ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  suplocexprlemmu GIF version

Theorem suplocexprlemmu 7659
Description: Lemma for suplocexpr 7666. The upper cut of the putative supremum is inhabited. (Contributed by Jim Kingdon, 7-Jan-2024.)
Hypotheses
Ref Expression
suplocexpr.m (𝜑 → ∃𝑥 𝑥𝐴)
suplocexpr.ub (𝜑 → ∃𝑥P𝑦𝐴 𝑦<P 𝑥)
suplocexpr.loc (𝜑 → ∀𝑥P𝑦P (𝑥<P 𝑦 → (∃𝑧𝐴 𝑥<P 𝑧 ∨ ∀𝑧𝐴 𝑧<P 𝑦)))
suplocexpr.b 𝐵 = ⟨ (1st𝐴), {𝑢Q ∣ ∃𝑤 (2nd𝐴)𝑤 <Q 𝑢}⟩
Assertion
Ref Expression
suplocexprlemmu (𝜑 → ∃𝑠Q 𝑠 ∈ (2nd𝐵))
Distinct variable groups:   𝐴,𝑠,𝑢,𝑤   𝑥,𝐴,𝑦,𝑠,𝑢   𝐵,𝑠   𝜑,𝑠,𝑢,𝑥,𝑦
Allowed substitution hints:   𝜑(𝑧,𝑤)   𝐴(𝑧)   𝐵(𝑥,𝑦,𝑧,𝑤,𝑢)

Proof of Theorem suplocexprlemmu
Dummy variables 𝑗 𝑡 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 suplocexpr.ub . . . 4 (𝜑 → ∃𝑥P𝑦𝐴 𝑦<P 𝑥)
2 prop 7416 . . . . . . 7 (𝑥P → ⟨(1st𝑥), (2nd𝑥)⟩ ∈ P)
3 prmu 7419 . . . . . . 7 (⟨(1st𝑥), (2nd𝑥)⟩ ∈ P → ∃𝑠Q 𝑠 ∈ (2nd𝑥))
42, 3syl 14 . . . . . 6 (𝑥P → ∃𝑠Q 𝑠 ∈ (2nd𝑥))
54ad2antrl 482 . . . . 5 ((𝜑 ∧ (𝑥P ∧ ∀𝑦𝐴 𝑦<P 𝑥)) → ∃𝑠Q 𝑠 ∈ (2nd𝑥))
6 fo2nd 6126 . . . . . . . . . . . . 13 2nd :V–onto→V
7 fofun 5411 . . . . . . . . . . . . 13 (2nd :V–onto→V → Fun 2nd )
86, 7ax-mp 5 . . . . . . . . . . . 12 Fun 2nd
9 fvelima 5538 . . . . . . . . . . . 12 ((Fun 2nd𝑡 ∈ (2nd𝐴)) → ∃𝑢𝐴 (2nd𝑢) = 𝑡)
108, 9mpan 421 . . . . . . . . . . 11 (𝑡 ∈ (2nd𝐴) → ∃𝑢𝐴 (2nd𝑢) = 𝑡)
1110adantl 275 . . . . . . . . . 10 (((((𝜑 ∧ (𝑥P ∧ ∀𝑦𝐴 𝑦<P 𝑥)) ∧ 𝑠Q) ∧ 𝑠 ∈ (2nd𝑥)) ∧ 𝑡 ∈ (2nd𝐴)) → ∃𝑢𝐴 (2nd𝑢) = 𝑡)
12 suplocexpr.m . . . . . . . . . . . . . . . 16 (𝜑 → ∃𝑥 𝑥𝐴)
13 suplocexpr.loc . . . . . . . . . . . . . . . 16 (𝜑 → ∀𝑥P𝑦P (𝑥<P 𝑦 → (∃𝑧𝐴 𝑥<P 𝑧 ∨ ∀𝑧𝐴 𝑧<P 𝑦)))
1412, 1, 13suplocexprlemss 7656 . . . . . . . . . . . . . . 15 (𝜑𝐴P)
1514ad5antr 488 . . . . . . . . . . . . . 14 ((((((𝜑 ∧ (𝑥P ∧ ∀𝑦𝐴 𝑦<P 𝑥)) ∧ 𝑠Q) ∧ 𝑠 ∈ (2nd𝑥)) ∧ 𝑡 ∈ (2nd𝐴)) ∧ (𝑢𝐴 ∧ (2nd𝑢) = 𝑡)) → 𝐴P)
16 simprl 521 . . . . . . . . . . . . . 14 ((((((𝜑 ∧ (𝑥P ∧ ∀𝑦𝐴 𝑦<P 𝑥)) ∧ 𝑠Q) ∧ 𝑠 ∈ (2nd𝑥)) ∧ 𝑡 ∈ (2nd𝐴)) ∧ (𝑢𝐴 ∧ (2nd𝑢) = 𝑡)) → 𝑢𝐴)
1715, 16sseldd 3143 . . . . . . . . . . . . 13 ((((((𝜑 ∧ (𝑥P ∧ ∀𝑦𝐴 𝑦<P 𝑥)) ∧ 𝑠Q) ∧ 𝑠 ∈ (2nd𝑥)) ∧ 𝑡 ∈ (2nd𝐴)) ∧ (𝑢𝐴 ∧ (2nd𝑢) = 𝑡)) → 𝑢P)
18 simprl 521 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑥P ∧ ∀𝑦𝐴 𝑦<P 𝑥)) → 𝑥P)
1918ad4antr 486 . . . . . . . . . . . . 13 ((((((𝜑 ∧ (𝑥P ∧ ∀𝑦𝐴 𝑦<P 𝑥)) ∧ 𝑠Q) ∧ 𝑠 ∈ (2nd𝑥)) ∧ 𝑡 ∈ (2nd𝐴)) ∧ (𝑢𝐴 ∧ (2nd𝑢) = 𝑡)) → 𝑥P)
20 breq1 3985 . . . . . . . . . . . . . . 15 (𝑦 = 𝑢 → (𝑦<P 𝑥𝑢<P 𝑥))
21 simprr 522 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (𝑥P ∧ ∀𝑦𝐴 𝑦<P 𝑥)) → ∀𝑦𝐴 𝑦<P 𝑥)
2221ad4antr 486 . . . . . . . . . . . . . . 15 ((((((𝜑 ∧ (𝑥P ∧ ∀𝑦𝐴 𝑦<P 𝑥)) ∧ 𝑠Q) ∧ 𝑠 ∈ (2nd𝑥)) ∧ 𝑡 ∈ (2nd𝐴)) ∧ (𝑢𝐴 ∧ (2nd𝑢) = 𝑡)) → ∀𝑦𝐴 𝑦<P 𝑥)
2320, 22, 16rspcdva 2835 . . . . . . . . . . . . . 14 ((((((𝜑 ∧ (𝑥P ∧ ∀𝑦𝐴 𝑦<P 𝑥)) ∧ 𝑠Q) ∧ 𝑠 ∈ (2nd𝑥)) ∧ 𝑡 ∈ (2nd𝐴)) ∧ (𝑢𝐴 ∧ (2nd𝑢) = 𝑡)) → 𝑢<P 𝑥)
24 ltsopr 7537 . . . . . . . . . . . . . . . . 17 <P Or P
25 so2nr 4299 . . . . . . . . . . . . . . . . 17 ((<P Or P ∧ (𝑢P𝑥P)) → ¬ (𝑢<P 𝑥𝑥<P 𝑢))
2624, 25mpan 421 . . . . . . . . . . . . . . . 16 ((𝑢P𝑥P) → ¬ (𝑢<P 𝑥𝑥<P 𝑢))
2717, 19, 26syl2anc 409 . . . . . . . . . . . . . . 15 ((((((𝜑 ∧ (𝑥P ∧ ∀𝑦𝐴 𝑦<P 𝑥)) ∧ 𝑠Q) ∧ 𝑠 ∈ (2nd𝑥)) ∧ 𝑡 ∈ (2nd𝐴)) ∧ (𝑢𝐴 ∧ (2nd𝑢) = 𝑡)) → ¬ (𝑢<P 𝑥𝑥<P 𝑢))
28 imnan 680 . . . . . . . . . . . . . . 15 ((𝑢<P 𝑥 → ¬ 𝑥<P 𝑢) ↔ ¬ (𝑢<P 𝑥𝑥<P 𝑢))
2927, 28sylibr 133 . . . . . . . . . . . . . 14 ((((((𝜑 ∧ (𝑥P ∧ ∀𝑦𝐴 𝑦<P 𝑥)) ∧ 𝑠Q) ∧ 𝑠 ∈ (2nd𝑥)) ∧ 𝑡 ∈ (2nd𝐴)) ∧ (𝑢𝐴 ∧ (2nd𝑢) = 𝑡)) → (𝑢<P 𝑥 → ¬ 𝑥<P 𝑢))
3023, 29mpd 13 . . . . . . . . . . . . 13 ((((((𝜑 ∧ (𝑥P ∧ ∀𝑦𝐴 𝑦<P 𝑥)) ∧ 𝑠Q) ∧ 𝑠 ∈ (2nd𝑥)) ∧ 𝑡 ∈ (2nd𝐴)) ∧ (𝑢𝐴 ∧ (2nd𝑢) = 𝑡)) → ¬ 𝑥<P 𝑢)
31 aptiprlemu 7581 . . . . . . . . . . . . 13 ((𝑢P𝑥P ∧ ¬ 𝑥<P 𝑢) → (2nd𝑥) ⊆ (2nd𝑢))
3217, 19, 30, 31syl3anc 1228 . . . . . . . . . . . 12 ((((((𝜑 ∧ (𝑥P ∧ ∀𝑦𝐴 𝑦<P 𝑥)) ∧ 𝑠Q) ∧ 𝑠 ∈ (2nd𝑥)) ∧ 𝑡 ∈ (2nd𝐴)) ∧ (𝑢𝐴 ∧ (2nd𝑢) = 𝑡)) → (2nd𝑥) ⊆ (2nd𝑢))
33 simpllr 524 . . . . . . . . . . . 12 ((((((𝜑 ∧ (𝑥P ∧ ∀𝑦𝐴 𝑦<P 𝑥)) ∧ 𝑠Q) ∧ 𝑠 ∈ (2nd𝑥)) ∧ 𝑡 ∈ (2nd𝐴)) ∧ (𝑢𝐴 ∧ (2nd𝑢) = 𝑡)) → 𝑠 ∈ (2nd𝑥))
3432, 33sseldd 3143 . . . . . . . . . . 11 ((((((𝜑 ∧ (𝑥P ∧ ∀𝑦𝐴 𝑦<P 𝑥)) ∧ 𝑠Q) ∧ 𝑠 ∈ (2nd𝑥)) ∧ 𝑡 ∈ (2nd𝐴)) ∧ (𝑢𝐴 ∧ (2nd𝑢) = 𝑡)) → 𝑠 ∈ (2nd𝑢))
35 simprr 522 . . . . . . . . . . 11 ((((((𝜑 ∧ (𝑥P ∧ ∀𝑦𝐴 𝑦<P 𝑥)) ∧ 𝑠Q) ∧ 𝑠 ∈ (2nd𝑥)) ∧ 𝑡 ∈ (2nd𝐴)) ∧ (𝑢𝐴 ∧ (2nd𝑢) = 𝑡)) → (2nd𝑢) = 𝑡)
3634, 35eleqtrd 2245 . . . . . . . . . 10 ((((((𝜑 ∧ (𝑥P ∧ ∀𝑦𝐴 𝑦<P 𝑥)) ∧ 𝑠Q) ∧ 𝑠 ∈ (2nd𝑥)) ∧ 𝑡 ∈ (2nd𝐴)) ∧ (𝑢𝐴 ∧ (2nd𝑢) = 𝑡)) → 𝑠𝑡)
3711, 36rexlimddv 2588 . . . . . . . . 9 (((((𝜑 ∧ (𝑥P ∧ ∀𝑦𝐴 𝑦<P 𝑥)) ∧ 𝑠Q) ∧ 𝑠 ∈ (2nd𝑥)) ∧ 𝑡 ∈ (2nd𝐴)) → 𝑠𝑡)
3837ralrimiva 2539 . . . . . . . 8 ((((𝜑 ∧ (𝑥P ∧ ∀𝑦𝐴 𝑦<P 𝑥)) ∧ 𝑠Q) ∧ 𝑠 ∈ (2nd𝑥)) → ∀𝑡 ∈ (2nd𝐴)𝑠𝑡)
39 vex 2729 . . . . . . . . 9 𝑠 ∈ V
4039elint2 3831 . . . . . . . 8 (𝑠 (2nd𝐴) ↔ ∀𝑡 ∈ (2nd𝐴)𝑠𝑡)
4138, 40sylibr 133 . . . . . . 7 ((((𝜑 ∧ (𝑥P ∧ ∀𝑦𝐴 𝑦<P 𝑥)) ∧ 𝑠Q) ∧ 𝑠 ∈ (2nd𝑥)) → 𝑠 (2nd𝐴))
4241ex 114 . . . . . 6 (((𝜑 ∧ (𝑥P ∧ ∀𝑦𝐴 𝑦<P 𝑥)) ∧ 𝑠Q) → (𝑠 ∈ (2nd𝑥) → 𝑠 (2nd𝐴)))
4342reximdva 2568 . . . . 5 ((𝜑 ∧ (𝑥P ∧ ∀𝑦𝐴 𝑦<P 𝑥)) → (∃𝑠Q 𝑠 ∈ (2nd𝑥) → ∃𝑠Q 𝑠 (2nd𝐴)))
445, 43mpd 13 . . . 4 ((𝜑 ∧ (𝑥P ∧ ∀𝑦𝐴 𝑦<P 𝑥)) → ∃𝑠Q 𝑠 (2nd𝐴))
451, 44rexlimddv 2588 . . 3 (𝜑 → ∃𝑠Q 𝑠 (2nd𝐴))
46 simprr 522 . . . . . . 7 ((𝜑 ∧ (𝑠Q𝑠 (2nd𝐴))) → 𝑠 (2nd𝐴))
47 simprl 521 . . . . . . . . 9 ((𝜑 ∧ (𝑠Q𝑠 (2nd𝐴))) → 𝑠Q)
48 1nq 7307 . . . . . . . . 9 1QQ
49 addclnq 7316 . . . . . . . . 9 ((𝑠Q ∧ 1QQ) → (𝑠 +Q 1Q) ∈ Q)
5047, 48, 49sylancl 410 . . . . . . . 8 ((𝜑 ∧ (𝑠Q𝑠 (2nd𝐴))) → (𝑠 +Q 1Q) ∈ Q)
51 ltaddnq 7348 . . . . . . . . 9 ((𝑠Q ∧ 1QQ) → 𝑠 <Q (𝑠 +Q 1Q))
5247, 48, 51sylancl 410 . . . . . . . 8 ((𝜑 ∧ (𝑠Q𝑠 (2nd𝐴))) → 𝑠 <Q (𝑠 +Q 1Q))
53 breq2 3986 . . . . . . . . 9 (𝑗 = (𝑠 +Q 1Q) → (𝑠 <Q 𝑗𝑠 <Q (𝑠 +Q 1Q)))
5453rspcev 2830 . . . . . . . 8 (((𝑠 +Q 1Q) ∈ Q𝑠 <Q (𝑠 +Q 1Q)) → ∃𝑗Q 𝑠 <Q 𝑗)
5550, 52, 54syl2anc 409 . . . . . . 7 ((𝜑 ∧ (𝑠Q𝑠 (2nd𝐴))) → ∃𝑗Q 𝑠 <Q 𝑗)
56 breq1 3985 . . . . . . . . 9 (𝑤 = 𝑠 → (𝑤 <Q 𝑗𝑠 <Q 𝑗))
5756rexbidv 2467 . . . . . . . 8 (𝑤 = 𝑠 → (∃𝑗Q 𝑤 <Q 𝑗 ↔ ∃𝑗Q 𝑠 <Q 𝑗))
5857rspcev 2830 . . . . . . 7 ((𝑠 (2nd𝐴) ∧ ∃𝑗Q 𝑠 <Q 𝑗) → ∃𝑤 (2nd𝐴)∃𝑗Q 𝑤 <Q 𝑗)
5946, 55, 58syl2anc 409 . . . . . 6 ((𝜑 ∧ (𝑠Q𝑠 (2nd𝐴))) → ∃𝑤 (2nd𝐴)∃𝑗Q 𝑤 <Q 𝑗)
60 rexcom 2630 . . . . . 6 (∃𝑤 (2nd𝐴)∃𝑗Q 𝑤 <Q 𝑗 ↔ ∃𝑗Q𝑤 (2nd𝐴)𝑤 <Q 𝑗)
6159, 60sylib 121 . . . . 5 ((𝜑 ∧ (𝑠Q𝑠 (2nd𝐴))) → ∃𝑗Q𝑤 (2nd𝐴)𝑤 <Q 𝑗)
62 ssid 3162 . . . . . 6 QQ
63 rexss 3209 . . . . . 6 (QQ → (∃𝑗Q𝑤 (2nd𝐴)𝑤 <Q 𝑗 ↔ ∃𝑗Q (𝑗Q ∧ ∃𝑤 (2nd𝐴)𝑤 <Q 𝑗)))
6462, 63ax-mp 5 . . . . 5 (∃𝑗Q𝑤 (2nd𝐴)𝑤 <Q 𝑗 ↔ ∃𝑗Q (𝑗Q ∧ ∃𝑤 (2nd𝐴)𝑤 <Q 𝑗))
6561, 64sylib 121 . . . 4 ((𝜑 ∧ (𝑠Q𝑠 (2nd𝐴))) → ∃𝑗Q (𝑗Q ∧ ∃𝑤 (2nd𝐴)𝑤 <Q 𝑗))
66 suplocexpr.b . . . . . . . . . 10 𝐵 = ⟨ (1st𝐴), {𝑢Q ∣ ∃𝑤 (2nd𝐴)𝑤 <Q 𝑢}⟩
6766suplocexprlem2b 7655 . . . . . . . . 9 (𝐴P → (2nd𝐵) = {𝑢Q ∣ ∃𝑤 (2nd𝐴)𝑤 <Q 𝑢})
6814, 67syl 14 . . . . . . . 8 (𝜑 → (2nd𝐵) = {𝑢Q ∣ ∃𝑤 (2nd𝐴)𝑤 <Q 𝑢})
6968eleq2d 2236 . . . . . . 7 (𝜑 → (𝑗 ∈ (2nd𝐵) ↔ 𝑗 ∈ {𝑢Q ∣ ∃𝑤 (2nd𝐴)𝑤 <Q 𝑢}))
70 breq2 3986 . . . . . . . . 9 (𝑢 = 𝑗 → (𝑤 <Q 𝑢𝑤 <Q 𝑗))
7170rexbidv 2467 . . . . . . . 8 (𝑢 = 𝑗 → (∃𝑤 (2nd𝐴)𝑤 <Q 𝑢 ↔ ∃𝑤 (2nd𝐴)𝑤 <Q 𝑗))
7271elrab 2882 . . . . . . 7 (𝑗 ∈ {𝑢Q ∣ ∃𝑤 (2nd𝐴)𝑤 <Q 𝑢} ↔ (𝑗Q ∧ ∃𝑤 (2nd𝐴)𝑤 <Q 𝑗))
7369, 72bitrdi 195 . . . . . 6 (𝜑 → (𝑗 ∈ (2nd𝐵) ↔ (𝑗Q ∧ ∃𝑤 (2nd𝐴)𝑤 <Q 𝑗)))
7473rexbidv 2467 . . . . 5 (𝜑 → (∃𝑗Q 𝑗 ∈ (2nd𝐵) ↔ ∃𝑗Q (𝑗Q ∧ ∃𝑤 (2nd𝐴)𝑤 <Q 𝑗)))
7574adantr 274 . . . 4 ((𝜑 ∧ (𝑠Q𝑠 (2nd𝐴))) → (∃𝑗Q 𝑗 ∈ (2nd𝐵) ↔ ∃𝑗Q (𝑗Q ∧ ∃𝑤 (2nd𝐴)𝑤 <Q 𝑗)))
7665, 75mpbird 166 . . 3 ((𝜑 ∧ (𝑠Q𝑠 (2nd𝐴))) → ∃𝑗Q 𝑗 ∈ (2nd𝐵))
7745, 76rexlimddv 2588 . 2 (𝜑 → ∃𝑗Q 𝑗 ∈ (2nd𝐵))
78 eleq1w 2227 . . 3 (𝑗 = 𝑠 → (𝑗 ∈ (2nd𝐵) ↔ 𝑠 ∈ (2nd𝐵)))
7978cbvrexv 2693 . 2 (∃𝑗Q 𝑗 ∈ (2nd𝐵) ↔ ∃𝑠Q 𝑠 ∈ (2nd𝐵))
8077, 79sylib 121 1 (𝜑 → ∃𝑠Q 𝑠 ∈ (2nd𝐵))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 103  wb 104  wo 698   = wceq 1343  wex 1480  wcel 2136  wral 2444  wrex 2445  {crab 2448  Vcvv 2726  wss 3116  cop 3579   cuni 3789   cint 3824   class class class wbr 3982   Or wor 4273  cima 4607  Fun wfun 5182  ontowfo 5186  cfv 5188  (class class class)co 5842  1st c1st 6106  2nd c2nd 6107  Qcnq 7221  1Qc1q 7222   +Q cplq 7223   <Q cltq 7226  Pcnp 7232  <P cltp 7236
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-coll 4097  ax-sep 4100  ax-nul 4108  ax-pow 4153  ax-pr 4187  ax-un 4411  ax-setind 4514  ax-iinf 4565
This theorem depends on definitions:  df-bi 116  df-dc 825  df-3or 969  df-3an 970  df-tru 1346  df-fal 1349  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ne 2337  df-ral 2449  df-rex 2450  df-reu 2451  df-rab 2453  df-v 2728  df-sbc 2952  df-csb 3046  df-dif 3118  df-un 3120  df-in 3122  df-ss 3129  df-nul 3410  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-int 3825  df-iun 3868  df-br 3983  df-opab 4044  df-mpt 4045  df-tr 4081  df-eprel 4267  df-id 4271  df-po 4274  df-iso 4275  df-iord 4344  df-on 4346  df-suc 4349  df-iom 4568  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-rn 4615  df-res 4616  df-ima 4617  df-iota 5153  df-fun 5190  df-fn 5191  df-f 5192  df-f1 5193  df-fo 5194  df-f1o 5195  df-fv 5196  df-ov 5845  df-oprab 5846  df-mpo 5847  df-1st 6108  df-2nd 6109  df-recs 6273  df-irdg 6338  df-1o 6384  df-2o 6385  df-oadd 6388  df-omul 6389  df-er 6501  df-ec 6503  df-qs 6507  df-ni 7245  df-pli 7246  df-mi 7247  df-lti 7248  df-plpq 7285  df-mpq 7286  df-enq 7288  df-nqqs 7289  df-plqqs 7290  df-mqqs 7291  df-1nqqs 7292  df-rq 7293  df-ltnqqs 7294  df-enq0 7365  df-nq0 7366  df-0nq0 7367  df-plq0 7368  df-mq0 7369  df-inp 7407  df-iltp 7411
This theorem is referenced by:  suplocexprlemex  7663
  Copyright terms: Public domain W3C validator