ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  suplocexprlemmu GIF version

Theorem suplocexprlemmu 7716
Description: Lemma for suplocexpr 7723. The upper cut of the putative supremum is inhabited. (Contributed by Jim Kingdon, 7-Jan-2024.)
Hypotheses
Ref Expression
suplocexpr.m (šœ‘ ā†’ āˆƒš‘„ š‘„ āˆˆ š“)
suplocexpr.ub (šœ‘ ā†’ āˆƒš‘„ āˆˆ P āˆ€š‘¦ āˆˆ š“ š‘¦<P š‘„)
suplocexpr.loc (šœ‘ ā†’ āˆ€š‘„ āˆˆ P āˆ€š‘¦ āˆˆ P (š‘„<P š‘¦ ā†’ (āˆƒš‘§ āˆˆ š“ š‘„<P š‘§ āˆØ āˆ€š‘§ āˆˆ š“ š‘§<P š‘¦)))
suplocexpr.b šµ = āŸØāˆŖ (1st ā€œ š“), {š‘¢ āˆˆ Q āˆ£ āˆƒš‘¤ āˆˆ āˆ© (2nd ā€œ š“)š‘¤ <Q š‘¢}āŸ©
Assertion
Ref Expression
suplocexprlemmu (šœ‘ ā†’ āˆƒš‘  āˆˆ Q š‘  āˆˆ (2nd ā€˜šµ))
Distinct variable groups:   š“,š‘ ,š‘¢,š‘¤   š‘„,š“,š‘¦,š‘ ,š‘¢   šµ,š‘    šœ‘,š‘ ,š‘¢,š‘„,š‘¦
Allowed substitution hints:   šœ‘(š‘§,š‘¤)   š“(š‘§)   šµ(š‘„,š‘¦,š‘§,š‘¤,š‘¢)

Proof of Theorem suplocexprlemmu
Dummy variables š‘— š‘” are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 suplocexpr.ub . . . 4 (šœ‘ ā†’ āˆƒš‘„ āˆˆ P āˆ€š‘¦ āˆˆ š“ š‘¦<P š‘„)
2 prop 7473 . . . . . . 7 (š‘„ āˆˆ P ā†’ āŸØ(1st ā€˜š‘„), (2nd ā€˜š‘„)āŸ© āˆˆ P)
3 prmu 7476 . . . . . . 7 (āŸØ(1st ā€˜š‘„), (2nd ā€˜š‘„)āŸ© āˆˆ P ā†’ āˆƒš‘  āˆˆ Q š‘  āˆˆ (2nd ā€˜š‘„))
42, 3syl 14 . . . . . 6 (š‘„ āˆˆ P ā†’ āˆƒš‘  āˆˆ Q š‘  āˆˆ (2nd ā€˜š‘„))
54ad2antrl 490 . . . . 5 ((šœ‘ āˆ§ (š‘„ āˆˆ P āˆ§ āˆ€š‘¦ āˆˆ š“ š‘¦<P š‘„)) ā†’ āˆƒš‘  āˆˆ Q š‘  āˆˆ (2nd ā€˜š‘„))
6 fo2nd 6158 . . . . . . . . . . . . 13 2nd :Vā€“ontoā†’V
7 fofun 5439 . . . . . . . . . . . . 13 (2nd :Vā€“ontoā†’V ā†’ Fun 2nd )
86, 7ax-mp 5 . . . . . . . . . . . 12 Fun 2nd
9 fvelima 5567 . . . . . . . . . . . 12 ((Fun 2nd āˆ§ š‘” āˆˆ (2nd ā€œ š“)) ā†’ āˆƒš‘¢ āˆˆ š“ (2nd ā€˜š‘¢) = š‘”)
108, 9mpan 424 . . . . . . . . . . 11 (š‘” āˆˆ (2nd ā€œ š“) ā†’ āˆƒš‘¢ āˆˆ š“ (2nd ā€˜š‘¢) = š‘”)
1110adantl 277 . . . . . . . . . 10 (((((šœ‘ āˆ§ (š‘„ āˆˆ P āˆ§ āˆ€š‘¦ āˆˆ š“ š‘¦<P š‘„)) āˆ§ š‘  āˆˆ Q) āˆ§ š‘  āˆˆ (2nd ā€˜š‘„)) āˆ§ š‘” āˆˆ (2nd ā€œ š“)) ā†’ āˆƒš‘¢ āˆˆ š“ (2nd ā€˜š‘¢) = š‘”)
12 suplocexpr.m . . . . . . . . . . . . . . . 16 (šœ‘ ā†’ āˆƒš‘„ š‘„ āˆˆ š“)
13 suplocexpr.loc . . . . . . . . . . . . . . . 16 (šœ‘ ā†’ āˆ€š‘„ āˆˆ P āˆ€š‘¦ āˆˆ P (š‘„<P š‘¦ ā†’ (āˆƒš‘§ āˆˆ š“ š‘„<P š‘§ āˆØ āˆ€š‘§ āˆˆ š“ š‘§<P š‘¦)))
1412, 1, 13suplocexprlemss 7713 . . . . . . . . . . . . . . 15 (šœ‘ ā†’ š“ āŠ† P)
1514ad5antr 496 . . . . . . . . . . . . . 14 ((((((šœ‘ āˆ§ (š‘„ āˆˆ P āˆ§ āˆ€š‘¦ āˆˆ š“ š‘¦<P š‘„)) āˆ§ š‘  āˆˆ Q) āˆ§ š‘  āˆˆ (2nd ā€˜š‘„)) āˆ§ š‘” āˆˆ (2nd ā€œ š“)) āˆ§ (š‘¢ āˆˆ š“ āˆ§ (2nd ā€˜š‘¢) = š‘”)) ā†’ š“ āŠ† P)
16 simprl 529 . . . . . . . . . . . . . 14 ((((((šœ‘ āˆ§ (š‘„ āˆˆ P āˆ§ āˆ€š‘¦ āˆˆ š“ š‘¦<P š‘„)) āˆ§ š‘  āˆˆ Q) āˆ§ š‘  āˆˆ (2nd ā€˜š‘„)) āˆ§ š‘” āˆˆ (2nd ā€œ š“)) āˆ§ (š‘¢ āˆˆ š“ āˆ§ (2nd ā€˜š‘¢) = š‘”)) ā†’ š‘¢ āˆˆ š“)
1715, 16sseldd 3156 . . . . . . . . . . . . 13 ((((((šœ‘ āˆ§ (š‘„ āˆˆ P āˆ§ āˆ€š‘¦ āˆˆ š“ š‘¦<P š‘„)) āˆ§ š‘  āˆˆ Q) āˆ§ š‘  āˆˆ (2nd ā€˜š‘„)) āˆ§ š‘” āˆˆ (2nd ā€œ š“)) āˆ§ (š‘¢ āˆˆ š“ āˆ§ (2nd ā€˜š‘¢) = š‘”)) ā†’ š‘¢ āˆˆ P)
18 simprl 529 . . . . . . . . . . . . . 14 ((šœ‘ āˆ§ (š‘„ āˆˆ P āˆ§ āˆ€š‘¦ āˆˆ š“ š‘¦<P š‘„)) ā†’ š‘„ āˆˆ P)
1918ad4antr 494 . . . . . . . . . . . . 13 ((((((šœ‘ āˆ§ (š‘„ āˆˆ P āˆ§ āˆ€š‘¦ āˆˆ š“ š‘¦<P š‘„)) āˆ§ š‘  āˆˆ Q) āˆ§ š‘  āˆˆ (2nd ā€˜š‘„)) āˆ§ š‘” āˆˆ (2nd ā€œ š“)) āˆ§ (š‘¢ āˆˆ š“ āˆ§ (2nd ā€˜š‘¢) = š‘”)) ā†’ š‘„ āˆˆ P)
20 breq1 4006 . . . . . . . . . . . . . . 15 (š‘¦ = š‘¢ ā†’ (š‘¦<P š‘„ ā†” š‘¢<P š‘„))
21 simprr 531 . . . . . . . . . . . . . . . 16 ((šœ‘ āˆ§ (š‘„ āˆˆ P āˆ§ āˆ€š‘¦ āˆˆ š“ š‘¦<P š‘„)) ā†’ āˆ€š‘¦ āˆˆ š“ š‘¦<P š‘„)
2221ad4antr 494 . . . . . . . . . . . . . . 15 ((((((šœ‘ āˆ§ (š‘„ āˆˆ P āˆ§ āˆ€š‘¦ āˆˆ š“ š‘¦<P š‘„)) āˆ§ š‘  āˆˆ Q) āˆ§ š‘  āˆˆ (2nd ā€˜š‘„)) āˆ§ š‘” āˆˆ (2nd ā€œ š“)) āˆ§ (š‘¢ āˆˆ š“ āˆ§ (2nd ā€˜š‘¢) = š‘”)) ā†’ āˆ€š‘¦ āˆˆ š“ š‘¦<P š‘„)
2320, 22, 16rspcdva 2846 . . . . . . . . . . . . . 14 ((((((šœ‘ āˆ§ (š‘„ āˆˆ P āˆ§ āˆ€š‘¦ āˆˆ š“ š‘¦<P š‘„)) āˆ§ š‘  āˆˆ Q) āˆ§ š‘  āˆˆ (2nd ā€˜š‘„)) āˆ§ š‘” āˆˆ (2nd ā€œ š“)) āˆ§ (š‘¢ āˆˆ š“ āˆ§ (2nd ā€˜š‘¢) = š‘”)) ā†’ š‘¢<P š‘„)
24 ltsopr 7594 . . . . . . . . . . . . . . . . 17 <P Or P
25 so2nr 4321 . . . . . . . . . . . . . . . . 17 ((<P Or P āˆ§ (š‘¢ āˆˆ P āˆ§ š‘„ āˆˆ P)) ā†’ Ā¬ (š‘¢<P š‘„ āˆ§ š‘„<P š‘¢))
2624, 25mpan 424 . . . . . . . . . . . . . . . 16 ((š‘¢ āˆˆ P āˆ§ š‘„ āˆˆ P) ā†’ Ā¬ (š‘¢<P š‘„ āˆ§ š‘„<P š‘¢))
2717, 19, 26syl2anc 411 . . . . . . . . . . . . . . 15 ((((((šœ‘ āˆ§ (š‘„ āˆˆ P āˆ§ āˆ€š‘¦ āˆˆ š“ š‘¦<P š‘„)) āˆ§ š‘  āˆˆ Q) āˆ§ š‘  āˆˆ (2nd ā€˜š‘„)) āˆ§ š‘” āˆˆ (2nd ā€œ š“)) āˆ§ (š‘¢ āˆˆ š“ āˆ§ (2nd ā€˜š‘¢) = š‘”)) ā†’ Ā¬ (š‘¢<P š‘„ āˆ§ š‘„<P š‘¢))
28 imnan 690 . . . . . . . . . . . . . . 15 ((š‘¢<P š‘„ ā†’ Ā¬ š‘„<P š‘¢) ā†” Ā¬ (š‘¢<P š‘„ āˆ§ š‘„<P š‘¢))
2927, 28sylibr 134 . . . . . . . . . . . . . 14 ((((((šœ‘ āˆ§ (š‘„ āˆˆ P āˆ§ āˆ€š‘¦ āˆˆ š“ š‘¦<P š‘„)) āˆ§ š‘  āˆˆ Q) āˆ§ š‘  āˆˆ (2nd ā€˜š‘„)) āˆ§ š‘” āˆˆ (2nd ā€œ š“)) āˆ§ (š‘¢ āˆˆ š“ āˆ§ (2nd ā€˜š‘¢) = š‘”)) ā†’ (š‘¢<P š‘„ ā†’ Ā¬ š‘„<P š‘¢))
3023, 29mpd 13 . . . . . . . . . . . . 13 ((((((šœ‘ āˆ§ (š‘„ āˆˆ P āˆ§ āˆ€š‘¦ āˆˆ š“ š‘¦<P š‘„)) āˆ§ š‘  āˆˆ Q) āˆ§ š‘  āˆˆ (2nd ā€˜š‘„)) āˆ§ š‘” āˆˆ (2nd ā€œ š“)) āˆ§ (š‘¢ āˆˆ š“ āˆ§ (2nd ā€˜š‘¢) = š‘”)) ā†’ Ā¬ š‘„<P š‘¢)
31 aptiprlemu 7638 . . . . . . . . . . . . 13 ((š‘¢ āˆˆ P āˆ§ š‘„ āˆˆ P āˆ§ Ā¬ š‘„<P š‘¢) ā†’ (2nd ā€˜š‘„) āŠ† (2nd ā€˜š‘¢))
3217, 19, 30, 31syl3anc 1238 . . . . . . . . . . . 12 ((((((šœ‘ āˆ§ (š‘„ āˆˆ P āˆ§ āˆ€š‘¦ āˆˆ š“ š‘¦<P š‘„)) āˆ§ š‘  āˆˆ Q) āˆ§ š‘  āˆˆ (2nd ā€˜š‘„)) āˆ§ š‘” āˆˆ (2nd ā€œ š“)) āˆ§ (š‘¢ āˆˆ š“ āˆ§ (2nd ā€˜š‘¢) = š‘”)) ā†’ (2nd ā€˜š‘„) āŠ† (2nd ā€˜š‘¢))
33 simpllr 534 . . . . . . . . . . . 12 ((((((šœ‘ āˆ§ (š‘„ āˆˆ P āˆ§ āˆ€š‘¦ āˆˆ š“ š‘¦<P š‘„)) āˆ§ š‘  āˆˆ Q) āˆ§ š‘  āˆˆ (2nd ā€˜š‘„)) āˆ§ š‘” āˆˆ (2nd ā€œ š“)) āˆ§ (š‘¢ āˆˆ š“ āˆ§ (2nd ā€˜š‘¢) = š‘”)) ā†’ š‘  āˆˆ (2nd ā€˜š‘„))
3432, 33sseldd 3156 . . . . . . . . . . 11 ((((((šœ‘ āˆ§ (š‘„ āˆˆ P āˆ§ āˆ€š‘¦ āˆˆ š“ š‘¦<P š‘„)) āˆ§ š‘  āˆˆ Q) āˆ§ š‘  āˆˆ (2nd ā€˜š‘„)) āˆ§ š‘” āˆˆ (2nd ā€œ š“)) āˆ§ (š‘¢ āˆˆ š“ āˆ§ (2nd ā€˜š‘¢) = š‘”)) ā†’ š‘  āˆˆ (2nd ā€˜š‘¢))
35 simprr 531 . . . . . . . . . . 11 ((((((šœ‘ āˆ§ (š‘„ āˆˆ P āˆ§ āˆ€š‘¦ āˆˆ š“ š‘¦<P š‘„)) āˆ§ š‘  āˆˆ Q) āˆ§ š‘  āˆˆ (2nd ā€˜š‘„)) āˆ§ š‘” āˆˆ (2nd ā€œ š“)) āˆ§ (š‘¢ āˆˆ š“ āˆ§ (2nd ā€˜š‘¢) = š‘”)) ā†’ (2nd ā€˜š‘¢) = š‘”)
3634, 35eleqtrd 2256 . . . . . . . . . 10 ((((((šœ‘ āˆ§ (š‘„ āˆˆ P āˆ§ āˆ€š‘¦ āˆˆ š“ š‘¦<P š‘„)) āˆ§ š‘  āˆˆ Q) āˆ§ š‘  āˆˆ (2nd ā€˜š‘„)) āˆ§ š‘” āˆˆ (2nd ā€œ š“)) āˆ§ (š‘¢ āˆˆ š“ āˆ§ (2nd ā€˜š‘¢) = š‘”)) ā†’ š‘  āˆˆ š‘”)
3711, 36rexlimddv 2599 . . . . . . . . 9 (((((šœ‘ āˆ§ (š‘„ āˆˆ P āˆ§ āˆ€š‘¦ āˆˆ š“ š‘¦<P š‘„)) āˆ§ š‘  āˆˆ Q) āˆ§ š‘  āˆˆ (2nd ā€˜š‘„)) āˆ§ š‘” āˆˆ (2nd ā€œ š“)) ā†’ š‘  āˆˆ š‘”)
3837ralrimiva 2550 . . . . . . . 8 ((((šœ‘ āˆ§ (š‘„ āˆˆ P āˆ§ āˆ€š‘¦ āˆˆ š“ š‘¦<P š‘„)) āˆ§ š‘  āˆˆ Q) āˆ§ š‘  āˆˆ (2nd ā€˜š‘„)) ā†’ āˆ€š‘” āˆˆ (2nd ā€œ š“)š‘  āˆˆ š‘”)
39 vex 2740 . . . . . . . . 9 š‘  āˆˆ V
4039elint2 3851 . . . . . . . 8 (š‘  āˆˆ āˆ© (2nd ā€œ š“) ā†” āˆ€š‘” āˆˆ (2nd ā€œ š“)š‘  āˆˆ š‘”)
4138, 40sylibr 134 . . . . . . 7 ((((šœ‘ āˆ§ (š‘„ āˆˆ P āˆ§ āˆ€š‘¦ āˆˆ š“ š‘¦<P š‘„)) āˆ§ š‘  āˆˆ Q) āˆ§ š‘  āˆˆ (2nd ā€˜š‘„)) ā†’ š‘  āˆˆ āˆ© (2nd ā€œ š“))
4241ex 115 . . . . . 6 (((šœ‘ āˆ§ (š‘„ āˆˆ P āˆ§ āˆ€š‘¦ āˆˆ š“ š‘¦<P š‘„)) āˆ§ š‘  āˆˆ Q) ā†’ (š‘  āˆˆ (2nd ā€˜š‘„) ā†’ š‘  āˆˆ āˆ© (2nd ā€œ š“)))
4342reximdva 2579 . . . . 5 ((šœ‘ āˆ§ (š‘„ āˆˆ P āˆ§ āˆ€š‘¦ āˆˆ š“ š‘¦<P š‘„)) ā†’ (āˆƒš‘  āˆˆ Q š‘  āˆˆ (2nd ā€˜š‘„) ā†’ āˆƒš‘  āˆˆ Q š‘  āˆˆ āˆ© (2nd ā€œ š“)))
445, 43mpd 13 . . . 4 ((šœ‘ āˆ§ (š‘„ āˆˆ P āˆ§ āˆ€š‘¦ āˆˆ š“ š‘¦<P š‘„)) ā†’ āˆƒš‘  āˆˆ Q š‘  āˆˆ āˆ© (2nd ā€œ š“))
451, 44rexlimddv 2599 . . 3 (šœ‘ ā†’ āˆƒš‘  āˆˆ Q š‘  āˆˆ āˆ© (2nd ā€œ š“))
46 simprr 531 . . . . . . 7 ((šœ‘ āˆ§ (š‘  āˆˆ Q āˆ§ š‘  āˆˆ āˆ© (2nd ā€œ š“))) ā†’ š‘  āˆˆ āˆ© (2nd ā€œ š“))
47 simprl 529 . . . . . . . . 9 ((šœ‘ āˆ§ (š‘  āˆˆ Q āˆ§ š‘  āˆˆ āˆ© (2nd ā€œ š“))) ā†’ š‘  āˆˆ Q)
48 1nq 7364 . . . . . . . . 9 1Q āˆˆ Q
49 addclnq 7373 . . . . . . . . 9 ((š‘  āˆˆ Q āˆ§ 1Q āˆˆ Q) ā†’ (š‘  +Q 1Q) āˆˆ Q)
5047, 48, 49sylancl 413 . . . . . . . 8 ((šœ‘ āˆ§ (š‘  āˆˆ Q āˆ§ š‘  āˆˆ āˆ© (2nd ā€œ š“))) ā†’ (š‘  +Q 1Q) āˆˆ Q)
51 ltaddnq 7405 . . . . . . . . 9 ((š‘  āˆˆ Q āˆ§ 1Q āˆˆ Q) ā†’ š‘  <Q (š‘  +Q 1Q))
5247, 48, 51sylancl 413 . . . . . . . 8 ((šœ‘ āˆ§ (š‘  āˆˆ Q āˆ§ š‘  āˆˆ āˆ© (2nd ā€œ š“))) ā†’ š‘  <Q (š‘  +Q 1Q))
53 breq2 4007 . . . . . . . . 9 (š‘— = (š‘  +Q 1Q) ā†’ (š‘  <Q š‘— ā†” š‘  <Q (š‘  +Q 1Q)))
5453rspcev 2841 . . . . . . . 8 (((š‘  +Q 1Q) āˆˆ Q āˆ§ š‘  <Q (š‘  +Q 1Q)) ā†’ āˆƒš‘— āˆˆ Q š‘  <Q š‘—)
5550, 52, 54syl2anc 411 . . . . . . 7 ((šœ‘ āˆ§ (š‘  āˆˆ Q āˆ§ š‘  āˆˆ āˆ© (2nd ā€œ š“))) ā†’ āˆƒš‘— āˆˆ Q š‘  <Q š‘—)
56 breq1 4006 . . . . . . . . 9 (š‘¤ = š‘  ā†’ (š‘¤ <Q š‘— ā†” š‘  <Q š‘—))
5756rexbidv 2478 . . . . . . . 8 (š‘¤ = š‘  ā†’ (āˆƒš‘— āˆˆ Q š‘¤ <Q š‘— ā†” āˆƒš‘— āˆˆ Q š‘  <Q š‘—))
5857rspcev 2841 . . . . . . 7 ((š‘  āˆˆ āˆ© (2nd ā€œ š“) āˆ§ āˆƒš‘— āˆˆ Q š‘  <Q š‘—) ā†’ āˆƒš‘¤ āˆˆ āˆ© (2nd ā€œ š“)āˆƒš‘— āˆˆ Q š‘¤ <Q š‘—)
5946, 55, 58syl2anc 411 . . . . . 6 ((šœ‘ āˆ§ (š‘  āˆˆ Q āˆ§ š‘  āˆˆ āˆ© (2nd ā€œ š“))) ā†’ āˆƒš‘¤ āˆˆ āˆ© (2nd ā€œ š“)āˆƒš‘— āˆˆ Q š‘¤ <Q š‘—)
60 rexcom 2641 . . . . . 6 (āˆƒš‘¤ āˆˆ āˆ© (2nd ā€œ š“)āˆƒš‘— āˆˆ Q š‘¤ <Q š‘— ā†” āˆƒš‘— āˆˆ Q āˆƒš‘¤ āˆˆ āˆ© (2nd ā€œ š“)š‘¤ <Q š‘—)
6159, 60sylib 122 . . . . 5 ((šœ‘ āˆ§ (š‘  āˆˆ Q āˆ§ š‘  āˆˆ āˆ© (2nd ā€œ š“))) ā†’ āˆƒš‘— āˆˆ Q āˆƒš‘¤ āˆˆ āˆ© (2nd ā€œ š“)š‘¤ <Q š‘—)
62 ssid 3175 . . . . . 6 Q āŠ† Q
63 rexss 3222 . . . . . 6 (Q āŠ† Q ā†’ (āˆƒš‘— āˆˆ Q āˆƒš‘¤ āˆˆ āˆ© (2nd ā€œ š“)š‘¤ <Q š‘— ā†” āˆƒš‘— āˆˆ Q (š‘— āˆˆ Q āˆ§ āˆƒš‘¤ āˆˆ āˆ© (2nd ā€œ š“)š‘¤ <Q š‘—)))
6462, 63ax-mp 5 . . . . 5 (āˆƒš‘— āˆˆ Q āˆƒš‘¤ āˆˆ āˆ© (2nd ā€œ š“)š‘¤ <Q š‘— ā†” āˆƒš‘— āˆˆ Q (š‘— āˆˆ Q āˆ§ āˆƒš‘¤ āˆˆ āˆ© (2nd ā€œ š“)š‘¤ <Q š‘—))
6561, 64sylib 122 . . . 4 ((šœ‘ āˆ§ (š‘  āˆˆ Q āˆ§ š‘  āˆˆ āˆ© (2nd ā€œ š“))) ā†’ āˆƒš‘— āˆˆ Q (š‘— āˆˆ Q āˆ§ āˆƒš‘¤ āˆˆ āˆ© (2nd ā€œ š“)š‘¤ <Q š‘—))
66 suplocexpr.b . . . . . . . . . 10 šµ = āŸØāˆŖ (1st ā€œ š“), {š‘¢ āˆˆ Q āˆ£ āˆƒš‘¤ āˆˆ āˆ© (2nd ā€œ š“)š‘¤ <Q š‘¢}āŸ©
6766suplocexprlem2b 7712 . . . . . . . . 9 (š“ āŠ† P ā†’ (2nd ā€˜šµ) = {š‘¢ āˆˆ Q āˆ£ āˆƒš‘¤ āˆˆ āˆ© (2nd ā€œ š“)š‘¤ <Q š‘¢})
6814, 67syl 14 . . . . . . . 8 (šœ‘ ā†’ (2nd ā€˜šµ) = {š‘¢ āˆˆ Q āˆ£ āˆƒš‘¤ āˆˆ āˆ© (2nd ā€œ š“)š‘¤ <Q š‘¢})
6968eleq2d 2247 . . . . . . 7 (šœ‘ ā†’ (š‘— āˆˆ (2nd ā€˜šµ) ā†” š‘— āˆˆ {š‘¢ āˆˆ Q āˆ£ āˆƒš‘¤ āˆˆ āˆ© (2nd ā€œ š“)š‘¤ <Q š‘¢}))
70 breq2 4007 . . . . . . . . 9 (š‘¢ = š‘— ā†’ (š‘¤ <Q š‘¢ ā†” š‘¤ <Q š‘—))
7170rexbidv 2478 . . . . . . . 8 (š‘¢ = š‘— ā†’ (āˆƒš‘¤ āˆˆ āˆ© (2nd ā€œ š“)š‘¤ <Q š‘¢ ā†” āˆƒš‘¤ āˆˆ āˆ© (2nd ā€œ š“)š‘¤ <Q š‘—))
7271elrab 2893 . . . . . . 7 (š‘— āˆˆ {š‘¢ āˆˆ Q āˆ£ āˆƒš‘¤ āˆˆ āˆ© (2nd ā€œ š“)š‘¤ <Q š‘¢} ā†” (š‘— āˆˆ Q āˆ§ āˆƒš‘¤ āˆˆ āˆ© (2nd ā€œ š“)š‘¤ <Q š‘—))
7369, 72bitrdi 196 . . . . . 6 (šœ‘ ā†’ (š‘— āˆˆ (2nd ā€˜šµ) ā†” (š‘— āˆˆ Q āˆ§ āˆƒš‘¤ āˆˆ āˆ© (2nd ā€œ š“)š‘¤ <Q š‘—)))
7473rexbidv 2478 . . . . 5 (šœ‘ ā†’ (āˆƒš‘— āˆˆ Q š‘— āˆˆ (2nd ā€˜šµ) ā†” āˆƒš‘— āˆˆ Q (š‘— āˆˆ Q āˆ§ āˆƒš‘¤ āˆˆ āˆ© (2nd ā€œ š“)š‘¤ <Q š‘—)))
7574adantr 276 . . . 4 ((šœ‘ āˆ§ (š‘  āˆˆ Q āˆ§ š‘  āˆˆ āˆ© (2nd ā€œ š“))) ā†’ (āˆƒš‘— āˆˆ Q š‘— āˆˆ (2nd ā€˜šµ) ā†” āˆƒš‘— āˆˆ Q (š‘— āˆˆ Q āˆ§ āˆƒš‘¤ āˆˆ āˆ© (2nd ā€œ š“)š‘¤ <Q š‘—)))
7665, 75mpbird 167 . . 3 ((šœ‘ āˆ§ (š‘  āˆˆ Q āˆ§ š‘  āˆˆ āˆ© (2nd ā€œ š“))) ā†’ āˆƒš‘— āˆˆ Q š‘— āˆˆ (2nd ā€˜šµ))
7745, 76rexlimddv 2599 . 2 (šœ‘ ā†’ āˆƒš‘— āˆˆ Q š‘— āˆˆ (2nd ā€˜šµ))
78 eleq1w 2238 . . 3 (š‘— = š‘  ā†’ (š‘— āˆˆ (2nd ā€˜šµ) ā†” š‘  āˆˆ (2nd ā€˜šµ)))
7978cbvrexv 2704 . 2 (āˆƒš‘— āˆˆ Q š‘— āˆˆ (2nd ā€˜šµ) ā†” āˆƒš‘  āˆˆ Q š‘  āˆˆ (2nd ā€˜šµ))
8077, 79sylib 122 1 (šœ‘ ā†’ āˆƒš‘  āˆˆ Q š‘  āˆˆ (2nd ā€˜šµ))
Colors of variables: wff set class
Syntax hints:  Ā¬ wn 3   ā†’ wi 4   āˆ§ wa 104   ā†” wb 105   āˆØ wo 708   = wceq 1353  āˆƒwex 1492   āˆˆ wcel 2148  āˆ€wral 2455  āˆƒwrex 2456  {crab 2459  Vcvv 2737   āŠ† wss 3129  āŸØcop 3595  āˆŖ cuni 3809  āˆ© cint 3844   class class class wbr 4003   Or wor 4295   ā€œ cima 4629  Fun wfun 5210  ā€“ontoā†’wfo 5214  ā€˜cfv 5216  (class class class)co 5874  1st c1st 6138  2nd c2nd 6139  Qcnq 7278  1Qc1q 7279   +Q cplq 7280   <Q cltq 7283  Pcnp 7289  <P cltp 7293
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-coll 4118  ax-sep 4121  ax-nul 4129  ax-pow 4174  ax-pr 4209  ax-un 4433  ax-setind 4536  ax-iinf 4587
This theorem depends on definitions:  df-bi 117  df-dc 835  df-3or 979  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-ral 2460  df-rex 2461  df-reu 2462  df-rab 2464  df-v 2739  df-sbc 2963  df-csb 3058  df-dif 3131  df-un 3133  df-in 3135  df-ss 3142  df-nul 3423  df-pw 3577  df-sn 3598  df-pr 3599  df-op 3601  df-uni 3810  df-int 3845  df-iun 3888  df-br 4004  df-opab 4065  df-mpt 4066  df-tr 4102  df-eprel 4289  df-id 4293  df-po 4296  df-iso 4297  df-iord 4366  df-on 4368  df-suc 4371  df-iom 4590  df-xp 4632  df-rel 4633  df-cnv 4634  df-co 4635  df-dm 4636  df-rn 4637  df-res 4638  df-ima 4639  df-iota 5178  df-fun 5218  df-fn 5219  df-f 5220  df-f1 5221  df-fo 5222  df-f1o 5223  df-fv 5224  df-ov 5877  df-oprab 5878  df-mpo 5879  df-1st 6140  df-2nd 6141  df-recs 6305  df-irdg 6370  df-1o 6416  df-2o 6417  df-oadd 6420  df-omul 6421  df-er 6534  df-ec 6536  df-qs 6540  df-ni 7302  df-pli 7303  df-mi 7304  df-lti 7305  df-plpq 7342  df-mpq 7343  df-enq 7345  df-nqqs 7346  df-plqqs 7347  df-mqqs 7348  df-1nqqs 7349  df-rq 7350  df-ltnqqs 7351  df-enq0 7422  df-nq0 7423  df-0nq0 7424  df-plq0 7425  df-mq0 7426  df-inp 7464  df-iltp 7468
This theorem is referenced by:  suplocexprlemex  7720
  Copyright terms: Public domain W3C validator