜑𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) → ((𝑄 − 1) < 𝑄 ↔ ((𝑄 − 1) / 2) < (𝑄 / 2)))
329324, 328mpbid 147 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((𝜑𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) → ((𝑄 − 1) / 2) < (𝑄 / 2))
33035, 329eqbrtrid 4069 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((𝜑𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) → 𝑁 < (𝑄 / 2))
331317, 323, 330ltled 8147 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((𝜑𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) → 𝑁 ≤ (𝑄 / 2))
332253, 297, 75, 298div32apd 8843 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((𝜑𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) → ((𝑄 / 2) · 𝑃) = (𝑄 · (𝑃 / 2)))
333141adantr 276 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 ((𝜑𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) → 𝑀 ∈ ℝ)
334333rehalfcld 9240 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 ((𝜑𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) → (𝑀 / 2) ∈ ℝ)
33513adantr 276 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 ((𝜑𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) → ((⌊‘(𝑀 / 2)) + 1) ∈ ℤ)
336335zred 9450 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 ((𝜑𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) → ((⌊‘(𝑀 / 2)) + 1) ∈ ℝ)
33724zred 9450 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 ((𝜑𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) → 𝑢 ∈ ℝ)
33811adantr 276 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 ((𝜑𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) → (𝑀 / 2) ∈ ℚ)
339 flqltp1 10371 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 ((𝑀 / 2) ∈ ℚ → (𝑀 / 2) < ((⌊‘(𝑀 / 2)) + 1))
340338, 339syl 14 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 ((𝜑𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) → (𝑀 / 2) < ((⌊‘(𝑀 / 2)) + 1))
341 elfzle1 10104 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 (𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀) → ((⌊‘(𝑀 / 2)) + 1) ≤ 𝑢)
342341adantl 277 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 ((𝜑𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) → ((⌊‘(𝑀 / 2)) + 1) ≤ 𝑢)
343334, 336, 337, 340, 342ltletrd 8452 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 ((𝜑𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) → (𝑀 / 2) < 𝑢)
344 ltdivmul 8905 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 ((𝑀 ∈ ℝ ∧ 𝑢 ∈ ℝ ∧ (2 ∈ ℝ ∧ 0 < 2)) → ((𝑀 / 2) < 𝑢𝑀 < (2 · 𝑢)))
345333, 337, 325, 326, 344syl112anc 1253 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 ((𝜑𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) → ((𝑀 / 2) < 𝑢𝑀 < (2 · 𝑢)))
346343, 345mpbid 147 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 ((𝜑𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) → 𝑀 < (2 · 𝑢))
3476, 346eqbrtrrid 4070 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 ((𝜑𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) → ((𝑃 − 1) / 2) < (2 · 𝑢))
34819nnred 9005 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 ((𝜑𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) → 𝑃 ∈ ℝ)
349 peano2rem 8295 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 (𝑃 ∈ ℝ → (𝑃 − 1) ∈ ℝ)
350348, 349syl 14 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 ((𝜑𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) → (𝑃 − 1) ∈ ℝ)
351 ltdivmul 8905 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 (((𝑃 − 1) ∈ ℝ ∧ (2 · 𝑢) ∈ ℝ ∧ (2 ∈ ℝ ∧ 0 < 2)) → (((𝑃 − 1) / 2) < (2 · 𝑢) ↔ (𝑃 − 1) < (2 · (2 · 𝑢))))
352350, 266, 325, 326, 351syl112anc 1253 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 ((𝜑𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) → (((𝑃 − 1) / 2) < (2 · 𝑢) ↔ (𝑃 − 1) < (2 · (2 · 𝑢))))
353347, 352mpbid 147 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 ((𝜑𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) → (𝑃 − 1) < (2 · (2 · 𝑢)))
354 zmulcl 9381 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 ((2 ∈ ℤ ∧ (2 · 𝑢) ∈ ℤ) → (2 · (2 · 𝑢)) ∈ ℤ)
35522, 26, 354sylancr 414 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 ((𝜑𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) → (2 · (2 · 𝑢)) ∈ ℤ)
356 zlem1lt 9384 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 ((𝑃 ∈ ℤ ∧ (2 · (2 · 𝑢)) ∈ ℤ) → (𝑃 ≤ (2 · (2 · 𝑢)) ↔ (𝑃 − 1) < (2 · (2 · 𝑢))))
357211, 355, 356syl2an2r 595 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 ((𝜑𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) → (𝑃 ≤ (2 · (2 · 𝑢)) ↔ (𝑃 − 1) < (2 · (2 · 𝑢))))
358353, 357mpbird 167 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 ((𝜑𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) → 𝑃 ≤ (2 · (2 · 𝑢)))
359 ledivmul 8906 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 ((𝑃 ∈ ℝ ∧ (2 · 𝑢) ∈ ℝ ∧ (2 ∈ ℝ ∧ 0 < 2)) → ((𝑃 / 2) ≤ (2 · 𝑢) ↔ 𝑃 ≤ (2 · (2 · 𝑢))))
360348, 266, 325, 326, 359syl112anc 1253 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 ((𝜑𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) → ((𝑃 / 2) ≤ (2 · 𝑢) ↔ 𝑃 ≤ (2 · (2 · 𝑢))))
361358, 360mpbird 167 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 ((𝜑𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) → (𝑃 / 2) ≤ (2 · 𝑢))
362348rehalfcld 9240 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 ((𝜑𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) → (𝑃 / 2) ∈ ℝ)
363283nngt0d 9036 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 ((𝜑𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) → 0 < 𝑄)
364 lemul2 8886 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (((𝑃 / 2) ∈ ℝ ∧ (2 · 𝑢) ∈ ℝ ∧ (𝑄 ∈ ℝ ∧ 0 < 𝑄)) → ((𝑃 / 2) ≤ (2 · 𝑢) ↔ (𝑄 · (𝑃 / 2)) ≤ (𝑄 · (2 · 𝑢))))
365362, 266, 252, 363, 364syl112anc 1253 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 ((𝜑𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) → ((𝑃 / 2) ≤ (2 · 𝑢) ↔ (𝑄 · (𝑃 / 2)) ≤ (𝑄 · (2 · 𝑢))))
366361, 365mpbid 147 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((𝜑𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) → (𝑄 · (𝑃 / 2)) ≤ (𝑄 · (2 · 𝑢)))
367332, 366eqbrtrd 4056 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((𝜑𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) → ((𝑄 / 2) · 𝑃) ≤ (𝑄 · (2 · 𝑢)))
368252, 266remulcld 8059 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((𝜑𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) → (𝑄 · (2 · 𝑢)) ∈ ℝ)
36919nngt0d 9036 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((𝜑𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) → 0 < 𝑃)
370 lemuldiv 8910 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (((𝑄 / 2) ∈ ℝ ∧ (𝑄 · (2 · 𝑢)) ∈ ℝ ∧ (𝑃 ∈ ℝ ∧ 0 < 𝑃)) → (((𝑄 / 2) · 𝑃) ≤ (𝑄 · (2 · 𝑢)) ↔ (𝑄 / 2) ≤ ((𝑄 · (2 · 𝑢)) / 𝑃)))
371323, 368, 348, 369, 370syl112anc 1253 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((𝜑𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) → (((𝑄 / 2) · 𝑃) ≤ (𝑄 · (2 · 𝑢)) ↔ (𝑄 / 2) ≤ ((𝑄 · (2 · 𝑢)) / 𝑃)))
372367, 371mpbid 147 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((𝜑𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) → (𝑄 / 2) ≤ ((𝑄 · (2 · 𝑢)) / 𝑃))
373253, 77, 75, 256div23apd 8857 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((𝜑𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) → ((𝑄 · (2 · 𝑢)) / 𝑃) = ((𝑄 / 𝑃) · (2 · 𝑢)))
374372, 373breqtrd 4060 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((𝜑𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) → (𝑄 / 2) ≤ ((𝑄 / 𝑃) · (2 · 𝑢)))
375317, 323, 267, 331, 374letrd 8152 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝜑𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) → 𝑁 ≤ ((𝑄 / 𝑃) · (2 · 𝑢)))
376311nnzd 9449 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (𝜑𝑁 ∈ ℤ)
377376adantr 276 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((𝜑𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) → 𝑁 ∈ ℤ)
378 flqge 10374 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((((𝑄 / 𝑃) · (2 · 𝑢)) ∈ ℚ ∧ 𝑁 ∈ ℤ) → (𝑁 ≤ ((𝑄 / 𝑃) · (2 · 𝑢)) ↔ 𝑁 ≤ (⌊‘((𝑄 / 𝑃) · (2 · 𝑢)))))
37930, 377, 378syl2anc 411 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝜑𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) → (𝑁 ≤ ((𝑄 / 𝑃) · (2 · 𝑢)) ↔ 𝑁 ≤ (⌊‘((𝑄 / 𝑃) · (2 · 𝑢)))))
380375, 379mpbid 147 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝜑𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) → 𝑁 ≤ (⌊‘((𝑄 / 𝑃) · (2 · 𝑢))))
381322, 380eqbrtrd 4056 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝜑𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) → ((2 · 𝑁) − 𝑁) ≤ (⌊‘((𝑄 / 𝑃) · (2 · 𝑢))))
382315, 317, 318, 381subled 8577 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝜑𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) → ((2 · 𝑁) − (⌊‘((𝑄 / 𝑃) · (2 · 𝑢)))) ≤ 𝑁)
383382adantr 276 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝜑𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) ∧ 𝑦 ∈ ℕ) → ((2 · 𝑁) − (⌊‘((𝑄 / 𝑃) · (2 · 𝑢)))) ≤ 𝑁)
384314nnzd 9449 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝜑𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) → (2 · 𝑁) ∈ ℤ)
385384, 31zsubcld 9455 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝜑𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) → ((2 · 𝑁) − (⌊‘((𝑄 / 𝑃) · (2 · 𝑢)))) ∈ ℤ)
386385adantr 276 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝜑𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) ∧ 𝑦 ∈ ℕ) → ((2 · 𝑁) − (⌊‘((𝑄 / 𝑃) · (2 · 𝑢)))) ∈ ℤ)
387386zred 9450 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝜑𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) ∧ 𝑦 ∈ ℕ) → ((2 · 𝑁) − (⌊‘((𝑄 / 𝑃) · (2 · 𝑢)))) ∈ ℝ)
388311ad2antrr 488 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝜑𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) ∧ 𝑦 ∈ ℕ) → 𝑁 ∈ ℕ)
389388nnred 9005 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝜑𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) ∧ 𝑦 ∈ ℕ) → 𝑁 ∈ ℝ)
390 letr 8111 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑦 ∈ ℝ ∧ ((2 · 𝑁) − (⌊‘((𝑄 / 𝑃) · (2 · 𝑢)))) ∈ ℝ ∧ 𝑁 ∈ ℝ) → ((𝑦 ≤ ((2 · 𝑁) − (⌊‘((𝑄 / 𝑃) · (2 · 𝑢)))) ∧ ((2 · 𝑁) − (⌊‘((𝑄 / 𝑃) · (2 · 𝑢)))) ≤ 𝑁) → 𝑦𝑁))
391249, 387, 389, 390syl3anc 1249 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝜑𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) ∧ 𝑦 ∈ ℕ) → ((𝑦 ≤ ((2 · 𝑁) − (⌊‘((𝑄 / 𝑃) · (2 · 𝑢)))) ∧ ((2 · 𝑁) − (⌊‘((𝑄 / 𝑃) · (2 · 𝑢)))) ≤ 𝑁) → 𝑦𝑁))
392383, 391mpan2d 428 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜑𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) ∧ 𝑦 ∈ ℕ) → (𝑦 ≤ ((2 · 𝑁) − (⌊‘((𝑄 / 𝑃) · (2 · 𝑢)))) → 𝑦𝑁))
393392pm4.71rd 394 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) ∧ 𝑦 ∈ ℕ) → (𝑦 ≤ ((2 · 𝑁) − (⌊‘((𝑄 / 𝑃) · (2 · 𝑢)))) ↔ (𝑦𝑁𝑦 ≤ ((2 · 𝑁) − (⌊‘((𝑄 / 𝑃) · (2 · 𝑢)))))))
394310, 393bitr4d 191 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) ∧ 𝑦 ∈ ℕ) → ((𝑦𝑁 ∧ (𝑦 · 𝑃) < ((𝑃 − (2 · 𝑢)) · 𝑄)) ↔ 𝑦 ≤ ((2 · 𝑁) − (⌊‘((𝑄 / 𝑃) · (2 · 𝑢))))))
395394pm5.32da 452 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) → ((𝑦 ∈ ℕ ∧ (𝑦𝑁 ∧ (𝑦 · 𝑃) < ((𝑃 − (2 · 𝑢)) · 𝑄))) ↔ (𝑦 ∈ ℕ ∧ 𝑦 ≤ ((2 · 𝑁) − (⌊‘((𝑄 / 𝑃) · (2 · 𝑢)))))))
396395adantr 276 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) ∧ 𝑥 = (𝑃 − (2 · 𝑢))) → ((𝑦 ∈ ℕ ∧ (𝑦𝑁 ∧ (𝑦 · 𝑃) < ((𝑃 − (2 · 𝑢)) · 𝑄))) ↔ (𝑦 ∈ ℕ ∧ 𝑦 ≤ ((2 · 𝑁) − (⌊‘((𝑄 / 𝑃) · (2 · 𝑢)))))))
397242, 396bitrid 192 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) ∧ 𝑥 = (𝑃 − (2 · 𝑢))) → (((𝑦 ∈ ℕ ∧ 𝑦𝑁) ∧ (𝑦 · 𝑃) < ((𝑃 − (2 · 𝑢)) · 𝑄)) ↔ (𝑦 ∈ ℕ ∧ 𝑦 ≤ ((2 · 𝑁) − (⌊‘((𝑄 / 𝑃) · (2 · 𝑢)))))))
398 simpr 110 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) ∧ 𝑥 = (𝑃 − (2 · 𝑢))) → 𝑥 = (𝑃 − (2 · 𝑢)))
399211adantr 276 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝜑𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) → 𝑃 ∈ ℤ)
400399, 26zsubcld 9455 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝜑𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) → (𝑃 − (2 · 𝑢)) ∈ ℤ)
401 elfzle2 10105 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀) → 𝑢𝑀)
402401adantl 277 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((𝜑𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) → 𝑢𝑀)
403402, 6breqtrdi 4075 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝜑𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) → 𝑢 ≤ ((𝑃 − 1) / 2))
404 lemuldiv2 8911 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((𝑢 ∈ ℝ ∧ (𝑃 − 1) ∈ ℝ ∧ (2 ∈ ℝ ∧ 0 < 2)) → ((2 · 𝑢) ≤ (𝑃 − 1) ↔ 𝑢 ≤ ((𝑃 − 1) / 2)))
405337, 350, 325, 326, 404syl112anc 1253 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝜑𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) → ((2 · 𝑢) ≤ (𝑃 − 1) ↔ 𝑢 ≤ ((𝑃 − 1) / 2)))
406403, 405mpbird 167 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝜑𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) → (2 · 𝑢) ≤ (𝑃 − 1))
407348ltm1d 8961 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝜑𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) → (𝑃 − 1) < 𝑃)
408266, 350, 348, 406, 407lelttrd 8153 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝜑𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) → (2 · 𝑢) < 𝑃)
409266, 348posdifd 8561 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝜑𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) → ((2 · 𝑢) < 𝑃 ↔ 0 < (𝑃 − (2 · 𝑢))))
410408, 409mpbid 147 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝜑𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) → 0 < (𝑃 − (2 · 𝑢)))
411 elnnz 9338 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑃 − (2 · 𝑢)) ∈ ℕ ↔ ((𝑃 − (2 · 𝑢)) ∈ ℤ ∧ 0 < (𝑃 − (2 · 𝑢))))
412400, 410, 411sylanbrc 417 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝜑𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) → (𝑃 − (2 · 𝑢)) ∈ ℕ)
41375, 77, 302sub32d 8371 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝜑𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) → ((𝑃 − (2 · 𝑢)) − 1) = ((𝑃 − 1) − (2 · 𝑢)))
4146, 6oveq12i 5935 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (𝑀 + 𝑀) = (((𝑃 − 1) / 2) + ((𝑃 − 1) / 2))
41564, 213syl 14 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 ((𝜑𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) → (𝑃 − 1) ∈ ℤ)
416415zcnd 9451 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((𝜑𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) → (𝑃 − 1) ∈ ℂ)
4174162halvesd 9239 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((𝜑𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) → (((𝑃 − 1) / 2) + ((𝑃 − 1) / 2)) = (𝑃 − 1))
418414, 417eqtrid 2241 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((𝜑𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) → (𝑀 + 𝑀) = (𝑃 − 1))
419418oveq1d 5938 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((𝜑𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) → ((𝑀 + 𝑀) − 𝑀) = ((𝑃 − 1) − 𝑀))
420167adantr 276 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((𝜑𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) → 𝑀 ∈ ℂ)
421420, 420pncan2d 8341 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((𝜑𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) → ((𝑀 + 𝑀) − 𝑀) = 𝑀)
422419, 421eqtr3d 2231 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝜑𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) → ((𝑃 − 1) − 𝑀) = 𝑀)
423422, 346eqbrtrd 4056 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝜑𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) → ((𝑃 − 1) − 𝑀) < (2 · 𝑢))
424350, 333, 266, 423ltsub23d 8579 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝜑𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) → ((𝑃 − 1) − (2 · 𝑢)) < 𝑀)
425413, 424eqbrtrd 4056 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝜑𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) → ((𝑃 − (2 · 𝑢)) − 1) < 𝑀)
4267adantr 276 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝜑𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) → 𝑀 ∈ ℕ)
427426nnzd 9449 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝜑𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) → 𝑀 ∈ ℤ)
428 zlem1lt 9384 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝑃 − (2 · 𝑢)) ∈ ℤ ∧ 𝑀 ∈ ℤ) → ((𝑃 − (2 · 𝑢)) ≤ 𝑀 ↔ ((𝑃 − (2 · 𝑢)) − 1) < 𝑀))
429400, 427, 428syl2anc 411 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝜑𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) → ((𝑃 − (2 · 𝑢)) ≤ 𝑀 ↔ ((𝑃 − (2 · 𝑢)) − 1) < 𝑀))
430425, 429mpbird 167 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝜑𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) → (𝑃 − (2 · 𝑢)) ≤ 𝑀)
431 fznn 10166 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑀 ∈ ℤ → ((𝑃 − (2 · 𝑢)) ∈ (1...𝑀) ↔ ((𝑃 − (2 · 𝑢)) ∈ ℕ ∧ (𝑃 − (2 · 𝑢)) ≤ 𝑀)))
432427, 431syl 14 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝜑𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) → ((𝑃 − (2 · 𝑢)) ∈ (1...𝑀) ↔ ((𝑃 − (2 · 𝑢)) ∈ ℕ ∧ (𝑃 − (2 · 𝑢)) ≤ 𝑀)))
433412, 430, 432mpbir2and 946 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) → (𝑃 − (2 · 𝑢)) ∈ (1...𝑀))
434433adantr 276 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) ∧ 𝑥 = (𝑃 − (2 · 𝑢))) → (𝑃 − (2 · 𝑢)) ∈ (1...𝑀))
435398, 434eqeltrd 2273 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) ∧ 𝑥 = (𝑃 − (2 · 𝑢))) → 𝑥 ∈ (1...𝑀))
436435biantrurd 305 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) ∧ 𝑥 = (𝑃 − (2 · 𝑢))) → (𝑦 ∈ (1...𝑁) ↔ (𝑥 ∈ (1...𝑀) ∧ 𝑦 ∈ (1...𝑁))))
437376ad2antrr 488 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) ∧ 𝑥 = (𝑃 − (2 · 𝑢))) → 𝑁 ∈ ℤ)
438 fznn 10166 . . . . . . . . . . . . . . . . . . . . 21 (𝑁 ∈ ℤ → (𝑦 ∈ (1...𝑁) ↔ (𝑦 ∈ ℕ ∧ 𝑦𝑁)))
439437, 438syl 14 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) ∧ 𝑥 = (𝑃 − (2 · 𝑢))) → (𝑦 ∈ (1...𝑁) ↔ (𝑦 ∈ ℕ ∧ 𝑦𝑁)))
440436, 439bitr3d 190 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) ∧ 𝑥 = (𝑃 − (2 · 𝑢))) → ((𝑥 ∈ (1...𝑀) ∧ 𝑦 ∈ (1...𝑁)) ↔ (𝑦 ∈ ℕ ∧ 𝑦𝑁)))
441398oveq1d 5938 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) ∧ 𝑥 = (𝑃 − (2 · 𝑢))) → (𝑥 · 𝑄) = ((𝑃 − (2 · 𝑢)) · 𝑄))
442441breq2d 4046 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) ∧ 𝑥 = (𝑃 − (2 · 𝑢))) → ((𝑦 · 𝑃) < (𝑥 · 𝑄) ↔ (𝑦 · 𝑃) < ((𝑃 − (2 · 𝑢)) · 𝑄)))
443440, 442anbi12d 473 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) ∧ 𝑥 = (𝑃 − (2 · 𝑢))) → (((𝑥 ∈ (1...𝑀) ∧ 𝑦 ∈ (1...𝑁)) ∧ (𝑦 · 𝑃) < (𝑥 · 𝑄)) ↔ ((𝑦 ∈ ℕ ∧ 𝑦𝑁) ∧ (𝑦 · 𝑃) < ((𝑃 − (2 · 𝑢)) · 𝑄))))
444385adantr 276 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) ∧ 𝑥 = (𝑃 − (2 · 𝑢))) → ((2 · 𝑁) − (⌊‘((𝑄 / 𝑃) · (2 · 𝑢)))) ∈ ℤ)
445 fznn 10166 . . . . . . . . . . . . . . . . . . 19 (((2 · 𝑁) − (⌊‘((𝑄 / 𝑃) · (2 · 𝑢)))) ∈ ℤ → (𝑦 ∈ (1...((2 · 𝑁) − (⌊‘((𝑄 / 𝑃) · (2 · 𝑢))))) ↔ (𝑦 ∈ ℕ ∧ 𝑦 ≤ ((2 · 𝑁) − (⌊‘((𝑄 / 𝑃) · (2 · 𝑢)))))))
446444, 445syl 14 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) ∧ 𝑥 = (𝑃 − (2 · 𝑢))) → (𝑦 ∈ (1...((2 · 𝑁) − (⌊‘((𝑄 / 𝑃) · (2 · 𝑢))))) ↔ (𝑦 ∈ ℕ ∧ 𝑦 ≤ ((2 · 𝑁) − (⌊‘((𝑄 / 𝑃) · (2 · 𝑢)))))))
447397, 443, 4463bitr4d 220 . . . . . . . . . . . . . . . . 17 (((𝜑𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) ∧ 𝑥 = (𝑃 − (2 · 𝑢))) → (((𝑥 ∈ (1...𝑀) ∧ 𝑦 ∈ (1...𝑁)) ∧ (𝑦 · 𝑃) < (𝑥 · 𝑄)) ↔ 𝑦 ∈ (1...((2 · 𝑁) − (⌊‘((𝑄 / 𝑃) · (2 · 𝑢)))))))
448241, 447bitrid 192 . . . . . . . . . . . . . . . 16 (((𝜑𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) ∧ 𝑥 = (𝑃 − (2 · 𝑢))) → (⟨𝑥, 𝑦⟩ ∈ 𝑆𝑦 ∈ (1...((2 · 𝑁) − (⌊‘((𝑄 / 𝑃) · (2 · 𝑢)))))))
449448pm5.32da 452 . . . . . . . . . . . . . . 15 ((𝜑𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) → ((𝑥 = (𝑃 − (2 · 𝑢)) ∧ ⟨𝑥, 𝑦⟩ ∈ 𝑆) ↔ (𝑥 = (𝑃 − (2 · 𝑢)) ∧ 𝑦 ∈ (1...((2 · 𝑁) − (⌊‘((𝑄 / 𝑃) · (2 · 𝑢))))))))
450 vex 2766 . . . . . . . . . . . . . . . . . . 19 𝑥 ∈ V
451 vex 2766 . . . . . . . . . . . . . . . . . . 19 𝑦 ∈ V
452450, 451op1std 6207 . . . . . . . . . . . . . . . . . 18 (𝑧 = ⟨𝑥, 𝑦⟩ → (1st𝑧) = 𝑥)
453452eqeq1d 2205 . . . . . . . . . . . . . . . . 17 (𝑧 = ⟨𝑥, 𝑦⟩ → ((1st𝑧) = (𝑃 − (2 · 𝑢)) ↔ 𝑥 = (𝑃 − (2 · 𝑢))))
454453elrab 2920 . . . . . . . . . . . . . . . 16 (⟨𝑥, 𝑦⟩ ∈ {𝑧𝑆 ∣ (1st𝑧) = (𝑃 − (2 · 𝑢))} ↔ (⟨𝑥, 𝑦⟩ ∈ 𝑆𝑥 = (𝑃 − (2 · 𝑢))))
455454biancomi 270 . . . . . . . . . . . . . . 15 (⟨𝑥, 𝑦⟩ ∈ {𝑧𝑆 ∣ (1st𝑧) = (𝑃 − (2 · 𝑢))} ↔ (𝑥 = (𝑃 − (2 · 𝑢)) ∧ ⟨𝑥, 𝑦⟩ ∈ 𝑆))
456 opelxp 4694 . . . . . . . . . . . . . . . 16 (⟨𝑥, 𝑦⟩ ∈ ({(𝑃 − (2 · 𝑢))} × (1...((2 · 𝑁) − (⌊‘((𝑄 / 𝑃) · (2 · 𝑢)))))) ↔ (𝑥 ∈ {(𝑃 − (2 · 𝑢))} ∧ 𝑦 ∈ (1...((2 · 𝑁) − (⌊‘((𝑄 / 𝑃) · (2 · 𝑢)))))))
457 velsn 3640 . . . . . . . . . . . . . . . . 17 (𝑥 ∈ {(𝑃 − (2 · 𝑢))} ↔ 𝑥 = (𝑃 − (2 · 𝑢)))
458457anbi1i 458 . . . . . . . . . . . . . . . 16 ((𝑥 ∈ {(𝑃 − (2 · 𝑢))} ∧ 𝑦 ∈ (1...((2 · 𝑁) − (⌊‘((𝑄 / 𝑃) · (2 · 𝑢)))))) ↔ (𝑥 = (𝑃 − (2 · 𝑢)) ∧ 𝑦 ∈ (1...((2 · 𝑁) − (⌊‘((𝑄 / 𝑃) · (2 · 𝑢)))))))
459456, 458bitri 184 . . . . . . . . . . . . . . 15 (⟨𝑥, 𝑦⟩ ∈ ({(𝑃 − (2 · 𝑢))} × (1...((2 · 𝑁) − (⌊‘((𝑄 / 𝑃) · (2 · 𝑢)))))) ↔ (𝑥 = (𝑃 − (2 · 𝑢)) ∧ 𝑦 ∈ (1...((2 · 𝑁) − (⌊‘((𝑄 / 𝑃) · (2 · 𝑢)))))))
460449, 455, 4593bitr4g 223 . . . . . . . . . . . . . 14 ((𝜑𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) → (⟨𝑥, 𝑦⟩ ∈ {𝑧𝑆 ∣ (1st𝑧) = (𝑃 − (2 · 𝑢))} ↔ ⟨𝑥, 𝑦⟩ ∈ ({(𝑃 − (2 · 𝑢))} × (1...((2 · 𝑁) − (⌊‘((𝑄 / 𝑃) · (2 · 𝑢))))))))
461237, 238, 460eqrelrdv 4760 . . . . . . . . . . . . 13 ((𝜑𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) → {𝑧𝑆 ∣ (1st𝑧) = (𝑃 − (2 · 𝑢))} = ({(𝑃 − (2 · 𝑢))} × (1...((2 · 𝑁) − (⌊‘((𝑄 / 𝑃) · (2 · 𝑢)))))))
462461fveq2d 5563 . . . . . . . . . . . 12 ((𝜑𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) → (♯‘{𝑧𝑆 ∣ (1st𝑧) = (𝑃 − (2 · 𝑢))}) = (♯‘({(𝑃 − (2 · 𝑢))} × (1...((2 · 𝑁) − (⌊‘((𝑄 / 𝑃) · (2 · 𝑢))))))))
463 1zzd 9355 . . . . . . . . . . . . . . 15 ((𝜑𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) → 1 ∈ ℤ)
464463, 385fzfigd 10525 . . . . . . . . . . . . . 14 ((𝜑𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) → (1...((2 · 𝑁) − (⌊‘((𝑄 / 𝑃) · (2 · 𝑢))))) ∈ Fin)
465 xpsnen2g 6889 . . . . . . . . . . . . . 14 (((𝑃 − (2 · 𝑢)) ∈ ℤ ∧ (1...((2 · 𝑁) − (⌊‘((𝑄 / 𝑃) · (2 · 𝑢))))) ∈ Fin) → ({(𝑃 − (2 · 𝑢))} × (1...((2 · 𝑁) − (⌊‘((𝑄 / 𝑃) · (2 · 𝑢)))))) ≈ (1...((2 · 𝑁) − (⌊‘((𝑄 / 𝑃) · (2 · 𝑢))))))
466400, 464, 465syl2anc 411 . . . . . . . . . . . . 13 ((𝜑𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) → ({(𝑃 − (2 · 𝑢))} × (1...((2 · 𝑁) − (⌊‘((𝑄 / 𝑃) · (2 · 𝑢)))))) ≈ (1...((2 · 𝑁) − (⌊‘((𝑄 / 𝑃) · (2 · 𝑢))))))
467461, 69eqeltrrd 2274 . . . . . . . . . . . . . 14 ((𝜑𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) → ({(𝑃 − (2 · 𝑢))} × (1...((2 · 𝑁) − (⌊‘((𝑄 / 𝑃) · (2 · 𝑢)))))) ∈ Fin)
468 hashen 10878 . . . . . . . . . . . . . 14 ((({(𝑃 − (2 · 𝑢))} × (1...((2 · 𝑁) − (⌊‘((𝑄 / 𝑃) · (2 · 𝑢)))))) ∈ Fin ∧ (1...((2 · 𝑁) − (⌊‘((𝑄 / 𝑃) · (2 · 𝑢))))) ∈ Fin) → ((♯‘({(𝑃 − (2 · 𝑢))} × (1...((2 · 𝑁) − (⌊‘((𝑄 / 𝑃) · (2 · 𝑢))))))) = (♯‘(1...((2 · 𝑁) − (⌊‘((𝑄 / 𝑃) · (2 · 𝑢)))))) ↔ ({(𝑃 − (2 · 𝑢))} × (1...((2 · 𝑁) − (⌊‘((𝑄 / 𝑃) · (2 · 𝑢)))))) ≈ (1...((2 · 𝑁) − (⌊‘((𝑄 / 𝑃) · (2 · 𝑢)))))))
469467, 464, 468syl2anc 411 . . . . . . . . . . . . 13 ((𝜑𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) → ((♯‘({(𝑃 − (2 · 𝑢))} × (1...((2 · 𝑁) − (⌊‘((𝑄 / 𝑃) · (2 · 𝑢))))))) = (♯‘(1...((2 · 𝑁) − (⌊‘((𝑄 / 𝑃) · (2 · 𝑢)))))) ↔ ({(𝑃 − (2 · 𝑢))} × (1...((2 · 𝑁) − (⌊‘((𝑄 / 𝑃) · (2 · 𝑢)))))) ≈ (1...((2 · 𝑁) − (⌊‘((𝑄 / 𝑃) · (2 · 𝑢)))))))
470466, 469mpbird 167 . . . . . . . . . . . 12 ((𝜑𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) → (♯‘({(𝑃 − (2 · 𝑢))} × (1...((2 · 𝑁) − (⌊‘((𝑄 / 𝑃) · (2 · 𝑢))))))) = (♯‘(1...((2 · 𝑁) − (⌊‘((𝑄 / 𝑃) · (2 · 𝑢)))))))
471 ltmul2 8885 . . . . . . . . . . . . . . . . . . . . 21 (((2 · 𝑢) ∈ ℝ ∧ 𝑃 ∈ ℝ ∧ (𝑄 ∈ ℝ ∧ 0 < 𝑄)) → ((2 · 𝑢) < 𝑃 ↔ (𝑄 · (2 · 𝑢)) < (𝑄 · 𝑃)))
472266, 348, 252, 363, 471syl112anc 1253 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) → ((2 · 𝑢) < 𝑃 ↔ (𝑄 · (2 · 𝑢)) < (𝑄 · 𝑃)))
473408, 472mpbid 147 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) → (𝑄 · (2 · 𝑢)) < (𝑄 · 𝑃))
474 ltdivmul2 8907 . . . . . . . . . . . . . . . . . . . 20 (((𝑄 · (2 · 𝑢)) ∈ ℝ ∧ 𝑄 ∈ ℝ ∧ (𝑃 ∈ ℝ ∧ 0 < 𝑃)) → (((𝑄 · (2 · 𝑢)) / 𝑃) < 𝑄 ↔ (𝑄 · (2 · 𝑢)) < (𝑄 · 𝑃)))
475368, 252, 348, 369, 474syl112anc 1253 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) → (((𝑄 · (2 · 𝑢)) / 𝑃) < 𝑄 ↔ (𝑄 · (2 · 𝑢)) < (𝑄 · 𝑃)))
476473, 475mpbird 167 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) → ((𝑄 · (2 · 𝑢)) / 𝑃) < 𝑄)
477373, 476eqbrtrrd 4058 . . . . . . . . . . . . . . . . 17 ((𝜑𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) → ((𝑄 / 𝑃) · (2 · 𝑢)) < 𝑄)
478 flqlt 10375 . . . . . . . . . . . . . . . . . 18 ((((𝑄 / 𝑃) · (2 · 𝑢)) ∈ ℚ ∧ 𝑄 ∈ ℤ) → (((𝑄 / 𝑃) · (2 · 𝑢)) < 𝑄 ↔ (⌊‘((𝑄 / 𝑃) · (2 · 𝑢))) < 𝑄))
47930, 284, 478syl2anc 411 . . . . . . . . . . . . . . . . 17 ((𝜑𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) → (((𝑄 / 𝑃) · (2 · 𝑢)) < 𝑄 ↔ (⌊‘((𝑄 / 𝑃) · (2 · 𝑢))) < 𝑄))
480477, 479mpbid 147 . . . . . . . . . . . . . . . 16 ((𝜑𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) → (⌊‘((𝑄 / 𝑃) · (2 · 𝑢))) < 𝑄)
481 zltlem1 9385 . . . . . . . . . . . . . . . . 17 (((⌊‘((𝑄 / 𝑃) · (2 · 𝑢))) ∈ ℤ ∧ 𝑄 ∈ ℤ) → ((⌊‘((𝑄 / 𝑃) · (2 · 𝑢))) < 𝑄 ↔ (⌊‘((𝑄 / 𝑃) · (2 · 𝑢))) ≤ (𝑄 − 1)))
48231, 284, 481syl2anc 411 . . . . . . . . . . . . . . . 16 ((𝜑𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) → ((⌊‘((𝑄 / 𝑃) · (2 · 𝑢))) < 𝑄 ↔ (⌊‘((𝑄 / 𝑃) · (2 · 𝑢))) ≤ (𝑄 − 1)))
483480, 482mpbid 147 . . . . . . . . . . . . . . 15 ((𝜑𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) → (⌊‘((𝑄 / 𝑃) · (2 · 𝑢))) ≤ (𝑄 − 1))
484483, 300breqtrrd 4062 . . . . . . . . . . . . . 14 ((𝜑𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) → (⌊‘((𝑄 / 𝑃) · (2 · 𝑢))) ≤ (2 · 𝑁))
485 eluz2 9609 . . . . . . . . . . . . . 14 ((2 · 𝑁) ∈ (ℤ‘(⌊‘((𝑄 / 𝑃) · (2 · 𝑢)))) ↔ ((⌊‘((𝑄 / 𝑃) · (2 · 𝑢))) ∈ ℤ ∧ (2 · 𝑁) ∈ ℤ ∧ (⌊‘((𝑄 / 𝑃) · (2 · 𝑢))) ≤ (2 · 𝑁)))
48631, 384, 484, 485syl3anbrc 1183 . . . . . . . . . . . . 13 ((𝜑𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) → (2 · 𝑁) ∈ (ℤ‘(⌊‘((𝑄 / 𝑃) · (2 · 𝑢)))))
487 uznn0sub 9635 . . . . . . . . . . . . 13 ((2 · 𝑁) ∈ (ℤ‘(⌊‘((𝑄 / 𝑃) · (2 · 𝑢)))) → ((2 · 𝑁) − (⌊‘((𝑄 / 𝑃) · (2 · 𝑢)))) ∈ ℕ0)
488 hashfz1 10877 . . . . . . . . . . . . 13 (((2 · 𝑁) − (⌊‘((𝑄 / 𝑃) · (2 · 𝑢)))) ∈ ℕ0 → (♯‘(1...((2 · 𝑁) − (⌊‘((𝑄 / 𝑃) · (2 · 𝑢)))))) = ((2 · 𝑁) − (⌊‘((𝑄 / 𝑃) · (2 · 𝑢)))))
489486, 487, 4883syl 17 . . . . . . . . . . . 12 ((𝜑𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) → (♯‘(1...((2 · 𝑁) − (⌊‘((𝑄 / 𝑃) · (2 · 𝑢)))))) = ((2 · 𝑁) − (⌊‘((𝑄 / 𝑃) · (2 · 𝑢)))))
490462, 470, 4893eqtrd 2233 . . . . . . . . . . 11 ((𝜑𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) → (♯‘{𝑧𝑆 ∣ (1st𝑧) = (𝑃 − (2 · 𝑢))}) = ((2 · 𝑁) − (⌊‘((𝑄 / 𝑃) · (2 · 𝑢)))))
491490sumeq2dv 11535 . . . . . . . . . 10 (𝜑 → Σ𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)(♯‘{𝑧𝑆 ∣ (1st𝑧) = (𝑃 − (2 · 𝑢))}) = Σ𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)((2 · 𝑁) − (⌊‘((𝑄 / 𝑃) · (2 · 𝑢)))))
49292, 233, 4913eqtr3rd 2238 . . . . . . . . 9 (𝜑 → Σ𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)((2 · 𝑁) − (⌊‘((𝑄 / 𝑃) · (2 · 𝑢)))) = (♯‘{𝑧𝑆 ∣ ¬ 2 ∥ (1st𝑧)}))
493313nncnd 9006 . . . . . . . . . . 11 (𝜑 → (2 · 𝑁) ∈ ℂ)
494493adantr 276 . . . . . . . . . 10 ((𝜑𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) → (2 · 𝑁) ∈ ℂ)
49514, 494, 303fsumsub 11619 . . . . . . . . 9 (𝜑 → Σ𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)((2 · 𝑁) − (⌊‘((𝑄 / 𝑃) · (2 · 𝑢)))) = (Σ𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)(2 · 𝑁) − Σ𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)(⌊‘((𝑄 / 𝑃) · (2 · 𝑢)))))
496492, 495eqtr3d 2231 . . . . . . . 8 (𝜑 → (♯‘{𝑧𝑆 ∣ ¬ 2 ∥ (1st𝑧)}) = (Σ𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)(2 · 𝑁) − Σ𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)(⌊‘((𝑄 / 𝑃) · (2 · 𝑢)))))
497496oveq2d 5939 . . . . . . 7 (𝜑 → (Σ𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)(⌊‘((𝑄 / 𝑃) · (2 · 𝑢))) + (♯‘{𝑧𝑆 ∣ ¬ 2 ∥ (1st𝑧)})) = (Σ𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)(⌊‘((𝑄 / 𝑃) · (2 · 𝑢))) + (Σ𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)(2 · 𝑁) − Σ𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)(⌊‘((𝑄 / 𝑃) · (2 · 𝑢))))))
49832zcnd 9451 . . . . . . . 8 (𝜑 → Σ𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)(⌊‘((𝑄 / 𝑃) · (2 · 𝑢))) ∈ ℂ)
49914, 384fsumzcl 11569 . . . . . . . . 9 (𝜑 → Σ𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)(2 · 𝑁) ∈ ℤ)
500499zcnd 9451 . . . . . . . 8 (𝜑 → Σ𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)(2 · 𝑁) ∈ ℂ)
501498, 500pncan3d 8342 . . . . . . 7 (𝜑 → (Σ𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)(⌊‘((𝑄 / 𝑃) · (2 · 𝑢))) + (Σ𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)(2 · 𝑁) − Σ𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)(⌊‘((𝑄 / 𝑃) · (2 · 𝑢))))) = Σ𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)(2 · 𝑁))
502 fsumconst 11621 . . . . . . . . 9 (((((⌊‘(𝑀 / 2)) + 1)...𝑀) ∈ Fin ∧ (2 · 𝑁) ∈ ℂ) → Σ𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)(2 · 𝑁) = ((♯‘(((⌊‘(𝑀 / 2)) + 1)...𝑀)) · (2 · 𝑁)))
50314, 493, 502syl2anc 411 . . . . . . . 8 (𝜑 → Σ𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)(2 · 𝑁) = ((♯‘(((⌊‘(𝑀 / 2)) + 1)...𝑀)) · (2 · 𝑁)))
504 hashcl 10875 . . . . . . . . . . 11 ((((⌊‘(𝑀 / 2)) + 1)...𝑀) ∈ Fin → (♯‘(((⌊‘(𝑀 / 2)) + 1)...𝑀)) ∈ ℕ0)
50514, 504syl 14 . . . . . . . . . 10 (𝜑 → (♯‘(((⌊‘(𝑀 / 2)) + 1)...𝑀)) ∈ ℕ0)
506505nn0cnd 9306 . . . . . . . . 9 (𝜑 → (♯‘(((⌊‘(𝑀 / 2)) + 1)...𝑀)) ∈ ℂ)
507 2cnd 9065 . . . . . . . . 9 (𝜑 → 2 ∈ ℂ)
508506, 507, 319mul12d 8180 . . . . . . . 8 (𝜑 → ((♯‘(((⌊‘(𝑀 / 2)) + 1)...𝑀)) · (2 · 𝑁)) = (2 · ((♯‘(((⌊‘(𝑀 / 2)) + 1)...𝑀)) · 𝑁)))
509503, 508eqtrd 2229 . . . . . . 7 (𝜑 → Σ𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)(2 · 𝑁) = (2 · ((♯‘(((⌊‘(𝑀 / 2)) + 1)...𝑀)) · 𝑁)))
510497, 501, 5093eqtrd 2233 . . . . . 6 (𝜑 → (Σ𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)(⌊‘((𝑄 / 𝑃) · (2 · 𝑢))) + (♯‘{𝑧𝑆 ∣ ¬ 2 ∥ (1st𝑧)})) = (2 · ((♯‘(((⌊‘(𝑀 / 2)) + 1)...𝑀)) · 𝑁)))
511510oveq2d 5939 . . . . 5 (𝜑 → (-1↑(Σ𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)(⌊‘((𝑄 / 𝑃) · (2 · 𝑢))) + (♯‘{𝑧𝑆 ∣ ¬ 2 ∥ (1st𝑧)}))) = (-1↑(2 · ((♯‘(((⌊‘(𝑀 / 2)) + 1)...𝑀)) · 𝑁))))
51222a1i 9 . . . . . 6 (𝜑 → 2 ∈ ℤ)
513505nn0zd 9448 . . . . . . 7 (𝜑 → (♯‘(((⌊‘(𝑀 / 2)) + 1)...𝑀)) ∈ ℤ)
514513, 376zmulcld 9456 . . . . . 6 (𝜑 → ((♯‘(((⌊‘(𝑀 / 2)) + 1)...𝑀)) · 𝑁) ∈ ℤ)
515 expmulzap 10679 . . . . . 6 (((-1 ∈ ℂ ∧ -1 # 0) ∧ (2 ∈ ℤ ∧ ((♯‘(((⌊‘(𝑀 / 2)) + 1)...𝑀)) · 𝑁) ∈ ℤ)) → (-1↑(2 · ((♯‘(((⌊‘(𝑀 / 2)) + 1)...𝑀)) · 𝑁))) = ((-1↑2)↑((♯‘(((⌊‘(𝑀 / 2)) + 1)...𝑀)) · 𝑁)))
5162, 4, 512, 514, 515syl22anc 1250 . . . . 5 (𝜑 → (-1↑(2 · ((♯‘(((⌊‘(𝑀 / 2)) + 1)...𝑀)) · 𝑁))) = ((-1↑2)↑((♯‘(((⌊‘(𝑀 / 2)) + 1)...𝑀)) · 𝑁)))
517 neg1sqe1 10728 . . . . . . 7 (-1↑2) = 1
518517oveq1i 5933 . . . . . 6 ((-1↑2)↑((♯‘(((⌊‘(𝑀 / 2)) + 1)...𝑀)) · 𝑁)) = (1↑((♯‘(((⌊‘(𝑀 / 2)) + 1)...𝑀)) · 𝑁))
519 1exp 10662 . . . . . . 7 (((♯‘(((⌊‘(𝑀 / 2)) + 1)...𝑀)) · 𝑁) ∈ ℤ → (1↑((♯‘(((⌊‘(𝑀 / 2)) + 1)...𝑀)) · 𝑁)) = 1)
520514, 519syl 14 . . . . . 6 (𝜑 → (1↑((♯‘(((⌊‘(𝑀 / 2)) + 1)...𝑀)) · 𝑁)) = 1)
521518, 520eqtrid 2241 . . . . 5 (𝜑 → ((-1↑2)↑((♯‘(((⌊‘(𝑀 / 2)) + 1)...𝑀)) · 𝑁)) = 1)
522511, 516, 5213eqtrd 2233 . . . 4 (𝜑 → (-1↑(Σ𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)(⌊‘((𝑄 / 𝑃) · (2 · 𝑢))) + (♯‘{𝑧𝑆 ∣ ¬ 2 ∥ (1st𝑧)}))) = 1)
52344, 55, 5223eqtr4d 2239 . . 3 (𝜑 → ((-1↑(♯‘{𝑧𝑆 ∣ ¬ 2 ∥ (1st𝑧)})) · (-1↑(♯‘{𝑧𝑆 ∣ ¬ 2 ∥ (1st𝑧)}))) = (-1↑(Σ𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)(⌊‘((𝑄 / 𝑃) · (2 · 𝑢))) + (♯‘{𝑧𝑆 ∣ ¬ 2 ∥ (1st𝑧)}))))
524 expaddzap 10677 . . . 4 (((-1 ∈ ℂ ∧ -1 # 0) ∧ (Σ𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)(⌊‘((𝑄 / 𝑃) · (2 · 𝑢))) ∈ ℤ ∧ (♯‘{𝑧𝑆 ∣ ¬ 2 ∥ (1st𝑧)}) ∈ ℤ)) → (-1↑(Σ𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)(⌊‘((𝑄 / 𝑃) · (2 · 𝑢))) + (♯‘{𝑧𝑆 ∣ ¬ 2 ∥ (1st𝑧)}))) = ((-1↑Σ𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)(⌊‘((𝑄 / 𝑃) · (2 · 𝑢)))) · (-1↑(♯‘{𝑧𝑆 ∣ ¬ 2 ∥ (1st𝑧)}))))
5252, 4, 32, 42, 524syl22anc 1250 . . 3 (𝜑 → (-1↑(Σ𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)(⌊‘((𝑄 / 𝑃) · (2 · 𝑢))) + (♯‘{𝑧𝑆 ∣ ¬ 2 ∥ (1st𝑧)}))) = ((-1↑Σ𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)(⌊‘((𝑄 / 𝑃) · (2 · 𝑢)))) · (-1↑(♯‘{𝑧𝑆 ∣ ¬ 2 ∥ (1st𝑧)}))))
526523, 525eqtr2d 2230 . 2 (𝜑 → ((-1↑Σ𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)(⌊‘((𝑄 / 𝑃) · (2 · 𝑢)))) · (-1↑(♯‘{𝑧𝑆 ∣ ¬ 2 ∥ (1st𝑧)}))) = ((-1↑(♯‘{𝑧𝑆 ∣ ¬ 2 ∥ (1st𝑧)})) · (-1↑(♯‘{𝑧𝑆 ∣ ¬ 2 ∥ (1st𝑧)}))))
52733, 41, 41, 43, 526mulcanap2ad 8693 1 (𝜑 → (-1↑Σ𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)(⌊‘((𝑄 / 𝑃) · (2 · 𝑢)))) = (-1↑(♯‘{𝑧𝑆 ∣ ¬ 2 ∥ (1st𝑧)})))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  wb 105  DECID wdc 835   = wceq 1364  wcel 2167  wne 2367  wral 2475  wrex 2476  {crab 2479  cdif 3154  wss 3157  {csn 3623  cop 3626   ciun 3917  Disj wdisj 4011   class class class wbr 4034  {copab 4094   × cxp 4662  Rel wrel 4669  cfv 5259  (class class class)co 5923  1st c1st 6197  cen 6798  Fincfn 6800  cc 7879  cr 7880  0cc0 7881  1c1 7882   + caddc 7884   · cmul 7886   < clt 8063  cle 8064  cmin 8199  -cneg 8200   # cap 8610   / cdiv 8701  cn 8992  2c2 9043  0cn0 9251  cz 9328  cuz 9603  cq 9695  ...cfz 10085  cfl 10360  cexp 10632  chash 10869  Σcsu 11520  cdvds 11954  cprime 12285
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4149  ax-sep 4152  ax-nul 4160  ax-pow 4208  ax-pr 4243  ax-un 4469  ax-setind 4574  ax-iinf 4625  ax-cnex 7972  ax-resscn 7973  ax-1cn 7974  ax-1re 7975  ax-icn 7976  ax-addcl 7977  ax-addrcl 7978  ax-mulcl 7979  ax-mulrcl 7980  ax-addcom 7981  ax-mulcom 7982  ax-addass 7983  ax-mulass 7984  ax-distr 7985  ax-i2m1 7986  ax-0lt1 7987  ax-1rid 7988  ax-0id 7989  ax-rnegex 7990  ax-precex 7991  ax-cnre 7992  ax-pre-ltirr 7993  ax-pre-ltwlin 7994  ax-pre-lttrn 7995  ax-pre-apti 7996  ax-pre-ltadd 7997  ax-pre-mulgt0 7998  ax-pre-mulext 7999  ax-arch 8000  ax-caucvg 8001
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-xor 1387  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rmo 2483  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3452  df-if 3563  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-int 3876  df-iun 3919  df-disj 4012  df-br 4035  df-opab 4096  df-mpt 4097  df-tr 4133  df-id 4329  df-po 4332  df-iso 4333  df-iord 4402  df-on 4404  df-ilim 4405  df-suc 4407  df-iom 4628  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-rn 4675  df-res 4676  df-ima 4677  df-iota 5220  df-fun 5261  df-fn 5262  df-f 5263  df-f1 5264  df-fo 5265  df-f1o 5266  df-fv 5267  df-isom 5268  df-riota 5878  df-ov 5926  df-oprab 5927  df-mpo 5928  df-1st 6199  df-2nd 6200  df-recs 6364  df-irdg 6429  df-frec 6450  df-1o 6475  df-2o 6476  df-oadd 6479  df-er 6593  df-en 6801  df-dom 6802  df-fin 6803  df-pnf 8065  df-mnf 8066  df-xr 8067  df-ltxr 8068  df-le 8069  df-sub 8201  df-neg 8202  df-reap 8604  df-ap 8611  df-div 8702  df-inn 8993  df-2 9051  df-3 9052  df-4 9053  df-n0 9252  df-z 9329  df-uz 9604  df-q 9696  df-rp 9731  df-fz 10086  df-fzo 10220  df-fl 10362  df-mod 10417  df-seqfrec 10542  df-exp 10633  df-ihash 10870  df-cj 11009  df-re 11010  df-im 11011  df-rsqrt 11165  df-abs 11166  df-clim 11446  df-sumdc 11521  df-dvds 11955  df-prm 12286
This theorem is referenced by:  lgsquadlem2  15329
  Copyright terms: Public domain W3C validator