| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > evennn02n | GIF version | ||
| Description: A nonnegative integer is even iff it is twice another nonnegative integer. (Contributed by AV, 12-Aug-2021.) |
| Ref | Expression |
|---|---|
| evennn02n | ⊢ (𝑁 ∈ ℕ0 → (2 ∥ 𝑁 ↔ ∃𝑛 ∈ ℕ0 (2 · 𝑛) = 𝑁)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eleq1 2267 | . . . . . . . 8 ⊢ ((2 · 𝑛) = 𝑁 → ((2 · 𝑛) ∈ ℕ0 ↔ 𝑁 ∈ ℕ0)) | |
| 2 | simpr 110 | . . . . . . . . . 10 ⊢ (((2 · 𝑛) ∈ ℕ0 ∧ 𝑛 ∈ ℤ) → 𝑛 ∈ ℤ) | |
| 3 | 2re 9105 | . . . . . . . . . . . 12 ⊢ 2 ∈ ℝ | |
| 4 | 3 | a1i 9 | . . . . . . . . . . 11 ⊢ (((2 · 𝑛) ∈ ℕ0 ∧ 𝑛 ∈ ℤ) → 2 ∈ ℝ) |
| 5 | zre 9375 | . . . . . . . . . . . 12 ⊢ (𝑛 ∈ ℤ → 𝑛 ∈ ℝ) | |
| 6 | 5 | adantl 277 | . . . . . . . . . . 11 ⊢ (((2 · 𝑛) ∈ ℕ0 ∧ 𝑛 ∈ ℤ) → 𝑛 ∈ ℝ) |
| 7 | 2pos 9126 | . . . . . . . . . . . 12 ⊢ 0 < 2 | |
| 8 | 7 | a1i 9 | . . . . . . . . . . 11 ⊢ (((2 · 𝑛) ∈ ℕ0 ∧ 𝑛 ∈ ℤ) → 0 < 2) |
| 9 | nn0ge0 9319 | . . . . . . . . . . . 12 ⊢ ((2 · 𝑛) ∈ ℕ0 → 0 ≤ (2 · 𝑛)) | |
| 10 | 9 | adantr 276 | . . . . . . . . . . 11 ⊢ (((2 · 𝑛) ∈ ℕ0 ∧ 𝑛 ∈ ℤ) → 0 ≤ (2 · 𝑛)) |
| 11 | prodge0 8926 | . . . . . . . . . . 11 ⊢ (((2 ∈ ℝ ∧ 𝑛 ∈ ℝ) ∧ (0 < 2 ∧ 0 ≤ (2 · 𝑛))) → 0 ≤ 𝑛) | |
| 12 | 4, 6, 8, 10, 11 | syl22anc 1250 | . . . . . . . . . 10 ⊢ (((2 · 𝑛) ∈ ℕ0 ∧ 𝑛 ∈ ℤ) → 0 ≤ 𝑛) |
| 13 | elnn0z 9384 | . . . . . . . . . 10 ⊢ (𝑛 ∈ ℕ0 ↔ (𝑛 ∈ ℤ ∧ 0 ≤ 𝑛)) | |
| 14 | 2, 12, 13 | sylanbrc 417 | . . . . . . . . 9 ⊢ (((2 · 𝑛) ∈ ℕ0 ∧ 𝑛 ∈ ℤ) → 𝑛 ∈ ℕ0) |
| 15 | 14 | ex 115 | . . . . . . . 8 ⊢ ((2 · 𝑛) ∈ ℕ0 → (𝑛 ∈ ℤ → 𝑛 ∈ ℕ0)) |
| 16 | 1, 15 | biimtrrdi 164 | . . . . . . 7 ⊢ ((2 · 𝑛) = 𝑁 → (𝑁 ∈ ℕ0 → (𝑛 ∈ ℤ → 𝑛 ∈ ℕ0))) |
| 17 | 16 | com13 80 | . . . . . 6 ⊢ (𝑛 ∈ ℤ → (𝑁 ∈ ℕ0 → ((2 · 𝑛) = 𝑁 → 𝑛 ∈ ℕ0))) |
| 18 | 17 | impcom 125 | . . . . 5 ⊢ ((𝑁 ∈ ℕ0 ∧ 𝑛 ∈ ℤ) → ((2 · 𝑛) = 𝑁 → 𝑛 ∈ ℕ0)) |
| 19 | 18 | pm4.71rd 394 | . . . 4 ⊢ ((𝑁 ∈ ℕ0 ∧ 𝑛 ∈ ℤ) → ((2 · 𝑛) = 𝑁 ↔ (𝑛 ∈ ℕ0 ∧ (2 · 𝑛) = 𝑁))) |
| 20 | 19 | bicomd 141 | . . 3 ⊢ ((𝑁 ∈ ℕ0 ∧ 𝑛 ∈ ℤ) → ((𝑛 ∈ ℕ0 ∧ (2 · 𝑛) = 𝑁) ↔ (2 · 𝑛) = 𝑁)) |
| 21 | 20 | rexbidva 2502 | . 2 ⊢ (𝑁 ∈ ℕ0 → (∃𝑛 ∈ ℤ (𝑛 ∈ ℕ0 ∧ (2 · 𝑛) = 𝑁) ↔ ∃𝑛 ∈ ℤ (2 · 𝑛) = 𝑁)) |
| 22 | nn0ssz 9389 | . . 3 ⊢ ℕ0 ⊆ ℤ | |
| 23 | rexss 3259 | . . 3 ⊢ (ℕ0 ⊆ ℤ → (∃𝑛 ∈ ℕ0 (2 · 𝑛) = 𝑁 ↔ ∃𝑛 ∈ ℤ (𝑛 ∈ ℕ0 ∧ (2 · 𝑛) = 𝑁))) | |
| 24 | 22, 23 | mp1i 10 | . 2 ⊢ (𝑁 ∈ ℕ0 → (∃𝑛 ∈ ℕ0 (2 · 𝑛) = 𝑁 ↔ ∃𝑛 ∈ ℤ (𝑛 ∈ ℕ0 ∧ (2 · 𝑛) = 𝑁))) |
| 25 | even2n 12127 | . . 3 ⊢ (2 ∥ 𝑁 ↔ ∃𝑛 ∈ ℤ (2 · 𝑛) = 𝑁) | |
| 26 | 25 | a1i 9 | . 2 ⊢ (𝑁 ∈ ℕ0 → (2 ∥ 𝑁 ↔ ∃𝑛 ∈ ℤ (2 · 𝑛) = 𝑁)) |
| 27 | 21, 24, 26 | 3bitr4rd 221 | 1 ⊢ (𝑁 ∈ ℕ0 → (2 ∥ 𝑁 ↔ ∃𝑛 ∈ ℕ0 (2 · 𝑛) = 𝑁)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 = wceq 1372 ∈ wcel 2175 ∃wrex 2484 ⊆ wss 3165 class class class wbr 4043 (class class class)co 5943 ℝcr 7923 0cc0 7924 · cmul 7929 < clt 8106 ≤ cle 8107 2c2 9086 ℕ0cn0 9294 ℤcz 9371 ∥ cdvds 12040 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-10 1527 ax-11 1528 ax-i12 1529 ax-bndl 1531 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-13 2177 ax-14 2178 ax-ext 2186 ax-sep 4161 ax-pow 4217 ax-pr 4252 ax-un 4479 ax-setind 4584 ax-cnex 8015 ax-resscn 8016 ax-1cn 8017 ax-1re 8018 ax-icn 8019 ax-addcl 8020 ax-addrcl 8021 ax-mulcl 8022 ax-mulrcl 8023 ax-addcom 8024 ax-mulcom 8025 ax-addass 8026 ax-mulass 8027 ax-distr 8028 ax-i2m1 8029 ax-0lt1 8030 ax-1rid 8031 ax-0id 8032 ax-rnegex 8033 ax-cnre 8035 ax-pre-ltirr 8036 ax-pre-ltwlin 8037 ax-pre-lttrn 8038 ax-pre-ltadd 8040 ax-pre-mulgt0 8041 |
| This theorem depends on definitions: df-bi 117 df-3or 981 df-3an 982 df-tru 1375 df-fal 1378 df-nf 1483 df-sb 1785 df-eu 2056 df-mo 2057 df-clab 2191 df-cleq 2197 df-clel 2200 df-nfc 2336 df-ne 2376 df-nel 2471 df-ral 2488 df-rex 2489 df-reu 2490 df-rab 2492 df-v 2773 df-sbc 2998 df-dif 3167 df-un 3169 df-in 3171 df-ss 3178 df-pw 3617 df-sn 3638 df-pr 3639 df-op 3641 df-uni 3850 df-int 3885 df-br 4044 df-opab 4105 df-id 4339 df-xp 4680 df-rel 4681 df-cnv 4682 df-co 4683 df-dm 4684 df-iota 5231 df-fun 5272 df-fv 5278 df-riota 5898 df-ov 5946 df-oprab 5947 df-mpo 5948 df-pnf 8108 df-mnf 8109 df-xr 8110 df-ltxr 8111 df-le 8112 df-sub 8244 df-neg 8245 df-inn 9036 df-2 9094 df-n0 9295 df-z 9372 df-dvds 12041 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |