Step | Hyp | Ref
| Expression |
1 | | lgseisen.1 |
. . 3
⊢ (𝜑 → 𝑃 ∈ (ℙ ∖
{2})) |
2 | | lgseisen.2 |
. . 3
⊢ (𝜑 → 𝑄 ∈ (ℙ ∖
{2})) |
3 | | lgseisen.3 |
. . 3
⊢ (𝜑 → 𝑃 ≠ 𝑄) |
4 | 1, 2, 3 | lgseisen 15190 |
. 2
⊢ (𝜑 → (𝑄 /L 𝑃) = (-1↑Σ𝑢 ∈ (1...((𝑃 − 1) / 2))(⌊‘((𝑄 / 𝑃) · (2 · 𝑢))))) |
5 | | lgsquad.4 |
. . . . . 6
⊢ 𝑀 = ((𝑃 − 1) / 2) |
6 | 5 | oveq2i 5929 |
. . . . 5
⊢
(1...𝑀) =
(1...((𝑃 − 1) /
2)) |
7 | 6 | sumeq1i 11506 |
. . . 4
⊢
Σ𝑢 ∈
(1...𝑀)(⌊‘((𝑄 / 𝑃) · (2 · 𝑢))) = Σ𝑢 ∈ (1...((𝑃 − 1) / 2))(⌊‘((𝑄 / 𝑃) · (2 · 𝑢))) |
8 | 1, 5 | gausslemma2dlem0b 15166 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝑀 ∈ ℕ) |
9 | 8 | nnzd 9438 |
. . . . . . . . . 10
⊢ (𝜑 → 𝑀 ∈ ℤ) |
10 | | 2nn 9143 |
. . . . . . . . . 10
⊢ 2 ∈
ℕ |
11 | | znq 9689 |
. . . . . . . . . 10
⊢ ((𝑀 ∈ ℤ ∧ 2 ∈
ℕ) → (𝑀 / 2)
∈ ℚ) |
12 | 9, 10, 11 | sylancl 413 |
. . . . . . . . 9
⊢ (𝜑 → (𝑀 / 2) ∈ ℚ) |
13 | 12 | flqcld 10346 |
. . . . . . . 8
⊢ (𝜑 → (⌊‘(𝑀 / 2)) ∈
ℤ) |
14 | 13 | zred 9439 |
. . . . . . 7
⊢ (𝜑 → (⌊‘(𝑀 / 2)) ∈
ℝ) |
15 | 14 | ltp1d 8949 |
. . . . . 6
⊢ (𝜑 → (⌊‘(𝑀 / 2)) <
((⌊‘(𝑀 / 2)) +
1)) |
16 | | fzdisj 10118 |
. . . . . 6
⊢
((⌊‘(𝑀 /
2)) < ((⌊‘(𝑀
/ 2)) + 1) → ((1...(⌊‘(𝑀 / 2))) ∩ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) = ∅) |
17 | 15, 16 | syl 14 |
. . . . 5
⊢ (𝜑 →
((1...(⌊‘(𝑀 /
2))) ∩ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) = ∅) |
18 | 8 | nnrpd 9760 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝑀 ∈
ℝ+) |
19 | 18 | rphalfcld 9775 |
. . . . . . . . . 10
⊢ (𝜑 → (𝑀 / 2) ∈
ℝ+) |
20 | 19 | rpge0d 9766 |
. . . . . . . . 9
⊢ (𝜑 → 0 ≤ (𝑀 / 2)) |
21 | | flqge0nn0 10362 |
. . . . . . . . 9
⊢ (((𝑀 / 2) ∈ ℚ ∧ 0
≤ (𝑀 / 2)) →
(⌊‘(𝑀 / 2))
∈ ℕ0) |
22 | 12, 20, 21 | syl2anc 411 |
. . . . . . . 8
⊢ (𝜑 → (⌊‘(𝑀 / 2)) ∈
ℕ0) |
23 | 8 | nnnn0d 9293 |
. . . . . . . 8
⊢ (𝜑 → 𝑀 ∈
ℕ0) |
24 | 8 | nnred 8995 |
. . . . . . . . 9
⊢ (𝜑 → 𝑀 ∈ ℝ) |
25 | | rphalflt 9749 |
. . . . . . . . . . 11
⊢ (𝑀 ∈ ℝ+
→ (𝑀 / 2) < 𝑀) |
26 | 18, 25 | syl 14 |
. . . . . . . . . 10
⊢ (𝜑 → (𝑀 / 2) < 𝑀) |
27 | | flqlt 10352 |
. . . . . . . . . . 11
⊢ (((𝑀 / 2) ∈ ℚ ∧ 𝑀 ∈ ℤ) → ((𝑀 / 2) < 𝑀 ↔ (⌊‘(𝑀 / 2)) < 𝑀)) |
28 | 12, 9, 27 | syl2anc 411 |
. . . . . . . . . 10
⊢ (𝜑 → ((𝑀 / 2) < 𝑀 ↔ (⌊‘(𝑀 / 2)) < 𝑀)) |
29 | 26, 28 | mpbid 147 |
. . . . . . . . 9
⊢ (𝜑 → (⌊‘(𝑀 / 2)) < 𝑀) |
30 | 14, 24, 29 | ltled 8138 |
. . . . . . . 8
⊢ (𝜑 → (⌊‘(𝑀 / 2)) ≤ 𝑀) |
31 | | elfz2nn0 10178 |
. . . . . . . 8
⊢
((⌊‘(𝑀 /
2)) ∈ (0...𝑀) ↔
((⌊‘(𝑀 / 2))
∈ ℕ0 ∧ 𝑀 ∈ ℕ0 ∧
(⌊‘(𝑀 / 2))
≤ 𝑀)) |
32 | 22, 23, 30, 31 | syl3anbrc 1183 |
. . . . . . 7
⊢ (𝜑 → (⌊‘(𝑀 / 2)) ∈ (0...𝑀)) |
33 | | nn0uz 9627 |
. . . . . . . . 9
⊢
ℕ0 = (ℤ≥‘0) |
34 | 23, 33 | eleqtrdi 2286 |
. . . . . . . 8
⊢ (𝜑 → 𝑀 ∈
(ℤ≥‘0)) |
35 | | elfzp12 10165 |
. . . . . . . 8
⊢ (𝑀 ∈
(ℤ≥‘0) → ((⌊‘(𝑀 / 2)) ∈ (0...𝑀) ↔ ((⌊‘(𝑀 / 2)) = 0 ∨ (⌊‘(𝑀 / 2)) ∈ ((0 + 1)...𝑀)))) |
36 | 34, 35 | syl 14 |
. . . . . . 7
⊢ (𝜑 → ((⌊‘(𝑀 / 2)) ∈ (0...𝑀) ↔ ((⌊‘(𝑀 / 2)) = 0 ∨
(⌊‘(𝑀 / 2))
∈ ((0 + 1)...𝑀)))) |
37 | 32, 36 | mpbid 147 |
. . . . . 6
⊢ (𝜑 → ((⌊‘(𝑀 / 2)) = 0 ∨
(⌊‘(𝑀 / 2))
∈ ((0 + 1)...𝑀))) |
38 | | un0 3480 |
. . . . . . . . 9
⊢
((1...𝑀) ∪
∅) = (1...𝑀) |
39 | | uncom 3303 |
. . . . . . . . 9
⊢
((1...𝑀) ∪
∅) = (∅ ∪ (1...𝑀)) |
40 | 38, 39 | eqtr3i 2216 |
. . . . . . . 8
⊢
(1...𝑀) = (∅
∪ (1...𝑀)) |
41 | | oveq2 5926 |
. . . . . . . . . 10
⊢
((⌊‘(𝑀 /
2)) = 0 → (1...(⌊‘(𝑀 / 2))) = (1...0)) |
42 | | fz10 10112 |
. . . . . . . . . 10
⊢ (1...0) =
∅ |
43 | 41, 42 | eqtrdi 2242 |
. . . . . . . . 9
⊢
((⌊‘(𝑀 /
2)) = 0 → (1...(⌊‘(𝑀 / 2))) = ∅) |
44 | | oveq1 5925 |
. . . . . . . . . . 11
⊢
((⌊‘(𝑀 /
2)) = 0 → ((⌊‘(𝑀 / 2)) + 1) = (0 + 1)) |
45 | | 0p1e1 9096 |
. . . . . . . . . . 11
⊢ (0 + 1) =
1 |
46 | 44, 45 | eqtrdi 2242 |
. . . . . . . . . 10
⊢
((⌊‘(𝑀 /
2)) = 0 → ((⌊‘(𝑀 / 2)) + 1) = 1) |
47 | 46 | oveq1d 5933 |
. . . . . . . . 9
⊢
((⌊‘(𝑀 /
2)) = 0 → (((⌊‘(𝑀 / 2)) + 1)...𝑀) = (1...𝑀)) |
48 | 43, 47 | uneq12d 3314 |
. . . . . . . 8
⊢
((⌊‘(𝑀 /
2)) = 0 → ((1...(⌊‘(𝑀 / 2))) ∪ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) = (∅ ∪ (1...𝑀))) |
49 | 40, 48 | eqtr4id 2245 |
. . . . . . 7
⊢
((⌊‘(𝑀 /
2)) = 0 → (1...𝑀) =
((1...(⌊‘(𝑀 /
2))) ∪ (((⌊‘(𝑀 / 2)) + 1)...𝑀))) |
50 | | fzsplit 10117 |
. . . . . . . 8
⊢
((⌊‘(𝑀 /
2)) ∈ (1...𝑀) →
(1...𝑀) =
((1...(⌊‘(𝑀 /
2))) ∪ (((⌊‘(𝑀 / 2)) + 1)...𝑀))) |
51 | 45 | oveq1i 5928 |
. . . . . . . 8
⊢ ((0 +
1)...𝑀) = (1...𝑀) |
52 | 50, 51 | eleq2s 2288 |
. . . . . . 7
⊢
((⌊‘(𝑀 /
2)) ∈ ((0 + 1)...𝑀)
→ (1...𝑀) =
((1...(⌊‘(𝑀 /
2))) ∪ (((⌊‘(𝑀 / 2)) + 1)...𝑀))) |
53 | 49, 52 | jaoi 717 |
. . . . . 6
⊢
(((⌊‘(𝑀
/ 2)) = 0 ∨ (⌊‘(𝑀 / 2)) ∈ ((0 + 1)...𝑀)) → (1...𝑀) = ((1...(⌊‘(𝑀 / 2))) ∪ (((⌊‘(𝑀 / 2)) + 1)...𝑀))) |
54 | 37, 53 | syl 14 |
. . . . 5
⊢ (𝜑 → (1...𝑀) = ((1...(⌊‘(𝑀 / 2))) ∪ (((⌊‘(𝑀 / 2)) + 1)...𝑀))) |
55 | | 1zzd 9344 |
. . . . . 6
⊢ (𝜑 → 1 ∈
ℤ) |
56 | 55, 9 | fzfigd 10502 |
. . . . 5
⊢ (𝜑 → (1...𝑀) ∈ Fin) |
57 | 2 | gausslemma2dlem0a 15165 |
. . . . . . . . . 10
⊢ (𝜑 → 𝑄 ∈ ℕ) |
58 | 57 | nnzd 9438 |
. . . . . . . . 9
⊢ (𝜑 → 𝑄 ∈ ℤ) |
59 | 1 | gausslemma2dlem0a 15165 |
. . . . . . . . . 10
⊢ (𝜑 → 𝑃 ∈ ℕ) |
60 | 59 | adantr 276 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑢 ∈ (1...𝑀)) → 𝑃 ∈ ℕ) |
61 | | znq 9689 |
. . . . . . . . 9
⊢ ((𝑄 ∈ ℤ ∧ 𝑃 ∈ ℕ) → (𝑄 / 𝑃) ∈ ℚ) |
62 | 58, 60, 61 | syl2an2r 595 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑢 ∈ (1...𝑀)) → (𝑄 / 𝑃) ∈ ℚ) |
63 | | elfznn 10120 |
. . . . . . . . . . . 12
⊢ (𝑢 ∈ (1...𝑀) → 𝑢 ∈ ℕ) |
64 | 63 | adantl 277 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑢 ∈ (1...𝑀)) → 𝑢 ∈ ℕ) |
65 | | nnmulcl 9003 |
. . . . . . . . . . 11
⊢ ((2
∈ ℕ ∧ 𝑢
∈ ℕ) → (2 · 𝑢) ∈ ℕ) |
66 | 10, 64, 65 | sylancr 414 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑢 ∈ (1...𝑀)) → (2 · 𝑢) ∈ ℕ) |
67 | 66 | nnzd 9438 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑢 ∈ (1...𝑀)) → (2 · 𝑢) ∈ ℤ) |
68 | | zq 9691 |
. . . . . . . . 9
⊢ ((2
· 𝑢) ∈ ℤ
→ (2 · 𝑢)
∈ ℚ) |
69 | 67, 68 | syl 14 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑢 ∈ (1...𝑀)) → (2 · 𝑢) ∈ ℚ) |
70 | | qmulcl 9702 |
. . . . . . . 8
⊢ (((𝑄 / 𝑃) ∈ ℚ ∧ (2 · 𝑢) ∈ ℚ) → ((𝑄 / 𝑃) · (2 · 𝑢)) ∈ ℚ) |
71 | 62, 69, 70 | syl2anc 411 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑢 ∈ (1...𝑀)) → ((𝑄 / 𝑃) · (2 · 𝑢)) ∈ ℚ) |
72 | 57 | nnrpd 9760 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝑄 ∈
ℝ+) |
73 | 59 | nnrpd 9760 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝑃 ∈
ℝ+) |
74 | 72, 73 | rpdivcld 9780 |
. . . . . . . . . 10
⊢ (𝜑 → (𝑄 / 𝑃) ∈
ℝ+) |
75 | 74 | adantr 276 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑢 ∈ (1...𝑀)) → (𝑄 / 𝑃) ∈
ℝ+) |
76 | 66 | nnrpd 9760 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑢 ∈ (1...𝑀)) → (2 · 𝑢) ∈
ℝ+) |
77 | 75, 76 | rpmulcld 9779 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑢 ∈ (1...𝑀)) → ((𝑄 / 𝑃) · (2 · 𝑢)) ∈
ℝ+) |
78 | 77 | rpge0d 9766 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑢 ∈ (1...𝑀)) → 0 ≤ ((𝑄 / 𝑃) · (2 · 𝑢))) |
79 | | flqge0nn0 10362 |
. . . . . . 7
⊢ ((((𝑄 / 𝑃) · (2 · 𝑢)) ∈ ℚ ∧ 0 ≤ ((𝑄 / 𝑃) · (2 · 𝑢))) → (⌊‘((𝑄 / 𝑃) · (2 · 𝑢))) ∈
ℕ0) |
80 | 71, 78, 79 | syl2anc 411 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑢 ∈ (1...𝑀)) → (⌊‘((𝑄 / 𝑃) · (2 · 𝑢))) ∈
ℕ0) |
81 | 80 | nn0cnd 9295 |
. . . . 5
⊢ ((𝜑 ∧ 𝑢 ∈ (1...𝑀)) → (⌊‘((𝑄 / 𝑃) · (2 · 𝑢))) ∈ ℂ) |
82 | 17, 54, 56, 81 | fsumsplit 11550 |
. . . 4
⊢ (𝜑 → Σ𝑢 ∈ (1...𝑀)(⌊‘((𝑄 / 𝑃) · (2 · 𝑢))) = (Σ𝑢 ∈ (1...(⌊‘(𝑀 / 2)))(⌊‘((𝑄 / 𝑃) · (2 · 𝑢))) + Σ𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)(⌊‘((𝑄 / 𝑃) · (2 · 𝑢))))) |
83 | 7, 82 | eqtr3id 2240 |
. . 3
⊢ (𝜑 → Σ𝑢 ∈ (1...((𝑃 − 1) / 2))(⌊‘((𝑄 / 𝑃) · (2 · 𝑢))) = (Σ𝑢 ∈ (1...(⌊‘(𝑀 / 2)))(⌊‘((𝑄 / 𝑃) · (2 · 𝑢))) + Σ𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)(⌊‘((𝑄 / 𝑃) · (2 · 𝑢))))) |
84 | 83 | oveq2d 5934 |
. 2
⊢ (𝜑 → (-1↑Σ𝑢 ∈ (1...((𝑃 − 1) / 2))(⌊‘((𝑄 / 𝑃) · (2 · 𝑢)))) = (-1↑(Σ𝑢 ∈ (1...(⌊‘(𝑀 / 2)))(⌊‘((𝑄 / 𝑃) · (2 · 𝑢))) + Σ𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)(⌊‘((𝑄 / 𝑃) · (2 · 𝑢)))))) |
85 | | neg1cn 9087 |
. . . . 5
⊢ -1 ∈
ℂ |
86 | 85 | a1i 9 |
. . . 4
⊢ (𝜑 → -1 ∈
ℂ) |
87 | 13 | peano2zd 9442 |
. . . . . 6
⊢ (𝜑 → ((⌊‘(𝑀 / 2)) + 1) ∈
ℤ) |
88 | 87, 9 | fzfigd 10502 |
. . . . 5
⊢ (𝜑 → (((⌊‘(𝑀 / 2)) + 1)...𝑀) ∈ Fin) |
89 | | ssun2 3323 |
. . . . . . . 8
⊢
(((⌊‘(𝑀
/ 2)) + 1)...𝑀) ⊆
((1...(⌊‘(𝑀 /
2))) ∪ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) |
90 | 89, 54 | sseqtrrid 3230 |
. . . . . . 7
⊢ (𝜑 → (((⌊‘(𝑀 / 2)) + 1)...𝑀) ⊆ (1...𝑀)) |
91 | 90 | sselda 3179 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) → 𝑢 ∈ (1...𝑀)) |
92 | 91, 80 | syldan 282 |
. . . . 5
⊢ ((𝜑 ∧ 𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) → (⌊‘((𝑄 / 𝑃) · (2 · 𝑢))) ∈
ℕ0) |
93 | 88, 92 | fsumnn0cl 11546 |
. . . 4
⊢ (𝜑 → Σ𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)(⌊‘((𝑄 / 𝑃) · (2 · 𝑢))) ∈
ℕ0) |
94 | 55, 13 | fzfigd 10502 |
. . . . 5
⊢ (𝜑 → (1...(⌊‘(𝑀 / 2))) ∈
Fin) |
95 | | ssun1 3322 |
. . . . . . . 8
⊢
(1...(⌊‘(𝑀 / 2))) ⊆ ((1...(⌊‘(𝑀 / 2))) ∪
(((⌊‘(𝑀 / 2)) +
1)...𝑀)) |
96 | 95, 54 | sseqtrrid 3230 |
. . . . . . 7
⊢ (𝜑 → (1...(⌊‘(𝑀 / 2))) ⊆ (1...𝑀)) |
97 | 96 | sselda 3179 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑢 ∈ (1...(⌊‘(𝑀 / 2)))) → 𝑢 ∈ (1...𝑀)) |
98 | 97, 80 | syldan 282 |
. . . . 5
⊢ ((𝜑 ∧ 𝑢 ∈ (1...(⌊‘(𝑀 / 2)))) →
(⌊‘((𝑄 / 𝑃) · (2 · 𝑢))) ∈
ℕ0) |
99 | 94, 98 | fsumnn0cl 11546 |
. . . 4
⊢ (𝜑 → Σ𝑢 ∈ (1...(⌊‘(𝑀 / 2)))(⌊‘((𝑄 / 𝑃) · (2 · 𝑢))) ∈
ℕ0) |
100 | 86, 93, 99 | expaddd 10746 |
. . 3
⊢ (𝜑 → (-1↑(Σ𝑢 ∈
(1...(⌊‘(𝑀 /
2)))(⌊‘((𝑄 /
𝑃) · (2 ·
𝑢))) + Σ𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)(⌊‘((𝑄 / 𝑃) · (2 · 𝑢))))) = ((-1↑Σ𝑢 ∈ (1...(⌊‘(𝑀 / 2)))(⌊‘((𝑄 / 𝑃) · (2 · 𝑢)))) · (-1↑Σ𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)(⌊‘((𝑄 / 𝑃) · (2 · 𝑢)))))) |
101 | | lgsquad.5 |
. . . . . . 7
⊢ 𝑁 = ((𝑄 − 1) / 2) |
102 | | lgsquad.6 |
. . . . . . 7
⊢ 𝑆 = {〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ (1...𝑀) ∧ 𝑦 ∈ (1...𝑁)) ∧ (𝑦 · 𝑃) < (𝑥 · 𝑄))} |
103 | 1, 2, 3, 5, 101, 102 | lgsquadlemofi 15192 |
. . . . . 6
⊢ (𝜑 → {𝑧 ∈ 𝑆 ∣ ¬ 2 ∥ (1st
‘𝑧)} ∈
Fin) |
104 | | hashcl 10852 |
. . . . . 6
⊢ ({𝑧 ∈ 𝑆 ∣ ¬ 2 ∥ (1st
‘𝑧)} ∈ Fin
→ (♯‘{𝑧
∈ 𝑆 ∣ ¬ 2
∥ (1st ‘𝑧)}) ∈
ℕ0) |
105 | 103, 104 | syl 14 |
. . . . 5
⊢ (𝜑 → (♯‘{𝑧 ∈ 𝑆 ∣ ¬ 2 ∥ (1st
‘𝑧)}) ∈
ℕ0) |
106 | 1, 2, 3, 5, 101, 102 | lgsquadlemsfi 15191 |
. . . . . . 7
⊢ (𝜑 → 𝑆 ∈ Fin) |
107 | | opabssxp 4733 |
. . . . . . . . . . . . . 14
⊢
{〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ (1...𝑀) ∧ 𝑦 ∈ (1...𝑁)) ∧ (𝑦 · 𝑃) < (𝑥 · 𝑄))} ⊆ ((1...𝑀) × (1...𝑁)) |
108 | 102, 107 | eqsstri 3211 |
. . . . . . . . . . . . 13
⊢ 𝑆 ⊆ ((1...𝑀) × (1...𝑁)) |
109 | 108 | sseli 3175 |
. . . . . . . . . . . 12
⊢ (𝑧 ∈ 𝑆 → 𝑧 ∈ ((1...𝑀) × (1...𝑁))) |
110 | | xp1st 6218 |
. . . . . . . . . . . 12
⊢ (𝑧 ∈ ((1...𝑀) × (1...𝑁)) → (1st ‘𝑧) ∈ (1...𝑀)) |
111 | 109, 110 | syl 14 |
. . . . . . . . . . 11
⊢ (𝑧 ∈ 𝑆 → (1st ‘𝑧) ∈ (1...𝑀)) |
112 | 111 | elfzelzd 10092 |
. . . . . . . . . 10
⊢ (𝑧 ∈ 𝑆 → (1st ‘𝑧) ∈
ℤ) |
113 | 112 | adantl 277 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑧 ∈ 𝑆) → (1st ‘𝑧) ∈
ℤ) |
114 | | dvdsdc 11941 |
. . . . . . . . 9
⊢ ((2
∈ ℕ ∧ (1st ‘𝑧) ∈ ℤ) → DECID
2 ∥ (1st ‘𝑧)) |
115 | 10, 113, 114 | sylancr 414 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑧 ∈ 𝑆) → DECID 2 ∥
(1st ‘𝑧)) |
116 | 115 | ralrimiva 2567 |
. . . . . . 7
⊢ (𝜑 → ∀𝑧 ∈ 𝑆 DECID 2 ∥
(1st ‘𝑧)) |
117 | 106, 116 | ssfirab 6990 |
. . . . . 6
⊢ (𝜑 → {𝑧 ∈ 𝑆 ∣ 2 ∥ (1st
‘𝑧)} ∈
Fin) |
118 | | hashcl 10852 |
. . . . . 6
⊢ ({𝑧 ∈ 𝑆 ∣ 2 ∥ (1st
‘𝑧)} ∈ Fin
→ (♯‘{𝑧
∈ 𝑆 ∣ 2 ∥
(1st ‘𝑧)})
∈ ℕ0) |
119 | 117, 118 | syl 14 |
. . . . 5
⊢ (𝜑 → (♯‘{𝑧 ∈ 𝑆 ∣ 2 ∥ (1st
‘𝑧)}) ∈
ℕ0) |
120 | 86, 105, 119 | expaddd 10746 |
. . . 4
⊢ (𝜑 →
(-1↑((♯‘{𝑧
∈ 𝑆 ∣ 2 ∥
(1st ‘𝑧)})
+ (♯‘{𝑧 ∈
𝑆 ∣ ¬ 2 ∥
(1st ‘𝑧)}))) = ((-1↑(♯‘{𝑧 ∈ 𝑆 ∣ 2 ∥ (1st
‘𝑧)})) ·
(-1↑(♯‘{𝑧
∈ 𝑆 ∣ ¬ 2
∥ (1st ‘𝑧)})))) |
121 | 97, 66 | syldan 282 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑢 ∈ (1...(⌊‘(𝑀 / 2)))) → (2 ·
𝑢) ∈
ℕ) |
122 | | 1zzd 9344 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑢 ∈ (1...(⌊‘(𝑀 / 2)))) → 1 ∈
ℤ) |
123 | 98 | nn0zd 9437 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑢 ∈ (1...(⌊‘(𝑀 / 2)))) →
(⌊‘((𝑄 / 𝑃) · (2 · 𝑢))) ∈
ℤ) |
124 | 122, 123 | fzfigd 10502 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑢 ∈ (1...(⌊‘(𝑀 / 2)))) →
(1...(⌊‘((𝑄 /
𝑃) · (2 ·
𝑢)))) ∈
Fin) |
125 | | xpsnen2g 6883 |
. . . . . . . . . . 11
⊢ (((2
· 𝑢) ∈ ℕ
∧ (1...(⌊‘((𝑄 / 𝑃) · (2 · 𝑢)))) ∈ Fin) → ({(2 · 𝑢)} ×
(1...(⌊‘((𝑄 /
𝑃) · (2 ·
𝑢))))) ≈
(1...(⌊‘((𝑄 /
𝑃) · (2 ·
𝑢))))) |
126 | 121, 124,
125 | syl2anc 411 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑢 ∈ (1...(⌊‘(𝑀 / 2)))) → ({(2 ·
𝑢)} ×
(1...(⌊‘((𝑄 /
𝑃) · (2 ·
𝑢))))) ≈
(1...(⌊‘((𝑄 /
𝑃) · (2 ·
𝑢))))) |
127 | | snfig 6868 |
. . . . . . . . . . . . 13
⊢ ((2
· 𝑢) ∈ ℕ
→ {(2 · 𝑢)}
∈ Fin) |
128 | 121, 127 | syl 14 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑢 ∈ (1...(⌊‘(𝑀 / 2)))) → {(2 ·
𝑢)} ∈
Fin) |
129 | | xpfi 6986 |
. . . . . . . . . . . 12
⊢ (({(2
· 𝑢)} ∈ Fin
∧ (1...(⌊‘((𝑄 / 𝑃) · (2 · 𝑢)))) ∈ Fin) → ({(2 · 𝑢)} ×
(1...(⌊‘((𝑄 /
𝑃) · (2 ·
𝑢))))) ∈
Fin) |
130 | 128, 124,
129 | syl2anc 411 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑢 ∈ (1...(⌊‘(𝑀 / 2)))) → ({(2 ·
𝑢)} ×
(1...(⌊‘((𝑄 /
𝑃) · (2 ·
𝑢))))) ∈
Fin) |
131 | | hashen 10855 |
. . . . . . . . . . 11
⊢ ((({(2
· 𝑢)} ×
(1...(⌊‘((𝑄 /
𝑃) · (2 ·
𝑢))))) ∈ Fin ∧
(1...(⌊‘((𝑄 /
𝑃) · (2 ·
𝑢)))) ∈ Fin) →
((♯‘({(2 · 𝑢)} × (1...(⌊‘((𝑄 / 𝑃) · (2 · 𝑢)))))) =
(♯‘(1...(⌊‘((𝑄 / 𝑃) · (2 · 𝑢))))) ↔ ({(2 · 𝑢)} × (1...(⌊‘((𝑄 / 𝑃) · (2 · 𝑢))))) ≈ (1...(⌊‘((𝑄 / 𝑃) · (2 · 𝑢)))))) |
132 | 130, 124,
131 | syl2anc 411 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑢 ∈ (1...(⌊‘(𝑀 / 2)))) →
((♯‘({(2 · 𝑢)} × (1...(⌊‘((𝑄 / 𝑃) · (2 · 𝑢)))))) =
(♯‘(1...(⌊‘((𝑄 / 𝑃) · (2 · 𝑢))))) ↔ ({(2 · 𝑢)} × (1...(⌊‘((𝑄 / 𝑃) · (2 · 𝑢))))) ≈ (1...(⌊‘((𝑄 / 𝑃) · (2 · 𝑢)))))) |
133 | 126, 132 | mpbird 167 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑢 ∈ (1...(⌊‘(𝑀 / 2)))) →
(♯‘({(2 · 𝑢)} × (1...(⌊‘((𝑄 / 𝑃) · (2 · 𝑢)))))) =
(♯‘(1...(⌊‘((𝑄 / 𝑃) · (2 · 𝑢)))))) |
134 | | ssrab2 3264 |
. . . . . . . . . . . . 13
⊢ {𝑧 ∈ 𝑆 ∣ (2 · 𝑢) = (1st ‘𝑧)} ⊆ 𝑆 |
135 | 102 | relopabiv 4785 |
. . . . . . . . . . . . 13
⊢ Rel 𝑆 |
136 | | relss 4746 |
. . . . . . . . . . . . 13
⊢ ({𝑧 ∈ 𝑆 ∣ (2 · 𝑢) = (1st ‘𝑧)} ⊆ 𝑆 → (Rel 𝑆 → Rel {𝑧 ∈ 𝑆 ∣ (2 · 𝑢) = (1st ‘𝑧)})) |
137 | 134, 135,
136 | mp2 16 |
. . . . . . . . . . . 12
⊢ Rel
{𝑧 ∈ 𝑆 ∣ (2 · 𝑢) = (1st ‘𝑧)} |
138 | | relxp 4768 |
. . . . . . . . . . . 12
⊢ Rel ({(2
· 𝑢)} ×
(1...(⌊‘((𝑄 /
𝑃) · (2 ·
𝑢))))) |
139 | 102 | eleq2i 2260 |
. . . . . . . . . . . . . . . 16
⊢
(〈𝑥, 𝑦〉 ∈ 𝑆 ↔ 〈𝑥, 𝑦〉 ∈ {〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ (1...𝑀) ∧ 𝑦 ∈ (1...𝑁)) ∧ (𝑦 · 𝑃) < (𝑥 · 𝑄))}) |
140 | | opabidw 4287 |
. . . . . . . . . . . . . . . 16
⊢
(〈𝑥, 𝑦〉 ∈ {〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ (1...𝑀) ∧ 𝑦 ∈ (1...𝑁)) ∧ (𝑦 · 𝑃) < (𝑥 · 𝑄))} ↔ ((𝑥 ∈ (1...𝑀) ∧ 𝑦 ∈ (1...𝑁)) ∧ (𝑦 · 𝑃) < (𝑥 · 𝑄))) |
141 | 139, 140 | bitri 184 |
. . . . . . . . . . . . . . 15
⊢
(〈𝑥, 𝑦〉 ∈ 𝑆 ↔ ((𝑥 ∈ (1...𝑀) ∧ 𝑦 ∈ (1...𝑁)) ∧ (𝑦 · 𝑃) < (𝑥 · 𝑄))) |
142 | | anass 401 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝑦 ∈ ℕ ∧ 𝑦 ≤ 𝑁) ∧ (𝑦 · 𝑃) < (𝑄 · (2 · 𝑢))) ↔ (𝑦 ∈ ℕ ∧ (𝑦 ≤ 𝑁 ∧ (𝑦 · 𝑃) < (𝑄 · (2 · 𝑢))))) |
143 | 121 | adantr 276 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ (((𝜑 ∧ 𝑢 ∈ (1...(⌊‘(𝑀 / 2)))) ∧ 𝑦 ∈ ℕ) → (2
· 𝑢) ∈
ℕ) |
144 | 143 | nnred 8995 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (((𝜑 ∧ 𝑢 ∈ (1...(⌊‘(𝑀 / 2)))) ∧ 𝑦 ∈ ℕ) → (2
· 𝑢) ∈
ℝ) |
145 | 59 | ad2antrr 488 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ (((𝜑 ∧ 𝑢 ∈ (1...(⌊‘(𝑀 / 2)))) ∧ 𝑦 ∈ ℕ) → 𝑃 ∈
ℕ) |
146 | 145 | nnred 8995 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ (((𝜑 ∧ 𝑢 ∈ (1...(⌊‘(𝑀 / 2)))) ∧ 𝑦 ∈ ℕ) → 𝑃 ∈
ℝ) |
147 | 146 | rehalfcld 9229 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (((𝜑 ∧ 𝑢 ∈ (1...(⌊‘(𝑀 / 2)))) ∧ 𝑦 ∈ ℕ) → (𝑃 / 2) ∈
ℝ) |
148 | 24 | adantr 276 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ ((𝜑 ∧ 𝑢 ∈ (1...(⌊‘(𝑀 / 2)))) → 𝑀 ∈
ℝ) |
149 | 148 | adantr 276 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ (((𝜑 ∧ 𝑢 ∈ (1...(⌊‘(𝑀 / 2)))) ∧ 𝑦 ∈ ℕ) → 𝑀 ∈
ℝ) |
150 | | elfzle2 10094 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢ (𝑢 ∈
(1...(⌊‘(𝑀 /
2))) → 𝑢 ≤
(⌊‘(𝑀 /
2))) |
151 | 150 | adantl 277 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ ((𝜑 ∧ 𝑢 ∈ (1...(⌊‘(𝑀 / 2)))) → 𝑢 ≤ (⌊‘(𝑀 / 2))) |
152 | | elfzelz 10091 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢ (𝑢 ∈
(1...(⌊‘(𝑀 /
2))) → 𝑢 ∈
ℤ) |
153 | | flqge 10351 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢ (((𝑀 / 2) ∈ ℚ ∧ 𝑢 ∈ ℤ) → (𝑢 ≤ (𝑀 / 2) ↔ 𝑢 ≤ (⌊‘(𝑀 / 2)))) |
154 | 12, 152, 153 | syl2an 289 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ ((𝜑 ∧ 𝑢 ∈ (1...(⌊‘(𝑀 / 2)))) → (𝑢 ≤ (𝑀 / 2) ↔ 𝑢 ≤ (⌊‘(𝑀 / 2)))) |
155 | 151, 154 | mpbird 167 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ ((𝜑 ∧ 𝑢 ∈ (1...(⌊‘(𝑀 / 2)))) → 𝑢 ≤ (𝑀 / 2)) |
156 | | elfznn 10120 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
⊢ (𝑢 ∈
(1...(⌊‘(𝑀 /
2))) → 𝑢 ∈
ℕ) |
157 | 156 | adantl 277 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢ ((𝜑 ∧ 𝑢 ∈ (1...(⌊‘(𝑀 / 2)))) → 𝑢 ∈
ℕ) |
158 | 157 | nnred 8995 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ ((𝜑 ∧ 𝑢 ∈ (1...(⌊‘(𝑀 / 2)))) → 𝑢 ∈
ℝ) |
159 | | 2re 9052 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢ 2 ∈
ℝ |
160 | 159 | a1i 9 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ ((𝜑 ∧ 𝑢 ∈ (1...(⌊‘(𝑀 / 2)))) → 2 ∈
ℝ) |
161 | | 2pos 9073 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢ 0 <
2 |
162 | 161 | a1i 9 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ ((𝜑 ∧ 𝑢 ∈ (1...(⌊‘(𝑀 / 2)))) → 0 <
2) |
163 | | lemuldiv2 8901 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ ((𝑢 ∈ ℝ ∧ 𝑀 ∈ ℝ ∧ (2 ∈
ℝ ∧ 0 < 2)) → ((2 · 𝑢) ≤ 𝑀 ↔ 𝑢 ≤ (𝑀 / 2))) |
164 | 158, 148,
160, 162, 163 | syl112anc 1253 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ ((𝜑 ∧ 𝑢 ∈ (1...(⌊‘(𝑀 / 2)))) → ((2 ·
𝑢) ≤ 𝑀 ↔ 𝑢 ≤ (𝑀 / 2))) |
165 | 155, 164 | mpbird 167 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ ((𝜑 ∧ 𝑢 ∈ (1...(⌊‘(𝑀 / 2)))) → (2 ·
𝑢) ≤ 𝑀) |
166 | 165 | adantr 276 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ (((𝜑 ∧ 𝑢 ∈ (1...(⌊‘(𝑀 / 2)))) ∧ 𝑦 ∈ ℕ) → (2
· 𝑢) ≤ 𝑀) |
167 | 146 | ltm1d 8951 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ (((𝜑 ∧ 𝑢 ∈ (1...(⌊‘(𝑀 / 2)))) ∧ 𝑦 ∈ ℕ) → (𝑃 − 1) < 𝑃) |
168 | | peano2rem 8286 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢ (𝑃 ∈ ℝ → (𝑃 − 1) ∈
ℝ) |
169 | 146, 168 | syl 14 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ (((𝜑 ∧ 𝑢 ∈ (1...(⌊‘(𝑀 / 2)))) ∧ 𝑦 ∈ ℕ) → (𝑃 − 1) ∈
ℝ) |
170 | 159 | a1i 9 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ (((𝜑 ∧ 𝑢 ∈ (1...(⌊‘(𝑀 / 2)))) ∧ 𝑦 ∈ ℕ) → 2 ∈
ℝ) |
171 | 161 | a1i 9 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ (((𝜑 ∧ 𝑢 ∈ (1...(⌊‘(𝑀 / 2)))) ∧ 𝑦 ∈ ℕ) → 0 <
2) |
172 | | ltdiv1 8887 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ (((𝑃 − 1) ∈ ℝ ∧
𝑃 ∈ ℝ ∧ (2
∈ ℝ ∧ 0 < 2)) → ((𝑃 − 1) < 𝑃 ↔ ((𝑃 − 1) / 2) < (𝑃 / 2))) |
173 | 169, 146,
170, 171, 172 | syl112anc 1253 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ (((𝜑 ∧ 𝑢 ∈ (1...(⌊‘(𝑀 / 2)))) ∧ 𝑦 ∈ ℕ) → ((𝑃 − 1) < 𝑃 ↔ ((𝑃 − 1) / 2) < (𝑃 / 2))) |
174 | 167, 173 | mpbid 147 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ (((𝜑 ∧ 𝑢 ∈ (1...(⌊‘(𝑀 / 2)))) ∧ 𝑦 ∈ ℕ) → ((𝑃 − 1) / 2) < (𝑃 / 2)) |
175 | 5, 174 | eqbrtrid 4064 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ (((𝜑 ∧ 𝑢 ∈ (1...(⌊‘(𝑀 / 2)))) ∧ 𝑦 ∈ ℕ) → 𝑀 < (𝑃 / 2)) |
176 | 144, 149,
147, 166, 175 | lelttrd 8144 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (((𝜑 ∧ 𝑢 ∈ (1...(⌊‘(𝑀 / 2)))) ∧ 𝑦 ∈ ℕ) → (2
· 𝑢) < (𝑃 / 2)) |
177 | 145 | nnrpd 9760 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ (((𝜑 ∧ 𝑢 ∈ (1...(⌊‘(𝑀 / 2)))) ∧ 𝑦 ∈ ℕ) → 𝑃 ∈
ℝ+) |
178 | | rphalflt 9749 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ (𝑃 ∈ ℝ+
→ (𝑃 / 2) < 𝑃) |
179 | 177, 178 | syl 14 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (((𝜑 ∧ 𝑢 ∈ (1...(⌊‘(𝑀 / 2)))) ∧ 𝑦 ∈ ℕ) → (𝑃 / 2) < 𝑃) |
180 | 144, 147,
146, 176, 179 | lttrd 8145 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (((𝜑 ∧ 𝑢 ∈ (1...(⌊‘(𝑀 / 2)))) ∧ 𝑦 ∈ ℕ) → (2
· 𝑢) < 𝑃) |
181 | 143 | nnzd 9438 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (((𝜑 ∧ 𝑢 ∈ (1...(⌊‘(𝑀 / 2)))) ∧ 𝑦 ∈ ℕ) → (2
· 𝑢) ∈
ℤ) |
182 | 145 | nnzd 9438 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (((𝜑 ∧ 𝑢 ∈ (1...(⌊‘(𝑀 / 2)))) ∧ 𝑦 ∈ ℕ) → 𝑃 ∈
ℤ) |
183 | | zltnle 9363 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (((2
· 𝑢) ∈ ℤ
∧ 𝑃 ∈ ℤ)
→ ((2 · 𝑢) <
𝑃 ↔ ¬ 𝑃 ≤ (2 · 𝑢))) |
184 | 181, 182,
183 | syl2anc 411 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (((𝜑 ∧ 𝑢 ∈ (1...(⌊‘(𝑀 / 2)))) ∧ 𝑦 ∈ ℕ) → ((2
· 𝑢) < 𝑃 ↔ ¬ 𝑃 ≤ (2 · 𝑢))) |
185 | 180, 184 | mpbid 147 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (((𝜑 ∧ 𝑢 ∈ (1...(⌊‘(𝑀 / 2)))) ∧ 𝑦 ∈ ℕ) → ¬
𝑃 ≤ (2 · 𝑢)) |
186 | 1 | eldifad 3164 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ (𝜑 → 𝑃 ∈ ℙ) |
187 | 186 | ad2antrr 488 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (((𝜑 ∧ 𝑢 ∈ (1...(⌊‘(𝑀 / 2)))) ∧ 𝑦 ∈ ℕ) → 𝑃 ∈
ℙ) |
188 | | prmz 12249 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (𝑃 ∈ ℙ → 𝑃 ∈
ℤ) |
189 | 187, 188 | syl 14 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (((𝜑 ∧ 𝑢 ∈ (1...(⌊‘(𝑀 / 2)))) ∧ 𝑦 ∈ ℕ) → 𝑃 ∈
ℤ) |
190 | | dvdsle 11986 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ ((𝑃 ∈ ℤ ∧ (2
· 𝑢) ∈ ℕ)
→ (𝑃 ∥ (2
· 𝑢) → 𝑃 ≤ (2 · 𝑢))) |
191 | 189, 143,
190 | syl2anc 411 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (((𝜑 ∧ 𝑢 ∈ (1...(⌊‘(𝑀 / 2)))) ∧ 𝑦 ∈ ℕ) → (𝑃 ∥ (2 · 𝑢) → 𝑃 ≤ (2 · 𝑢))) |
192 | 185, 191 | mtod 664 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (((𝜑 ∧ 𝑢 ∈ (1...(⌊‘(𝑀 / 2)))) ∧ 𝑦 ∈ ℕ) → ¬
𝑃 ∥ (2 · 𝑢)) |
193 | 2 | eldifad 3164 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ (𝜑 → 𝑄 ∈ ℙ) |
194 | | prmrp 12283 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ ((𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ) → ((𝑃 gcd 𝑄) = 1 ↔ 𝑃 ≠ 𝑄)) |
195 | 186, 193,
194 | syl2anc 411 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (𝜑 → ((𝑃 gcd 𝑄) = 1 ↔ 𝑃 ≠ 𝑄)) |
196 | 3, 195 | mpbird 167 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (𝜑 → (𝑃 gcd 𝑄) = 1) |
197 | 196 | ad2antrr 488 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (((𝜑 ∧ 𝑢 ∈ (1...(⌊‘(𝑀 / 2)))) ∧ 𝑦 ∈ ℕ) → (𝑃 gcd 𝑄) = 1) |
198 | 193 | ad2antrr 488 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (((𝜑 ∧ 𝑢 ∈ (1...(⌊‘(𝑀 / 2)))) ∧ 𝑦 ∈ ℕ) → 𝑄 ∈
ℙ) |
199 | | prmz 12249 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (𝑄 ∈ ℙ → 𝑄 ∈
ℤ) |
200 | 198, 199 | syl 14 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (((𝜑 ∧ 𝑢 ∈ (1...(⌊‘(𝑀 / 2)))) ∧ 𝑦 ∈ ℕ) → 𝑄 ∈
ℤ) |
201 | | coprmdvds 12230 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ ((𝑃 ∈ ℤ ∧ 𝑄 ∈ ℤ ∧ (2
· 𝑢) ∈ ℤ)
→ ((𝑃 ∥ (𝑄 · (2 · 𝑢)) ∧ (𝑃 gcd 𝑄) = 1) → 𝑃 ∥ (2 · 𝑢))) |
202 | 189, 200,
181, 201 | syl3anc 1249 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (((𝜑 ∧ 𝑢 ∈ (1...(⌊‘(𝑀 / 2)))) ∧ 𝑦 ∈ ℕ) → ((𝑃 ∥ (𝑄 · (2 · 𝑢)) ∧ (𝑃 gcd 𝑄) = 1) → 𝑃 ∥ (2 · 𝑢))) |
203 | 197, 202 | mpan2d 428 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (((𝜑 ∧ 𝑢 ∈ (1...(⌊‘(𝑀 / 2)))) ∧ 𝑦 ∈ ℕ) → (𝑃 ∥ (𝑄 · (2 · 𝑢)) → 𝑃 ∥ (2 · 𝑢))) |
204 | 192, 203 | mtod 664 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (((𝜑 ∧ 𝑢 ∈ (1...(⌊‘(𝑀 / 2)))) ∧ 𝑦 ∈ ℕ) → ¬
𝑃 ∥ (𝑄 · (2 · 𝑢))) |
205 | | nnz 9336 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (𝑦 ∈ ℕ → 𝑦 ∈
ℤ) |
206 | 205 | adantl 277 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (((𝜑 ∧ 𝑢 ∈ (1...(⌊‘(𝑀 / 2)))) ∧ 𝑦 ∈ ℕ) → 𝑦 ∈
ℤ) |
207 | | dvdsmul2 11957 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ ((𝑦 ∈ ℤ ∧ 𝑃 ∈ ℤ) → 𝑃 ∥ (𝑦 · 𝑃)) |
208 | 206, 189,
207 | syl2anc 411 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (((𝜑 ∧ 𝑢 ∈ (1...(⌊‘(𝑀 / 2)))) ∧ 𝑦 ∈ ℕ) → 𝑃 ∥ (𝑦 · 𝑃)) |
209 | | breq2 4033 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((𝑄 · (2 · 𝑢)) = (𝑦 · 𝑃) → (𝑃 ∥ (𝑄 · (2 · 𝑢)) ↔ 𝑃 ∥ (𝑦 · 𝑃))) |
210 | 208, 209 | syl5ibrcom 157 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (((𝜑 ∧ 𝑢 ∈ (1...(⌊‘(𝑀 / 2)))) ∧ 𝑦 ∈ ℕ) → ((𝑄 · (2 · 𝑢)) = (𝑦 · 𝑃) → 𝑃 ∥ (𝑄 · (2 · 𝑢)))) |
211 | 210 | necon3bd 2407 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (((𝜑 ∧ 𝑢 ∈ (1...(⌊‘(𝑀 / 2)))) ∧ 𝑦 ∈ ℕ) → (¬
𝑃 ∥ (𝑄 · (2 · 𝑢)) → (𝑄 · (2 · 𝑢)) ≠ (𝑦 · 𝑃))) |
212 | 204, 211 | mpd 13 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (((𝜑 ∧ 𝑢 ∈ (1...(⌊‘(𝑀 / 2)))) ∧ 𝑦 ∈ ℕ) → (𝑄 · (2 · 𝑢)) ≠ (𝑦 · 𝑃)) |
213 | | simpr 110 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (((𝜑 ∧ 𝑢 ∈ (1...(⌊‘(𝑀 / 2)))) ∧ 𝑦 ∈ ℕ) → 𝑦 ∈
ℕ) |
214 | 213, 145 | nnmulcld 9031 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (((𝜑 ∧ 𝑢 ∈ (1...(⌊‘(𝑀 / 2)))) ∧ 𝑦 ∈ ℕ) → (𝑦 · 𝑃) ∈ ℕ) |
215 | 214 | nnzd 9438 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (((𝜑 ∧ 𝑢 ∈ (1...(⌊‘(𝑀 / 2)))) ∧ 𝑦 ∈ ℕ) → (𝑦 · 𝑃) ∈ ℤ) |
216 | 57 | adantr 276 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ ((𝜑 ∧ 𝑢 ∈ (1...(⌊‘(𝑀 / 2)))) → 𝑄 ∈
ℕ) |
217 | 216, 121 | nnmulcld 9031 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((𝜑 ∧ 𝑢 ∈ (1...(⌊‘(𝑀 / 2)))) → (𝑄 · (2 · 𝑢)) ∈
ℕ) |
218 | 217 | adantr 276 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (((𝜑 ∧ 𝑢 ∈ (1...(⌊‘(𝑀 / 2)))) ∧ 𝑦 ∈ ℕ) → (𝑄 · (2 · 𝑢)) ∈
ℕ) |
219 | 218 | nnzd 9438 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (((𝜑 ∧ 𝑢 ∈ (1...(⌊‘(𝑀 / 2)))) ∧ 𝑦 ∈ ℕ) → (𝑄 · (2 · 𝑢)) ∈
ℤ) |
220 | | zltlen 9395 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (((𝑦 · 𝑃) ∈ ℤ ∧ (𝑄 · (2 · 𝑢)) ∈ ℤ) → ((𝑦 · 𝑃) < (𝑄 · (2 · 𝑢)) ↔ ((𝑦 · 𝑃) ≤ (𝑄 · (2 · 𝑢)) ∧ (𝑄 · (2 · 𝑢)) ≠ (𝑦 · 𝑃)))) |
221 | 215, 219,
220 | syl2anc 411 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (((𝜑 ∧ 𝑢 ∈ (1...(⌊‘(𝑀 / 2)))) ∧ 𝑦 ∈ ℕ) → ((𝑦 · 𝑃) < (𝑄 · (2 · 𝑢)) ↔ ((𝑦 · 𝑃) ≤ (𝑄 · (2 · 𝑢)) ∧ (𝑄 · (2 · 𝑢)) ≠ (𝑦 · 𝑃)))) |
222 | 212, 221 | mpbiran2d 442 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (((𝜑 ∧ 𝑢 ∈ (1...(⌊‘(𝑀 / 2)))) ∧ 𝑦 ∈ ℕ) → ((𝑦 · 𝑃) < (𝑄 · (2 · 𝑢)) ↔ (𝑦 · 𝑃) ≤ (𝑄 · (2 · 𝑢)))) |
223 | | nnre 8989 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑦 ∈ ℕ → 𝑦 ∈
ℝ) |
224 | 223 | adantl 277 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (((𝜑 ∧ 𝑢 ∈ (1...(⌊‘(𝑀 / 2)))) ∧ 𝑦 ∈ ℕ) → 𝑦 ∈
ℝ) |
225 | 218 | nnred 8995 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (((𝜑 ∧ 𝑢 ∈ (1...(⌊‘(𝑀 / 2)))) ∧ 𝑦 ∈ ℕ) → (𝑄 · (2 · 𝑢)) ∈
ℝ) |
226 | 145 | nngt0d 9026 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (((𝜑 ∧ 𝑢 ∈ (1...(⌊‘(𝑀 / 2)))) ∧ 𝑦 ∈ ℕ) → 0 <
𝑃) |
227 | | lemuldiv 8900 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝑦 ∈ ℝ ∧ (𝑄 · (2 · 𝑢)) ∈ ℝ ∧ (𝑃 ∈ ℝ ∧ 0 <
𝑃)) → ((𝑦 · 𝑃) ≤ (𝑄 · (2 · 𝑢)) ↔ 𝑦 ≤ ((𝑄 · (2 · 𝑢)) / 𝑃))) |
228 | 224, 225,
146, 226, 227 | syl112anc 1253 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (((𝜑 ∧ 𝑢 ∈ (1...(⌊‘(𝑀 / 2)))) ∧ 𝑦 ∈ ℕ) → ((𝑦 · 𝑃) ≤ (𝑄 · (2 · 𝑢)) ↔ 𝑦 ≤ ((𝑄 · (2 · 𝑢)) / 𝑃))) |
229 | 216 | adantr 276 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (((𝜑 ∧ 𝑢 ∈ (1...(⌊‘(𝑀 / 2)))) ∧ 𝑦 ∈ ℕ) → 𝑄 ∈
ℕ) |
230 | 229 | nncnd 8996 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (((𝜑 ∧ 𝑢 ∈ (1...(⌊‘(𝑀 / 2)))) ∧ 𝑦 ∈ ℕ) → 𝑄 ∈
ℂ) |
231 | 143 | nncnd 8996 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (((𝜑 ∧ 𝑢 ∈ (1...(⌊‘(𝑀 / 2)))) ∧ 𝑦 ∈ ℕ) → (2
· 𝑢) ∈
ℂ) |
232 | 145 | nncnd 8996 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (((𝜑 ∧ 𝑢 ∈ (1...(⌊‘(𝑀 / 2)))) ∧ 𝑦 ∈ ℕ) → 𝑃 ∈
ℂ) |
233 | 146, 226 | gt0ap0d 8648 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (((𝜑 ∧ 𝑢 ∈ (1...(⌊‘(𝑀 / 2)))) ∧ 𝑦 ∈ ℕ) → 𝑃 # 0) |
234 | 230, 231,
232, 233 | div23apd 8847 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (((𝜑 ∧ 𝑢 ∈ (1...(⌊‘(𝑀 / 2)))) ∧ 𝑦 ∈ ℕ) → ((𝑄 · (2 · 𝑢)) / 𝑃) = ((𝑄 / 𝑃) · (2 · 𝑢))) |
235 | 234 | breq2d 4041 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (((𝜑 ∧ 𝑢 ∈ (1...(⌊‘(𝑀 / 2)))) ∧ 𝑦 ∈ ℕ) → (𝑦 ≤ ((𝑄 · (2 · 𝑢)) / 𝑃) ↔ 𝑦 ≤ ((𝑄 / 𝑃) · (2 · 𝑢)))) |
236 | 222, 228,
235 | 3bitrd 214 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝜑 ∧ 𝑢 ∈ (1...(⌊‘(𝑀 / 2)))) ∧ 𝑦 ∈ ℕ) → ((𝑦 · 𝑃) < (𝑄 · (2 · 𝑢)) ↔ 𝑦 ≤ ((𝑄 / 𝑃) · (2 · 𝑢)))) |
237 | 229 | nnred 8995 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ (((𝜑 ∧ 𝑢 ∈ (1...(⌊‘(𝑀 / 2)))) ∧ 𝑦 ∈ ℕ) → 𝑄 ∈
ℝ) |
238 | 229 | nngt0d 9026 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ (((𝜑 ∧ 𝑢 ∈ (1...(⌊‘(𝑀 / 2)))) ∧ 𝑦 ∈ ℕ) → 0 <
𝑄) |
239 | | ltmul2 8875 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ (((2
· 𝑢) ∈ ℝ
∧ (𝑃 / 2) ∈
ℝ ∧ (𝑄 ∈
ℝ ∧ 0 < 𝑄))
→ ((2 · 𝑢) <
(𝑃 / 2) ↔ (𝑄 · (2 · 𝑢)) < (𝑄 · (𝑃 / 2)))) |
240 | 144, 147,
237, 238, 239 | syl112anc 1253 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (((𝜑 ∧ 𝑢 ∈ (1...(⌊‘(𝑀 / 2)))) ∧ 𝑦 ∈ ℕ) → ((2
· 𝑢) < (𝑃 / 2) ↔ (𝑄 · (2 · 𝑢)) < (𝑄 · (𝑃 / 2)))) |
241 | 176, 240 | mpbid 147 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (((𝜑 ∧ 𝑢 ∈ (1...(⌊‘(𝑀 / 2)))) ∧ 𝑦 ∈ ℕ) → (𝑄 · (2 · 𝑢)) < (𝑄 · (𝑃 / 2))) |
242 | | 2cnd 9055 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (((𝜑 ∧ 𝑢 ∈ (1...(⌊‘(𝑀 / 2)))) ∧ 𝑦 ∈ ℕ) → 2 ∈
ℂ) |
243 | 170, 171 | gt0ap0d 8648 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (((𝜑 ∧ 𝑢 ∈ (1...(⌊‘(𝑀 / 2)))) ∧ 𝑦 ∈ ℕ) → 2 #
0) |
244 | | divassap 8709 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ ((𝑄 ∈ ℂ ∧ 𝑃 ∈ ℂ ∧ (2 ∈
ℂ ∧ 2 # 0)) → ((𝑄 · 𝑃) / 2) = (𝑄 · (𝑃 / 2))) |
245 | | div23ap 8710 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ ((𝑄 ∈ ℂ ∧ 𝑃 ∈ ℂ ∧ (2 ∈
ℂ ∧ 2 # 0)) → ((𝑄 · 𝑃) / 2) = ((𝑄 / 2) · 𝑃)) |
246 | 244, 245 | eqtr3d 2228 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ ((𝑄 ∈ ℂ ∧ 𝑃 ∈ ℂ ∧ (2 ∈
ℂ ∧ 2 # 0)) → (𝑄 · (𝑃 / 2)) = ((𝑄 / 2) · 𝑃)) |
247 | 230, 232,
242, 243, 246 | syl112anc 1253 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (((𝜑 ∧ 𝑢 ∈ (1...(⌊‘(𝑀 / 2)))) ∧ 𝑦 ∈ ℕ) → (𝑄 · (𝑃 / 2)) = ((𝑄 / 2) · 𝑃)) |
248 | 241, 247 | breqtrd 4055 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (((𝜑 ∧ 𝑢 ∈ (1...(⌊‘(𝑀 / 2)))) ∧ 𝑦 ∈ ℕ) → (𝑄 · (2 · 𝑢)) < ((𝑄 / 2) · 𝑃)) |
249 | 214 | nnred 8995 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (((𝜑 ∧ 𝑢 ∈ (1...(⌊‘(𝑀 / 2)))) ∧ 𝑦 ∈ ℕ) → (𝑦 · 𝑃) ∈ ℝ) |
250 | 237 | rehalfcld 9229 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (((𝜑 ∧ 𝑢 ∈ (1...(⌊‘(𝑀 / 2)))) ∧ 𝑦 ∈ ℕ) → (𝑄 / 2) ∈
ℝ) |
251 | 250, 146 | remulcld 8050 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (((𝜑 ∧ 𝑢 ∈ (1...(⌊‘(𝑀 / 2)))) ∧ 𝑦 ∈ ℕ) → ((𝑄 / 2) · 𝑃) ∈ ℝ) |
252 | | lttr 8093 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (((𝑦 · 𝑃) ∈ ℝ ∧ (𝑄 · (2 · 𝑢)) ∈ ℝ ∧ ((𝑄 / 2) · 𝑃) ∈ ℝ) → (((𝑦 · 𝑃) < (𝑄 · (2 · 𝑢)) ∧ (𝑄 · (2 · 𝑢)) < ((𝑄 / 2) · 𝑃)) → (𝑦 · 𝑃) < ((𝑄 / 2) · 𝑃))) |
253 | 249, 225,
251, 252 | syl3anc 1249 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (((𝜑 ∧ 𝑢 ∈ (1...(⌊‘(𝑀 / 2)))) ∧ 𝑦 ∈ ℕ) → (((𝑦 · 𝑃) < (𝑄 · (2 · 𝑢)) ∧ (𝑄 · (2 · 𝑢)) < ((𝑄 / 2) · 𝑃)) → (𝑦 · 𝑃) < ((𝑄 / 2) · 𝑃))) |
254 | 248, 253 | mpan2d 428 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (((𝜑 ∧ 𝑢 ∈ (1...(⌊‘(𝑀 / 2)))) ∧ 𝑦 ∈ ℕ) → ((𝑦 · 𝑃) < (𝑄 · (2 · 𝑢)) → (𝑦 · 𝑃) < ((𝑄 / 2) · 𝑃))) |
255 | | ltmul1 8611 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((𝑦 ∈ ℝ ∧ (𝑄 / 2) ∈ ℝ ∧
(𝑃 ∈ ℝ ∧ 0
< 𝑃)) → (𝑦 < (𝑄 / 2) ↔ (𝑦 · 𝑃) < ((𝑄 / 2) · 𝑃))) |
256 | 224, 250,
146, 226, 255 | syl112anc 1253 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (((𝜑 ∧ 𝑢 ∈ (1...(⌊‘(𝑀 / 2)))) ∧ 𝑦 ∈ ℕ) → (𝑦 < (𝑄 / 2) ↔ (𝑦 · 𝑃) < ((𝑄 / 2) · 𝑃))) |
257 | 254, 256 | sylibrd 169 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (((𝜑 ∧ 𝑢 ∈ (1...(⌊‘(𝑀 / 2)))) ∧ 𝑦 ∈ ℕ) → ((𝑦 · 𝑃) < (𝑄 · (2 · 𝑢)) → 𝑦 < (𝑄 / 2))) |
258 | | peano2rem 8286 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ (𝑄 ∈ ℝ → (𝑄 − 1) ∈
ℝ) |
259 | 237, 258 | syl 14 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ (((𝜑 ∧ 𝑢 ∈ (1...(⌊‘(𝑀 / 2)))) ∧ 𝑦 ∈ ℕ) → (𝑄 − 1) ∈
ℝ) |
260 | 259 | recnd 8048 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ (((𝜑 ∧ 𝑢 ∈ (1...(⌊‘(𝑀 / 2)))) ∧ 𝑦 ∈ ℕ) → (𝑄 − 1) ∈
ℂ) |
261 | 230, 260,
242, 243 | divsubdirapd 8849 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (((𝜑 ∧ 𝑢 ∈ (1...(⌊‘(𝑀 / 2)))) ∧ 𝑦 ∈ ℕ) → ((𝑄 − (𝑄 − 1)) / 2) = ((𝑄 / 2) − ((𝑄 − 1) / 2))) |
262 | 101 | oveq2i 5929 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ ((𝑄 / 2) − 𝑁) = ((𝑄 / 2) − ((𝑄 − 1) / 2)) |
263 | 261, 262 | eqtr4di 2244 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (((𝜑 ∧ 𝑢 ∈ (1...(⌊‘(𝑀 / 2)))) ∧ 𝑦 ∈ ℕ) → ((𝑄 − (𝑄 − 1)) / 2) = ((𝑄 / 2) − 𝑁)) |
264 | | ax-1cn 7965 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ 1 ∈
ℂ |
265 | | nncan 8248 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ ((𝑄 ∈ ℂ ∧ 1 ∈
ℂ) → (𝑄 −
(𝑄 − 1)) =
1) |
266 | 230, 264,
265 | sylancl 413 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ (((𝜑 ∧ 𝑢 ∈ (1...(⌊‘(𝑀 / 2)))) ∧ 𝑦 ∈ ℕ) → (𝑄 − (𝑄 − 1)) = 1) |
267 | 266 | oveq1d 5933 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (((𝜑 ∧ 𝑢 ∈ (1...(⌊‘(𝑀 / 2)))) ∧ 𝑦 ∈ ℕ) → ((𝑄 − (𝑄 − 1)) / 2) = (1 /
2)) |
268 | | halflt1 9199 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (1 / 2)
< 1 |
269 | 267, 268 | eqbrtrdi 4068 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (((𝜑 ∧ 𝑢 ∈ (1...(⌊‘(𝑀 / 2)))) ∧ 𝑦 ∈ ℕ) → ((𝑄 − (𝑄 − 1)) / 2) < 1) |
270 | 263, 269 | eqbrtrrd 4053 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (((𝜑 ∧ 𝑢 ∈ (1...(⌊‘(𝑀 / 2)))) ∧ 𝑦 ∈ ℕ) → ((𝑄 / 2) − 𝑁) < 1) |
271 | 2, 101 | gausslemma2dlem0b 15166 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ (𝜑 → 𝑁 ∈ ℕ) |
272 | 271 | ad2antrr 488 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (((𝜑 ∧ 𝑢 ∈ (1...(⌊‘(𝑀 / 2)))) ∧ 𝑦 ∈ ℕ) → 𝑁 ∈
ℕ) |
273 | 272 | nnred 8995 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (((𝜑 ∧ 𝑢 ∈ (1...(⌊‘(𝑀 / 2)))) ∧ 𝑦 ∈ ℕ) → 𝑁 ∈
ℝ) |
274 | | 1red 8034 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (((𝜑 ∧ 𝑢 ∈ (1...(⌊‘(𝑀 / 2)))) ∧ 𝑦 ∈ ℕ) → 1 ∈
ℝ) |
275 | 250, 273,
274 | ltsubadd2d 8562 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (((𝜑 ∧ 𝑢 ∈ (1...(⌊‘(𝑀 / 2)))) ∧ 𝑦 ∈ ℕ) → (((𝑄 / 2) − 𝑁) < 1 ↔ (𝑄 / 2) < (𝑁 + 1))) |
276 | 270, 275 | mpbid 147 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (((𝜑 ∧ 𝑢 ∈ (1...(⌊‘(𝑀 / 2)))) ∧ 𝑦 ∈ ℕ) → (𝑄 / 2) < (𝑁 + 1)) |
277 | | peano2re 8155 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (𝑁 ∈ ℝ → (𝑁 + 1) ∈
ℝ) |
278 | 273, 277 | syl 14 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (((𝜑 ∧ 𝑢 ∈ (1...(⌊‘(𝑀 / 2)))) ∧ 𝑦 ∈ ℕ) → (𝑁 + 1) ∈
ℝ) |
279 | | lttr 8093 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((𝑦 ∈ ℝ ∧ (𝑄 / 2) ∈ ℝ ∧
(𝑁 + 1) ∈ ℝ)
→ ((𝑦 < (𝑄 / 2) ∧ (𝑄 / 2) < (𝑁 + 1)) → 𝑦 < (𝑁 + 1))) |
280 | 224, 250,
278, 279 | syl3anc 1249 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (((𝜑 ∧ 𝑢 ∈ (1...(⌊‘(𝑀 / 2)))) ∧ 𝑦 ∈ ℕ) → ((𝑦 < (𝑄 / 2) ∧ (𝑄 / 2) < (𝑁 + 1)) → 𝑦 < (𝑁 + 1))) |
281 | 276, 280 | mpan2d 428 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (((𝜑 ∧ 𝑢 ∈ (1...(⌊‘(𝑀 / 2)))) ∧ 𝑦 ∈ ℕ) → (𝑦 < (𝑄 / 2) → 𝑦 < (𝑁 + 1))) |
282 | 257, 281 | syld 45 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (((𝜑 ∧ 𝑢 ∈ (1...(⌊‘(𝑀 / 2)))) ∧ 𝑦 ∈ ℕ) → ((𝑦 · 𝑃) < (𝑄 · (2 · 𝑢)) → 𝑦 < (𝑁 + 1))) |
283 | | nnleltp1 9376 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝑦 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (𝑦 ≤ 𝑁 ↔ 𝑦 < (𝑁 + 1))) |
284 | 213, 272,
283 | syl2anc 411 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (((𝜑 ∧ 𝑢 ∈ (1...(⌊‘(𝑀 / 2)))) ∧ 𝑦 ∈ ℕ) → (𝑦 ≤ 𝑁 ↔ 𝑦 < (𝑁 + 1))) |
285 | 282, 284 | sylibrd 169 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (((𝜑 ∧ 𝑢 ∈ (1...(⌊‘(𝑀 / 2)))) ∧ 𝑦 ∈ ℕ) → ((𝑦 · 𝑃) < (𝑄 · (2 · 𝑢)) → 𝑦 ≤ 𝑁)) |
286 | 285 | pm4.71rd 394 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝜑 ∧ 𝑢 ∈ (1...(⌊‘(𝑀 / 2)))) ∧ 𝑦 ∈ ℕ) → ((𝑦 · 𝑃) < (𝑄 · (2 · 𝑢)) ↔ (𝑦 ≤ 𝑁 ∧ (𝑦 · 𝑃) < (𝑄 · (2 · 𝑢))))) |
287 | 97, 71 | syldan 282 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝜑 ∧ 𝑢 ∈ (1...(⌊‘(𝑀 / 2)))) → ((𝑄 / 𝑃) · (2 · 𝑢)) ∈ ℚ) |
288 | | flqge 10351 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((((𝑄 / 𝑃) · (2 · 𝑢)) ∈ ℚ ∧ 𝑦 ∈ ℤ) → (𝑦 ≤ ((𝑄 / 𝑃) · (2 · 𝑢)) ↔ 𝑦 ≤ (⌊‘((𝑄 / 𝑃) · (2 · 𝑢))))) |
289 | 287, 205,
288 | syl2an 289 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝜑 ∧ 𝑢 ∈ (1...(⌊‘(𝑀 / 2)))) ∧ 𝑦 ∈ ℕ) → (𝑦 ≤ ((𝑄 / 𝑃) · (2 · 𝑢)) ↔ 𝑦 ≤ (⌊‘((𝑄 / 𝑃) · (2 · 𝑢))))) |
290 | 236, 286,
289 | 3bitr3d 218 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝜑 ∧ 𝑢 ∈ (1...(⌊‘(𝑀 / 2)))) ∧ 𝑦 ∈ ℕ) → ((𝑦 ≤ 𝑁 ∧ (𝑦 · 𝑃) < (𝑄 · (2 · 𝑢))) ↔ 𝑦 ≤ (⌊‘((𝑄 / 𝑃) · (2 · 𝑢))))) |
291 | 290 | pm5.32da 452 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑢 ∈ (1...(⌊‘(𝑀 / 2)))) → ((𝑦 ∈ ℕ ∧ (𝑦 ≤ 𝑁 ∧ (𝑦 · 𝑃) < (𝑄 · (2 · 𝑢)))) ↔ (𝑦 ∈ ℕ ∧ 𝑦 ≤ (⌊‘((𝑄 / 𝑃) · (2 · 𝑢)))))) |
292 | 142, 291 | bitrid 192 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑢 ∈ (1...(⌊‘(𝑀 / 2)))) → (((𝑦 ∈ ℕ ∧ 𝑦 ≤ 𝑁) ∧ (𝑦 · 𝑃) < (𝑄 · (2 · 𝑢))) ↔ (𝑦 ∈ ℕ ∧ 𝑦 ≤ (⌊‘((𝑄 / 𝑃) · (2 · 𝑢)))))) |
293 | 292 | adantr 276 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑢 ∈ (1...(⌊‘(𝑀 / 2)))) ∧ 𝑥 = (2 · 𝑢)) → (((𝑦 ∈ ℕ ∧ 𝑦 ≤ 𝑁) ∧ (𝑦 · 𝑃) < (𝑄 · (2 · 𝑢))) ↔ (𝑦 ∈ ℕ ∧ 𝑦 ≤ (⌊‘((𝑄 / 𝑃) · (2 · 𝑢)))))) |
294 | | simpr 110 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝜑 ∧ 𝑢 ∈ (1...(⌊‘(𝑀 / 2)))) ∧ 𝑥 = (2 · 𝑢)) → 𝑥 = (2 · 𝑢)) |
295 | | nnuz 9628 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ℕ =
(ℤ≥‘1) |
296 | 121, 295 | eleqtrdi 2286 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝜑 ∧ 𝑢 ∈ (1...(⌊‘(𝑀 / 2)))) → (2 ·
𝑢) ∈
(ℤ≥‘1)) |
297 | 9 | adantr 276 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝜑 ∧ 𝑢 ∈ (1...(⌊‘(𝑀 / 2)))) → 𝑀 ∈
ℤ) |
298 | | elfz5 10083 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (((2
· 𝑢) ∈
(ℤ≥‘1) ∧ 𝑀 ∈ ℤ) → ((2 · 𝑢) ∈ (1...𝑀) ↔ (2 · 𝑢) ≤ 𝑀)) |
299 | 296, 297,
298 | syl2anc 411 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝜑 ∧ 𝑢 ∈ (1...(⌊‘(𝑀 / 2)))) → ((2 ·
𝑢) ∈ (1...𝑀) ↔ (2 · 𝑢) ≤ 𝑀)) |
300 | 165, 299 | mpbird 167 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝜑 ∧ 𝑢 ∈ (1...(⌊‘(𝑀 / 2)))) → (2 ·
𝑢) ∈ (1...𝑀)) |
301 | 300 | adantr 276 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝜑 ∧ 𝑢 ∈ (1...(⌊‘(𝑀 / 2)))) ∧ 𝑥 = (2 · 𝑢)) → (2 · 𝑢) ∈ (1...𝑀)) |
302 | 294, 301 | eqeltrd 2270 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝜑 ∧ 𝑢 ∈ (1...(⌊‘(𝑀 / 2)))) ∧ 𝑥 = (2 · 𝑢)) → 𝑥 ∈ (1...𝑀)) |
303 | 302 | biantrurd 305 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ 𝑢 ∈ (1...(⌊‘(𝑀 / 2)))) ∧ 𝑥 = (2 · 𝑢)) → (𝑦 ∈ (1...𝑁) ↔ (𝑥 ∈ (1...𝑀) ∧ 𝑦 ∈ (1...𝑁)))) |
304 | 271 | nnzd 9438 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝜑 → 𝑁 ∈ ℤ) |
305 | 304 | ad2antrr 488 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝜑 ∧ 𝑢 ∈ (1...(⌊‘(𝑀 / 2)))) ∧ 𝑥 = (2 · 𝑢)) → 𝑁 ∈ ℤ) |
306 | | fznn 10155 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑁 ∈ ℤ → (𝑦 ∈ (1...𝑁) ↔ (𝑦 ∈ ℕ ∧ 𝑦 ≤ 𝑁))) |
307 | 305, 306 | syl 14 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ 𝑢 ∈ (1...(⌊‘(𝑀 / 2)))) ∧ 𝑥 = (2 · 𝑢)) → (𝑦 ∈ (1...𝑁) ↔ (𝑦 ∈ ℕ ∧ 𝑦 ≤ 𝑁))) |
308 | 303, 307 | bitr3d 190 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑢 ∈ (1...(⌊‘(𝑀 / 2)))) ∧ 𝑥 = (2 · 𝑢)) → ((𝑥 ∈ (1...𝑀) ∧ 𝑦 ∈ (1...𝑁)) ↔ (𝑦 ∈ ℕ ∧ 𝑦 ≤ 𝑁))) |
309 | | oveq1 5925 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑥 = (2 · 𝑢) → (𝑥 · 𝑄) = ((2 · 𝑢) · 𝑄)) |
310 | 121 | nncnd 8996 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝜑 ∧ 𝑢 ∈ (1...(⌊‘(𝑀 / 2)))) → (2 ·
𝑢) ∈
ℂ) |
311 | 216 | nncnd 8996 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝜑 ∧ 𝑢 ∈ (1...(⌊‘(𝑀 / 2)))) → 𝑄 ∈
ℂ) |
312 | 310, 311 | mulcomd 8041 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ 𝑢 ∈ (1...(⌊‘(𝑀 / 2)))) → ((2 ·
𝑢) · 𝑄) = (𝑄 · (2 · 𝑢))) |
313 | 309, 312 | sylan9eqr 2248 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ 𝑢 ∈ (1...(⌊‘(𝑀 / 2)))) ∧ 𝑥 = (2 · 𝑢)) → (𝑥 · 𝑄) = (𝑄 · (2 · 𝑢))) |
314 | 313 | breq2d 4041 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑢 ∈ (1...(⌊‘(𝑀 / 2)))) ∧ 𝑥 = (2 · 𝑢)) → ((𝑦 · 𝑃) < (𝑥 · 𝑄) ↔ (𝑦 · 𝑃) < (𝑄 · (2 · 𝑢)))) |
315 | 308, 314 | anbi12d 473 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑢 ∈ (1...(⌊‘(𝑀 / 2)))) ∧ 𝑥 = (2 · 𝑢)) → (((𝑥 ∈ (1...𝑀) ∧ 𝑦 ∈ (1...𝑁)) ∧ (𝑦 · 𝑃) < (𝑥 · 𝑄)) ↔ ((𝑦 ∈ ℕ ∧ 𝑦 ≤ 𝑁) ∧ (𝑦 · 𝑃) < (𝑄 · (2 · 𝑢))))) |
316 | 287 | flqcld 10346 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑢 ∈ (1...(⌊‘(𝑀 / 2)))) →
(⌊‘((𝑄 / 𝑃) · (2 · 𝑢))) ∈
ℤ) |
317 | | fznn 10155 |
. . . . . . . . . . . . . . . . . 18
⊢
((⌊‘((𝑄
/ 𝑃) · (2 ·
𝑢))) ∈ ℤ →
(𝑦 ∈
(1...(⌊‘((𝑄 /
𝑃) · (2 ·
𝑢)))) ↔ (𝑦 ∈ ℕ ∧ 𝑦 ≤ (⌊‘((𝑄 / 𝑃) · (2 · 𝑢)))))) |
318 | 316, 317 | syl 14 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑢 ∈ (1...(⌊‘(𝑀 / 2)))) → (𝑦 ∈
(1...(⌊‘((𝑄 /
𝑃) · (2 ·
𝑢)))) ↔ (𝑦 ∈ ℕ ∧ 𝑦 ≤ (⌊‘((𝑄 / 𝑃) · (2 · 𝑢)))))) |
319 | 318 | adantr 276 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑢 ∈ (1...(⌊‘(𝑀 / 2)))) ∧ 𝑥 = (2 · 𝑢)) → (𝑦 ∈ (1...(⌊‘((𝑄 / 𝑃) · (2 · 𝑢)))) ↔ (𝑦 ∈ ℕ ∧ 𝑦 ≤ (⌊‘((𝑄 / 𝑃) · (2 · 𝑢)))))) |
320 | 293, 315,
319 | 3bitr4d 220 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑢 ∈ (1...(⌊‘(𝑀 / 2)))) ∧ 𝑥 = (2 · 𝑢)) → (((𝑥 ∈ (1...𝑀) ∧ 𝑦 ∈ (1...𝑁)) ∧ (𝑦 · 𝑃) < (𝑥 · 𝑄)) ↔ 𝑦 ∈ (1...(⌊‘((𝑄 / 𝑃) · (2 · 𝑢)))))) |
321 | 141, 320 | bitrid 192 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑢 ∈ (1...(⌊‘(𝑀 / 2)))) ∧ 𝑥 = (2 · 𝑢)) → (〈𝑥, 𝑦〉 ∈ 𝑆 ↔ 𝑦 ∈ (1...(⌊‘((𝑄 / 𝑃) · (2 · 𝑢)))))) |
322 | 321 | pm5.32da 452 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑢 ∈ (1...(⌊‘(𝑀 / 2)))) → ((𝑥 = (2 · 𝑢) ∧ 〈𝑥, 𝑦〉 ∈ 𝑆) ↔ (𝑥 = (2 · 𝑢) ∧ 𝑦 ∈ (1...(⌊‘((𝑄 / 𝑃) · (2 · 𝑢))))))) |
323 | | vex 2763 |
. . . . . . . . . . . . . . . . . 18
⊢ 𝑥 ∈ V |
324 | | vex 2763 |
. . . . . . . . . . . . . . . . . 18
⊢ 𝑦 ∈ V |
325 | 323, 324 | op1std 6201 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑧 = 〈𝑥, 𝑦〉 → (1st ‘𝑧) = 𝑥) |
326 | 325 | eqeq2d 2205 |
. . . . . . . . . . . . . . . 16
⊢ (𝑧 = 〈𝑥, 𝑦〉 → ((2 · 𝑢) = (1st ‘𝑧) ↔ (2 · 𝑢) = 𝑥)) |
327 | | eqcom 2195 |
. . . . . . . . . . . . . . . 16
⊢ ((2
· 𝑢) = 𝑥 ↔ 𝑥 = (2 · 𝑢)) |
328 | 326, 327 | bitrdi 196 |
. . . . . . . . . . . . . . 15
⊢ (𝑧 = 〈𝑥, 𝑦〉 → ((2 · 𝑢) = (1st ‘𝑧) ↔ 𝑥 = (2 · 𝑢))) |
329 | 328 | elrab 2916 |
. . . . . . . . . . . . . 14
⊢
(〈𝑥, 𝑦〉 ∈ {𝑧 ∈ 𝑆 ∣ (2 · 𝑢) = (1st ‘𝑧)} ↔ (〈𝑥, 𝑦〉 ∈ 𝑆 ∧ 𝑥 = (2 · 𝑢))) |
330 | 329 | biancomi 270 |
. . . . . . . . . . . . 13
⊢
(〈𝑥, 𝑦〉 ∈ {𝑧 ∈ 𝑆 ∣ (2 · 𝑢) = (1st ‘𝑧)} ↔ (𝑥 = (2 · 𝑢) ∧ 〈𝑥, 𝑦〉 ∈ 𝑆)) |
331 | | opelxp 4689 |
. . . . . . . . . . . . . 14
⊢
(〈𝑥, 𝑦〉 ∈ ({(2 ·
𝑢)} ×
(1...(⌊‘((𝑄 /
𝑃) · (2 ·
𝑢))))) ↔ (𝑥 ∈ {(2 · 𝑢)} ∧ 𝑦 ∈ (1...(⌊‘((𝑄 / 𝑃) · (2 · 𝑢)))))) |
332 | | velsn 3635 |
. . . . . . . . . . . . . . 15
⊢ (𝑥 ∈ {(2 · 𝑢)} ↔ 𝑥 = (2 · 𝑢)) |
333 | 332 | anbi1i 458 |
. . . . . . . . . . . . . 14
⊢ ((𝑥 ∈ {(2 · 𝑢)} ∧ 𝑦 ∈ (1...(⌊‘((𝑄 / 𝑃) · (2 · 𝑢))))) ↔ (𝑥 = (2 · 𝑢) ∧ 𝑦 ∈ (1...(⌊‘((𝑄 / 𝑃) · (2 · 𝑢)))))) |
334 | 331, 333 | bitri 184 |
. . . . . . . . . . . . 13
⊢
(〈𝑥, 𝑦〉 ∈ ({(2 ·
𝑢)} ×
(1...(⌊‘((𝑄 /
𝑃) · (2 ·
𝑢))))) ↔ (𝑥 = (2 · 𝑢) ∧ 𝑦 ∈ (1...(⌊‘((𝑄 / 𝑃) · (2 · 𝑢)))))) |
335 | 322, 330,
334 | 3bitr4g 223 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑢 ∈ (1...(⌊‘(𝑀 / 2)))) → (〈𝑥, 𝑦〉 ∈ {𝑧 ∈ 𝑆 ∣ (2 · 𝑢) = (1st ‘𝑧)} ↔ 〈𝑥, 𝑦〉 ∈ ({(2 · 𝑢)} ×
(1...(⌊‘((𝑄 /
𝑃) · (2 ·
𝑢))))))) |
336 | 137, 138,
335 | eqrelrdv 4755 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑢 ∈ (1...(⌊‘(𝑀 / 2)))) → {𝑧 ∈ 𝑆 ∣ (2 · 𝑢) = (1st ‘𝑧)} = ({(2 · 𝑢)} × (1...(⌊‘((𝑄 / 𝑃) · (2 · 𝑢)))))) |
337 | 336 | eqcomd 2199 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑢 ∈ (1...(⌊‘(𝑀 / 2)))) → ({(2 ·
𝑢)} ×
(1...(⌊‘((𝑄 /
𝑃) · (2 ·
𝑢))))) = {𝑧 ∈ 𝑆 ∣ (2 · 𝑢) = (1st ‘𝑧)}) |
338 | 337 | fveq2d 5558 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑢 ∈ (1...(⌊‘(𝑀 / 2)))) →
(♯‘({(2 · 𝑢)} × (1...(⌊‘((𝑄 / 𝑃) · (2 · 𝑢)))))) = (♯‘{𝑧 ∈ 𝑆 ∣ (2 · 𝑢) = (1st ‘𝑧)})) |
339 | | hashfz1 10854 |
. . . . . . . . . 10
⊢
((⌊‘((𝑄
/ 𝑃) · (2 ·
𝑢))) ∈
ℕ0 → (♯‘(1...(⌊‘((𝑄 / 𝑃) · (2 · 𝑢))))) = (⌊‘((𝑄 / 𝑃) · (2 · 𝑢)))) |
340 | 98, 339 | syl 14 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑢 ∈ (1...(⌊‘(𝑀 / 2)))) →
(♯‘(1...(⌊‘((𝑄 / 𝑃) · (2 · 𝑢))))) = (⌊‘((𝑄 / 𝑃) · (2 · 𝑢)))) |
341 | 133, 338,
340 | 3eqtr3rd 2235 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑢 ∈ (1...(⌊‘(𝑀 / 2)))) →
(⌊‘((𝑄 / 𝑃) · (2 · 𝑢))) = (♯‘{𝑧 ∈ 𝑆 ∣ (2 · 𝑢) = (1st ‘𝑧)})) |
342 | 341 | sumeq2dv 11511 |
. . . . . . 7
⊢ (𝜑 → Σ𝑢 ∈ (1...(⌊‘(𝑀 / 2)))(⌊‘((𝑄 / 𝑃) · (2 · 𝑢))) = Σ𝑢 ∈ (1...(⌊‘(𝑀 / 2)))(♯‘{𝑧 ∈ 𝑆 ∣ (2 · 𝑢) = (1st ‘𝑧)})) |
343 | 106 | adantr 276 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑢 ∈ (1...(⌊‘(𝑀 / 2)))) → 𝑆 ∈ Fin) |
344 | 97, 67 | syldan 282 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑢 ∈ (1...(⌊‘(𝑀 / 2)))) → (2 ·
𝑢) ∈
ℤ) |
345 | | zdceq 9392 |
. . . . . . . . . . 11
⊢ (((2
· 𝑢) ∈ ℤ
∧ (1st ‘𝑧) ∈ ℤ) → DECID
(2 · 𝑢) =
(1st ‘𝑧)) |
346 | 344, 112,
345 | syl2an 289 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑢 ∈ (1...(⌊‘(𝑀 / 2)))) ∧ 𝑧 ∈ 𝑆) → DECID (2 ·
𝑢) = (1st
‘𝑧)) |
347 | 346 | ralrimiva 2567 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑢 ∈ (1...(⌊‘(𝑀 / 2)))) → ∀𝑧 ∈ 𝑆 DECID (2 · 𝑢) = (1st ‘𝑧)) |
348 | 343, 347 | ssfirab 6990 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑢 ∈ (1...(⌊‘(𝑀 / 2)))) → {𝑧 ∈ 𝑆 ∣ (2 · 𝑢) = (1st ‘𝑧)} ∈ Fin) |
349 | | fveq2 5554 |
. . . . . . . . . . . . . . . 16
⊢ (𝑧 = 𝑣 → (1st ‘𝑧) = (1st ‘𝑣)) |
350 | 349 | eqeq2d 2205 |
. . . . . . . . . . . . . . 15
⊢ (𝑧 = 𝑣 → ((2 · 𝑢) = (1st ‘𝑧) ↔ (2 · 𝑢) = (1st ‘𝑣))) |
351 | 350 | elrab 2916 |
. . . . . . . . . . . . . 14
⊢ (𝑣 ∈ {𝑧 ∈ 𝑆 ∣ (2 · 𝑢) = (1st ‘𝑧)} ↔ (𝑣 ∈ 𝑆 ∧ (2 · 𝑢) = (1st ‘𝑣))) |
352 | 351 | simprbi 275 |
. . . . . . . . . . . . 13
⊢ (𝑣 ∈ {𝑧 ∈ 𝑆 ∣ (2 · 𝑢) = (1st ‘𝑧)} → (2 · 𝑢) = (1st ‘𝑣)) |
353 | 352 | ad2antll 491 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ (𝑢 ∈ (1...(⌊‘(𝑀 / 2))) ∧ 𝑣 ∈ {𝑧 ∈ 𝑆 ∣ (2 · 𝑢) = (1st ‘𝑧)})) → (2 · 𝑢) = (1st ‘𝑣)) |
354 | 353 | oveq1d 5933 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑢 ∈ (1...(⌊‘(𝑀 / 2))) ∧ 𝑣 ∈ {𝑧 ∈ 𝑆 ∣ (2 · 𝑢) = (1st ‘𝑧)})) → ((2 · 𝑢) / 2) = ((1st ‘𝑣) / 2)) |
355 | 157 | nncnd 8996 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑢 ∈ (1...(⌊‘(𝑀 / 2)))) → 𝑢 ∈
ℂ) |
356 | 355 | adantrr 479 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ (𝑢 ∈ (1...(⌊‘(𝑀 / 2))) ∧ 𝑣 ∈ {𝑧 ∈ 𝑆 ∣ (2 · 𝑢) = (1st ‘𝑧)})) → 𝑢 ∈ ℂ) |
357 | | 2cnd 9055 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ (𝑢 ∈ (1...(⌊‘(𝑀 / 2))) ∧ 𝑣 ∈ {𝑧 ∈ 𝑆 ∣ (2 · 𝑢) = (1st ‘𝑧)})) → 2 ∈
ℂ) |
358 | | 2ap0 9075 |
. . . . . . . . . . . . 13
⊢ 2 #
0 |
359 | 358 | a1i 9 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ (𝑢 ∈ (1...(⌊‘(𝑀 / 2))) ∧ 𝑣 ∈ {𝑧 ∈ 𝑆 ∣ (2 · 𝑢) = (1st ‘𝑧)})) → 2 # 0) |
360 | 356, 357,
359 | divcanap3d 8814 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑢 ∈ (1...(⌊‘(𝑀 / 2))) ∧ 𝑣 ∈ {𝑧 ∈ 𝑆 ∣ (2 · 𝑢) = (1st ‘𝑧)})) → ((2 · 𝑢) / 2) = 𝑢) |
361 | 354, 360 | eqtr3d 2228 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑢 ∈ (1...(⌊‘(𝑀 / 2))) ∧ 𝑣 ∈ {𝑧 ∈ 𝑆 ∣ (2 · 𝑢) = (1st ‘𝑧)})) → ((1st ‘𝑣) / 2) = 𝑢) |
362 | 361 | ralrimivva 2576 |
. . . . . . . . 9
⊢ (𝜑 → ∀𝑢 ∈ (1...(⌊‘(𝑀 / 2)))∀𝑣 ∈ {𝑧 ∈ 𝑆 ∣ (2 · 𝑢) = (1st ‘𝑧)} ((1st ‘𝑣) / 2) = 𝑢) |
363 | | invdisj 4023 |
. . . . . . . . 9
⊢
(∀𝑢 ∈
(1...(⌊‘(𝑀 /
2)))∀𝑣 ∈ {𝑧 ∈ 𝑆 ∣ (2 · 𝑢) = (1st ‘𝑧)} ((1st ‘𝑣) / 2) = 𝑢 → Disj 𝑢 ∈ (1...(⌊‘(𝑀 / 2))){𝑧 ∈ 𝑆 ∣ (2 · 𝑢) = (1st ‘𝑧)}) |
364 | 362, 363 | syl 14 |
. . . . . . . 8
⊢ (𝜑 → Disj 𝑢 ∈
(1...(⌊‘(𝑀 /
2))){𝑧 ∈ 𝑆 ∣ (2 · 𝑢) = (1st ‘𝑧)}) |
365 | 94, 348, 364 | hashiun 11621 |
. . . . . . 7
⊢ (𝜑 → (♯‘∪ 𝑢 ∈ (1...(⌊‘(𝑀 / 2))){𝑧 ∈ 𝑆 ∣ (2 · 𝑢) = (1st ‘𝑧)}) = Σ𝑢 ∈ (1...(⌊‘(𝑀 / 2)))(♯‘{𝑧 ∈ 𝑆 ∣ (2 · 𝑢) = (1st ‘𝑧)})) |
366 | | iunrab 3960 |
. . . . . . . . 9
⊢ ∪ 𝑢 ∈ (1...(⌊‘(𝑀 / 2))){𝑧 ∈ 𝑆 ∣ (2 · 𝑢) = (1st ‘𝑧)} = {𝑧 ∈ 𝑆 ∣ ∃𝑢 ∈ (1...(⌊‘(𝑀 / 2)))(2 · 𝑢) = (1st ‘𝑧)} |
367 | | 2cn 9053 |
. . . . . . . . . . . . . 14
⊢ 2 ∈
ℂ |
368 | | zcn 9322 |
. . . . . . . . . . . . . . 15
⊢ (𝑢 ∈ ℤ → 𝑢 ∈
ℂ) |
369 | 368 | adantl 277 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑧 ∈ 𝑆) ∧ 𝑢 ∈ ℤ) → 𝑢 ∈ ℂ) |
370 | | mulcom 8001 |
. . . . . . . . . . . . . 14
⊢ ((2
∈ ℂ ∧ 𝑢
∈ ℂ) → (2 · 𝑢) = (𝑢 · 2)) |
371 | 367, 369,
370 | sylancr 414 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑧 ∈ 𝑆) ∧ 𝑢 ∈ ℤ) → (2 · 𝑢) = (𝑢 · 2)) |
372 | 371 | eqeq1d 2202 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑧 ∈ 𝑆) ∧ 𝑢 ∈ ℤ) → ((2 · 𝑢) = (1st ‘𝑧) ↔ (𝑢 · 2) = (1st ‘𝑧))) |
373 | 372 | rexbidva 2491 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑧 ∈ 𝑆) → (∃𝑢 ∈ ℤ (2 · 𝑢) = (1st ‘𝑧) ↔ ∃𝑢 ∈ ℤ (𝑢 · 2) = (1st
‘𝑧))) |
374 | 152 | anim1i 340 |
. . . . . . . . . . . . 13
⊢ ((𝑢 ∈
(1...(⌊‘(𝑀 /
2))) ∧ (2 · 𝑢) =
(1st ‘𝑧))
→ (𝑢 ∈ ℤ
∧ (2 · 𝑢) =
(1st ‘𝑧))) |
375 | 374 | reximi2 2590 |
. . . . . . . . . . . 12
⊢
(∃𝑢 ∈
(1...(⌊‘(𝑀 /
2)))(2 · 𝑢) =
(1st ‘𝑧)
→ ∃𝑢 ∈
ℤ (2 · 𝑢) =
(1st ‘𝑧)) |
376 | | simprr 531 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝜑 ∧ 𝑧 ∈ 𝑆) ∧ (𝑢 ∈ ℤ ∧ (2 · 𝑢) = (1st ‘𝑧))) → (2 · 𝑢) = (1st ‘𝑧)) |
377 | | simpr 110 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝜑 ∧ 𝑧 ∈ 𝑆) → 𝑧 ∈ 𝑆) |
378 | 108, 377 | sselid 3177 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝜑 ∧ 𝑧 ∈ 𝑆) → 𝑧 ∈ ((1...𝑀) × (1...𝑁))) |
379 | 378, 110 | syl 14 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝜑 ∧ 𝑧 ∈ 𝑆) → (1st ‘𝑧) ∈ (1...𝑀)) |
380 | 379 | adantr 276 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝜑 ∧ 𝑧 ∈ 𝑆) ∧ (𝑢 ∈ ℤ ∧ (2 · 𝑢) = (1st ‘𝑧))) → (1st
‘𝑧) ∈ (1...𝑀)) |
381 | | elfzle2 10094 |
. . . . . . . . . . . . . . . . . . . 20
⊢
((1st ‘𝑧) ∈ (1...𝑀) → (1st ‘𝑧) ≤ 𝑀) |
382 | 380, 381 | syl 14 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝜑 ∧ 𝑧 ∈ 𝑆) ∧ (𝑢 ∈ ℤ ∧ (2 · 𝑢) = (1st ‘𝑧))) → (1st
‘𝑧) ≤ 𝑀) |
383 | 376, 382 | eqbrtrd 4051 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ 𝑧 ∈ 𝑆) ∧ (𝑢 ∈ ℤ ∧ (2 · 𝑢) = (1st ‘𝑧))) → (2 · 𝑢) ≤ 𝑀) |
384 | | zre 9321 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑢 ∈ ℤ → 𝑢 ∈
ℝ) |
385 | 384 | ad2antrl 490 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝜑 ∧ 𝑧 ∈ 𝑆) ∧ (𝑢 ∈ ℤ ∧ (2 · 𝑢) = (1st ‘𝑧))) → 𝑢 ∈ ℝ) |
386 | 24 | ad2antrr 488 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝜑 ∧ 𝑧 ∈ 𝑆) ∧ (𝑢 ∈ ℤ ∧ (2 · 𝑢) = (1st ‘𝑧))) → 𝑀 ∈ ℝ) |
387 | 159 | a1i 9 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝜑 ∧ 𝑧 ∈ 𝑆) ∧ (𝑢 ∈ ℤ ∧ (2 · 𝑢) = (1st ‘𝑧))) → 2 ∈
ℝ) |
388 | 161 | a1i 9 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝜑 ∧ 𝑧 ∈ 𝑆) ∧ (𝑢 ∈ ℤ ∧ (2 · 𝑢) = (1st ‘𝑧))) → 0 <
2) |
389 | 385, 386,
387, 388, 163 | syl112anc 1253 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ 𝑧 ∈ 𝑆) ∧ (𝑢 ∈ ℤ ∧ (2 · 𝑢) = (1st ‘𝑧))) → ((2 · 𝑢) ≤ 𝑀 ↔ 𝑢 ≤ (𝑀 / 2))) |
390 | 383, 389 | mpbid 147 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑧 ∈ 𝑆) ∧ (𝑢 ∈ ℤ ∧ (2 · 𝑢) = (1st ‘𝑧))) → 𝑢 ≤ (𝑀 / 2)) |
391 | 12 | ad2antrr 488 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ 𝑧 ∈ 𝑆) ∧ (𝑢 ∈ ℤ ∧ (2 · 𝑢) = (1st ‘𝑧))) → (𝑀 / 2) ∈ ℚ) |
392 | | simprl 529 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ 𝑧 ∈ 𝑆) ∧ (𝑢 ∈ ℤ ∧ (2 · 𝑢) = (1st ‘𝑧))) → 𝑢 ∈ ℤ) |
393 | 391, 392,
153 | syl2anc 411 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑧 ∈ 𝑆) ∧ (𝑢 ∈ ℤ ∧ (2 · 𝑢) = (1st ‘𝑧))) → (𝑢 ≤ (𝑀 / 2) ↔ 𝑢 ≤ (⌊‘(𝑀 / 2)))) |
394 | 390, 393 | mpbid 147 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑧 ∈ 𝑆) ∧ (𝑢 ∈ ℤ ∧ (2 · 𝑢) = (1st ‘𝑧))) → 𝑢 ≤ (⌊‘(𝑀 / 2))) |
395 | | 2t0e0 9141 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (2
· 0) = 0 |
396 | | elfznn 10120 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢
((1st ‘𝑧) ∈ (1...𝑀) → (1st ‘𝑧) ∈
ℕ) |
397 | 380, 396 | syl 14 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (((𝜑 ∧ 𝑧 ∈ 𝑆) ∧ (𝑢 ∈ ℤ ∧ (2 · 𝑢) = (1st ‘𝑧))) → (1st
‘𝑧) ∈
ℕ) |
398 | 376, 397 | eqeltrd 2270 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (((𝜑 ∧ 𝑧 ∈ 𝑆) ∧ (𝑢 ∈ ℤ ∧ (2 · 𝑢) = (1st ‘𝑧))) → (2 · 𝑢) ∈
ℕ) |
399 | 398 | nngt0d 9026 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (((𝜑 ∧ 𝑧 ∈ 𝑆) ∧ (𝑢 ∈ ℤ ∧ (2 · 𝑢) = (1st ‘𝑧))) → 0 < (2 ·
𝑢)) |
400 | 395, 399 | eqbrtrid 4064 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝜑 ∧ 𝑧 ∈ 𝑆) ∧ (𝑢 ∈ ℤ ∧ (2 · 𝑢) = (1st ‘𝑧))) → (2 · 0) <
(2 · 𝑢)) |
401 | | 0red 8020 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (((𝜑 ∧ 𝑧 ∈ 𝑆) ∧ (𝑢 ∈ ℤ ∧ (2 · 𝑢) = (1st ‘𝑧))) → 0 ∈
ℝ) |
402 | | ltmul2 8875 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((0
∈ ℝ ∧ 𝑢
∈ ℝ ∧ (2 ∈ ℝ ∧ 0 < 2)) → (0 < 𝑢 ↔ (2 · 0) < (2
· 𝑢))) |
403 | 401, 385,
387, 388, 402 | syl112anc 1253 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝜑 ∧ 𝑧 ∈ 𝑆) ∧ (𝑢 ∈ ℤ ∧ (2 · 𝑢) = (1st ‘𝑧))) → (0 < 𝑢 ↔ (2 · 0) < (2
· 𝑢))) |
404 | 400, 403 | mpbird 167 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝜑 ∧ 𝑧 ∈ 𝑆) ∧ (𝑢 ∈ ℤ ∧ (2 · 𝑢) = (1st ‘𝑧))) → 0 < 𝑢) |
405 | | elnnz 9327 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑢 ∈ ℕ ↔ (𝑢 ∈ ℤ ∧ 0 <
𝑢)) |
406 | 392, 404,
405 | sylanbrc 417 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ 𝑧 ∈ 𝑆) ∧ (𝑢 ∈ ℤ ∧ (2 · 𝑢) = (1st ‘𝑧))) → 𝑢 ∈ ℕ) |
407 | 406, 295 | eleqtrdi 2286 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑧 ∈ 𝑆) ∧ (𝑢 ∈ ℤ ∧ (2 · 𝑢) = (1st ‘𝑧))) → 𝑢 ∈
(ℤ≥‘1)) |
408 | 13 | ad2antrr 488 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑧 ∈ 𝑆) ∧ (𝑢 ∈ ℤ ∧ (2 · 𝑢) = (1st ‘𝑧))) → (⌊‘(𝑀 / 2)) ∈
ℤ) |
409 | | elfz5 10083 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑢 ∈
(ℤ≥‘1) ∧ (⌊‘(𝑀 / 2)) ∈ ℤ) → (𝑢 ∈
(1...(⌊‘(𝑀 /
2))) ↔ 𝑢 ≤
(⌊‘(𝑀 /
2)))) |
410 | 407, 408,
409 | syl2anc 411 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑧 ∈ 𝑆) ∧ (𝑢 ∈ ℤ ∧ (2 · 𝑢) = (1st ‘𝑧))) → (𝑢 ∈ (1...(⌊‘(𝑀 / 2))) ↔ 𝑢 ≤ (⌊‘(𝑀 / 2)))) |
411 | 394, 410 | mpbird 167 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑧 ∈ 𝑆) ∧ (𝑢 ∈ ℤ ∧ (2 · 𝑢) = (1st ‘𝑧))) → 𝑢 ∈ (1...(⌊‘(𝑀 / 2)))) |
412 | 411, 376 | jca 306 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑧 ∈ 𝑆) ∧ (𝑢 ∈ ℤ ∧ (2 · 𝑢) = (1st ‘𝑧))) → (𝑢 ∈ (1...(⌊‘(𝑀 / 2))) ∧ (2 · 𝑢) = (1st ‘𝑧))) |
413 | 412 | ex 115 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑧 ∈ 𝑆) → ((𝑢 ∈ ℤ ∧ (2 · 𝑢) = (1st ‘𝑧)) → (𝑢 ∈ (1...(⌊‘(𝑀 / 2))) ∧ (2 · 𝑢) = (1st ‘𝑧)))) |
414 | 413 | reximdv2 2593 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑧 ∈ 𝑆) → (∃𝑢 ∈ ℤ (2 · 𝑢) = (1st ‘𝑧) → ∃𝑢 ∈
(1...(⌊‘(𝑀 /
2)))(2 · 𝑢) =
(1st ‘𝑧))) |
415 | 375, 414 | impbid2 143 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑧 ∈ 𝑆) → (∃𝑢 ∈ (1...(⌊‘(𝑀 / 2)))(2 · 𝑢) = (1st ‘𝑧) ↔ ∃𝑢 ∈ ℤ (2 ·
𝑢) = (1st
‘𝑧))) |
416 | | 2z 9345 |
. . . . . . . . . . . 12
⊢ 2 ∈
ℤ |
417 | 379 | elfzelzd 10092 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑧 ∈ 𝑆) → (1st ‘𝑧) ∈
ℤ) |
418 | | divides 11932 |
. . . . . . . . . . . 12
⊢ ((2
∈ ℤ ∧ (1st ‘𝑧) ∈ ℤ) → (2 ∥
(1st ‘𝑧)
↔ ∃𝑢 ∈
ℤ (𝑢 · 2) =
(1st ‘𝑧))) |
419 | 416, 417,
418 | sylancr 414 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑧 ∈ 𝑆) → (2 ∥ (1st
‘𝑧) ↔
∃𝑢 ∈ ℤ
(𝑢 · 2) =
(1st ‘𝑧))) |
420 | 373, 415,
419 | 3bitr4d 220 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑧 ∈ 𝑆) → (∃𝑢 ∈ (1...(⌊‘(𝑀 / 2)))(2 · 𝑢) = (1st ‘𝑧) ↔ 2 ∥
(1st ‘𝑧))) |
421 | 420 | rabbidva 2748 |
. . . . . . . . 9
⊢ (𝜑 → {𝑧 ∈ 𝑆 ∣ ∃𝑢 ∈ (1...(⌊‘(𝑀 / 2)))(2 · 𝑢) = (1st ‘𝑧)} = {𝑧 ∈ 𝑆 ∣ 2 ∥ (1st
‘𝑧)}) |
422 | 366, 421 | eqtrid 2238 |
. . . . . . . 8
⊢ (𝜑 → ∪ 𝑢 ∈ (1...(⌊‘(𝑀 / 2))){𝑧 ∈ 𝑆 ∣ (2 · 𝑢) = (1st ‘𝑧)} = {𝑧 ∈ 𝑆 ∣ 2 ∥ (1st
‘𝑧)}) |
423 | 422 | fveq2d 5558 |
. . . . . . 7
⊢ (𝜑 → (♯‘∪ 𝑢 ∈ (1...(⌊‘(𝑀 / 2))){𝑧 ∈ 𝑆 ∣ (2 · 𝑢) = (1st ‘𝑧)}) = (♯‘{𝑧 ∈ 𝑆 ∣ 2 ∥ (1st
‘𝑧)})) |
424 | 342, 365,
423 | 3eqtr2d 2232 |
. . . . . 6
⊢ (𝜑 → Σ𝑢 ∈ (1...(⌊‘(𝑀 / 2)))(⌊‘((𝑄 / 𝑃) · (2 · 𝑢))) = (♯‘{𝑧 ∈ 𝑆 ∣ 2 ∥ (1st
‘𝑧)})) |
425 | 424 | oveq2d 5934 |
. . . . 5
⊢ (𝜑 → (-1↑Σ𝑢 ∈
(1...(⌊‘(𝑀 /
2)))(⌊‘((𝑄 /
𝑃) · (2 ·
𝑢)))) =
(-1↑(♯‘{𝑧
∈ 𝑆 ∣ 2 ∥
(1st ‘𝑧)}))) |
426 | 1, 2, 3, 5, 101, 102 | lgsquadlem1 15193 |
. . . . 5
⊢ (𝜑 → (-1↑Σ𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)(⌊‘((𝑄 / 𝑃) · (2 · 𝑢)))) = (-1↑(♯‘{𝑧 ∈ 𝑆 ∣ ¬ 2 ∥ (1st
‘𝑧)}))) |
427 | 425, 426 | oveq12d 5936 |
. . . 4
⊢ (𝜑 → ((-1↑Σ𝑢 ∈
(1...(⌊‘(𝑀 /
2)))(⌊‘((𝑄 /
𝑃) · (2 ·
𝑢)))) ·
(-1↑Σ𝑢 ∈
(((⌊‘(𝑀 / 2)) +
1)...𝑀)(⌊‘((𝑄 / 𝑃) · (2 · 𝑢))))) = ((-1↑(♯‘{𝑧 ∈ 𝑆 ∣ 2 ∥ (1st
‘𝑧)})) ·
(-1↑(♯‘{𝑧
∈ 𝑆 ∣ ¬ 2
∥ (1st ‘𝑧)})))) |
428 | 120, 427 | eqtr4d 2229 |
. . 3
⊢ (𝜑 →
(-1↑((♯‘{𝑧
∈ 𝑆 ∣ 2 ∥
(1st ‘𝑧)})
+ (♯‘{𝑧 ∈
𝑆 ∣ ¬ 2 ∥
(1st ‘𝑧)}))) = ((-1↑Σ𝑢 ∈ (1...(⌊‘(𝑀 / 2)))(⌊‘((𝑄 / 𝑃) · (2 · 𝑢)))) · (-1↑Σ𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)(⌊‘((𝑄 / 𝑃) · (2 · 𝑢)))))) |
429 | | inrab 3431 |
. . . . . . 7
⊢ ({𝑧 ∈ 𝑆 ∣ 2 ∥ (1st
‘𝑧)} ∩ {𝑧 ∈ 𝑆 ∣ ¬ 2 ∥ (1st
‘𝑧)}) = {𝑧 ∈ 𝑆 ∣ (2 ∥ (1st
‘𝑧) ∧ ¬ 2
∥ (1st ‘𝑧))} |
430 | | pm3.24 694 |
. . . . . . . . . 10
⊢ ¬ (2
∥ (1st ‘𝑧) ∧ ¬ 2 ∥ (1st
‘𝑧)) |
431 | 430 | a1i 9 |
. . . . . . . . 9
⊢ (𝜑 → ¬ (2 ∥
(1st ‘𝑧)
∧ ¬ 2 ∥ (1st ‘𝑧))) |
432 | 431 | ralrimivw 2568 |
. . . . . . . 8
⊢ (𝜑 → ∀𝑧 ∈ 𝑆 ¬ (2 ∥ (1st
‘𝑧) ∧ ¬ 2
∥ (1st ‘𝑧))) |
433 | | rabeq0 3476 |
. . . . . . . 8
⊢ ({𝑧 ∈ 𝑆 ∣ (2 ∥ (1st
‘𝑧) ∧ ¬ 2
∥ (1st ‘𝑧))} = ∅ ↔ ∀𝑧 ∈ 𝑆 ¬ (2 ∥ (1st
‘𝑧) ∧ ¬ 2
∥ (1st ‘𝑧))) |
434 | 432, 433 | sylibr 134 |
. . . . . . 7
⊢ (𝜑 → {𝑧 ∈ 𝑆 ∣ (2 ∥ (1st
‘𝑧) ∧ ¬ 2
∥ (1st ‘𝑧))} = ∅) |
435 | 429, 434 | eqtrid 2238 |
. . . . . 6
⊢ (𝜑 → ({𝑧 ∈ 𝑆 ∣ 2 ∥ (1st
‘𝑧)} ∩ {𝑧 ∈ 𝑆 ∣ ¬ 2 ∥ (1st
‘𝑧)}) =
∅) |
436 | | hashun 10876 |
. . . . . 6
⊢ (({𝑧 ∈ 𝑆 ∣ 2 ∥ (1st
‘𝑧)} ∈ Fin ∧
{𝑧 ∈ 𝑆 ∣ ¬ 2 ∥ (1st
‘𝑧)} ∈ Fin ∧
({𝑧 ∈ 𝑆 ∣ 2 ∥
(1st ‘𝑧)}
∩ {𝑧 ∈ 𝑆 ∣ ¬ 2 ∥
(1st ‘𝑧)})
= ∅) → (♯‘({𝑧 ∈ 𝑆 ∣ 2 ∥ (1st
‘𝑧)} ∪ {𝑧 ∈ 𝑆 ∣ ¬ 2 ∥ (1st
‘𝑧)})) =
((♯‘{𝑧 ∈
𝑆 ∣ 2 ∥
(1st ‘𝑧)})
+ (♯‘{𝑧 ∈
𝑆 ∣ ¬ 2 ∥
(1st ‘𝑧)}))) |
437 | 117, 103,
435, 436 | syl3anc 1249 |
. . . . 5
⊢ (𝜑 → (♯‘({𝑧 ∈ 𝑆 ∣ 2 ∥ (1st
‘𝑧)} ∪ {𝑧 ∈ 𝑆 ∣ ¬ 2 ∥ (1st
‘𝑧)})) =
((♯‘{𝑧 ∈
𝑆 ∣ 2 ∥
(1st ‘𝑧)})
+ (♯‘{𝑧 ∈
𝑆 ∣ ¬ 2 ∥
(1st ‘𝑧)}))) |
438 | | unrab 3430 |
. . . . . . 7
⊢ ({𝑧 ∈ 𝑆 ∣ 2 ∥ (1st
‘𝑧)} ∪ {𝑧 ∈ 𝑆 ∣ ¬ 2 ∥ (1st
‘𝑧)}) = {𝑧 ∈ 𝑆 ∣ (2 ∥ (1st
‘𝑧) ∨ ¬ 2
∥ (1st ‘𝑧))} |
439 | | rabid2 2671 |
. . . . . . . 8
⊢ (𝑆 = {𝑧 ∈ 𝑆 ∣ (2 ∥ (1st
‘𝑧) ∨ ¬ 2
∥ (1st ‘𝑧))} ↔ ∀𝑧 ∈ 𝑆 (2 ∥ (1st ‘𝑧) ∨ ¬ 2 ∥
(1st ‘𝑧))) |
440 | 10, 112, 114 | sylancr 414 |
. . . . . . . . 9
⊢ (𝑧 ∈ 𝑆 → DECID 2 ∥
(1st ‘𝑧)) |
441 | | exmiddc 837 |
. . . . . . . . 9
⊢
(DECID 2 ∥ (1st ‘𝑧) → (2 ∥
(1st ‘𝑧)
∨ ¬ 2 ∥ (1st ‘𝑧))) |
442 | 440, 441 | syl 14 |
. . . . . . . 8
⊢ (𝑧 ∈ 𝑆 → (2 ∥ (1st
‘𝑧) ∨ ¬ 2
∥ (1st ‘𝑧))) |
443 | 439, 442 | mprgbir 2552 |
. . . . . . 7
⊢ 𝑆 = {𝑧 ∈ 𝑆 ∣ (2 ∥ (1st
‘𝑧) ∨ ¬ 2
∥ (1st ‘𝑧))} |
444 | 438, 443 | eqtr4i 2217 |
. . . . . 6
⊢ ({𝑧 ∈ 𝑆 ∣ 2 ∥ (1st
‘𝑧)} ∪ {𝑧 ∈ 𝑆 ∣ ¬ 2 ∥ (1st
‘𝑧)}) = 𝑆 |
445 | 444 | fveq2i 5557 |
. . . . 5
⊢
(♯‘({𝑧
∈ 𝑆 ∣ 2 ∥
(1st ‘𝑧)}
∪ {𝑧 ∈ 𝑆 ∣ ¬ 2 ∥
(1st ‘𝑧)})) = (♯‘𝑆) |
446 | 437, 445 | eqtr3di 2241 |
. . . 4
⊢ (𝜑 → ((♯‘{𝑧 ∈ 𝑆 ∣ 2 ∥ (1st
‘𝑧)}) +
(♯‘{𝑧 ∈
𝑆 ∣ ¬ 2 ∥
(1st ‘𝑧)})) = (♯‘𝑆)) |
447 | 446 | oveq2d 5934 |
. . 3
⊢ (𝜑 →
(-1↑((♯‘{𝑧
∈ 𝑆 ∣ 2 ∥
(1st ‘𝑧)})
+ (♯‘{𝑧 ∈
𝑆 ∣ ¬ 2 ∥
(1st ‘𝑧)}))) = (-1↑(♯‘𝑆))) |
448 | 100, 428,
447 | 3eqtr2d 2232 |
. 2
⊢ (𝜑 → (-1↑(Σ𝑢 ∈
(1...(⌊‘(𝑀 /
2)))(⌊‘((𝑄 /
𝑃) · (2 ·
𝑢))) + Σ𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)(⌊‘((𝑄 / 𝑃) · (2 · 𝑢))))) = (-1↑(♯‘𝑆))) |
449 | 4, 84, 448 | 3eqtrd 2230 |
1
⊢ (𝜑 → (𝑄 /L 𝑃) = (-1↑(♯‘𝑆))) |