| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > evennn2n | GIF version | ||
| Description: A positive integer is even iff it is twice another positive integer. (Contributed by AV, 12-Aug-2021.) |
| Ref | Expression |
|---|---|
| evennn2n | ⊢ (𝑁 ∈ ℕ → (2 ∥ 𝑁 ↔ ∃𝑛 ∈ ℕ (2 · 𝑛) = 𝑁)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eleq1 2269 | . . . . . . . 8 ⊢ ((2 · 𝑛) = 𝑁 → ((2 · 𝑛) ∈ ℕ ↔ 𝑁 ∈ ℕ)) | |
| 2 | simpr 110 | . . . . . . . . . 10 ⊢ (((2 · 𝑛) ∈ ℕ ∧ 𝑛 ∈ ℤ) → 𝑛 ∈ ℤ) | |
| 3 | 2re 9121 | . . . . . . . . . . . 12 ⊢ 2 ∈ ℝ | |
| 4 | 3 | a1i 9 | . . . . . . . . . . 11 ⊢ (((2 · 𝑛) ∈ ℕ ∧ 𝑛 ∈ ℤ) → 2 ∈ ℝ) |
| 5 | zre 9391 | . . . . . . . . . . . 12 ⊢ (𝑛 ∈ ℤ → 𝑛 ∈ ℝ) | |
| 6 | 5 | adantl 277 | . . . . . . . . . . 11 ⊢ (((2 · 𝑛) ∈ ℕ ∧ 𝑛 ∈ ℤ) → 𝑛 ∈ ℝ) |
| 7 | 0le2 9141 | . . . . . . . . . . . 12 ⊢ 0 ≤ 2 | |
| 8 | 7 | a1i 9 | . . . . . . . . . . 11 ⊢ (((2 · 𝑛) ∈ ℕ ∧ 𝑛 ∈ ℤ) → 0 ≤ 2) |
| 9 | nngt0 9076 | . . . . . . . . . . . 12 ⊢ ((2 · 𝑛) ∈ ℕ → 0 < (2 · 𝑛)) | |
| 10 | 9 | adantr 276 | . . . . . . . . . . 11 ⊢ (((2 · 𝑛) ∈ ℕ ∧ 𝑛 ∈ ℤ) → 0 < (2 · 𝑛)) |
| 11 | prodgt0 8940 | . . . . . . . . . . 11 ⊢ (((2 ∈ ℝ ∧ 𝑛 ∈ ℝ) ∧ (0 ≤ 2 ∧ 0 < (2 · 𝑛))) → 0 < 𝑛) | |
| 12 | 4, 6, 8, 10, 11 | syl22anc 1251 | . . . . . . . . . 10 ⊢ (((2 · 𝑛) ∈ ℕ ∧ 𝑛 ∈ ℤ) → 0 < 𝑛) |
| 13 | elnnz 9397 | . . . . . . . . . 10 ⊢ (𝑛 ∈ ℕ ↔ (𝑛 ∈ ℤ ∧ 0 < 𝑛)) | |
| 14 | 2, 12, 13 | sylanbrc 417 | . . . . . . . . 9 ⊢ (((2 · 𝑛) ∈ ℕ ∧ 𝑛 ∈ ℤ) → 𝑛 ∈ ℕ) |
| 15 | 14 | ex 115 | . . . . . . . 8 ⊢ ((2 · 𝑛) ∈ ℕ → (𝑛 ∈ ℤ → 𝑛 ∈ ℕ)) |
| 16 | 1, 15 | biimtrrdi 164 | . . . . . . 7 ⊢ ((2 · 𝑛) = 𝑁 → (𝑁 ∈ ℕ → (𝑛 ∈ ℤ → 𝑛 ∈ ℕ))) |
| 17 | 16 | com13 80 | . . . . . 6 ⊢ (𝑛 ∈ ℤ → (𝑁 ∈ ℕ → ((2 · 𝑛) = 𝑁 → 𝑛 ∈ ℕ))) |
| 18 | 17 | impcom 125 | . . . . 5 ⊢ ((𝑁 ∈ ℕ ∧ 𝑛 ∈ ℤ) → ((2 · 𝑛) = 𝑁 → 𝑛 ∈ ℕ)) |
| 19 | 18 | pm4.71rd 394 | . . . 4 ⊢ ((𝑁 ∈ ℕ ∧ 𝑛 ∈ ℤ) → ((2 · 𝑛) = 𝑁 ↔ (𝑛 ∈ ℕ ∧ (2 · 𝑛) = 𝑁))) |
| 20 | 19 | bicomd 141 | . . 3 ⊢ ((𝑁 ∈ ℕ ∧ 𝑛 ∈ ℤ) → ((𝑛 ∈ ℕ ∧ (2 · 𝑛) = 𝑁) ↔ (2 · 𝑛) = 𝑁)) |
| 21 | 20 | rexbidva 2504 | . 2 ⊢ (𝑁 ∈ ℕ → (∃𝑛 ∈ ℤ (𝑛 ∈ ℕ ∧ (2 · 𝑛) = 𝑁) ↔ ∃𝑛 ∈ ℤ (2 · 𝑛) = 𝑁)) |
| 22 | nnssz 9404 | . . 3 ⊢ ℕ ⊆ ℤ | |
| 23 | rexss 3264 | . . 3 ⊢ (ℕ ⊆ ℤ → (∃𝑛 ∈ ℕ (2 · 𝑛) = 𝑁 ↔ ∃𝑛 ∈ ℤ (𝑛 ∈ ℕ ∧ (2 · 𝑛) = 𝑁))) | |
| 24 | 22, 23 | mp1i 10 | . 2 ⊢ (𝑁 ∈ ℕ → (∃𝑛 ∈ ℕ (2 · 𝑛) = 𝑁 ↔ ∃𝑛 ∈ ℤ (𝑛 ∈ ℕ ∧ (2 · 𝑛) = 𝑁))) |
| 25 | even2n 12255 | . . 3 ⊢ (2 ∥ 𝑁 ↔ ∃𝑛 ∈ ℤ (2 · 𝑛) = 𝑁) | |
| 26 | 25 | a1i 9 | . 2 ⊢ (𝑁 ∈ ℕ → (2 ∥ 𝑁 ↔ ∃𝑛 ∈ ℤ (2 · 𝑛) = 𝑁)) |
| 27 | 21, 24, 26 | 3bitr4rd 221 | 1 ⊢ (𝑁 ∈ ℕ → (2 ∥ 𝑁 ↔ ∃𝑛 ∈ ℕ (2 · 𝑛) = 𝑁)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 = wceq 1373 ∈ wcel 2177 ∃wrex 2486 ⊆ wss 3170 class class class wbr 4050 (class class class)co 5956 ℝcr 7939 0cc0 7940 · cmul 7945 < clt 8122 ≤ cle 8123 ℕcn 9051 2c2 9102 ℤcz 9387 ∥ cdvds 12168 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2179 ax-14 2180 ax-ext 2188 ax-sep 4169 ax-pow 4225 ax-pr 4260 ax-un 4487 ax-setind 4592 ax-cnex 8031 ax-resscn 8032 ax-1cn 8033 ax-1re 8034 ax-icn 8035 ax-addcl 8036 ax-addrcl 8037 ax-mulcl 8038 ax-mulrcl 8039 ax-addcom 8040 ax-mulcom 8041 ax-addass 8042 ax-mulass 8043 ax-distr 8044 ax-i2m1 8045 ax-0lt1 8046 ax-1rid 8047 ax-0id 8048 ax-rnegex 8049 ax-precex 8050 ax-cnre 8051 ax-pre-ltirr 8052 ax-pre-ltwlin 8053 ax-pre-lttrn 8054 ax-pre-apti 8055 ax-pre-ltadd 8056 ax-pre-mulgt0 8057 ax-pre-mulext 8058 |
| This theorem depends on definitions: df-bi 117 df-3or 982 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ne 2378 df-nel 2473 df-ral 2490 df-rex 2491 df-reu 2492 df-rmo 2493 df-rab 2494 df-v 2775 df-sbc 3003 df-dif 3172 df-un 3174 df-in 3176 df-ss 3183 df-pw 3622 df-sn 3643 df-pr 3644 df-op 3646 df-uni 3856 df-int 3891 df-br 4051 df-opab 4113 df-id 4347 df-po 4350 df-iso 4351 df-xp 4688 df-rel 4689 df-cnv 4690 df-co 4691 df-dm 4692 df-iota 5240 df-fun 5281 df-fv 5287 df-riota 5911 df-ov 5959 df-oprab 5960 df-mpo 5961 df-pnf 8124 df-mnf 8125 df-xr 8126 df-ltxr 8127 df-le 8128 df-sub 8260 df-neg 8261 df-reap 8663 df-ap 8670 df-div 8761 df-inn 9052 df-2 9110 df-n0 9311 df-z 9388 df-dvds 12169 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |