ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  imasng GIF version

Theorem imasng 4986
Description: The image of a singleton. (Contributed by NM, 8-May-2005.)
Assertion
Ref Expression
imasng (𝐴𝐵 → (𝑅 “ {𝐴}) = {𝑦𝐴𝑅𝑦})
Distinct variable groups:   𝑦,𝐴   𝑦,𝑅
Allowed substitution hint:   𝐵(𝑦)

Proof of Theorem imasng
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 elex 2746 . 2 (𝐴𝐵𝐴 ∈ V)
2 dfima2 4965 . . 3 (𝑅 “ {𝐴}) = {𝑦 ∣ ∃𝑥 ∈ {𝐴}𝑥𝑅𝑦}
3 breq1 4001 . . . . 5 (𝑥 = 𝐴 → (𝑥𝑅𝑦𝐴𝑅𝑦))
43rexsng 3630 . . . 4 (𝐴 ∈ V → (∃𝑥 ∈ {𝐴}𝑥𝑅𝑦𝐴𝑅𝑦))
54abbidv 2293 . . 3 (𝐴 ∈ V → {𝑦 ∣ ∃𝑥 ∈ {𝐴}𝑥𝑅𝑦} = {𝑦𝐴𝑅𝑦})
62, 5eqtrid 2220 . 2 (𝐴 ∈ V → (𝑅 “ {𝐴}) = {𝑦𝐴𝑅𝑦})
71, 6syl 14 1 (𝐴𝐵 → (𝑅 “ {𝐴}) = {𝑦𝐴𝑅𝑦})
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1353  wcel 2146  {cab 2161  wrex 2454  Vcvv 2735  {csn 3589   class class class wbr 3998  cima 4623
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1445  ax-7 1446  ax-gen 1447  ax-ie1 1491  ax-ie2 1492  ax-8 1502  ax-10 1503  ax-11 1504  ax-i12 1505  ax-bndl 1507  ax-4 1508  ax-17 1524  ax-i9 1528  ax-ial 1532  ax-i5r 1533  ax-14 2149  ax-ext 2157  ax-sep 4116  ax-pow 4169  ax-pr 4203
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-nf 1459  df-sb 1761  df-eu 2027  df-mo 2028  df-clab 2162  df-cleq 2168  df-clel 2171  df-nfc 2306  df-ral 2458  df-rex 2459  df-v 2737  df-sbc 2961  df-un 3131  df-in 3133  df-ss 3140  df-pw 3574  df-sn 3595  df-pr 3596  df-op 3598  df-br 3999  df-opab 4060  df-xp 4626  df-cnv 4628  df-dm 4630  df-rn 4631  df-res 4632  df-ima 4633
This theorem is referenced by:  elreimasng  4987  elimasn  4988  args  4990  fnsnfv  5567  funfvdm2  5572  dfec2  6528  mapsn  6680  shftfibg  10797  shftfib  10800
  Copyright terms: Public domain W3C validator