ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  lgsquadlem2 GIF version

Theorem lgsquadlem2 15625
Description: Lemma for lgsquad 15627. Count the members of 𝑆 with even coordinates, and combine with lgsquadlem1 15624 to get the total count of lattice points in 𝑆 (up to parity). (Contributed by Mario Carneiro, 18-Jun-2015.)
Hypotheses
Ref Expression
lgseisen.1 (𝜑𝑃 ∈ (ℙ ∖ {2}))
lgseisen.2 (𝜑𝑄 ∈ (ℙ ∖ {2}))
lgseisen.3 (𝜑𝑃𝑄)
lgsquad.4 𝑀 = ((𝑃 − 1) / 2)
lgsquad.5 𝑁 = ((𝑄 − 1) / 2)
lgsquad.6 𝑆 = {⟨𝑥, 𝑦⟩ ∣ ((𝑥 ∈ (1...𝑀) ∧ 𝑦 ∈ (1...𝑁)) ∧ (𝑦 · 𝑃) < (𝑥 · 𝑄))}
Assertion
Ref Expression
lgsquadlem2 (𝜑 → (𝑄 /L 𝑃) = (-1↑(♯‘𝑆)))
Distinct variable groups:   𝑥,𝑦,𝑃   𝜑,𝑥,𝑦   𝑦,𝑀   𝑥,𝑁,𝑦   𝑥,𝑄,𝑦   𝑥,𝑆   𝑥,𝑀   𝑦,𝑆

Proof of Theorem lgsquadlem2
Dummy variables 𝑢 𝑣 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 lgseisen.1 . . 3 (𝜑𝑃 ∈ (ℙ ∖ {2}))
2 lgseisen.2 . . 3 (𝜑𝑄 ∈ (ℙ ∖ {2}))
3 lgseisen.3 . . 3 (𝜑𝑃𝑄)
41, 2, 3lgseisen 15621 . 2 (𝜑 → (𝑄 /L 𝑃) = (-1↑Σ𝑢 ∈ (1...((𝑃 − 1) / 2))(⌊‘((𝑄 / 𝑃) · (2 · 𝑢)))))
5 lgsquad.4 . . . . . 6 𝑀 = ((𝑃 − 1) / 2)
65oveq2i 5967 . . . . 5 (1...𝑀) = (1...((𝑃 − 1) / 2))
76sumeq1i 11744 . . . 4 Σ𝑢 ∈ (1...𝑀)(⌊‘((𝑄 / 𝑃) · (2 · 𝑢))) = Σ𝑢 ∈ (1...((𝑃 − 1) / 2))(⌊‘((𝑄 / 𝑃) · (2 · 𝑢)))
81, 5gausslemma2dlem0b 15597 . . . . . . . . . . 11 (𝜑𝑀 ∈ ℕ)
98nnzd 9509 . . . . . . . . . 10 (𝜑𝑀 ∈ ℤ)
10 2nn 9213 . . . . . . . . . 10 2 ∈ ℕ
11 znq 9760 . . . . . . . . . 10 ((𝑀 ∈ ℤ ∧ 2 ∈ ℕ) → (𝑀 / 2) ∈ ℚ)
129, 10, 11sylancl 413 . . . . . . . . 9 (𝜑 → (𝑀 / 2) ∈ ℚ)
1312flqcld 10437 . . . . . . . 8 (𝜑 → (⌊‘(𝑀 / 2)) ∈ ℤ)
1413zred 9510 . . . . . . 7 (𝜑 → (⌊‘(𝑀 / 2)) ∈ ℝ)
1514ltp1d 9018 . . . . . 6 (𝜑 → (⌊‘(𝑀 / 2)) < ((⌊‘(𝑀 / 2)) + 1))
16 fzdisj 10189 . . . . . 6 ((⌊‘(𝑀 / 2)) < ((⌊‘(𝑀 / 2)) + 1) → ((1...(⌊‘(𝑀 / 2))) ∩ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) = ∅)
1715, 16syl 14 . . . . 5 (𝜑 → ((1...(⌊‘(𝑀 / 2))) ∩ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) = ∅)
188nnrpd 9831 . . . . . . . . . . 11 (𝜑𝑀 ∈ ℝ+)
1918rphalfcld 9846 . . . . . . . . . 10 (𝜑 → (𝑀 / 2) ∈ ℝ+)
2019rpge0d 9837 . . . . . . . . 9 (𝜑 → 0 ≤ (𝑀 / 2))
21 flqge0nn0 10453 . . . . . . . . 9 (((𝑀 / 2) ∈ ℚ ∧ 0 ≤ (𝑀 / 2)) → (⌊‘(𝑀 / 2)) ∈ ℕ0)
2212, 20, 21syl2anc 411 . . . . . . . 8 (𝜑 → (⌊‘(𝑀 / 2)) ∈ ℕ0)
238nnnn0d 9363 . . . . . . . 8 (𝜑𝑀 ∈ ℕ0)
248nnred 9064 . . . . . . . . 9 (𝜑𝑀 ∈ ℝ)
25 rphalflt 9820 . . . . . . . . . . 11 (𝑀 ∈ ℝ+ → (𝑀 / 2) < 𝑀)
2618, 25syl 14 . . . . . . . . . 10 (𝜑 → (𝑀 / 2) < 𝑀)
27 flqlt 10443 . . . . . . . . . . 11 (((𝑀 / 2) ∈ ℚ ∧ 𝑀 ∈ ℤ) → ((𝑀 / 2) < 𝑀 ↔ (⌊‘(𝑀 / 2)) < 𝑀))
2812, 9, 27syl2anc 411 . . . . . . . . . 10 (𝜑 → ((𝑀 / 2) < 𝑀 ↔ (⌊‘(𝑀 / 2)) < 𝑀))
2926, 28mpbid 147 . . . . . . . . 9 (𝜑 → (⌊‘(𝑀 / 2)) < 𝑀)
3014, 24, 29ltled 8206 . . . . . . . 8 (𝜑 → (⌊‘(𝑀 / 2)) ≤ 𝑀)
31 elfz2nn0 10249 . . . . . . . 8 ((⌊‘(𝑀 / 2)) ∈ (0...𝑀) ↔ ((⌊‘(𝑀 / 2)) ∈ ℕ0𝑀 ∈ ℕ0 ∧ (⌊‘(𝑀 / 2)) ≤ 𝑀))
3222, 23, 30, 31syl3anbrc 1184 . . . . . . 7 (𝜑 → (⌊‘(𝑀 / 2)) ∈ (0...𝑀))
33 nn0uz 9698 . . . . . . . . 9 0 = (ℤ‘0)
3423, 33eleqtrdi 2299 . . . . . . . 8 (𝜑𝑀 ∈ (ℤ‘0))
35 elfzp12 10236 . . . . . . . 8 (𝑀 ∈ (ℤ‘0) → ((⌊‘(𝑀 / 2)) ∈ (0...𝑀) ↔ ((⌊‘(𝑀 / 2)) = 0 ∨ (⌊‘(𝑀 / 2)) ∈ ((0 + 1)...𝑀))))
3634, 35syl 14 . . . . . . 7 (𝜑 → ((⌊‘(𝑀 / 2)) ∈ (0...𝑀) ↔ ((⌊‘(𝑀 / 2)) = 0 ∨ (⌊‘(𝑀 / 2)) ∈ ((0 + 1)...𝑀))))
3732, 36mpbid 147 . . . . . 6 (𝜑 → ((⌊‘(𝑀 / 2)) = 0 ∨ (⌊‘(𝑀 / 2)) ∈ ((0 + 1)...𝑀)))
38 un0 3498 . . . . . . . . 9 ((1...𝑀) ∪ ∅) = (1...𝑀)
39 uncom 3321 . . . . . . . . 9 ((1...𝑀) ∪ ∅) = (∅ ∪ (1...𝑀))
4038, 39eqtr3i 2229 . . . . . . . 8 (1...𝑀) = (∅ ∪ (1...𝑀))
41 oveq2 5964 . . . . . . . . . 10 ((⌊‘(𝑀 / 2)) = 0 → (1...(⌊‘(𝑀 / 2))) = (1...0))
42 fz10 10183 . . . . . . . . . 10 (1...0) = ∅
4341, 42eqtrdi 2255 . . . . . . . . 9 ((⌊‘(𝑀 / 2)) = 0 → (1...(⌊‘(𝑀 / 2))) = ∅)
44 oveq1 5963 . . . . . . . . . . 11 ((⌊‘(𝑀 / 2)) = 0 → ((⌊‘(𝑀 / 2)) + 1) = (0 + 1))
45 0p1e1 9165 . . . . . . . . . . 11 (0 + 1) = 1
4644, 45eqtrdi 2255 . . . . . . . . . 10 ((⌊‘(𝑀 / 2)) = 0 → ((⌊‘(𝑀 / 2)) + 1) = 1)
4746oveq1d 5971 . . . . . . . . 9 ((⌊‘(𝑀 / 2)) = 0 → (((⌊‘(𝑀 / 2)) + 1)...𝑀) = (1...𝑀))
4843, 47uneq12d 3332 . . . . . . . 8 ((⌊‘(𝑀 / 2)) = 0 → ((1...(⌊‘(𝑀 / 2))) ∪ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) = (∅ ∪ (1...𝑀)))
4940, 48eqtr4id 2258 . . . . . . 7 ((⌊‘(𝑀 / 2)) = 0 → (1...𝑀) = ((1...(⌊‘(𝑀 / 2))) ∪ (((⌊‘(𝑀 / 2)) + 1)...𝑀)))
50 fzsplit 10188 . . . . . . . 8 ((⌊‘(𝑀 / 2)) ∈ (1...𝑀) → (1...𝑀) = ((1...(⌊‘(𝑀 / 2))) ∪ (((⌊‘(𝑀 / 2)) + 1)...𝑀)))
5145oveq1i 5966 . . . . . . . 8 ((0 + 1)...𝑀) = (1...𝑀)
5250, 51eleq2s 2301 . . . . . . 7 ((⌊‘(𝑀 / 2)) ∈ ((0 + 1)...𝑀) → (1...𝑀) = ((1...(⌊‘(𝑀 / 2))) ∪ (((⌊‘(𝑀 / 2)) + 1)...𝑀)))
5349, 52jaoi 718 . . . . . 6 (((⌊‘(𝑀 / 2)) = 0 ∨ (⌊‘(𝑀 / 2)) ∈ ((0 + 1)...𝑀)) → (1...𝑀) = ((1...(⌊‘(𝑀 / 2))) ∪ (((⌊‘(𝑀 / 2)) + 1)...𝑀)))
5437, 53syl 14 . . . . 5 (𝜑 → (1...𝑀) = ((1...(⌊‘(𝑀 / 2))) ∪ (((⌊‘(𝑀 / 2)) + 1)...𝑀)))
55 1zzd 9414 . . . . . 6 (𝜑 → 1 ∈ ℤ)
5655, 9fzfigd 10593 . . . . 5 (𝜑 → (1...𝑀) ∈ Fin)
572gausslemma2dlem0a 15596 . . . . . . . . . 10 (𝜑𝑄 ∈ ℕ)
5857nnzd 9509 . . . . . . . . 9 (𝜑𝑄 ∈ ℤ)
591gausslemma2dlem0a 15596 . . . . . . . . . 10 (𝜑𝑃 ∈ ℕ)
6059adantr 276 . . . . . . . . 9 ((𝜑𝑢 ∈ (1...𝑀)) → 𝑃 ∈ ℕ)
61 znq 9760 . . . . . . . . 9 ((𝑄 ∈ ℤ ∧ 𝑃 ∈ ℕ) → (𝑄 / 𝑃) ∈ ℚ)
6258, 60, 61syl2an2r 595 . . . . . . . 8 ((𝜑𝑢 ∈ (1...𝑀)) → (𝑄 / 𝑃) ∈ ℚ)
63 elfznn 10191 . . . . . . . . . . . 12 (𝑢 ∈ (1...𝑀) → 𝑢 ∈ ℕ)
6463adantl 277 . . . . . . . . . . 11 ((𝜑𝑢 ∈ (1...𝑀)) → 𝑢 ∈ ℕ)
65 nnmulcl 9072 . . . . . . . . . . 11 ((2 ∈ ℕ ∧ 𝑢 ∈ ℕ) → (2 · 𝑢) ∈ ℕ)
6610, 64, 65sylancr 414 . . . . . . . . . 10 ((𝜑𝑢 ∈ (1...𝑀)) → (2 · 𝑢) ∈ ℕ)
6766nnzd 9509 . . . . . . . . 9 ((𝜑𝑢 ∈ (1...𝑀)) → (2 · 𝑢) ∈ ℤ)
68 zq 9762 . . . . . . . . 9 ((2 · 𝑢) ∈ ℤ → (2 · 𝑢) ∈ ℚ)
6967, 68syl 14 . . . . . . . 8 ((𝜑𝑢 ∈ (1...𝑀)) → (2 · 𝑢) ∈ ℚ)
70 qmulcl 9773 . . . . . . . 8 (((𝑄 / 𝑃) ∈ ℚ ∧ (2 · 𝑢) ∈ ℚ) → ((𝑄 / 𝑃) · (2 · 𝑢)) ∈ ℚ)
7162, 69, 70syl2anc 411 . . . . . . 7 ((𝜑𝑢 ∈ (1...𝑀)) → ((𝑄 / 𝑃) · (2 · 𝑢)) ∈ ℚ)
7257nnrpd 9831 . . . . . . . . . . 11 (𝜑𝑄 ∈ ℝ+)
7359nnrpd 9831 . . . . . . . . . . 11 (𝜑𝑃 ∈ ℝ+)
7472, 73rpdivcld 9851 . . . . . . . . . 10 (𝜑 → (𝑄 / 𝑃) ∈ ℝ+)
7574adantr 276 . . . . . . . . 9 ((𝜑𝑢 ∈ (1...𝑀)) → (𝑄 / 𝑃) ∈ ℝ+)
7666nnrpd 9831 . . . . . . . . 9 ((𝜑𝑢 ∈ (1...𝑀)) → (2 · 𝑢) ∈ ℝ+)
7775, 76rpmulcld 9850 . . . . . . . 8 ((𝜑𝑢 ∈ (1...𝑀)) → ((𝑄 / 𝑃) · (2 · 𝑢)) ∈ ℝ+)
7877rpge0d 9837 . . . . . . 7 ((𝜑𝑢 ∈ (1...𝑀)) → 0 ≤ ((𝑄 / 𝑃) · (2 · 𝑢)))
79 flqge0nn0 10453 . . . . . . 7 ((((𝑄 / 𝑃) · (2 · 𝑢)) ∈ ℚ ∧ 0 ≤ ((𝑄 / 𝑃) · (2 · 𝑢))) → (⌊‘((𝑄 / 𝑃) · (2 · 𝑢))) ∈ ℕ0)
8071, 78, 79syl2anc 411 . . . . . 6 ((𝜑𝑢 ∈ (1...𝑀)) → (⌊‘((𝑄 / 𝑃) · (2 · 𝑢))) ∈ ℕ0)
8180nn0cnd 9365 . . . . 5 ((𝜑𝑢 ∈ (1...𝑀)) → (⌊‘((𝑄 / 𝑃) · (2 · 𝑢))) ∈ ℂ)
8217, 54, 56, 81fsumsplit 11788 . . . 4 (𝜑 → Σ𝑢 ∈ (1...𝑀)(⌊‘((𝑄 / 𝑃) · (2 · 𝑢))) = (Σ𝑢 ∈ (1...(⌊‘(𝑀 / 2)))(⌊‘((𝑄 / 𝑃) · (2 · 𝑢))) + Σ𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)(⌊‘((𝑄 / 𝑃) · (2 · 𝑢)))))
837, 82eqtr3id 2253 . . 3 (𝜑 → Σ𝑢 ∈ (1...((𝑃 − 1) / 2))(⌊‘((𝑄 / 𝑃) · (2 · 𝑢))) = (Σ𝑢 ∈ (1...(⌊‘(𝑀 / 2)))(⌊‘((𝑄 / 𝑃) · (2 · 𝑢))) + Σ𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)(⌊‘((𝑄 / 𝑃) · (2 · 𝑢)))))
8483oveq2d 5972 . 2 (𝜑 → (-1↑Σ𝑢 ∈ (1...((𝑃 − 1) / 2))(⌊‘((𝑄 / 𝑃) · (2 · 𝑢)))) = (-1↑(Σ𝑢 ∈ (1...(⌊‘(𝑀 / 2)))(⌊‘((𝑄 / 𝑃) · (2 · 𝑢))) + Σ𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)(⌊‘((𝑄 / 𝑃) · (2 · 𝑢))))))
85 neg1cn 9156 . . . . 5 -1 ∈ ℂ
8685a1i 9 . . . 4 (𝜑 → -1 ∈ ℂ)
8713peano2zd 9513 . . . . . 6 (𝜑 → ((⌊‘(𝑀 / 2)) + 1) ∈ ℤ)
8887, 9fzfigd 10593 . . . . 5 (𝜑 → (((⌊‘(𝑀 / 2)) + 1)...𝑀) ∈ Fin)
89 ssun2 3341 . . . . . . . 8 (((⌊‘(𝑀 / 2)) + 1)...𝑀) ⊆ ((1...(⌊‘(𝑀 / 2))) ∪ (((⌊‘(𝑀 / 2)) + 1)...𝑀))
9089, 54sseqtrrid 3248 . . . . . . 7 (𝜑 → (((⌊‘(𝑀 / 2)) + 1)...𝑀) ⊆ (1...𝑀))
9190sselda 3197 . . . . . 6 ((𝜑𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) → 𝑢 ∈ (1...𝑀))
9291, 80syldan 282 . . . . 5 ((𝜑𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) → (⌊‘((𝑄 / 𝑃) · (2 · 𝑢))) ∈ ℕ0)
9388, 92fsumnn0cl 11784 . . . 4 (𝜑 → Σ𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)(⌊‘((𝑄 / 𝑃) · (2 · 𝑢))) ∈ ℕ0)
9455, 13fzfigd 10593 . . . . 5 (𝜑 → (1...(⌊‘(𝑀 / 2))) ∈ Fin)
95 ssun1 3340 . . . . . . . 8 (1...(⌊‘(𝑀 / 2))) ⊆ ((1...(⌊‘(𝑀 / 2))) ∪ (((⌊‘(𝑀 / 2)) + 1)...𝑀))
9695, 54sseqtrrid 3248 . . . . . . 7 (𝜑 → (1...(⌊‘(𝑀 / 2))) ⊆ (1...𝑀))
9796sselda 3197 . . . . . 6 ((𝜑𝑢 ∈ (1...(⌊‘(𝑀 / 2)))) → 𝑢 ∈ (1...𝑀))
9897, 80syldan 282 . . . . 5 ((𝜑𝑢 ∈ (1...(⌊‘(𝑀 / 2)))) → (⌊‘((𝑄 / 𝑃) · (2 · 𝑢))) ∈ ℕ0)
9994, 98fsumnn0cl 11784 . . . 4 (𝜑 → Σ𝑢 ∈ (1...(⌊‘(𝑀 / 2)))(⌊‘((𝑄 / 𝑃) · (2 · 𝑢))) ∈ ℕ0)
10086, 93, 99expaddd 10837 . . 3 (𝜑 → (-1↑(Σ𝑢 ∈ (1...(⌊‘(𝑀 / 2)))(⌊‘((𝑄 / 𝑃) · (2 · 𝑢))) + Σ𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)(⌊‘((𝑄 / 𝑃) · (2 · 𝑢))))) = ((-1↑Σ𝑢 ∈ (1...(⌊‘(𝑀 / 2)))(⌊‘((𝑄 / 𝑃) · (2 · 𝑢)))) · (-1↑Σ𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)(⌊‘((𝑄 / 𝑃) · (2 · 𝑢))))))
101 lgsquad.5 . . . . . . 7 𝑁 = ((𝑄 − 1) / 2)
102 lgsquad.6 . . . . . . 7 𝑆 = {⟨𝑥, 𝑦⟩ ∣ ((𝑥 ∈ (1...𝑀) ∧ 𝑦 ∈ (1...𝑁)) ∧ (𝑦 · 𝑃) < (𝑥 · 𝑄))}
1031, 2, 3, 5, 101, 102lgsquadlemofi 15623 . . . . . 6 (𝜑 → {𝑧𝑆 ∣ ¬ 2 ∥ (1st𝑧)} ∈ Fin)
104 hashcl 10943 . . . . . 6 ({𝑧𝑆 ∣ ¬ 2 ∥ (1st𝑧)} ∈ Fin → (♯‘{𝑧𝑆 ∣ ¬ 2 ∥ (1st𝑧)}) ∈ ℕ0)
105103, 104syl 14 . . . . 5 (𝜑 → (♯‘{𝑧𝑆 ∣ ¬ 2 ∥ (1st𝑧)}) ∈ ℕ0)
1061, 2, 3, 5, 101, 102lgsquadlemsfi 15622 . . . . . . 7 (𝜑𝑆 ∈ Fin)
107 opabssxp 4756 . . . . . . . . . . . . . 14 {⟨𝑥, 𝑦⟩ ∣ ((𝑥 ∈ (1...𝑀) ∧ 𝑦 ∈ (1...𝑁)) ∧ (𝑦 · 𝑃) < (𝑥 · 𝑄))} ⊆ ((1...𝑀) × (1...𝑁))
108102, 107eqsstri 3229 . . . . . . . . . . . . 13 𝑆 ⊆ ((1...𝑀) × (1...𝑁))
109108sseli 3193 . . . . . . . . . . . 12 (𝑧𝑆𝑧 ∈ ((1...𝑀) × (1...𝑁)))
110 xp1st 6263 . . . . . . . . . . . 12 (𝑧 ∈ ((1...𝑀) × (1...𝑁)) → (1st𝑧) ∈ (1...𝑀))
111109, 110syl 14 . . . . . . . . . . 11 (𝑧𝑆 → (1st𝑧) ∈ (1...𝑀))
112111elfzelzd 10163 . . . . . . . . . 10 (𝑧𝑆 → (1st𝑧) ∈ ℤ)
113112adantl 277 . . . . . . . . 9 ((𝜑𝑧𝑆) → (1st𝑧) ∈ ℤ)
114 dvdsdc 12179 . . . . . . . . 9 ((2 ∈ ℕ ∧ (1st𝑧) ∈ ℤ) → DECID 2 ∥ (1st𝑧))
11510, 113, 114sylancr 414 . . . . . . . 8 ((𝜑𝑧𝑆) → DECID 2 ∥ (1st𝑧))
116115ralrimiva 2580 . . . . . . 7 (𝜑 → ∀𝑧𝑆 DECID 2 ∥ (1st𝑧))
117106, 116ssfirab 7047 . . . . . 6 (𝜑 → {𝑧𝑆 ∣ 2 ∥ (1st𝑧)} ∈ Fin)
118 hashcl 10943 . . . . . 6 ({𝑧𝑆 ∣ 2 ∥ (1st𝑧)} ∈ Fin → (♯‘{𝑧𝑆 ∣ 2 ∥ (1st𝑧)}) ∈ ℕ0)
119117, 118syl 14 . . . . 5 (𝜑 → (♯‘{𝑧𝑆 ∣ 2 ∥ (1st𝑧)}) ∈ ℕ0)
12086, 105, 119expaddd 10837 . . . 4 (𝜑 → (-1↑((♯‘{𝑧𝑆 ∣ 2 ∥ (1st𝑧)}) + (♯‘{𝑧𝑆 ∣ ¬ 2 ∥ (1st𝑧)}))) = ((-1↑(♯‘{𝑧𝑆 ∣ 2 ∥ (1st𝑧)})) · (-1↑(♯‘{𝑧𝑆 ∣ ¬ 2 ∥ (1st𝑧)}))))
12197, 66syldan 282 . . . . . . . . . . 11 ((𝜑𝑢 ∈ (1...(⌊‘(𝑀 / 2)))) → (2 · 𝑢) ∈ ℕ)
122 1zzd 9414 . . . . . . . . . . . 12 ((𝜑𝑢 ∈ (1...(⌊‘(𝑀 / 2)))) → 1 ∈ ℤ)
12398nn0zd 9508 . . . . . . . . . . . 12 ((𝜑𝑢 ∈ (1...(⌊‘(𝑀 / 2)))) → (⌊‘((𝑄 / 𝑃) · (2 · 𝑢))) ∈ ℤ)
124122, 123fzfigd 10593 . . . . . . . . . . 11 ((𝜑𝑢 ∈ (1...(⌊‘(𝑀 / 2)))) → (1...(⌊‘((𝑄 / 𝑃) · (2 · 𝑢)))) ∈ Fin)
125 xpsnen2g 6938 . . . . . . . . . . 11 (((2 · 𝑢) ∈ ℕ ∧ (1...(⌊‘((𝑄 / 𝑃) · (2 · 𝑢)))) ∈ Fin) → ({(2 · 𝑢)} × (1...(⌊‘((𝑄 / 𝑃) · (2 · 𝑢))))) ≈ (1...(⌊‘((𝑄 / 𝑃) · (2 · 𝑢)))))
126121, 124, 125syl2anc 411 . . . . . . . . . 10 ((𝜑𝑢 ∈ (1...(⌊‘(𝑀 / 2)))) → ({(2 · 𝑢)} × (1...(⌊‘((𝑄 / 𝑃) · (2 · 𝑢))))) ≈ (1...(⌊‘((𝑄 / 𝑃) · (2 · 𝑢)))))
127 snfig 6919 . . . . . . . . . . . . 13 ((2 · 𝑢) ∈ ℕ → {(2 · 𝑢)} ∈ Fin)
128121, 127syl 14 . . . . . . . . . . . 12 ((𝜑𝑢 ∈ (1...(⌊‘(𝑀 / 2)))) → {(2 · 𝑢)} ∈ Fin)
129 xpfi 7043 . . . . . . . . . . . 12 (({(2 · 𝑢)} ∈ Fin ∧ (1...(⌊‘((𝑄 / 𝑃) · (2 · 𝑢)))) ∈ Fin) → ({(2 · 𝑢)} × (1...(⌊‘((𝑄 / 𝑃) · (2 · 𝑢))))) ∈ Fin)
130128, 124, 129syl2anc 411 . . . . . . . . . . 11 ((𝜑𝑢 ∈ (1...(⌊‘(𝑀 / 2)))) → ({(2 · 𝑢)} × (1...(⌊‘((𝑄 / 𝑃) · (2 · 𝑢))))) ∈ Fin)
131 hashen 10946 . . . . . . . . . . 11 ((({(2 · 𝑢)} × (1...(⌊‘((𝑄 / 𝑃) · (2 · 𝑢))))) ∈ Fin ∧ (1...(⌊‘((𝑄 / 𝑃) · (2 · 𝑢)))) ∈ Fin) → ((♯‘({(2 · 𝑢)} × (1...(⌊‘((𝑄 / 𝑃) · (2 · 𝑢)))))) = (♯‘(1...(⌊‘((𝑄 / 𝑃) · (2 · 𝑢))))) ↔ ({(2 · 𝑢)} × (1...(⌊‘((𝑄 / 𝑃) · (2 · 𝑢))))) ≈ (1...(⌊‘((𝑄 / 𝑃) · (2 · 𝑢))))))
132130, 124, 131syl2anc 411 . . . . . . . . . 10 ((𝜑𝑢 ∈ (1...(⌊‘(𝑀 / 2)))) → ((♯‘({(2 · 𝑢)} × (1...(⌊‘((𝑄 / 𝑃) · (2 · 𝑢)))))) = (♯‘(1...(⌊‘((𝑄 / 𝑃) · (2 · 𝑢))))) ↔ ({(2 · 𝑢)} × (1...(⌊‘((𝑄 / 𝑃) · (2 · 𝑢))))) ≈ (1...(⌊‘((𝑄 / 𝑃) · (2 · 𝑢))))))
133126, 132mpbird 167 . . . . . . . . 9 ((𝜑𝑢 ∈ (1...(⌊‘(𝑀 / 2)))) → (♯‘({(2 · 𝑢)} × (1...(⌊‘((𝑄 / 𝑃) · (2 · 𝑢)))))) = (♯‘(1...(⌊‘((𝑄 / 𝑃) · (2 · 𝑢))))))
134 ssrab2 3282 . . . . . . . . . . . . 13 {𝑧𝑆 ∣ (2 · 𝑢) = (1st𝑧)} ⊆ 𝑆
135102relopabiv 4808 . . . . . . . . . . . . 13 Rel 𝑆
136 relss 4769 . . . . . . . . . . . . 13 ({𝑧𝑆 ∣ (2 · 𝑢) = (1st𝑧)} ⊆ 𝑆 → (Rel 𝑆 → Rel {𝑧𝑆 ∣ (2 · 𝑢) = (1st𝑧)}))
137134, 135, 136mp2 16 . . . . . . . . . . . 12 Rel {𝑧𝑆 ∣ (2 · 𝑢) = (1st𝑧)}
138 relxp 4791 . . . . . . . . . . . 12 Rel ({(2 · 𝑢)} × (1...(⌊‘((𝑄 / 𝑃) · (2 · 𝑢)))))
139102eleq2i 2273 . . . . . . . . . . . . . . . 16 (⟨𝑥, 𝑦⟩ ∈ 𝑆 ↔ ⟨𝑥, 𝑦⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ ((𝑥 ∈ (1...𝑀) ∧ 𝑦 ∈ (1...𝑁)) ∧ (𝑦 · 𝑃) < (𝑥 · 𝑄))})
140 opabidw 4310 . . . . . . . . . . . . . . . 16 (⟨𝑥, 𝑦⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ ((𝑥 ∈ (1...𝑀) ∧ 𝑦 ∈ (1...𝑁)) ∧ (𝑦 · 𝑃) < (𝑥 · 𝑄))} ↔ ((𝑥 ∈ (1...𝑀) ∧ 𝑦 ∈ (1...𝑁)) ∧ (𝑦 · 𝑃) < (𝑥 · 𝑄)))
141139, 140bitri 184 . . . . . . . . . . . . . . 15 (⟨𝑥, 𝑦⟩ ∈ 𝑆 ↔ ((𝑥 ∈ (1...𝑀) ∧ 𝑦 ∈ (1...𝑁)) ∧ (𝑦 · 𝑃) < (𝑥 · 𝑄)))
142 anass 401 . . . . . . . . . . . . . . . . . 18 (((𝑦 ∈ ℕ ∧ 𝑦𝑁) ∧ (𝑦 · 𝑃) < (𝑄 · (2 · 𝑢))) ↔ (𝑦 ∈ ℕ ∧ (𝑦𝑁 ∧ (𝑦 · 𝑃) < (𝑄 · (2 · 𝑢)))))
143121adantr 276 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((𝜑𝑢 ∈ (1...(⌊‘(𝑀 / 2)))) ∧ 𝑦 ∈ ℕ) → (2 · 𝑢) ∈ ℕ)
144143nnred 9064 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((𝜑𝑢 ∈ (1...(⌊‘(𝑀 / 2)))) ∧ 𝑦 ∈ ℕ) → (2 · 𝑢) ∈ ℝ)
14559ad2antrr 488 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (((𝜑𝑢 ∈ (1...(⌊‘(𝑀 / 2)))) ∧ 𝑦 ∈ ℕ) → 𝑃 ∈ ℕ)
146145nnred 9064 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((𝜑𝑢 ∈ (1...(⌊‘(𝑀 / 2)))) ∧ 𝑦 ∈ ℕ) → 𝑃 ∈ ℝ)
147146rehalfcld 9299 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((𝜑𝑢 ∈ (1...(⌊‘(𝑀 / 2)))) ∧ 𝑦 ∈ ℕ) → (𝑃 / 2) ∈ ℝ)
14824adantr 276 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((𝜑𝑢 ∈ (1...(⌊‘(𝑀 / 2)))) → 𝑀 ∈ ℝ)
149148adantr 276 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((𝜑𝑢 ∈ (1...(⌊‘(𝑀 / 2)))) ∧ 𝑦 ∈ ℕ) → 𝑀 ∈ ℝ)
150 elfzle2 10165 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (𝑢 ∈ (1...(⌊‘(𝑀 / 2))) → 𝑢 ≤ (⌊‘(𝑀 / 2)))
151150adantl 277 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((𝜑𝑢 ∈ (1...(⌊‘(𝑀 / 2)))) → 𝑢 ≤ (⌊‘(𝑀 / 2)))
152 elfzelz 10162 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (𝑢 ∈ (1...(⌊‘(𝑀 / 2))) → 𝑢 ∈ ℤ)
153 flqge 10442 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (((𝑀 / 2) ∈ ℚ ∧ 𝑢 ∈ ℤ) → (𝑢 ≤ (𝑀 / 2) ↔ 𝑢 ≤ (⌊‘(𝑀 / 2))))
15412, 152, 153syl2an 289 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((𝜑𝑢 ∈ (1...(⌊‘(𝑀 / 2)))) → (𝑢 ≤ (𝑀 / 2) ↔ 𝑢 ≤ (⌊‘(𝑀 / 2))))
155151, 154mpbird 167 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((𝜑𝑢 ∈ (1...(⌊‘(𝑀 / 2)))) → 𝑢 ≤ (𝑀 / 2))
156 elfznn 10191 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (𝑢 ∈ (1...(⌊‘(𝑀 / 2))) → 𝑢 ∈ ℕ)
157156adantl 277 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((𝜑𝑢 ∈ (1...(⌊‘(𝑀 / 2)))) → 𝑢 ∈ ℕ)
158157nnred 9064 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((𝜑𝑢 ∈ (1...(⌊‘(𝑀 / 2)))) → 𝑢 ∈ ℝ)
159 2re 9121 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 2 ∈ ℝ
160159a1i 9 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((𝜑𝑢 ∈ (1...(⌊‘(𝑀 / 2)))) → 2 ∈ ℝ)
161 2pos 9142 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 0 < 2
162161a1i 9 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((𝜑𝑢 ∈ (1...(⌊‘(𝑀 / 2)))) → 0 < 2)
163 lemuldiv2 8970 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((𝑢 ∈ ℝ ∧ 𝑀 ∈ ℝ ∧ (2 ∈ ℝ ∧ 0 < 2)) → ((2 · 𝑢) ≤ 𝑀𝑢 ≤ (𝑀 / 2)))
164158, 148, 160, 162, 163syl112anc 1254 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((𝜑𝑢 ∈ (1...(⌊‘(𝑀 / 2)))) → ((2 · 𝑢) ≤ 𝑀𝑢 ≤ (𝑀 / 2)))
165155, 164mpbird 167 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((𝜑𝑢 ∈ (1...(⌊‘(𝑀 / 2)))) → (2 · 𝑢) ≤ 𝑀)
166165adantr 276 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((𝜑𝑢 ∈ (1...(⌊‘(𝑀 / 2)))) ∧ 𝑦 ∈ ℕ) → (2 · 𝑢) ≤ 𝑀)
167146ltm1d 9020 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (((𝜑𝑢 ∈ (1...(⌊‘(𝑀 / 2)))) ∧ 𝑦 ∈ ℕ) → (𝑃 − 1) < 𝑃)
168 peano2rem 8354 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (𝑃 ∈ ℝ → (𝑃 − 1) ∈ ℝ)
169146, 168syl 14 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (((𝜑𝑢 ∈ (1...(⌊‘(𝑀 / 2)))) ∧ 𝑦 ∈ ℕ) → (𝑃 − 1) ∈ ℝ)
170159a1i 9 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (((𝜑𝑢 ∈ (1...(⌊‘(𝑀 / 2)))) ∧ 𝑦 ∈ ℕ) → 2 ∈ ℝ)
171161a1i 9 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (((𝜑𝑢 ∈ (1...(⌊‘(𝑀 / 2)))) ∧ 𝑦 ∈ ℕ) → 0 < 2)
172 ltdiv1 8956 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (((𝑃 − 1) ∈ ℝ ∧ 𝑃 ∈ ℝ ∧ (2 ∈ ℝ ∧ 0 < 2)) → ((𝑃 − 1) < 𝑃 ↔ ((𝑃 − 1) / 2) < (𝑃 / 2)))
173169, 146, 170, 171, 172syl112anc 1254 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (((𝜑𝑢 ∈ (1...(⌊‘(𝑀 / 2)))) ∧ 𝑦 ∈ ℕ) → ((𝑃 − 1) < 𝑃 ↔ ((𝑃 − 1) / 2) < (𝑃 / 2)))
174167, 173mpbid 147 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (((𝜑𝑢 ∈ (1...(⌊‘(𝑀 / 2)))) ∧ 𝑦 ∈ ℕ) → ((𝑃 − 1) / 2) < (𝑃 / 2))
1755, 174eqbrtrid 4085 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((𝜑𝑢 ∈ (1...(⌊‘(𝑀 / 2)))) ∧ 𝑦 ∈ ℕ) → 𝑀 < (𝑃 / 2))
176144, 149, 147, 166, 175lelttrd 8212 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((𝜑𝑢 ∈ (1...(⌊‘(𝑀 / 2)))) ∧ 𝑦 ∈ ℕ) → (2 · 𝑢) < (𝑃 / 2))
177145nnrpd 9831 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((𝜑𝑢 ∈ (1...(⌊‘(𝑀 / 2)))) ∧ 𝑦 ∈ ℕ) → 𝑃 ∈ ℝ+)
178 rphalflt 9820 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑃 ∈ ℝ+ → (𝑃 / 2) < 𝑃)
179177, 178syl 14 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((𝜑𝑢 ∈ (1...(⌊‘(𝑀 / 2)))) ∧ 𝑦 ∈ ℕ) → (𝑃 / 2) < 𝑃)
180144, 147, 146, 176, 179lttrd 8213 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝜑𝑢 ∈ (1...(⌊‘(𝑀 / 2)))) ∧ 𝑦 ∈ ℕ) → (2 · 𝑢) < 𝑃)
181143nnzd 9509 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((𝜑𝑢 ∈ (1...(⌊‘(𝑀 / 2)))) ∧ 𝑦 ∈ ℕ) → (2 · 𝑢) ∈ ℤ)
182145nnzd 9509 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((𝜑𝑢 ∈ (1...(⌊‘(𝑀 / 2)))) ∧ 𝑦 ∈ ℕ) → 𝑃 ∈ ℤ)
183 zltnle 9433 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((2 · 𝑢) ∈ ℤ ∧ 𝑃 ∈ ℤ) → ((2 · 𝑢) < 𝑃 ↔ ¬ 𝑃 ≤ (2 · 𝑢)))
184181, 182, 183syl2anc 411 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝜑𝑢 ∈ (1...(⌊‘(𝑀 / 2)))) ∧ 𝑦 ∈ ℕ) → ((2 · 𝑢) < 𝑃 ↔ ¬ 𝑃 ≤ (2 · 𝑢)))
185180, 184mpbid 147 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝜑𝑢 ∈ (1...(⌊‘(𝑀 / 2)))) ∧ 𝑦 ∈ ℕ) → ¬ 𝑃 ≤ (2 · 𝑢))
1861eldifad 3181 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝜑𝑃 ∈ ℙ)
187186ad2antrr 488 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((𝜑𝑢 ∈ (1...(⌊‘(𝑀 / 2)))) ∧ 𝑦 ∈ ℕ) → 𝑃 ∈ ℙ)
188 prmz 12503 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑃 ∈ ℙ → 𝑃 ∈ ℤ)
189187, 188syl 14 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝜑𝑢 ∈ (1...(⌊‘(𝑀 / 2)))) ∧ 𝑦 ∈ ℕ) → 𝑃 ∈ ℤ)
190 dvdsle 12225 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑃 ∈ ℤ ∧ (2 · 𝑢) ∈ ℕ) → (𝑃 ∥ (2 · 𝑢) → 𝑃 ≤ (2 · 𝑢)))
191189, 143, 190syl2anc 411 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝜑𝑢 ∈ (1...(⌊‘(𝑀 / 2)))) ∧ 𝑦 ∈ ℕ) → (𝑃 ∥ (2 · 𝑢) → 𝑃 ≤ (2 · 𝑢)))
192185, 191mtod 665 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝜑𝑢 ∈ (1...(⌊‘(𝑀 / 2)))) ∧ 𝑦 ∈ ℕ) → ¬ 𝑃 ∥ (2 · 𝑢))
1932eldifad 3181 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝜑𝑄 ∈ ℙ)
194 prmrp 12537 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ) → ((𝑃 gcd 𝑄) = 1 ↔ 𝑃𝑄))
195186, 193, 194syl2anc 411 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝜑 → ((𝑃 gcd 𝑄) = 1 ↔ 𝑃𝑄))
1963, 195mpbird 167 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝜑 → (𝑃 gcd 𝑄) = 1)
197196ad2antrr 488 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝜑𝑢 ∈ (1...(⌊‘(𝑀 / 2)))) ∧ 𝑦 ∈ ℕ) → (𝑃 gcd 𝑄) = 1)
198193ad2antrr 488 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((𝜑𝑢 ∈ (1...(⌊‘(𝑀 / 2)))) ∧ 𝑦 ∈ ℕ) → 𝑄 ∈ ℙ)
199 prmz 12503 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑄 ∈ ℙ → 𝑄 ∈ ℤ)
200198, 199syl 14 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝜑𝑢 ∈ (1...(⌊‘(𝑀 / 2)))) ∧ 𝑦 ∈ ℕ) → 𝑄 ∈ ℤ)
201 coprmdvds 12484 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑃 ∈ ℤ ∧ 𝑄 ∈ ℤ ∧ (2 · 𝑢) ∈ ℤ) → ((𝑃 ∥ (𝑄 · (2 · 𝑢)) ∧ (𝑃 gcd 𝑄) = 1) → 𝑃 ∥ (2 · 𝑢)))
202189, 200, 181, 201syl3anc 1250 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝜑𝑢 ∈ (1...(⌊‘(𝑀 / 2)))) ∧ 𝑦 ∈ ℕ) → ((𝑃 ∥ (𝑄 · (2 · 𝑢)) ∧ (𝑃 gcd 𝑄) = 1) → 𝑃 ∥ (2 · 𝑢)))
203197, 202mpan2d 428 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝜑𝑢 ∈ (1...(⌊‘(𝑀 / 2)))) ∧ 𝑦 ∈ ℕ) → (𝑃 ∥ (𝑄 · (2 · 𝑢)) → 𝑃 ∥ (2 · 𝑢)))
204192, 203mtod 665 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜑𝑢 ∈ (1...(⌊‘(𝑀 / 2)))) ∧ 𝑦 ∈ ℕ) → ¬ 𝑃 ∥ (𝑄 · (2 · 𝑢)))
205 nnz 9406 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑦 ∈ ℕ → 𝑦 ∈ ℤ)
206205adantl 277 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝜑𝑢 ∈ (1...(⌊‘(𝑀 / 2)))) ∧ 𝑦 ∈ ℕ) → 𝑦 ∈ ℤ)
207 dvdsmul2 12195 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑦 ∈ ℤ ∧ 𝑃 ∈ ℤ) → 𝑃 ∥ (𝑦 · 𝑃))
208206, 189, 207syl2anc 411 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝜑𝑢 ∈ (1...(⌊‘(𝑀 / 2)))) ∧ 𝑦 ∈ ℕ) → 𝑃 ∥ (𝑦 · 𝑃))
209 breq2 4054 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑄 · (2 · 𝑢)) = (𝑦 · 𝑃) → (𝑃 ∥ (𝑄 · (2 · 𝑢)) ↔ 𝑃 ∥ (𝑦 · 𝑃)))
210208, 209syl5ibrcom 157 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝜑𝑢 ∈ (1...(⌊‘(𝑀 / 2)))) ∧ 𝑦 ∈ ℕ) → ((𝑄 · (2 · 𝑢)) = (𝑦 · 𝑃) → 𝑃 ∥ (𝑄 · (2 · 𝑢))))
211210necon3bd 2420 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜑𝑢 ∈ (1...(⌊‘(𝑀 / 2)))) ∧ 𝑦 ∈ ℕ) → (¬ 𝑃 ∥ (𝑄 · (2 · 𝑢)) → (𝑄 · (2 · 𝑢)) ≠ (𝑦 · 𝑃)))
212204, 211mpd 13 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑𝑢 ∈ (1...(⌊‘(𝑀 / 2)))) ∧ 𝑦 ∈ ℕ) → (𝑄 · (2 · 𝑢)) ≠ (𝑦 · 𝑃))
213 simpr 110 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝜑𝑢 ∈ (1...(⌊‘(𝑀 / 2)))) ∧ 𝑦 ∈ ℕ) → 𝑦 ∈ ℕ)
214213, 145nnmulcld 9100 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝜑𝑢 ∈ (1...(⌊‘(𝑀 / 2)))) ∧ 𝑦 ∈ ℕ) → (𝑦 · 𝑃) ∈ ℕ)
215214nnzd 9509 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜑𝑢 ∈ (1...(⌊‘(𝑀 / 2)))) ∧ 𝑦 ∈ ℕ) → (𝑦 · 𝑃) ∈ ℤ)
21657adantr 276 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝜑𝑢 ∈ (1...(⌊‘(𝑀 / 2)))) → 𝑄 ∈ ℕ)
217216, 121nnmulcld 9100 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝜑𝑢 ∈ (1...(⌊‘(𝑀 / 2)))) → (𝑄 · (2 · 𝑢)) ∈ ℕ)
218217adantr 276 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝜑𝑢 ∈ (1...(⌊‘(𝑀 / 2)))) ∧ 𝑦 ∈ ℕ) → (𝑄 · (2 · 𝑢)) ∈ ℕ)
219218nnzd 9509 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜑𝑢 ∈ (1...(⌊‘(𝑀 / 2)))) ∧ 𝑦 ∈ ℕ) → (𝑄 · (2 · 𝑢)) ∈ ℤ)
220 zltlen 9466 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝑦 · 𝑃) ∈ ℤ ∧ (𝑄 · (2 · 𝑢)) ∈ ℤ) → ((𝑦 · 𝑃) < (𝑄 · (2 · 𝑢)) ↔ ((𝑦 · 𝑃) ≤ (𝑄 · (2 · 𝑢)) ∧ (𝑄 · (2 · 𝑢)) ≠ (𝑦 · 𝑃))))
221215, 219, 220syl2anc 411 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑𝑢 ∈ (1...(⌊‘(𝑀 / 2)))) ∧ 𝑦 ∈ ℕ) → ((𝑦 · 𝑃) < (𝑄 · (2 · 𝑢)) ↔ ((𝑦 · 𝑃) ≤ (𝑄 · (2 · 𝑢)) ∧ (𝑄 · (2 · 𝑢)) ≠ (𝑦 · 𝑃))))
222212, 221mpbiran2d 442 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑢 ∈ (1...(⌊‘(𝑀 / 2)))) ∧ 𝑦 ∈ ℕ) → ((𝑦 · 𝑃) < (𝑄 · (2 · 𝑢)) ↔ (𝑦 · 𝑃) ≤ (𝑄 · (2 · 𝑢))))
223 nnre 9058 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑦 ∈ ℕ → 𝑦 ∈ ℝ)
224223adantl 277 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑𝑢 ∈ (1...(⌊‘(𝑀 / 2)))) ∧ 𝑦 ∈ ℕ) → 𝑦 ∈ ℝ)
225218nnred 9064 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑𝑢 ∈ (1...(⌊‘(𝑀 / 2)))) ∧ 𝑦 ∈ ℕ) → (𝑄 · (2 · 𝑢)) ∈ ℝ)
226145nngt0d 9095 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑𝑢 ∈ (1...(⌊‘(𝑀 / 2)))) ∧ 𝑦 ∈ ℕ) → 0 < 𝑃)
227 lemuldiv 8969 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑦 ∈ ℝ ∧ (𝑄 · (2 · 𝑢)) ∈ ℝ ∧ (𝑃 ∈ ℝ ∧ 0 < 𝑃)) → ((𝑦 · 𝑃) ≤ (𝑄 · (2 · 𝑢)) ↔ 𝑦 ≤ ((𝑄 · (2 · 𝑢)) / 𝑃)))
228224, 225, 146, 226, 227syl112anc 1254 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑢 ∈ (1...(⌊‘(𝑀 / 2)))) ∧ 𝑦 ∈ ℕ) → ((𝑦 · 𝑃) ≤ (𝑄 · (2 · 𝑢)) ↔ 𝑦 ≤ ((𝑄 · (2 · 𝑢)) / 𝑃)))
229216adantr 276 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝜑𝑢 ∈ (1...(⌊‘(𝑀 / 2)))) ∧ 𝑦 ∈ ℕ) → 𝑄 ∈ ℕ)
230229nncnd 9065 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜑𝑢 ∈ (1...(⌊‘(𝑀 / 2)))) ∧ 𝑦 ∈ ℕ) → 𝑄 ∈ ℂ)
231143nncnd 9065 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜑𝑢 ∈ (1...(⌊‘(𝑀 / 2)))) ∧ 𝑦 ∈ ℕ) → (2 · 𝑢) ∈ ℂ)
232145nncnd 9065 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜑𝑢 ∈ (1...(⌊‘(𝑀 / 2)))) ∧ 𝑦 ∈ ℕ) → 𝑃 ∈ ℂ)
233146, 226gt0ap0d 8717 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜑𝑢 ∈ (1...(⌊‘(𝑀 / 2)))) ∧ 𝑦 ∈ ℕ) → 𝑃 # 0)
234230, 231, 232, 233div23apd 8916 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑𝑢 ∈ (1...(⌊‘(𝑀 / 2)))) ∧ 𝑦 ∈ ℕ) → ((𝑄 · (2 · 𝑢)) / 𝑃) = ((𝑄 / 𝑃) · (2 · 𝑢)))
235234breq2d 4062 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑢 ∈ (1...(⌊‘(𝑀 / 2)))) ∧ 𝑦 ∈ ℕ) → (𝑦 ≤ ((𝑄 · (2 · 𝑢)) / 𝑃) ↔ 𝑦 ≤ ((𝑄 / 𝑃) · (2 · 𝑢))))
236222, 228, 2353bitrd 214 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑢 ∈ (1...(⌊‘(𝑀 / 2)))) ∧ 𝑦 ∈ ℕ) → ((𝑦 · 𝑃) < (𝑄 · (2 · 𝑢)) ↔ 𝑦 ≤ ((𝑄 / 𝑃) · (2 · 𝑢))))
237229nnred 9064 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((𝜑𝑢 ∈ (1...(⌊‘(𝑀 / 2)))) ∧ 𝑦 ∈ ℕ) → 𝑄 ∈ ℝ)
238229nngt0d 9095 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((𝜑𝑢 ∈ (1...(⌊‘(𝑀 / 2)))) ∧ 𝑦 ∈ ℕ) → 0 < 𝑄)
239 ltmul2 8944 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((2 · 𝑢) ∈ ℝ ∧ (𝑃 / 2) ∈ ℝ ∧ (𝑄 ∈ ℝ ∧ 0 < 𝑄)) → ((2 · 𝑢) < (𝑃 / 2) ↔ (𝑄 · (2 · 𝑢)) < (𝑄 · (𝑃 / 2))))
240144, 147, 237, 238, 239syl112anc 1254 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((𝜑𝑢 ∈ (1...(⌊‘(𝑀 / 2)))) ∧ 𝑦 ∈ ℕ) → ((2 · 𝑢) < (𝑃 / 2) ↔ (𝑄 · (2 · 𝑢)) < (𝑄 · (𝑃 / 2))))
241176, 240mpbid 147 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝜑𝑢 ∈ (1...(⌊‘(𝑀 / 2)))) ∧ 𝑦 ∈ ℕ) → (𝑄 · (2 · 𝑢)) < (𝑄 · (𝑃 / 2)))
242 2cnd 9124 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((𝜑𝑢 ∈ (1...(⌊‘(𝑀 / 2)))) ∧ 𝑦 ∈ ℕ) → 2 ∈ ℂ)
243170, 171gt0ap0d 8717 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((𝜑𝑢 ∈ (1...(⌊‘(𝑀 / 2)))) ∧ 𝑦 ∈ ℕ) → 2 # 0)
244 divassap 8778 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝑄 ∈ ℂ ∧ 𝑃 ∈ ℂ ∧ (2 ∈ ℂ ∧ 2 # 0)) → ((𝑄 · 𝑃) / 2) = (𝑄 · (𝑃 / 2)))
245 div23ap 8779 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝑄 ∈ ℂ ∧ 𝑃 ∈ ℂ ∧ (2 ∈ ℂ ∧ 2 # 0)) → ((𝑄 · 𝑃) / 2) = ((𝑄 / 2) · 𝑃))
246244, 245eqtr3d 2241 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝑄 ∈ ℂ ∧ 𝑃 ∈ ℂ ∧ (2 ∈ ℂ ∧ 2 # 0)) → (𝑄 · (𝑃 / 2)) = ((𝑄 / 2) · 𝑃))
247230, 232, 242, 243, 246syl112anc 1254 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝜑𝑢 ∈ (1...(⌊‘(𝑀 / 2)))) ∧ 𝑦 ∈ ℕ) → (𝑄 · (𝑃 / 2)) = ((𝑄 / 2) · 𝑃))
248241, 247breqtrd 4076 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝜑𝑢 ∈ (1...(⌊‘(𝑀 / 2)))) ∧ 𝑦 ∈ ℕ) → (𝑄 · (2 · 𝑢)) < ((𝑄 / 2) · 𝑃))
249214nnred 9064 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝜑𝑢 ∈ (1...(⌊‘(𝑀 / 2)))) ∧ 𝑦 ∈ ℕ) → (𝑦 · 𝑃) ∈ ℝ)
250237rehalfcld 9299 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((𝜑𝑢 ∈ (1...(⌊‘(𝑀 / 2)))) ∧ 𝑦 ∈ ℕ) → (𝑄 / 2) ∈ ℝ)
251250, 146remulcld 8118 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝜑𝑢 ∈ (1...(⌊‘(𝑀 / 2)))) ∧ 𝑦 ∈ ℕ) → ((𝑄 / 2) · 𝑃) ∈ ℝ)
252 lttr 8161 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝑦 · 𝑃) ∈ ℝ ∧ (𝑄 · (2 · 𝑢)) ∈ ℝ ∧ ((𝑄 / 2) · 𝑃) ∈ ℝ) → (((𝑦 · 𝑃) < (𝑄 · (2 · 𝑢)) ∧ (𝑄 · (2 · 𝑢)) < ((𝑄 / 2) · 𝑃)) → (𝑦 · 𝑃) < ((𝑄 / 2) · 𝑃)))
253249, 225, 251, 252syl3anc 1250 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝜑𝑢 ∈ (1...(⌊‘(𝑀 / 2)))) ∧ 𝑦 ∈ ℕ) → (((𝑦 · 𝑃) < (𝑄 · (2 · 𝑢)) ∧ (𝑄 · (2 · 𝑢)) < ((𝑄 / 2) · 𝑃)) → (𝑦 · 𝑃) < ((𝑄 / 2) · 𝑃)))
254248, 253mpan2d 428 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝜑𝑢 ∈ (1...(⌊‘(𝑀 / 2)))) ∧ 𝑦 ∈ ℕ) → ((𝑦 · 𝑃) < (𝑄 · (2 · 𝑢)) → (𝑦 · 𝑃) < ((𝑄 / 2) · 𝑃)))
255 ltmul1 8680 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑦 ∈ ℝ ∧ (𝑄 / 2) ∈ ℝ ∧ (𝑃 ∈ ℝ ∧ 0 < 𝑃)) → (𝑦 < (𝑄 / 2) ↔ (𝑦 · 𝑃) < ((𝑄 / 2) · 𝑃)))
256224, 250, 146, 226, 255syl112anc 1254 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝜑𝑢 ∈ (1...(⌊‘(𝑀 / 2)))) ∧ 𝑦 ∈ ℕ) → (𝑦 < (𝑄 / 2) ↔ (𝑦 · 𝑃) < ((𝑄 / 2) · 𝑃)))
257254, 256sylibrd 169 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜑𝑢 ∈ (1...(⌊‘(𝑀 / 2)))) ∧ 𝑦 ∈ ℕ) → ((𝑦 · 𝑃) < (𝑄 · (2 · 𝑢)) → 𝑦 < (𝑄 / 2)))
258 peano2rem 8354 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (𝑄 ∈ ℝ → (𝑄 − 1) ∈ ℝ)
259237, 258syl 14 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (((𝜑𝑢 ∈ (1...(⌊‘(𝑀 / 2)))) ∧ 𝑦 ∈ ℕ) → (𝑄 − 1) ∈ ℝ)
260259recnd 8116 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((𝜑𝑢 ∈ (1...(⌊‘(𝑀 / 2)))) ∧ 𝑦 ∈ ℕ) → (𝑄 − 1) ∈ ℂ)
261230, 260, 242, 243divsubdirapd 8918 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((𝜑𝑢 ∈ (1...(⌊‘(𝑀 / 2)))) ∧ 𝑦 ∈ ℕ) → ((𝑄 − (𝑄 − 1)) / 2) = ((𝑄 / 2) − ((𝑄 − 1) / 2)))
262101oveq2i 5967 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝑄 / 2) − 𝑁) = ((𝑄 / 2) − ((𝑄 − 1) / 2))
263261, 262eqtr4di 2257 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝜑𝑢 ∈ (1...(⌊‘(𝑀 / 2)))) ∧ 𝑦 ∈ ℕ) → ((𝑄 − (𝑄 − 1)) / 2) = ((𝑄 / 2) − 𝑁))
264 ax-1cn 8033 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 1 ∈ ℂ
265 nncan 8316 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((𝑄 ∈ ℂ ∧ 1 ∈ ℂ) → (𝑄 − (𝑄 − 1)) = 1)
266230, 264, 265sylancl 413 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((𝜑𝑢 ∈ (1...(⌊‘(𝑀 / 2)))) ∧ 𝑦 ∈ ℕ) → (𝑄 − (𝑄 − 1)) = 1)
267266oveq1d 5971 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((𝜑𝑢 ∈ (1...(⌊‘(𝑀 / 2)))) ∧ 𝑦 ∈ ℕ) → ((𝑄 − (𝑄 − 1)) / 2) = (1 / 2))
268 halflt1 9269 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (1 / 2) < 1
269267, 268eqbrtrdi 4089 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝜑𝑢 ∈ (1...(⌊‘(𝑀 / 2)))) ∧ 𝑦 ∈ ℕ) → ((𝑄 − (𝑄 − 1)) / 2) < 1)
270263, 269eqbrtrrd 4074 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝜑𝑢 ∈ (1...(⌊‘(𝑀 / 2)))) ∧ 𝑦 ∈ ℕ) → ((𝑄 / 2) − 𝑁) < 1)
2712, 101gausslemma2dlem0b 15597 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝜑𝑁 ∈ ℕ)
272271ad2antrr 488 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((𝜑𝑢 ∈ (1...(⌊‘(𝑀 / 2)))) ∧ 𝑦 ∈ ℕ) → 𝑁 ∈ ℕ)
273272nnred 9064 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝜑𝑢 ∈ (1...(⌊‘(𝑀 / 2)))) ∧ 𝑦 ∈ ℕ) → 𝑁 ∈ ℝ)
274 1red 8102 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝜑𝑢 ∈ (1...(⌊‘(𝑀 / 2)))) ∧ 𝑦 ∈ ℕ) → 1 ∈ ℝ)
275250, 273, 274ltsubadd2d 8631 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝜑𝑢 ∈ (1...(⌊‘(𝑀 / 2)))) ∧ 𝑦 ∈ ℕ) → (((𝑄 / 2) − 𝑁) < 1 ↔ (𝑄 / 2) < (𝑁 + 1)))
276270, 275mpbid 147 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝜑𝑢 ∈ (1...(⌊‘(𝑀 / 2)))) ∧ 𝑦 ∈ ℕ) → (𝑄 / 2) < (𝑁 + 1))
277 peano2re 8223 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑁 ∈ ℝ → (𝑁 + 1) ∈ ℝ)
278273, 277syl 14 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝜑𝑢 ∈ (1...(⌊‘(𝑀 / 2)))) ∧ 𝑦 ∈ ℕ) → (𝑁 + 1) ∈ ℝ)
279 lttr 8161 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑦 ∈ ℝ ∧ (𝑄 / 2) ∈ ℝ ∧ (𝑁 + 1) ∈ ℝ) → ((𝑦 < (𝑄 / 2) ∧ (𝑄 / 2) < (𝑁 + 1)) → 𝑦 < (𝑁 + 1)))
280224, 250, 278, 279syl3anc 1250 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝜑𝑢 ∈ (1...(⌊‘(𝑀 / 2)))) ∧ 𝑦 ∈ ℕ) → ((𝑦 < (𝑄 / 2) ∧ (𝑄 / 2) < (𝑁 + 1)) → 𝑦 < (𝑁 + 1)))
281276, 280mpan2d 428 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜑𝑢 ∈ (1...(⌊‘(𝑀 / 2)))) ∧ 𝑦 ∈ ℕ) → (𝑦 < (𝑄 / 2) → 𝑦 < (𝑁 + 1)))
282257, 281syld 45 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑𝑢 ∈ (1...(⌊‘(𝑀 / 2)))) ∧ 𝑦 ∈ ℕ) → ((𝑦 · 𝑃) < (𝑄 · (2 · 𝑢)) → 𝑦 < (𝑁 + 1)))
283 nnleltp1 9447 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑦 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (𝑦𝑁𝑦 < (𝑁 + 1)))
284213, 272, 283syl2anc 411 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑𝑢 ∈ (1...(⌊‘(𝑀 / 2)))) ∧ 𝑦 ∈ ℕ) → (𝑦𝑁𝑦 < (𝑁 + 1)))
285282, 284sylibrd 169 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑢 ∈ (1...(⌊‘(𝑀 / 2)))) ∧ 𝑦 ∈ ℕ) → ((𝑦 · 𝑃) < (𝑄 · (2 · 𝑢)) → 𝑦𝑁))
286285pm4.71rd 394 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑢 ∈ (1...(⌊‘(𝑀 / 2)))) ∧ 𝑦 ∈ ℕ) → ((𝑦 · 𝑃) < (𝑄 · (2 · 𝑢)) ↔ (𝑦𝑁 ∧ (𝑦 · 𝑃) < (𝑄 · (2 · 𝑢)))))
28797, 71syldan 282 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑢 ∈ (1...(⌊‘(𝑀 / 2)))) → ((𝑄 / 𝑃) · (2 · 𝑢)) ∈ ℚ)
288 flqge 10442 . . . . . . . . . . . . . . . . . . . . 21 ((((𝑄 / 𝑃) · (2 · 𝑢)) ∈ ℚ ∧ 𝑦 ∈ ℤ) → (𝑦 ≤ ((𝑄 / 𝑃) · (2 · 𝑢)) ↔ 𝑦 ≤ (⌊‘((𝑄 / 𝑃) · (2 · 𝑢)))))
289287, 205, 288syl2an 289 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑢 ∈ (1...(⌊‘(𝑀 / 2)))) ∧ 𝑦 ∈ ℕ) → (𝑦 ≤ ((𝑄 / 𝑃) · (2 · 𝑢)) ↔ 𝑦 ≤ (⌊‘((𝑄 / 𝑃) · (2 · 𝑢)))))
290236, 286, 2893bitr3d 218 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑢 ∈ (1...(⌊‘(𝑀 / 2)))) ∧ 𝑦 ∈ ℕ) → ((𝑦𝑁 ∧ (𝑦 · 𝑃) < (𝑄 · (2 · 𝑢))) ↔ 𝑦 ≤ (⌊‘((𝑄 / 𝑃) · (2 · 𝑢)))))
291290pm5.32da 452 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑢 ∈ (1...(⌊‘(𝑀 / 2)))) → ((𝑦 ∈ ℕ ∧ (𝑦𝑁 ∧ (𝑦 · 𝑃) < (𝑄 · (2 · 𝑢)))) ↔ (𝑦 ∈ ℕ ∧ 𝑦 ≤ (⌊‘((𝑄 / 𝑃) · (2 · 𝑢))))))
292142, 291bitrid 192 . . . . . . . . . . . . . . . . 17 ((𝜑𝑢 ∈ (1...(⌊‘(𝑀 / 2)))) → (((𝑦 ∈ ℕ ∧ 𝑦𝑁) ∧ (𝑦 · 𝑃) < (𝑄 · (2 · 𝑢))) ↔ (𝑦 ∈ ℕ ∧ 𝑦 ≤ (⌊‘((𝑄 / 𝑃) · (2 · 𝑢))))))
293292adantr 276 . . . . . . . . . . . . . . . 16 (((𝜑𝑢 ∈ (1...(⌊‘(𝑀 / 2)))) ∧ 𝑥 = (2 · 𝑢)) → (((𝑦 ∈ ℕ ∧ 𝑦𝑁) ∧ (𝑦 · 𝑃) < (𝑄 · (2 · 𝑢))) ↔ (𝑦 ∈ ℕ ∧ 𝑦 ≤ (⌊‘((𝑄 / 𝑃) · (2 · 𝑢))))))
294 simpr 110 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑢 ∈ (1...(⌊‘(𝑀 / 2)))) ∧ 𝑥 = (2 · 𝑢)) → 𝑥 = (2 · 𝑢))
295 nnuz 9699 . . . . . . . . . . . . . . . . . . . . . . . 24 ℕ = (ℤ‘1)
296121, 295eleqtrdi 2299 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑𝑢 ∈ (1...(⌊‘(𝑀 / 2)))) → (2 · 𝑢) ∈ (ℤ‘1))
2979adantr 276 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑𝑢 ∈ (1...(⌊‘(𝑀 / 2)))) → 𝑀 ∈ ℤ)
298 elfz5 10154 . . . . . . . . . . . . . . . . . . . . . . 23 (((2 · 𝑢) ∈ (ℤ‘1) ∧ 𝑀 ∈ ℤ) → ((2 · 𝑢) ∈ (1...𝑀) ↔ (2 · 𝑢) ≤ 𝑀))
299296, 297, 298syl2anc 411 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑢 ∈ (1...(⌊‘(𝑀 / 2)))) → ((2 · 𝑢) ∈ (1...𝑀) ↔ (2 · 𝑢) ≤ 𝑀))
300165, 299mpbird 167 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑢 ∈ (1...(⌊‘(𝑀 / 2)))) → (2 · 𝑢) ∈ (1...𝑀))
301300adantr 276 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑢 ∈ (1...(⌊‘(𝑀 / 2)))) ∧ 𝑥 = (2 · 𝑢)) → (2 · 𝑢) ∈ (1...𝑀))
302294, 301eqeltrd 2283 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑢 ∈ (1...(⌊‘(𝑀 / 2)))) ∧ 𝑥 = (2 · 𝑢)) → 𝑥 ∈ (1...𝑀))
303302biantrurd 305 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑢 ∈ (1...(⌊‘(𝑀 / 2)))) ∧ 𝑥 = (2 · 𝑢)) → (𝑦 ∈ (1...𝑁) ↔ (𝑥 ∈ (1...𝑀) ∧ 𝑦 ∈ (1...𝑁))))
304271nnzd 9509 . . . . . . . . . . . . . . . . . . . 20 (𝜑𝑁 ∈ ℤ)
305304ad2antrr 488 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑢 ∈ (1...(⌊‘(𝑀 / 2)))) ∧ 𝑥 = (2 · 𝑢)) → 𝑁 ∈ ℤ)
306 fznn 10226 . . . . . . . . . . . . . . . . . . 19 (𝑁 ∈ ℤ → (𝑦 ∈ (1...𝑁) ↔ (𝑦 ∈ ℕ ∧ 𝑦𝑁)))
307305, 306syl 14 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑢 ∈ (1...(⌊‘(𝑀 / 2)))) ∧ 𝑥 = (2 · 𝑢)) → (𝑦 ∈ (1...𝑁) ↔ (𝑦 ∈ ℕ ∧ 𝑦𝑁)))
308303, 307bitr3d 190 . . . . . . . . . . . . . . . . 17 (((𝜑𝑢 ∈ (1...(⌊‘(𝑀 / 2)))) ∧ 𝑥 = (2 · 𝑢)) → ((𝑥 ∈ (1...𝑀) ∧ 𝑦 ∈ (1...𝑁)) ↔ (𝑦 ∈ ℕ ∧ 𝑦𝑁)))
309 oveq1 5963 . . . . . . . . . . . . . . . . . . 19 (𝑥 = (2 · 𝑢) → (𝑥 · 𝑄) = ((2 · 𝑢) · 𝑄))
310121nncnd 9065 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑢 ∈ (1...(⌊‘(𝑀 / 2)))) → (2 · 𝑢) ∈ ℂ)
311216nncnd 9065 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑢 ∈ (1...(⌊‘(𝑀 / 2)))) → 𝑄 ∈ ℂ)
312310, 311mulcomd 8109 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑢 ∈ (1...(⌊‘(𝑀 / 2)))) → ((2 · 𝑢) · 𝑄) = (𝑄 · (2 · 𝑢)))
313309, 312sylan9eqr 2261 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑢 ∈ (1...(⌊‘(𝑀 / 2)))) ∧ 𝑥 = (2 · 𝑢)) → (𝑥 · 𝑄) = (𝑄 · (2 · 𝑢)))
314313breq2d 4062 . . . . . . . . . . . . . . . . 17 (((𝜑𝑢 ∈ (1...(⌊‘(𝑀 / 2)))) ∧ 𝑥 = (2 · 𝑢)) → ((𝑦 · 𝑃) < (𝑥 · 𝑄) ↔ (𝑦 · 𝑃) < (𝑄 · (2 · 𝑢))))
315308, 314anbi12d 473 . . . . . . . . . . . . . . . 16 (((𝜑𝑢 ∈ (1...(⌊‘(𝑀 / 2)))) ∧ 𝑥 = (2 · 𝑢)) → (((𝑥 ∈ (1...𝑀) ∧ 𝑦 ∈ (1...𝑁)) ∧ (𝑦 · 𝑃) < (𝑥 · 𝑄)) ↔ ((𝑦 ∈ ℕ ∧ 𝑦𝑁) ∧ (𝑦 · 𝑃) < (𝑄 · (2 · 𝑢)))))
316287flqcld 10437 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑢 ∈ (1...(⌊‘(𝑀 / 2)))) → (⌊‘((𝑄 / 𝑃) · (2 · 𝑢))) ∈ ℤ)
317 fznn 10226 . . . . . . . . . . . . . . . . . 18 ((⌊‘((𝑄 / 𝑃) · (2 · 𝑢))) ∈ ℤ → (𝑦 ∈ (1...(⌊‘((𝑄 / 𝑃) · (2 · 𝑢)))) ↔ (𝑦 ∈ ℕ ∧ 𝑦 ≤ (⌊‘((𝑄 / 𝑃) · (2 · 𝑢))))))
318316, 317syl 14 . . . . . . . . . . . . . . . . 17 ((𝜑𝑢 ∈ (1...(⌊‘(𝑀 / 2)))) → (𝑦 ∈ (1...(⌊‘((𝑄 / 𝑃) · (2 · 𝑢)))) ↔ (𝑦 ∈ ℕ ∧ 𝑦 ≤ (⌊‘((𝑄 / 𝑃) · (2 · 𝑢))))))
319318adantr 276 . . . . . . . . . . . . . . . 16 (((𝜑𝑢 ∈ (1...(⌊‘(𝑀 / 2)))) ∧ 𝑥 = (2 · 𝑢)) → (𝑦 ∈ (1...(⌊‘((𝑄 / 𝑃) · (2 · 𝑢)))) ↔ (𝑦 ∈ ℕ ∧ 𝑦 ≤ (⌊‘((𝑄 / 𝑃) · (2 · 𝑢))))))
320293, 315, 3193bitr4d 220 . . . . . . . . . . . . . . 15 (((𝜑𝑢 ∈ (1...(⌊‘(𝑀 / 2)))) ∧ 𝑥 = (2 · 𝑢)) → (((𝑥 ∈ (1...𝑀) ∧ 𝑦 ∈ (1...𝑁)) ∧ (𝑦 · 𝑃) < (𝑥 · 𝑄)) ↔ 𝑦 ∈ (1...(⌊‘((𝑄 / 𝑃) · (2 · 𝑢))))))
321141, 320bitrid 192 . . . . . . . . . . . . . 14 (((𝜑𝑢 ∈ (1...(⌊‘(𝑀 / 2)))) ∧ 𝑥 = (2 · 𝑢)) → (⟨𝑥, 𝑦⟩ ∈ 𝑆𝑦 ∈ (1...(⌊‘((𝑄 / 𝑃) · (2 · 𝑢))))))
322321pm5.32da 452 . . . . . . . . . . . . 13 ((𝜑𝑢 ∈ (1...(⌊‘(𝑀 / 2)))) → ((𝑥 = (2 · 𝑢) ∧ ⟨𝑥, 𝑦⟩ ∈ 𝑆) ↔ (𝑥 = (2 · 𝑢) ∧ 𝑦 ∈ (1...(⌊‘((𝑄 / 𝑃) · (2 · 𝑢)))))))
323 vex 2776 . . . . . . . . . . . . . . . . . 18 𝑥 ∈ V
324 vex 2776 . . . . . . . . . . . . . . . . . 18 𝑦 ∈ V
325323, 324op1std 6246 . . . . . . . . . . . . . . . . 17 (𝑧 = ⟨𝑥, 𝑦⟩ → (1st𝑧) = 𝑥)
326325eqeq2d 2218 . . . . . . . . . . . . . . . 16 (𝑧 = ⟨𝑥, 𝑦⟩ → ((2 · 𝑢) = (1st𝑧) ↔ (2 · 𝑢) = 𝑥))
327 eqcom 2208 . . . . . . . . . . . . . . . 16 ((2 · 𝑢) = 𝑥𝑥 = (2 · 𝑢))
328326, 327bitrdi 196 . . . . . . . . . . . . . . 15 (𝑧 = ⟨𝑥, 𝑦⟩ → ((2 · 𝑢) = (1st𝑧) ↔ 𝑥 = (2 · 𝑢)))
329328elrab 2933 . . . . . . . . . . . . . 14 (⟨𝑥, 𝑦⟩ ∈ {𝑧𝑆 ∣ (2 · 𝑢) = (1st𝑧)} ↔ (⟨𝑥, 𝑦⟩ ∈ 𝑆𝑥 = (2 · 𝑢)))
330329biancomi 270 . . . . . . . . . . . . 13 (⟨𝑥, 𝑦⟩ ∈ {𝑧𝑆 ∣ (2 · 𝑢) = (1st𝑧)} ↔ (𝑥 = (2 · 𝑢) ∧ ⟨𝑥, 𝑦⟩ ∈ 𝑆))
331 opelxp 4712 . . . . . . . . . . . . . 14 (⟨𝑥, 𝑦⟩ ∈ ({(2 · 𝑢)} × (1...(⌊‘((𝑄 / 𝑃) · (2 · 𝑢))))) ↔ (𝑥 ∈ {(2 · 𝑢)} ∧ 𝑦 ∈ (1...(⌊‘((𝑄 / 𝑃) · (2 · 𝑢))))))
332 velsn 3654 . . . . . . . . . . . . . . 15 (𝑥 ∈ {(2 · 𝑢)} ↔ 𝑥 = (2 · 𝑢))
333332anbi1i 458 . . . . . . . . . . . . . 14 ((𝑥 ∈ {(2 · 𝑢)} ∧ 𝑦 ∈ (1...(⌊‘((𝑄 / 𝑃) · (2 · 𝑢))))) ↔ (𝑥 = (2 · 𝑢) ∧ 𝑦 ∈ (1...(⌊‘((𝑄 / 𝑃) · (2 · 𝑢))))))
334331, 333bitri 184 . . . . . . . . . . . . 13 (⟨𝑥, 𝑦⟩ ∈ ({(2 · 𝑢)} × (1...(⌊‘((𝑄 / 𝑃) · (2 · 𝑢))))) ↔ (𝑥 = (2 · 𝑢) ∧ 𝑦 ∈ (1...(⌊‘((𝑄 / 𝑃) · (2 · 𝑢))))))
335322, 330, 3343bitr4g 223 . . . . . . . . . . . 12 ((𝜑𝑢 ∈ (1...(⌊‘(𝑀 / 2)))) → (⟨𝑥, 𝑦⟩ ∈ {𝑧𝑆 ∣ (2 · 𝑢) = (1st𝑧)} ↔ ⟨𝑥, 𝑦⟩ ∈ ({(2 · 𝑢)} × (1...(⌊‘((𝑄 / 𝑃) · (2 · 𝑢)))))))
336137, 138, 335eqrelrdv 4778 . . . . . . . . . . 11 ((𝜑𝑢 ∈ (1...(⌊‘(𝑀 / 2)))) → {𝑧𝑆 ∣ (2 · 𝑢) = (1st𝑧)} = ({(2 · 𝑢)} × (1...(⌊‘((𝑄 / 𝑃) · (2 · 𝑢))))))
337336eqcomd 2212 . . . . . . . . . 10 ((𝜑𝑢 ∈ (1...(⌊‘(𝑀 / 2)))) → ({(2 · 𝑢)} × (1...(⌊‘((𝑄 / 𝑃) · (2 · 𝑢))))) = {𝑧𝑆 ∣ (2 · 𝑢) = (1st𝑧)})
338337fveq2d 5592 . . . . . . . . 9 ((𝜑𝑢 ∈ (1...(⌊‘(𝑀 / 2)))) → (♯‘({(2 · 𝑢)} × (1...(⌊‘((𝑄 / 𝑃) · (2 · 𝑢)))))) = (♯‘{𝑧𝑆 ∣ (2 · 𝑢) = (1st𝑧)}))
339 hashfz1 10945 . . . . . . . . . 10 ((⌊‘((𝑄 / 𝑃) · (2 · 𝑢))) ∈ ℕ0 → (♯‘(1...(⌊‘((𝑄 / 𝑃) · (2 · 𝑢))))) = (⌊‘((𝑄 / 𝑃) · (2 · 𝑢))))
34098, 339syl 14 . . . . . . . . 9 ((𝜑𝑢 ∈ (1...(⌊‘(𝑀 / 2)))) → (♯‘(1...(⌊‘((𝑄 / 𝑃) · (2 · 𝑢))))) = (⌊‘((𝑄 / 𝑃) · (2 · 𝑢))))
341133, 338, 3403eqtr3rd 2248 . . . . . . . 8 ((𝜑𝑢 ∈ (1...(⌊‘(𝑀 / 2)))) → (⌊‘((𝑄 / 𝑃) · (2 · 𝑢))) = (♯‘{𝑧𝑆 ∣ (2 · 𝑢) = (1st𝑧)}))
342341sumeq2dv 11749 . . . . . . 7 (𝜑 → Σ𝑢 ∈ (1...(⌊‘(𝑀 / 2)))(⌊‘((𝑄 / 𝑃) · (2 · 𝑢))) = Σ𝑢 ∈ (1...(⌊‘(𝑀 / 2)))(♯‘{𝑧𝑆 ∣ (2 · 𝑢) = (1st𝑧)}))
343106adantr 276 . . . . . . . . 9 ((𝜑𝑢 ∈ (1...(⌊‘(𝑀 / 2)))) → 𝑆 ∈ Fin)
34497, 67syldan 282 . . . . . . . . . . 11 ((𝜑𝑢 ∈ (1...(⌊‘(𝑀 / 2)))) → (2 · 𝑢) ∈ ℤ)
345 zdceq 9463 . . . . . . . . . . 11 (((2 · 𝑢) ∈ ℤ ∧ (1st𝑧) ∈ ℤ) → DECID (2 · 𝑢) = (1st𝑧))
346344, 112, 345syl2an 289 . . . . . . . . . 10 (((𝜑𝑢 ∈ (1...(⌊‘(𝑀 / 2)))) ∧ 𝑧𝑆) → DECID (2 · 𝑢) = (1st𝑧))
347346ralrimiva 2580 . . . . . . . . 9 ((𝜑𝑢 ∈ (1...(⌊‘(𝑀 / 2)))) → ∀𝑧𝑆 DECID (2 · 𝑢) = (1st𝑧))
348343, 347ssfirab 7047 . . . . . . . 8 ((𝜑𝑢 ∈ (1...(⌊‘(𝑀 / 2)))) → {𝑧𝑆 ∣ (2 · 𝑢) = (1st𝑧)} ∈ Fin)
349 fveq2 5588 . . . . . . . . . . . . . . . 16 (𝑧 = 𝑣 → (1st𝑧) = (1st𝑣))
350349eqeq2d 2218 . . . . . . . . . . . . . . 15 (𝑧 = 𝑣 → ((2 · 𝑢) = (1st𝑧) ↔ (2 · 𝑢) = (1st𝑣)))
351350elrab 2933 . . . . . . . . . . . . . 14 (𝑣 ∈ {𝑧𝑆 ∣ (2 · 𝑢) = (1st𝑧)} ↔ (𝑣𝑆 ∧ (2 · 𝑢) = (1st𝑣)))
352351simprbi 275 . . . . . . . . . . . . 13 (𝑣 ∈ {𝑧𝑆 ∣ (2 · 𝑢) = (1st𝑧)} → (2 · 𝑢) = (1st𝑣))
353352ad2antll 491 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑢 ∈ (1...(⌊‘(𝑀 / 2))) ∧ 𝑣 ∈ {𝑧𝑆 ∣ (2 · 𝑢) = (1st𝑧)})) → (2 · 𝑢) = (1st𝑣))
354353oveq1d 5971 . . . . . . . . . . 11 ((𝜑 ∧ (𝑢 ∈ (1...(⌊‘(𝑀 / 2))) ∧ 𝑣 ∈ {𝑧𝑆 ∣ (2 · 𝑢) = (1st𝑧)})) → ((2 · 𝑢) / 2) = ((1st𝑣) / 2))
355157nncnd 9065 . . . . . . . . . . . . 13 ((𝜑𝑢 ∈ (1...(⌊‘(𝑀 / 2)))) → 𝑢 ∈ ℂ)
356355adantrr 479 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑢 ∈ (1...(⌊‘(𝑀 / 2))) ∧ 𝑣 ∈ {𝑧𝑆 ∣ (2 · 𝑢) = (1st𝑧)})) → 𝑢 ∈ ℂ)
357 2cnd 9124 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑢 ∈ (1...(⌊‘(𝑀 / 2))) ∧ 𝑣 ∈ {𝑧𝑆 ∣ (2 · 𝑢) = (1st𝑧)})) → 2 ∈ ℂ)
358 2ap0 9144 . . . . . . . . . . . . 13 2 # 0
359358a1i 9 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑢 ∈ (1...(⌊‘(𝑀 / 2))) ∧ 𝑣 ∈ {𝑧𝑆 ∣ (2 · 𝑢) = (1st𝑧)})) → 2 # 0)
360356, 357, 359divcanap3d 8883 . . . . . . . . . . 11 ((𝜑 ∧ (𝑢 ∈ (1...(⌊‘(𝑀 / 2))) ∧ 𝑣 ∈ {𝑧𝑆 ∣ (2 · 𝑢) = (1st𝑧)})) → ((2 · 𝑢) / 2) = 𝑢)
361354, 360eqtr3d 2241 . . . . . . . . . 10 ((𝜑 ∧ (𝑢 ∈ (1...(⌊‘(𝑀 / 2))) ∧ 𝑣 ∈ {𝑧𝑆 ∣ (2 · 𝑢) = (1st𝑧)})) → ((1st𝑣) / 2) = 𝑢)
362361ralrimivva 2589 . . . . . . . . 9 (𝜑 → ∀𝑢 ∈ (1...(⌊‘(𝑀 / 2)))∀𝑣 ∈ {𝑧𝑆 ∣ (2 · 𝑢) = (1st𝑧)} ((1st𝑣) / 2) = 𝑢)
363 invdisj 4043 . . . . . . . . 9 (∀𝑢 ∈ (1...(⌊‘(𝑀 / 2)))∀𝑣 ∈ {𝑧𝑆 ∣ (2 · 𝑢) = (1st𝑧)} ((1st𝑣) / 2) = 𝑢Disj 𝑢 ∈ (1...(⌊‘(𝑀 / 2))){𝑧𝑆 ∣ (2 · 𝑢) = (1st𝑧)})
364362, 363syl 14 . . . . . . . 8 (𝜑Disj 𝑢 ∈ (1...(⌊‘(𝑀 / 2))){𝑧𝑆 ∣ (2 · 𝑢) = (1st𝑧)})
36594, 348, 364hashiun 11859 . . . . . . 7 (𝜑 → (♯‘ 𝑢 ∈ (1...(⌊‘(𝑀 / 2))){𝑧𝑆 ∣ (2 · 𝑢) = (1st𝑧)}) = Σ𝑢 ∈ (1...(⌊‘(𝑀 / 2)))(♯‘{𝑧𝑆 ∣ (2 · 𝑢) = (1st𝑧)}))
366 iunrab 3980 . . . . . . . . 9 𝑢 ∈ (1...(⌊‘(𝑀 / 2))){𝑧𝑆 ∣ (2 · 𝑢) = (1st𝑧)} = {𝑧𝑆 ∣ ∃𝑢 ∈ (1...(⌊‘(𝑀 / 2)))(2 · 𝑢) = (1st𝑧)}
367 2cn 9122 . . . . . . . . . . . . . 14 2 ∈ ℂ
368 zcn 9392 . . . . . . . . . . . . . . 15 (𝑢 ∈ ℤ → 𝑢 ∈ ℂ)
369368adantl 277 . . . . . . . . . . . . . 14 (((𝜑𝑧𝑆) ∧ 𝑢 ∈ ℤ) → 𝑢 ∈ ℂ)
370 mulcom 8069 . . . . . . . . . . . . . 14 ((2 ∈ ℂ ∧ 𝑢 ∈ ℂ) → (2 · 𝑢) = (𝑢 · 2))
371367, 369, 370sylancr 414 . . . . . . . . . . . . 13 (((𝜑𝑧𝑆) ∧ 𝑢 ∈ ℤ) → (2 · 𝑢) = (𝑢 · 2))
372371eqeq1d 2215 . . . . . . . . . . . 12 (((𝜑𝑧𝑆) ∧ 𝑢 ∈ ℤ) → ((2 · 𝑢) = (1st𝑧) ↔ (𝑢 · 2) = (1st𝑧)))
373372rexbidva 2504 . . . . . . . . . . 11 ((𝜑𝑧𝑆) → (∃𝑢 ∈ ℤ (2 · 𝑢) = (1st𝑧) ↔ ∃𝑢 ∈ ℤ (𝑢 · 2) = (1st𝑧)))
374152anim1i 340 . . . . . . . . . . . . 13 ((𝑢 ∈ (1...(⌊‘(𝑀 / 2))) ∧ (2 · 𝑢) = (1st𝑧)) → (𝑢 ∈ ℤ ∧ (2 · 𝑢) = (1st𝑧)))
375374reximi2 2603 . . . . . . . . . . . 12 (∃𝑢 ∈ (1...(⌊‘(𝑀 / 2)))(2 · 𝑢) = (1st𝑧) → ∃𝑢 ∈ ℤ (2 · 𝑢) = (1st𝑧))
376 simprr 531 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑧𝑆) ∧ (𝑢 ∈ ℤ ∧ (2 · 𝑢) = (1st𝑧))) → (2 · 𝑢) = (1st𝑧))
377 simpr 110 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑𝑧𝑆) → 𝑧𝑆)
378108, 377sselid 3195 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑧𝑆) → 𝑧 ∈ ((1...𝑀) × (1...𝑁)))
379378, 110syl 14 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑧𝑆) → (1st𝑧) ∈ (1...𝑀))
380379adantr 276 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑧𝑆) ∧ (𝑢 ∈ ℤ ∧ (2 · 𝑢) = (1st𝑧))) → (1st𝑧) ∈ (1...𝑀))
381 elfzle2 10165 . . . . . . . . . . . . . . . . . . . 20 ((1st𝑧) ∈ (1...𝑀) → (1st𝑧) ≤ 𝑀)
382380, 381syl 14 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑧𝑆) ∧ (𝑢 ∈ ℤ ∧ (2 · 𝑢) = (1st𝑧))) → (1st𝑧) ≤ 𝑀)
383376, 382eqbrtrd 4072 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑧𝑆) ∧ (𝑢 ∈ ℤ ∧ (2 · 𝑢) = (1st𝑧))) → (2 · 𝑢) ≤ 𝑀)
384 zre 9391 . . . . . . . . . . . . . . . . . . . 20 (𝑢 ∈ ℤ → 𝑢 ∈ ℝ)
385384ad2antrl 490 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑧𝑆) ∧ (𝑢 ∈ ℤ ∧ (2 · 𝑢) = (1st𝑧))) → 𝑢 ∈ ℝ)
38624ad2antrr 488 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑧𝑆) ∧ (𝑢 ∈ ℤ ∧ (2 · 𝑢) = (1st𝑧))) → 𝑀 ∈ ℝ)
387159a1i 9 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑧𝑆) ∧ (𝑢 ∈ ℤ ∧ (2 · 𝑢) = (1st𝑧))) → 2 ∈ ℝ)
388161a1i 9 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑧𝑆) ∧ (𝑢 ∈ ℤ ∧ (2 · 𝑢) = (1st𝑧))) → 0 < 2)
389385, 386, 387, 388, 163syl112anc 1254 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑧𝑆) ∧ (𝑢 ∈ ℤ ∧ (2 · 𝑢) = (1st𝑧))) → ((2 · 𝑢) ≤ 𝑀𝑢 ≤ (𝑀 / 2)))
390383, 389mpbid 147 . . . . . . . . . . . . . . . . 17 (((𝜑𝑧𝑆) ∧ (𝑢 ∈ ℤ ∧ (2 · 𝑢) = (1st𝑧))) → 𝑢 ≤ (𝑀 / 2))
39112ad2antrr 488 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑧𝑆) ∧ (𝑢 ∈ ℤ ∧ (2 · 𝑢) = (1st𝑧))) → (𝑀 / 2) ∈ ℚ)
392 simprl 529 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑧𝑆) ∧ (𝑢 ∈ ℤ ∧ (2 · 𝑢) = (1st𝑧))) → 𝑢 ∈ ℤ)
393391, 392, 153syl2anc 411 . . . . . . . . . . . . . . . . 17 (((𝜑𝑧𝑆) ∧ (𝑢 ∈ ℤ ∧ (2 · 𝑢) = (1st𝑧))) → (𝑢 ≤ (𝑀 / 2) ↔ 𝑢 ≤ (⌊‘(𝑀 / 2))))
394390, 393mpbid 147 . . . . . . . . . . . . . . . 16 (((𝜑𝑧𝑆) ∧ (𝑢 ∈ ℤ ∧ (2 · 𝑢) = (1st𝑧))) → 𝑢 ≤ (⌊‘(𝑀 / 2)))
395 2t0e0 9211 . . . . . . . . . . . . . . . . . . . . 21 (2 · 0) = 0
396 elfznn 10191 . . . . . . . . . . . . . . . . . . . . . . . 24 ((1st𝑧) ∈ (1...𝑀) → (1st𝑧) ∈ ℕ)
397380, 396syl 14 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜑𝑧𝑆) ∧ (𝑢 ∈ ℤ ∧ (2 · 𝑢) = (1st𝑧))) → (1st𝑧) ∈ ℕ)
398376, 397eqeltrd 2283 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑𝑧𝑆) ∧ (𝑢 ∈ ℤ ∧ (2 · 𝑢) = (1st𝑧))) → (2 · 𝑢) ∈ ℕ)
399398nngt0d 9095 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑧𝑆) ∧ (𝑢 ∈ ℤ ∧ (2 · 𝑢) = (1st𝑧))) → 0 < (2 · 𝑢))
400395, 399eqbrtrid 4085 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑧𝑆) ∧ (𝑢 ∈ ℤ ∧ (2 · 𝑢) = (1st𝑧))) → (2 · 0) < (2 · 𝑢))
401 0red 8088 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑧𝑆) ∧ (𝑢 ∈ ℤ ∧ (2 · 𝑢) = (1st𝑧))) → 0 ∈ ℝ)
402 ltmul2 8944 . . . . . . . . . . . . . . . . . . . . 21 ((0 ∈ ℝ ∧ 𝑢 ∈ ℝ ∧ (2 ∈ ℝ ∧ 0 < 2)) → (0 < 𝑢 ↔ (2 · 0) < (2 · 𝑢)))
403401, 385, 387, 388, 402syl112anc 1254 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑧𝑆) ∧ (𝑢 ∈ ℤ ∧ (2 · 𝑢) = (1st𝑧))) → (0 < 𝑢 ↔ (2 · 0) < (2 · 𝑢)))
404400, 403mpbird 167 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑧𝑆) ∧ (𝑢 ∈ ℤ ∧ (2 · 𝑢) = (1st𝑧))) → 0 < 𝑢)
405 elnnz 9397 . . . . . . . . . . . . . . . . . . 19 (𝑢 ∈ ℕ ↔ (𝑢 ∈ ℤ ∧ 0 < 𝑢))
406392, 404, 405sylanbrc 417 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑧𝑆) ∧ (𝑢 ∈ ℤ ∧ (2 · 𝑢) = (1st𝑧))) → 𝑢 ∈ ℕ)
407406, 295eleqtrdi 2299 . . . . . . . . . . . . . . . . 17 (((𝜑𝑧𝑆) ∧ (𝑢 ∈ ℤ ∧ (2 · 𝑢) = (1st𝑧))) → 𝑢 ∈ (ℤ‘1))
40813ad2antrr 488 . . . . . . . . . . . . . . . . 17 (((𝜑𝑧𝑆) ∧ (𝑢 ∈ ℤ ∧ (2 · 𝑢) = (1st𝑧))) → (⌊‘(𝑀 / 2)) ∈ ℤ)
409 elfz5 10154 . . . . . . . . . . . . . . . . 17 ((𝑢 ∈ (ℤ‘1) ∧ (⌊‘(𝑀 / 2)) ∈ ℤ) → (𝑢 ∈ (1...(⌊‘(𝑀 / 2))) ↔ 𝑢 ≤ (⌊‘(𝑀 / 2))))
410407, 408, 409syl2anc 411 . . . . . . . . . . . . . . . 16 (((𝜑𝑧𝑆) ∧ (𝑢 ∈ ℤ ∧ (2 · 𝑢) = (1st𝑧))) → (𝑢 ∈ (1...(⌊‘(𝑀 / 2))) ↔ 𝑢 ≤ (⌊‘(𝑀 / 2))))
411394, 410mpbird 167 . . . . . . . . . . . . . . 15 (((𝜑𝑧𝑆) ∧ (𝑢 ∈ ℤ ∧ (2 · 𝑢) = (1st𝑧))) → 𝑢 ∈ (1...(⌊‘(𝑀 / 2))))
412411, 376jca 306 . . . . . . . . . . . . . 14 (((𝜑𝑧𝑆) ∧ (𝑢 ∈ ℤ ∧ (2 · 𝑢) = (1st𝑧))) → (𝑢 ∈ (1...(⌊‘(𝑀 / 2))) ∧ (2 · 𝑢) = (1st𝑧)))
413412ex 115 . . . . . . . . . . . . 13 ((𝜑𝑧𝑆) → ((𝑢 ∈ ℤ ∧ (2 · 𝑢) = (1st𝑧)) → (𝑢 ∈ (1...(⌊‘(𝑀 / 2))) ∧ (2 · 𝑢) = (1st𝑧))))
414413reximdv2 2606 . . . . . . . . . . . 12 ((𝜑𝑧𝑆) → (∃𝑢 ∈ ℤ (2 · 𝑢) = (1st𝑧) → ∃𝑢 ∈ (1...(⌊‘(𝑀 / 2)))(2 · 𝑢) = (1st𝑧)))
415375, 414impbid2 143 . . . . . . . . . . 11 ((𝜑𝑧𝑆) → (∃𝑢 ∈ (1...(⌊‘(𝑀 / 2)))(2 · 𝑢) = (1st𝑧) ↔ ∃𝑢 ∈ ℤ (2 · 𝑢) = (1st𝑧)))
416 2z 9415 . . . . . . . . . . . 12 2 ∈ ℤ
417379elfzelzd 10163 . . . . . . . . . . . 12 ((𝜑𝑧𝑆) → (1st𝑧) ∈ ℤ)
418 divides 12170 . . . . . . . . . . . 12 ((2 ∈ ℤ ∧ (1st𝑧) ∈ ℤ) → (2 ∥ (1st𝑧) ↔ ∃𝑢 ∈ ℤ (𝑢 · 2) = (1st𝑧)))
419416, 417, 418sylancr 414 . . . . . . . . . . 11 ((𝜑𝑧𝑆) → (2 ∥ (1st𝑧) ↔ ∃𝑢 ∈ ℤ (𝑢 · 2) = (1st𝑧)))
420373, 415, 4193bitr4d 220 . . . . . . . . . 10 ((𝜑𝑧𝑆) → (∃𝑢 ∈ (1...(⌊‘(𝑀 / 2)))(2 · 𝑢) = (1st𝑧) ↔ 2 ∥ (1st𝑧)))
421420rabbidva 2761 . . . . . . . . 9 (𝜑 → {𝑧𝑆 ∣ ∃𝑢 ∈ (1...(⌊‘(𝑀 / 2)))(2 · 𝑢) = (1st𝑧)} = {𝑧𝑆 ∣ 2 ∥ (1st𝑧)})
422366, 421eqtrid 2251 . . . . . . . 8 (𝜑 𝑢 ∈ (1...(⌊‘(𝑀 / 2))){𝑧𝑆 ∣ (2 · 𝑢) = (1st𝑧)} = {𝑧𝑆 ∣ 2 ∥ (1st𝑧)})
423422fveq2d 5592 . . . . . . 7 (𝜑 → (♯‘ 𝑢 ∈ (1...(⌊‘(𝑀 / 2))){𝑧𝑆 ∣ (2 · 𝑢) = (1st𝑧)}) = (♯‘{𝑧𝑆 ∣ 2 ∥ (1st𝑧)}))
424342, 365, 4233eqtr2d 2245 . . . . . 6 (𝜑 → Σ𝑢 ∈ (1...(⌊‘(𝑀 / 2)))(⌊‘((𝑄 / 𝑃) · (2 · 𝑢))) = (♯‘{𝑧𝑆 ∣ 2 ∥ (1st𝑧)}))
425424oveq2d 5972 . . . . 5 (𝜑 → (-1↑Σ𝑢 ∈ (1...(⌊‘(𝑀 / 2)))(⌊‘((𝑄 / 𝑃) · (2 · 𝑢)))) = (-1↑(♯‘{𝑧𝑆 ∣ 2 ∥ (1st𝑧)})))
4261, 2, 3, 5, 101, 102lgsquadlem1 15624 . . . . 5 (𝜑 → (-1↑Σ𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)(⌊‘((𝑄 / 𝑃) · (2 · 𝑢)))) = (-1↑(♯‘{𝑧𝑆 ∣ ¬ 2 ∥ (1st𝑧)})))
427425, 426oveq12d 5974 . . . 4 (𝜑 → ((-1↑Σ𝑢 ∈ (1...(⌊‘(𝑀 / 2)))(⌊‘((𝑄 / 𝑃) · (2 · 𝑢)))) · (-1↑Σ𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)(⌊‘((𝑄 / 𝑃) · (2 · 𝑢))))) = ((-1↑(♯‘{𝑧𝑆 ∣ 2 ∥ (1st𝑧)})) · (-1↑(♯‘{𝑧𝑆 ∣ ¬ 2 ∥ (1st𝑧)}))))
428120, 427eqtr4d 2242 . . 3 (𝜑 → (-1↑((♯‘{𝑧𝑆 ∣ 2 ∥ (1st𝑧)}) + (♯‘{𝑧𝑆 ∣ ¬ 2 ∥ (1st𝑧)}))) = ((-1↑Σ𝑢 ∈ (1...(⌊‘(𝑀 / 2)))(⌊‘((𝑄 / 𝑃) · (2 · 𝑢)))) · (-1↑Σ𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)(⌊‘((𝑄 / 𝑃) · (2 · 𝑢))))))
429 inrab 3449 . . . . . . 7 ({𝑧𝑆 ∣ 2 ∥ (1st𝑧)} ∩ {𝑧𝑆 ∣ ¬ 2 ∥ (1st𝑧)}) = {𝑧𝑆 ∣ (2 ∥ (1st𝑧) ∧ ¬ 2 ∥ (1st𝑧))}
430 pm3.24 695 . . . . . . . . . 10 ¬ (2 ∥ (1st𝑧) ∧ ¬ 2 ∥ (1st𝑧))
431430a1i 9 . . . . . . . . 9 (𝜑 → ¬ (2 ∥ (1st𝑧) ∧ ¬ 2 ∥ (1st𝑧)))
432431ralrimivw 2581 . . . . . . . 8 (𝜑 → ∀𝑧𝑆 ¬ (2 ∥ (1st𝑧) ∧ ¬ 2 ∥ (1st𝑧)))
433 rabeq0 3494 . . . . . . . 8 ({𝑧𝑆 ∣ (2 ∥ (1st𝑧) ∧ ¬ 2 ∥ (1st𝑧))} = ∅ ↔ ∀𝑧𝑆 ¬ (2 ∥ (1st𝑧) ∧ ¬ 2 ∥ (1st𝑧)))
434432, 433sylibr 134 . . . . . . 7 (𝜑 → {𝑧𝑆 ∣ (2 ∥ (1st𝑧) ∧ ¬ 2 ∥ (1st𝑧))} = ∅)
435429, 434eqtrid 2251 . . . . . 6 (𝜑 → ({𝑧𝑆 ∣ 2 ∥ (1st𝑧)} ∩ {𝑧𝑆 ∣ ¬ 2 ∥ (1st𝑧)}) = ∅)
436 hashun 10967 . . . . . 6 (({𝑧𝑆 ∣ 2 ∥ (1st𝑧)} ∈ Fin ∧ {𝑧𝑆 ∣ ¬ 2 ∥ (1st𝑧)} ∈ Fin ∧ ({𝑧𝑆 ∣ 2 ∥ (1st𝑧)} ∩ {𝑧𝑆 ∣ ¬ 2 ∥ (1st𝑧)}) = ∅) → (♯‘({𝑧𝑆 ∣ 2 ∥ (1st𝑧)} ∪ {𝑧𝑆 ∣ ¬ 2 ∥ (1st𝑧)})) = ((♯‘{𝑧𝑆 ∣ 2 ∥ (1st𝑧)}) + (♯‘{𝑧𝑆 ∣ ¬ 2 ∥ (1st𝑧)})))
437117, 103, 435, 436syl3anc 1250 . . . . 5 (𝜑 → (♯‘({𝑧𝑆 ∣ 2 ∥ (1st𝑧)} ∪ {𝑧𝑆 ∣ ¬ 2 ∥ (1st𝑧)})) = ((♯‘{𝑧𝑆 ∣ 2 ∥ (1st𝑧)}) + (♯‘{𝑧𝑆 ∣ ¬ 2 ∥ (1st𝑧)})))
438 unrab 3448 . . . . . . 7 ({𝑧𝑆 ∣ 2 ∥ (1st𝑧)} ∪ {𝑧𝑆 ∣ ¬ 2 ∥ (1st𝑧)}) = {𝑧𝑆 ∣ (2 ∥ (1st𝑧) ∨ ¬ 2 ∥ (1st𝑧))}
439 rabid2 2684 . . . . . . . 8 (𝑆 = {𝑧𝑆 ∣ (2 ∥ (1st𝑧) ∨ ¬ 2 ∥ (1st𝑧))} ↔ ∀𝑧𝑆 (2 ∥ (1st𝑧) ∨ ¬ 2 ∥ (1st𝑧)))
44010, 112, 114sylancr 414 . . . . . . . . 9 (𝑧𝑆DECID 2 ∥ (1st𝑧))
441 exmiddc 838 . . . . . . . . 9 (DECID 2 ∥ (1st𝑧) → (2 ∥ (1st𝑧) ∨ ¬ 2 ∥ (1st𝑧)))
442440, 441syl 14 . . . . . . . 8 (𝑧𝑆 → (2 ∥ (1st𝑧) ∨ ¬ 2 ∥ (1st𝑧)))
443439, 442mprgbir 2565 . . . . . . 7 𝑆 = {𝑧𝑆 ∣ (2 ∥ (1st𝑧) ∨ ¬ 2 ∥ (1st𝑧))}
444438, 443eqtr4i 2230 . . . . . 6 ({𝑧𝑆 ∣ 2 ∥ (1st𝑧)} ∪ {𝑧𝑆 ∣ ¬ 2 ∥ (1st𝑧)}) = 𝑆
445444fveq2i 5591 . . . . 5 (♯‘({𝑧𝑆 ∣ 2 ∥ (1st𝑧)} ∪ {𝑧𝑆 ∣ ¬ 2 ∥ (1st𝑧)})) = (♯‘𝑆)
446437, 445eqtr3di 2254 . . . 4 (𝜑 → ((♯‘{𝑧𝑆 ∣ 2 ∥ (1st𝑧)}) + (♯‘{𝑧𝑆 ∣ ¬ 2 ∥ (1st𝑧)})) = (♯‘𝑆))
447446oveq2d 5972 . . 3 (𝜑 → (-1↑((♯‘{𝑧𝑆 ∣ 2 ∥ (1st𝑧)}) + (♯‘{𝑧𝑆 ∣ ¬ 2 ∥ (1st𝑧)}))) = (-1↑(♯‘𝑆)))
448100, 428, 4473eqtr2d 2245 . 2 (𝜑 → (-1↑(Σ𝑢 ∈ (1...(⌊‘(𝑀 / 2)))(⌊‘((𝑄 / 𝑃) · (2 · 𝑢))) + Σ𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)(⌊‘((𝑄 / 𝑃) · (2 · 𝑢))))) = (-1↑(♯‘𝑆)))
4494, 84, 4483eqtrd 2243 1 (𝜑 → (𝑄 /L 𝑃) = (-1↑(♯‘𝑆)))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  wb 105  wo 710  DECID wdc 836  w3a 981   = wceq 1373  wcel 2177  wne 2377  wral 2485  wrex 2486  {crab 2489  cdif 3167  cun 3168  cin 3169  wss 3170  c0 3464  {csn 3637  cop 3640   ciun 3932  Disj wdisj 4026   class class class wbr 4050  {copab 4111   × cxp 4680  Rel wrel 4687  cfv 5279  (class class class)co 5956  1st c1st 6236  cen 6837  Fincfn 6839  cc 7938  cr 7939  0cc0 7940  1c1 7941   + caddc 7943   · cmul 7945   < clt 8122  cle 8123  cmin 8258  -cneg 8259   # cap 8669   / cdiv 8760  cn 9051  2c2 9102  0cn0 9310  cz 9387  cuz 9663  cq 9755  +crp 9790  ...cfz 10145  cfl 10428  cexp 10700  chash 10937  Σcsu 11734  cdvds 12168   gcd cgcd 12344  cprime 12499   /L clgs 15544
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2179  ax-14 2180  ax-ext 2188  ax-coll 4166  ax-sep 4169  ax-nul 4177  ax-pow 4225  ax-pr 4260  ax-un 4487  ax-setind 4592  ax-iinf 4643  ax-cnex 8031  ax-resscn 8032  ax-1cn 8033  ax-1re 8034  ax-icn 8035  ax-addcl 8036  ax-addrcl 8037  ax-mulcl 8038  ax-mulrcl 8039  ax-addcom 8040  ax-mulcom 8041  ax-addass 8042  ax-mulass 8043  ax-distr 8044  ax-i2m1 8045  ax-0lt1 8046  ax-1rid 8047  ax-0id 8048  ax-rnegex 8049  ax-precex 8050  ax-cnre 8051  ax-pre-ltirr 8052  ax-pre-ltwlin 8053  ax-pre-lttrn 8054  ax-pre-apti 8055  ax-pre-ltadd 8056  ax-pre-mulgt0 8057  ax-pre-mulext 8058  ax-arch 8059  ax-caucvg 8060  ax-addf 8062  ax-mulf 8063
This theorem depends on definitions:  df-bi 117  df-stab 833  df-dc 837  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-xor 1396  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ne 2378  df-nel 2473  df-ral 2490  df-rex 2491  df-reu 2492  df-rmo 2493  df-rab 2494  df-v 2775  df-sbc 3003  df-csb 3098  df-dif 3172  df-un 3174  df-in 3176  df-ss 3183  df-nul 3465  df-if 3576  df-pw 3622  df-sn 3643  df-pr 3644  df-tp 3645  df-op 3646  df-uni 3856  df-int 3891  df-iun 3934  df-disj 4027  df-br 4051  df-opab 4113  df-mpt 4114  df-tr 4150  df-id 4347  df-po 4350  df-iso 4351  df-iord 4420  df-on 4422  df-ilim 4423  df-suc 4425  df-iom 4646  df-xp 4688  df-rel 4689  df-cnv 4690  df-co 4691  df-dm 4692  df-rn 4693  df-res 4694  df-ima 4695  df-iota 5240  df-fun 5281  df-fn 5282  df-f 5283  df-f1 5284  df-fo 5285  df-f1o 5286  df-fv 5287  df-isom 5288  df-riota 5911  df-ov 5959  df-oprab 5960  df-mpo 5961  df-of 6170  df-1st 6238  df-2nd 6239  df-tpos 6343  df-recs 6403  df-irdg 6468  df-frec 6489  df-1o 6514  df-2o 6515  df-oadd 6518  df-er 6632  df-ec 6634  df-qs 6638  df-map 6749  df-en 6840  df-dom 6841  df-fin 6842  df-sup 7100  df-inf 7101  df-pnf 8124  df-mnf 8125  df-xr 8126  df-ltxr 8127  df-le 8128  df-sub 8260  df-neg 8261  df-reap 8663  df-ap 8670  df-div 8761  df-inn 9052  df-2 9110  df-3 9111  df-4 9112  df-5 9113  df-6 9114  df-7 9115  df-8 9116  df-9 9117  df-n0 9311  df-z 9388  df-dec 9520  df-uz 9664  df-q 9756  df-rp 9791  df-fz 10146  df-fzo 10280  df-fl 10430  df-mod 10485  df-seqfrec 10610  df-exp 10701  df-ihash 10938  df-cj 11223  df-re 11224  df-im 11225  df-rsqrt 11379  df-abs 11380  df-clim 11660  df-sumdc 11735  df-proddc 11932  df-dvds 12169  df-gcd 12345  df-prm 12500  df-phi 12603  df-pc 12678  df-struct 12904  df-ndx 12905  df-slot 12906  df-base 12908  df-sets 12909  df-iress 12910  df-plusg 12992  df-mulr 12993  df-starv 12994  df-sca 12995  df-vsca 12996  df-ip 12997  df-tset 12998  df-ple 12999  df-ds 13001  df-unif 13002  df-0g 13160  df-igsum 13161  df-topgen 13162  df-iimas 13204  df-qus 13205  df-mgm 13258  df-sgrp 13304  df-mnd 13319  df-mhm 13361  df-submnd 13362  df-grp 13405  df-minusg 13406  df-sbg 13407  df-mulg 13526  df-subg 13576  df-nsg 13577  df-eqg 13578  df-ghm 13647  df-cmn 13692  df-abl 13693  df-mgp 13753  df-rng 13765  df-ur 13792  df-srg 13796  df-ring 13830  df-cring 13831  df-oppr 13900  df-dvdsr 13921  df-unit 13922  df-invr 13953  df-dvr 13964  df-rhm 13984  df-nzr 14012  df-subrg 14051  df-domn 14091  df-idom 14092  df-lmod 14121  df-lssm 14185  df-lsp 14219  df-sra 14267  df-rgmod 14268  df-lidl 14301  df-rsp 14302  df-2idl 14332  df-bl 14378  df-mopn 14379  df-fg 14381  df-metu 14382  df-cnfld 14389  df-zring 14423  df-zrh 14446  df-zn 14448  df-lgs 15545
This theorem is referenced by:  lgsquadlem3  15626
  Copyright terms: Public domain W3C validator