ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  evennn2n GIF version

Theorem evennn2n 11919
Description: A positive integer is even iff it is twice another positive integer. (Contributed by AV, 12-Aug-2021.)
Assertion
Ref Expression
evennn2n (𝑁 ∈ ℕ → (2 ∥ 𝑁 ↔ ∃𝑛 ∈ ℕ (2 · 𝑛) = 𝑁))
Distinct variable group:   𝑛,𝑁

Proof of Theorem evennn2n
StepHypRef Expression
1 eleq1 2252 . . . . . . . 8 ((2 · 𝑛) = 𝑁 → ((2 · 𝑛) ∈ ℕ ↔ 𝑁 ∈ ℕ))
2 simpr 110 . . . . . . . . . 10 (((2 · 𝑛) ∈ ℕ ∧ 𝑛 ∈ ℤ) → 𝑛 ∈ ℤ)
3 2re 9018 . . . . . . . . . . . 12 2 ∈ ℝ
43a1i 9 . . . . . . . . . . 11 (((2 · 𝑛) ∈ ℕ ∧ 𝑛 ∈ ℤ) → 2 ∈ ℝ)
5 zre 9286 . . . . . . . . . . . 12 (𝑛 ∈ ℤ → 𝑛 ∈ ℝ)
65adantl 277 . . . . . . . . . . 11 (((2 · 𝑛) ∈ ℕ ∧ 𝑛 ∈ ℤ) → 𝑛 ∈ ℝ)
7 0le2 9038 . . . . . . . . . . . 12 0 ≤ 2
87a1i 9 . . . . . . . . . . 11 (((2 · 𝑛) ∈ ℕ ∧ 𝑛 ∈ ℤ) → 0 ≤ 2)
9 nngt0 8973 . . . . . . . . . . . 12 ((2 · 𝑛) ∈ ℕ → 0 < (2 · 𝑛))
109adantr 276 . . . . . . . . . . 11 (((2 · 𝑛) ∈ ℕ ∧ 𝑛 ∈ ℤ) → 0 < (2 · 𝑛))
11 prodgt0 8838 . . . . . . . . . . 11 (((2 ∈ ℝ ∧ 𝑛 ∈ ℝ) ∧ (0 ≤ 2 ∧ 0 < (2 · 𝑛))) → 0 < 𝑛)
124, 6, 8, 10, 11syl22anc 1250 . . . . . . . . . 10 (((2 · 𝑛) ∈ ℕ ∧ 𝑛 ∈ ℤ) → 0 < 𝑛)
13 elnnz 9292 . . . . . . . . . 10 (𝑛 ∈ ℕ ↔ (𝑛 ∈ ℤ ∧ 0 < 𝑛))
142, 12, 13sylanbrc 417 . . . . . . . . 9 (((2 · 𝑛) ∈ ℕ ∧ 𝑛 ∈ ℤ) → 𝑛 ∈ ℕ)
1514ex 115 . . . . . . . 8 ((2 · 𝑛) ∈ ℕ → (𝑛 ∈ ℤ → 𝑛 ∈ ℕ))
161, 15biimtrrdi 164 . . . . . . 7 ((2 · 𝑛) = 𝑁 → (𝑁 ∈ ℕ → (𝑛 ∈ ℤ → 𝑛 ∈ ℕ)))
1716com13 80 . . . . . 6 (𝑛 ∈ ℤ → (𝑁 ∈ ℕ → ((2 · 𝑛) = 𝑁𝑛 ∈ ℕ)))
1817impcom 125 . . . . 5 ((𝑁 ∈ ℕ ∧ 𝑛 ∈ ℤ) → ((2 · 𝑛) = 𝑁𝑛 ∈ ℕ))
1918pm4.71rd 394 . . . 4 ((𝑁 ∈ ℕ ∧ 𝑛 ∈ ℤ) → ((2 · 𝑛) = 𝑁 ↔ (𝑛 ∈ ℕ ∧ (2 · 𝑛) = 𝑁)))
2019bicomd 141 . . 3 ((𝑁 ∈ ℕ ∧ 𝑛 ∈ ℤ) → ((𝑛 ∈ ℕ ∧ (2 · 𝑛) = 𝑁) ↔ (2 · 𝑛) = 𝑁))
2120rexbidva 2487 . 2 (𝑁 ∈ ℕ → (∃𝑛 ∈ ℤ (𝑛 ∈ ℕ ∧ (2 · 𝑛) = 𝑁) ↔ ∃𝑛 ∈ ℤ (2 · 𝑛) = 𝑁))
22 nnssz 9299 . . 3 ℕ ⊆ ℤ
23 rexss 3237 . . 3 (ℕ ⊆ ℤ → (∃𝑛 ∈ ℕ (2 · 𝑛) = 𝑁 ↔ ∃𝑛 ∈ ℤ (𝑛 ∈ ℕ ∧ (2 · 𝑛) = 𝑁)))
2422, 23mp1i 10 . 2 (𝑁 ∈ ℕ → (∃𝑛 ∈ ℕ (2 · 𝑛) = 𝑁 ↔ ∃𝑛 ∈ ℤ (𝑛 ∈ ℕ ∧ (2 · 𝑛) = 𝑁)))
25 even2n 11910 . . 3 (2 ∥ 𝑁 ↔ ∃𝑛 ∈ ℤ (2 · 𝑛) = 𝑁)
2625a1i 9 . 2 (𝑁 ∈ ℕ → (2 ∥ 𝑁 ↔ ∃𝑛 ∈ ℤ (2 · 𝑛) = 𝑁))
2721, 24, 263bitr4rd 221 1 (𝑁 ∈ ℕ → (2 ∥ 𝑁 ↔ ∃𝑛 ∈ ℕ (2 · 𝑛) = 𝑁))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105   = wceq 1364  wcel 2160  wrex 2469  wss 3144   class class class wbr 4018  (class class class)co 5895  cr 7839  0cc0 7840   · cmul 7845   < clt 8021  cle 8022  cn 8948  2c2 8999  cz 9282  cdvds 11825
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2162  ax-14 2163  ax-ext 2171  ax-sep 4136  ax-pow 4192  ax-pr 4227  ax-un 4451  ax-setind 4554  ax-cnex 7931  ax-resscn 7932  ax-1cn 7933  ax-1re 7934  ax-icn 7935  ax-addcl 7936  ax-addrcl 7937  ax-mulcl 7938  ax-mulrcl 7939  ax-addcom 7940  ax-mulcom 7941  ax-addass 7942  ax-mulass 7943  ax-distr 7944  ax-i2m1 7945  ax-0lt1 7946  ax-1rid 7947  ax-0id 7948  ax-rnegex 7949  ax-precex 7950  ax-cnre 7951  ax-pre-ltirr 7952  ax-pre-ltwlin 7953  ax-pre-lttrn 7954  ax-pre-apti 7955  ax-pre-ltadd 7956  ax-pre-mulgt0 7957  ax-pre-mulext 7958
This theorem depends on definitions:  df-bi 117  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2041  df-mo 2042  df-clab 2176  df-cleq 2182  df-clel 2185  df-nfc 2321  df-ne 2361  df-nel 2456  df-ral 2473  df-rex 2474  df-reu 2475  df-rmo 2476  df-rab 2477  df-v 2754  df-sbc 2978  df-dif 3146  df-un 3148  df-in 3150  df-ss 3157  df-pw 3592  df-sn 3613  df-pr 3614  df-op 3616  df-uni 3825  df-int 3860  df-br 4019  df-opab 4080  df-id 4311  df-po 4314  df-iso 4315  df-xp 4650  df-rel 4651  df-cnv 4652  df-co 4653  df-dm 4654  df-iota 5196  df-fun 5237  df-fv 5243  df-riota 5851  df-ov 5898  df-oprab 5899  df-mpo 5900  df-pnf 8023  df-mnf 8024  df-xr 8025  df-ltxr 8026  df-le 8027  df-sub 8159  df-neg 8160  df-reap 8561  df-ap 8568  df-div 8659  df-inn 8949  df-2 9007  df-n0 9206  df-z 9283  df-dvds 11826
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator