ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  evennn02n GIF version

Theorem evennn02n 12112
Description: A nonnegative integer is even iff it is twice another nonnegative integer. (Contributed by AV, 12-Aug-2021.)
Assertion
Ref Expression
evennn02n (𝑁 ∈ ℕ0 → (2 ∥ 𝑁 ↔ ∃𝑛 ∈ ℕ0 (2 · 𝑛) = 𝑁))
Distinct variable group:   𝑛,𝑁

Proof of Theorem evennn02n
StepHypRef Expression
1 eleq1 2267 . . . . . . . 8 ((2 · 𝑛) = 𝑁 → ((2 · 𝑛) ∈ ℕ0𝑁 ∈ ℕ0))
2 simpr 110 . . . . . . . . . 10 (((2 · 𝑛) ∈ ℕ0𝑛 ∈ ℤ) → 𝑛 ∈ ℤ)
3 2re 9088 . . . . . . . . . . . 12 2 ∈ ℝ
43a1i 9 . . . . . . . . . . 11 (((2 · 𝑛) ∈ ℕ0𝑛 ∈ ℤ) → 2 ∈ ℝ)
5 zre 9358 . . . . . . . . . . . 12 (𝑛 ∈ ℤ → 𝑛 ∈ ℝ)
65adantl 277 . . . . . . . . . . 11 (((2 · 𝑛) ∈ ℕ0𝑛 ∈ ℤ) → 𝑛 ∈ ℝ)
7 2pos 9109 . . . . . . . . . . . 12 0 < 2
87a1i 9 . . . . . . . . . . 11 (((2 · 𝑛) ∈ ℕ0𝑛 ∈ ℤ) → 0 < 2)
9 nn0ge0 9302 . . . . . . . . . . . 12 ((2 · 𝑛) ∈ ℕ0 → 0 ≤ (2 · 𝑛))
109adantr 276 . . . . . . . . . . 11 (((2 · 𝑛) ∈ ℕ0𝑛 ∈ ℤ) → 0 ≤ (2 · 𝑛))
11 prodge0 8909 . . . . . . . . . . 11 (((2 ∈ ℝ ∧ 𝑛 ∈ ℝ) ∧ (0 < 2 ∧ 0 ≤ (2 · 𝑛))) → 0 ≤ 𝑛)
124, 6, 8, 10, 11syl22anc 1250 . . . . . . . . . 10 (((2 · 𝑛) ∈ ℕ0𝑛 ∈ ℤ) → 0 ≤ 𝑛)
13 elnn0z 9367 . . . . . . . . . 10 (𝑛 ∈ ℕ0 ↔ (𝑛 ∈ ℤ ∧ 0 ≤ 𝑛))
142, 12, 13sylanbrc 417 . . . . . . . . 9 (((2 · 𝑛) ∈ ℕ0𝑛 ∈ ℤ) → 𝑛 ∈ ℕ0)
1514ex 115 . . . . . . . 8 ((2 · 𝑛) ∈ ℕ0 → (𝑛 ∈ ℤ → 𝑛 ∈ ℕ0))
161, 15biimtrrdi 164 . . . . . . 7 ((2 · 𝑛) = 𝑁 → (𝑁 ∈ ℕ0 → (𝑛 ∈ ℤ → 𝑛 ∈ ℕ0)))
1716com13 80 . . . . . 6 (𝑛 ∈ ℤ → (𝑁 ∈ ℕ0 → ((2 · 𝑛) = 𝑁𝑛 ∈ ℕ0)))
1817impcom 125 . . . . 5 ((𝑁 ∈ ℕ0𝑛 ∈ ℤ) → ((2 · 𝑛) = 𝑁𝑛 ∈ ℕ0))
1918pm4.71rd 394 . . . 4 ((𝑁 ∈ ℕ0𝑛 ∈ ℤ) → ((2 · 𝑛) = 𝑁 ↔ (𝑛 ∈ ℕ0 ∧ (2 · 𝑛) = 𝑁)))
2019bicomd 141 . . 3 ((𝑁 ∈ ℕ0𝑛 ∈ ℤ) → ((𝑛 ∈ ℕ0 ∧ (2 · 𝑛) = 𝑁) ↔ (2 · 𝑛) = 𝑁))
2120rexbidva 2502 . 2 (𝑁 ∈ ℕ0 → (∃𝑛 ∈ ℤ (𝑛 ∈ ℕ0 ∧ (2 · 𝑛) = 𝑁) ↔ ∃𝑛 ∈ ℤ (2 · 𝑛) = 𝑁))
22 nn0ssz 9372 . . 3 0 ⊆ ℤ
23 rexss 3259 . . 3 (ℕ0 ⊆ ℤ → (∃𝑛 ∈ ℕ0 (2 · 𝑛) = 𝑁 ↔ ∃𝑛 ∈ ℤ (𝑛 ∈ ℕ0 ∧ (2 · 𝑛) = 𝑁)))
2422, 23mp1i 10 . 2 (𝑁 ∈ ℕ0 → (∃𝑛 ∈ ℕ0 (2 · 𝑛) = 𝑁 ↔ ∃𝑛 ∈ ℤ (𝑛 ∈ ℕ0 ∧ (2 · 𝑛) = 𝑁)))
25 even2n 12104 . . 3 (2 ∥ 𝑁 ↔ ∃𝑛 ∈ ℤ (2 · 𝑛) = 𝑁)
2625a1i 9 . 2 (𝑁 ∈ ℕ0 → (2 ∥ 𝑁 ↔ ∃𝑛 ∈ ℤ (2 · 𝑛) = 𝑁))
2721, 24, 263bitr4rd 221 1 (𝑁 ∈ ℕ0 → (2 ∥ 𝑁 ↔ ∃𝑛 ∈ ℕ0 (2 · 𝑛) = 𝑁))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105   = wceq 1372  wcel 2175  wrex 2484  wss 3165   class class class wbr 4043  (class class class)co 5934  cr 7906  0cc0 7907   · cmul 7912   < clt 8089  cle 8090  2c2 9069  0cn0 9277  cz 9354  cdvds 12017
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-10 1527  ax-11 1528  ax-i12 1529  ax-bndl 1531  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557  ax-13 2177  ax-14 2178  ax-ext 2186  ax-sep 4161  ax-pow 4217  ax-pr 4252  ax-un 4478  ax-setind 4583  ax-cnex 7998  ax-resscn 7999  ax-1cn 8000  ax-1re 8001  ax-icn 8002  ax-addcl 8003  ax-addrcl 8004  ax-mulcl 8005  ax-mulrcl 8006  ax-addcom 8007  ax-mulcom 8008  ax-addass 8009  ax-mulass 8010  ax-distr 8011  ax-i2m1 8012  ax-0lt1 8013  ax-1rid 8014  ax-0id 8015  ax-rnegex 8016  ax-cnre 8018  ax-pre-ltirr 8019  ax-pre-ltwlin 8020  ax-pre-lttrn 8021  ax-pre-ltadd 8023  ax-pre-mulgt0 8024
This theorem depends on definitions:  df-bi 117  df-3or 981  df-3an 982  df-tru 1375  df-fal 1378  df-nf 1483  df-sb 1785  df-eu 2056  df-mo 2057  df-clab 2191  df-cleq 2197  df-clel 2200  df-nfc 2336  df-ne 2376  df-nel 2471  df-ral 2488  df-rex 2489  df-reu 2490  df-rab 2492  df-v 2773  df-sbc 2998  df-dif 3167  df-un 3169  df-in 3171  df-ss 3178  df-pw 3617  df-sn 3638  df-pr 3639  df-op 3641  df-uni 3850  df-int 3885  df-br 4044  df-opab 4105  df-id 4338  df-xp 4679  df-rel 4680  df-cnv 4681  df-co 4682  df-dm 4683  df-iota 5229  df-fun 5270  df-fv 5276  df-riota 5889  df-ov 5937  df-oprab 5938  df-mpo 5939  df-pnf 8091  df-mnf 8092  df-xr 8093  df-ltxr 8094  df-le 8095  df-sub 8227  df-neg 8228  df-inn 9019  df-2 9077  df-n0 9278  df-z 9355  df-dvds 12018
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator