Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  evennn02n GIF version

Theorem evennn02n 11616
 Description: A nonnegative integer is even iff it is twice another nonnegative integer. (Contributed by AV, 12-Aug-2021.)
Assertion
Ref Expression
evennn02n (𝑁 ∈ ℕ0 → (2 ∥ 𝑁 ↔ ∃𝑛 ∈ ℕ0 (2 · 𝑛) = 𝑁))
Distinct variable group:   𝑛,𝑁

Proof of Theorem evennn02n
StepHypRef Expression
1 eleq1 2203 . . . . . . . 8 ((2 · 𝑛) = 𝑁 → ((2 · 𝑛) ∈ ℕ0𝑁 ∈ ℕ0))
2 simpr 109 . . . . . . . . . 10 (((2 · 𝑛) ∈ ℕ0𝑛 ∈ ℤ) → 𝑛 ∈ ℤ)
3 2re 8815 . . . . . . . . . . . 12 2 ∈ ℝ
43a1i 9 . . . . . . . . . . 11 (((2 · 𝑛) ∈ ℕ0𝑛 ∈ ℤ) → 2 ∈ ℝ)
5 zre 9083 . . . . . . . . . . . 12 (𝑛 ∈ ℤ → 𝑛 ∈ ℝ)
65adantl 275 . . . . . . . . . . 11 (((2 · 𝑛) ∈ ℕ0𝑛 ∈ ℤ) → 𝑛 ∈ ℝ)
7 2pos 8836 . . . . . . . . . . . 12 0 < 2
87a1i 9 . . . . . . . . . . 11 (((2 · 𝑛) ∈ ℕ0𝑛 ∈ ℤ) → 0 < 2)
9 nn0ge0 9027 . . . . . . . . . . . 12 ((2 · 𝑛) ∈ ℕ0 → 0 ≤ (2 · 𝑛))
109adantr 274 . . . . . . . . . . 11 (((2 · 𝑛) ∈ ℕ0𝑛 ∈ ℤ) → 0 ≤ (2 · 𝑛))
11 prodge0 8637 . . . . . . . . . . 11 (((2 ∈ ℝ ∧ 𝑛 ∈ ℝ) ∧ (0 < 2 ∧ 0 ≤ (2 · 𝑛))) → 0 ≤ 𝑛)
124, 6, 8, 10, 11syl22anc 1218 . . . . . . . . . 10 (((2 · 𝑛) ∈ ℕ0𝑛 ∈ ℤ) → 0 ≤ 𝑛)
13 elnn0z 9092 . . . . . . . . . 10 (𝑛 ∈ ℕ0 ↔ (𝑛 ∈ ℤ ∧ 0 ≤ 𝑛))
142, 12, 13sylanbrc 414 . . . . . . . . 9 (((2 · 𝑛) ∈ ℕ0𝑛 ∈ ℤ) → 𝑛 ∈ ℕ0)
1514ex 114 . . . . . . . 8 ((2 · 𝑛) ∈ ℕ0 → (𝑛 ∈ ℤ → 𝑛 ∈ ℕ0))
161, 15syl6bir 163 . . . . . . 7 ((2 · 𝑛) = 𝑁 → (𝑁 ∈ ℕ0 → (𝑛 ∈ ℤ → 𝑛 ∈ ℕ0)))
1716com13 80 . . . . . 6 (𝑛 ∈ ℤ → (𝑁 ∈ ℕ0 → ((2 · 𝑛) = 𝑁𝑛 ∈ ℕ0)))
1817impcom 124 . . . . 5 ((𝑁 ∈ ℕ0𝑛 ∈ ℤ) → ((2 · 𝑛) = 𝑁𝑛 ∈ ℕ0))
1918pm4.71rd 392 . . . 4 ((𝑁 ∈ ℕ0𝑛 ∈ ℤ) → ((2 · 𝑛) = 𝑁 ↔ (𝑛 ∈ ℕ0 ∧ (2 · 𝑛) = 𝑁)))
2019bicomd 140 . . 3 ((𝑁 ∈ ℕ0𝑛 ∈ ℤ) → ((𝑛 ∈ ℕ0 ∧ (2 · 𝑛) = 𝑁) ↔ (2 · 𝑛) = 𝑁))
2120rexbidva 2435 . 2 (𝑁 ∈ ℕ0 → (∃𝑛 ∈ ℤ (𝑛 ∈ ℕ0 ∧ (2 · 𝑛) = 𝑁) ↔ ∃𝑛 ∈ ℤ (2 · 𝑛) = 𝑁))
22 nn0ssz 9097 . . 3 0 ⊆ ℤ
23 rexss 3169 . . 3 (ℕ0 ⊆ ℤ → (∃𝑛 ∈ ℕ0 (2 · 𝑛) = 𝑁 ↔ ∃𝑛 ∈ ℤ (𝑛 ∈ ℕ0 ∧ (2 · 𝑛) = 𝑁)))
2422, 23mp1i 10 . 2 (𝑁 ∈ ℕ0 → (∃𝑛 ∈ ℕ0 (2 · 𝑛) = 𝑁 ↔ ∃𝑛 ∈ ℤ (𝑛 ∈ ℕ0 ∧ (2 · 𝑛) = 𝑁)))
25 even2n 11608 . . 3 (2 ∥ 𝑁 ↔ ∃𝑛 ∈ ℤ (2 · 𝑛) = 𝑁)
2625a1i 9 . 2 (𝑁 ∈ ℕ0 → (2 ∥ 𝑁 ↔ ∃𝑛 ∈ ℤ (2 · 𝑛) = 𝑁))
2721, 24, 263bitr4rd 220 1 (𝑁 ∈ ℕ0 → (2 ∥ 𝑁 ↔ ∃𝑛 ∈ ℕ0 (2 · 𝑛) = 𝑁))
 Colors of variables: wff set class Syntax hints:   → wi 4   ∧ wa 103   ↔ wb 104   = wceq 1332   ∈ wcel 1481  ∃wrex 2418   ⊆ wss 3076   class class class wbr 3937  (class class class)co 5782  ℝcr 7644  0cc0 7645   · cmul 7650   < clt 7825   ≤ cle 7826  2c2 8796  ℕ0cn0 9002  ℤcz 9079   ∥ cdvds 11530 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1483  ax-10 1484  ax-11 1485  ax-i12 1486  ax-bndl 1487  ax-4 1488  ax-13 1492  ax-14 1493  ax-17 1507  ax-i9 1511  ax-ial 1515  ax-i5r 1516  ax-ext 2122  ax-sep 4054  ax-pow 4106  ax-pr 4139  ax-un 4363  ax-setind 4460  ax-cnex 7736  ax-resscn 7737  ax-1cn 7738  ax-1re 7739  ax-icn 7740  ax-addcl 7741  ax-addrcl 7742  ax-mulcl 7743  ax-mulrcl 7744  ax-addcom 7745  ax-mulcom 7746  ax-addass 7747  ax-mulass 7748  ax-distr 7749  ax-i2m1 7750  ax-0lt1 7751  ax-1rid 7752  ax-0id 7753  ax-rnegex 7754  ax-cnre 7756  ax-pre-ltirr 7757  ax-pre-ltwlin 7758  ax-pre-lttrn 7759  ax-pre-ltadd 7761  ax-pre-mulgt0 7762 This theorem depends on definitions:  df-bi 116  df-3or 964  df-3an 965  df-tru 1335  df-fal 1338  df-nf 1438  df-sb 1737  df-eu 2003  df-mo 2004  df-clab 2127  df-cleq 2133  df-clel 2136  df-nfc 2271  df-ne 2310  df-nel 2405  df-ral 2422  df-rex 2423  df-reu 2424  df-rab 2426  df-v 2691  df-sbc 2914  df-dif 3078  df-un 3080  df-in 3082  df-ss 3089  df-pw 3517  df-sn 3538  df-pr 3539  df-op 3541  df-uni 3745  df-int 3780  df-br 3938  df-opab 3998  df-id 4223  df-xp 4553  df-rel 4554  df-cnv 4555  df-co 4556  df-dm 4557  df-iota 5096  df-fun 5133  df-fv 5139  df-riota 5738  df-ov 5785  df-oprab 5786  df-mpo 5787  df-pnf 7827  df-mnf 7828  df-xr 7829  df-ltxr 7830  df-le 7831  df-sub 7960  df-neg 7961  df-inn 8746  df-2 8804  df-n0 9003  df-z 9080  df-dvds 11531 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator