Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > evennn02n | GIF version |
Description: A nonnegative integer is even iff it is twice another nonnegative integer. (Contributed by AV, 12-Aug-2021.) |
Ref | Expression |
---|---|
evennn02n | ⊢ (𝑁 ∈ ℕ0 → (2 ∥ 𝑁 ↔ ∃𝑛 ∈ ℕ0 (2 · 𝑛) = 𝑁)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eleq1 2229 | . . . . . . . 8 ⊢ ((2 · 𝑛) = 𝑁 → ((2 · 𝑛) ∈ ℕ0 ↔ 𝑁 ∈ ℕ0)) | |
2 | simpr 109 | . . . . . . . . . 10 ⊢ (((2 · 𝑛) ∈ ℕ0 ∧ 𝑛 ∈ ℤ) → 𝑛 ∈ ℤ) | |
3 | 2re 8927 | . . . . . . . . . . . 12 ⊢ 2 ∈ ℝ | |
4 | 3 | a1i 9 | . . . . . . . . . . 11 ⊢ (((2 · 𝑛) ∈ ℕ0 ∧ 𝑛 ∈ ℤ) → 2 ∈ ℝ) |
5 | zre 9195 | . . . . . . . . . . . 12 ⊢ (𝑛 ∈ ℤ → 𝑛 ∈ ℝ) | |
6 | 5 | adantl 275 | . . . . . . . . . . 11 ⊢ (((2 · 𝑛) ∈ ℕ0 ∧ 𝑛 ∈ ℤ) → 𝑛 ∈ ℝ) |
7 | 2pos 8948 | . . . . . . . . . . . 12 ⊢ 0 < 2 | |
8 | 7 | a1i 9 | . . . . . . . . . . 11 ⊢ (((2 · 𝑛) ∈ ℕ0 ∧ 𝑛 ∈ ℤ) → 0 < 2) |
9 | nn0ge0 9139 | . . . . . . . . . . . 12 ⊢ ((2 · 𝑛) ∈ ℕ0 → 0 ≤ (2 · 𝑛)) | |
10 | 9 | adantr 274 | . . . . . . . . . . 11 ⊢ (((2 · 𝑛) ∈ ℕ0 ∧ 𝑛 ∈ ℤ) → 0 ≤ (2 · 𝑛)) |
11 | prodge0 8749 | . . . . . . . . . . 11 ⊢ (((2 ∈ ℝ ∧ 𝑛 ∈ ℝ) ∧ (0 < 2 ∧ 0 ≤ (2 · 𝑛))) → 0 ≤ 𝑛) | |
12 | 4, 6, 8, 10, 11 | syl22anc 1229 | . . . . . . . . . 10 ⊢ (((2 · 𝑛) ∈ ℕ0 ∧ 𝑛 ∈ ℤ) → 0 ≤ 𝑛) |
13 | elnn0z 9204 | . . . . . . . . . 10 ⊢ (𝑛 ∈ ℕ0 ↔ (𝑛 ∈ ℤ ∧ 0 ≤ 𝑛)) | |
14 | 2, 12, 13 | sylanbrc 414 | . . . . . . . . 9 ⊢ (((2 · 𝑛) ∈ ℕ0 ∧ 𝑛 ∈ ℤ) → 𝑛 ∈ ℕ0) |
15 | 14 | ex 114 | . . . . . . . 8 ⊢ ((2 · 𝑛) ∈ ℕ0 → (𝑛 ∈ ℤ → 𝑛 ∈ ℕ0)) |
16 | 1, 15 | syl6bir 163 | . . . . . . 7 ⊢ ((2 · 𝑛) = 𝑁 → (𝑁 ∈ ℕ0 → (𝑛 ∈ ℤ → 𝑛 ∈ ℕ0))) |
17 | 16 | com13 80 | . . . . . 6 ⊢ (𝑛 ∈ ℤ → (𝑁 ∈ ℕ0 → ((2 · 𝑛) = 𝑁 → 𝑛 ∈ ℕ0))) |
18 | 17 | impcom 124 | . . . . 5 ⊢ ((𝑁 ∈ ℕ0 ∧ 𝑛 ∈ ℤ) → ((2 · 𝑛) = 𝑁 → 𝑛 ∈ ℕ0)) |
19 | 18 | pm4.71rd 392 | . . . 4 ⊢ ((𝑁 ∈ ℕ0 ∧ 𝑛 ∈ ℤ) → ((2 · 𝑛) = 𝑁 ↔ (𝑛 ∈ ℕ0 ∧ (2 · 𝑛) = 𝑁))) |
20 | 19 | bicomd 140 | . . 3 ⊢ ((𝑁 ∈ ℕ0 ∧ 𝑛 ∈ ℤ) → ((𝑛 ∈ ℕ0 ∧ (2 · 𝑛) = 𝑁) ↔ (2 · 𝑛) = 𝑁)) |
21 | 20 | rexbidva 2463 | . 2 ⊢ (𝑁 ∈ ℕ0 → (∃𝑛 ∈ ℤ (𝑛 ∈ ℕ0 ∧ (2 · 𝑛) = 𝑁) ↔ ∃𝑛 ∈ ℤ (2 · 𝑛) = 𝑁)) |
22 | nn0ssz 9209 | . . 3 ⊢ ℕ0 ⊆ ℤ | |
23 | rexss 3209 | . . 3 ⊢ (ℕ0 ⊆ ℤ → (∃𝑛 ∈ ℕ0 (2 · 𝑛) = 𝑁 ↔ ∃𝑛 ∈ ℤ (𝑛 ∈ ℕ0 ∧ (2 · 𝑛) = 𝑁))) | |
24 | 22, 23 | mp1i 10 | . 2 ⊢ (𝑁 ∈ ℕ0 → (∃𝑛 ∈ ℕ0 (2 · 𝑛) = 𝑁 ↔ ∃𝑛 ∈ ℤ (𝑛 ∈ ℕ0 ∧ (2 · 𝑛) = 𝑁))) |
25 | even2n 11811 | . . 3 ⊢ (2 ∥ 𝑁 ↔ ∃𝑛 ∈ ℤ (2 · 𝑛) = 𝑁) | |
26 | 25 | a1i 9 | . 2 ⊢ (𝑁 ∈ ℕ0 → (2 ∥ 𝑁 ↔ ∃𝑛 ∈ ℤ (2 · 𝑛) = 𝑁)) |
27 | 21, 24, 26 | 3bitr4rd 220 | 1 ⊢ (𝑁 ∈ ℕ0 → (2 ∥ 𝑁 ↔ ∃𝑛 ∈ ℕ0 (2 · 𝑛) = 𝑁)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 ↔ wb 104 = wceq 1343 ∈ wcel 2136 ∃wrex 2445 ⊆ wss 3116 class class class wbr 3982 (class class class)co 5842 ℝcr 7752 0cc0 7753 · cmul 7758 < clt 7933 ≤ cle 7934 2c2 8908 ℕ0cn0 9114 ℤcz 9191 ∥ cdvds 11727 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-13 2138 ax-14 2139 ax-ext 2147 ax-sep 4100 ax-pow 4153 ax-pr 4187 ax-un 4411 ax-setind 4514 ax-cnex 7844 ax-resscn 7845 ax-1cn 7846 ax-1re 7847 ax-icn 7848 ax-addcl 7849 ax-addrcl 7850 ax-mulcl 7851 ax-mulrcl 7852 ax-addcom 7853 ax-mulcom 7854 ax-addass 7855 ax-mulass 7856 ax-distr 7857 ax-i2m1 7858 ax-0lt1 7859 ax-1rid 7860 ax-0id 7861 ax-rnegex 7862 ax-cnre 7864 ax-pre-ltirr 7865 ax-pre-ltwlin 7866 ax-pre-lttrn 7867 ax-pre-ltadd 7869 ax-pre-mulgt0 7870 |
This theorem depends on definitions: df-bi 116 df-3or 969 df-3an 970 df-tru 1346 df-fal 1349 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ne 2337 df-nel 2432 df-ral 2449 df-rex 2450 df-reu 2451 df-rab 2453 df-v 2728 df-sbc 2952 df-dif 3118 df-un 3120 df-in 3122 df-ss 3129 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-uni 3790 df-int 3825 df-br 3983 df-opab 4044 df-id 4271 df-xp 4610 df-rel 4611 df-cnv 4612 df-co 4613 df-dm 4614 df-iota 5153 df-fun 5190 df-fv 5196 df-riota 5798 df-ov 5845 df-oprab 5846 df-mpo 5847 df-pnf 7935 df-mnf 7936 df-xr 7937 df-ltxr 7938 df-le 7939 df-sub 8071 df-neg 8072 df-inn 8858 df-2 8916 df-n0 9115 df-z 9192 df-dvds 11728 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |