![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > imasng | GIF version |
Description: The image of a singleton. (Contributed by NM, 8-May-2005.) |
Ref | Expression |
---|---|
imasng | ⊢ (𝐴 ∈ 𝐵 → (𝑅 “ {𝐴}) = {𝑦 ∣ 𝐴𝑅𝑦}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elex 2644 | . 2 ⊢ (𝐴 ∈ 𝐵 → 𝐴 ∈ V) | |
2 | dfima2 4809 | . . 3 ⊢ (𝑅 “ {𝐴}) = {𝑦 ∣ ∃𝑥 ∈ {𝐴}𝑥𝑅𝑦} | |
3 | breq1 3870 | . . . . 5 ⊢ (𝑥 = 𝐴 → (𝑥𝑅𝑦 ↔ 𝐴𝑅𝑦)) | |
4 | 3 | rexsng 3504 | . . . 4 ⊢ (𝐴 ∈ V → (∃𝑥 ∈ {𝐴}𝑥𝑅𝑦 ↔ 𝐴𝑅𝑦)) |
5 | 4 | abbidv 2212 | . . 3 ⊢ (𝐴 ∈ V → {𝑦 ∣ ∃𝑥 ∈ {𝐴}𝑥𝑅𝑦} = {𝑦 ∣ 𝐴𝑅𝑦}) |
6 | 2, 5 | syl5eq 2139 | . 2 ⊢ (𝐴 ∈ V → (𝑅 “ {𝐴}) = {𝑦 ∣ 𝐴𝑅𝑦}) |
7 | 1, 6 | syl 14 | 1 ⊢ (𝐴 ∈ 𝐵 → (𝑅 “ {𝐴}) = {𝑦 ∣ 𝐴𝑅𝑦}) |
Colors of variables: wff set class |
Syntax hints: → wi 4 = wceq 1296 ∈ wcel 1445 {cab 2081 ∃wrex 2371 Vcvv 2633 {csn 3466 class class class wbr 3867 “ cima 4470 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 668 ax-5 1388 ax-7 1389 ax-gen 1390 ax-ie1 1434 ax-ie2 1435 ax-8 1447 ax-10 1448 ax-11 1449 ax-i12 1450 ax-bndl 1451 ax-4 1452 ax-14 1457 ax-17 1471 ax-i9 1475 ax-ial 1479 ax-i5r 1480 ax-ext 2077 ax-sep 3978 ax-pow 4030 ax-pr 4060 |
This theorem depends on definitions: df-bi 116 df-3an 929 df-tru 1299 df-nf 1402 df-sb 1700 df-eu 1958 df-mo 1959 df-clab 2082 df-cleq 2088 df-clel 2091 df-nfc 2224 df-ral 2375 df-rex 2376 df-v 2635 df-sbc 2855 df-un 3017 df-in 3019 df-ss 3026 df-pw 3451 df-sn 3472 df-pr 3473 df-op 3475 df-br 3868 df-opab 3922 df-xp 4473 df-cnv 4475 df-dm 4477 df-rn 4478 df-res 4479 df-ima 4480 |
This theorem is referenced by: elreimasng 4831 elimasn 4832 args 4834 fnsnfv 5398 funfvdm2 5403 dfec2 6335 mapsn 6487 shftfibg 10369 shftfib 10372 |
Copyright terms: Public domain | W3C validator |