ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  suplocexprlemmu GIF version

Theorem suplocexprlemmu 7780
Description: Lemma for suplocexpr 7787. The upper cut of the putative supremum is inhabited. (Contributed by Jim Kingdon, 7-Jan-2024.)
Hypotheses
Ref Expression
suplocexpr.m (𝜑 → ∃𝑥 𝑥𝐴)
suplocexpr.ub (𝜑 → ∃𝑥P𝑦𝐴 𝑦<P 𝑥)
suplocexpr.loc (𝜑 → ∀𝑥P𝑦P (𝑥<P 𝑦 → (∃𝑧𝐴 𝑥<P 𝑧 ∨ ∀𝑧𝐴 𝑧<P 𝑦)))
suplocexpr.b 𝐵 = ⟨ (1st𝐴), {𝑢Q ∣ ∃𝑤 (2nd𝐴)𝑤 <Q 𝑢}⟩
Assertion
Ref Expression
suplocexprlemmu (𝜑 → ∃𝑠Q 𝑠 ∈ (2nd𝐵))
Distinct variable groups:   𝐴,𝑠,𝑢,𝑤   𝑥,𝐴,𝑦,𝑠,𝑢   𝐵,𝑠   𝜑,𝑠,𝑢,𝑥,𝑦
Allowed substitution hints:   𝜑(𝑧,𝑤)   𝐴(𝑧)   𝐵(𝑥,𝑦,𝑧,𝑤,𝑢)

Proof of Theorem suplocexprlemmu
Dummy variables 𝑗 𝑡 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 suplocexpr.ub . . . 4 (𝜑 → ∃𝑥P𝑦𝐴 𝑦<P 𝑥)
2 prop 7537 . . . . . . 7 (𝑥P → ⟨(1st𝑥), (2nd𝑥)⟩ ∈ P)
3 prmu 7540 . . . . . . 7 (⟨(1st𝑥), (2nd𝑥)⟩ ∈ P → ∃𝑠Q 𝑠 ∈ (2nd𝑥))
42, 3syl 14 . . . . . 6 (𝑥P → ∃𝑠Q 𝑠 ∈ (2nd𝑥))
54ad2antrl 490 . . . . 5 ((𝜑 ∧ (𝑥P ∧ ∀𝑦𝐴 𝑦<P 𝑥)) → ∃𝑠Q 𝑠 ∈ (2nd𝑥))
6 fo2nd 6213 . . . . . . . . . . . . 13 2nd :V–onto→V
7 fofun 5478 . . . . . . . . . . . . 13 (2nd :V–onto→V → Fun 2nd )
86, 7ax-mp 5 . . . . . . . . . . . 12 Fun 2nd
9 fvelima 5609 . . . . . . . . . . . 12 ((Fun 2nd𝑡 ∈ (2nd𝐴)) → ∃𝑢𝐴 (2nd𝑢) = 𝑡)
108, 9mpan 424 . . . . . . . . . . 11 (𝑡 ∈ (2nd𝐴) → ∃𝑢𝐴 (2nd𝑢) = 𝑡)
1110adantl 277 . . . . . . . . . 10 (((((𝜑 ∧ (𝑥P ∧ ∀𝑦𝐴 𝑦<P 𝑥)) ∧ 𝑠Q) ∧ 𝑠 ∈ (2nd𝑥)) ∧ 𝑡 ∈ (2nd𝐴)) → ∃𝑢𝐴 (2nd𝑢) = 𝑡)
12 suplocexpr.m . . . . . . . . . . . . . . . 16 (𝜑 → ∃𝑥 𝑥𝐴)
13 suplocexpr.loc . . . . . . . . . . . . . . . 16 (𝜑 → ∀𝑥P𝑦P (𝑥<P 𝑦 → (∃𝑧𝐴 𝑥<P 𝑧 ∨ ∀𝑧𝐴 𝑧<P 𝑦)))
1412, 1, 13suplocexprlemss 7777 . . . . . . . . . . . . . . 15 (𝜑𝐴P)
1514ad5antr 496 . . . . . . . . . . . . . 14 ((((((𝜑 ∧ (𝑥P ∧ ∀𝑦𝐴 𝑦<P 𝑥)) ∧ 𝑠Q) ∧ 𝑠 ∈ (2nd𝑥)) ∧ 𝑡 ∈ (2nd𝐴)) ∧ (𝑢𝐴 ∧ (2nd𝑢) = 𝑡)) → 𝐴P)
16 simprl 529 . . . . . . . . . . . . . 14 ((((((𝜑 ∧ (𝑥P ∧ ∀𝑦𝐴 𝑦<P 𝑥)) ∧ 𝑠Q) ∧ 𝑠 ∈ (2nd𝑥)) ∧ 𝑡 ∈ (2nd𝐴)) ∧ (𝑢𝐴 ∧ (2nd𝑢) = 𝑡)) → 𝑢𝐴)
1715, 16sseldd 3181 . . . . . . . . . . . . 13 ((((((𝜑 ∧ (𝑥P ∧ ∀𝑦𝐴 𝑦<P 𝑥)) ∧ 𝑠Q) ∧ 𝑠 ∈ (2nd𝑥)) ∧ 𝑡 ∈ (2nd𝐴)) ∧ (𝑢𝐴 ∧ (2nd𝑢) = 𝑡)) → 𝑢P)
18 simprl 529 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑥P ∧ ∀𝑦𝐴 𝑦<P 𝑥)) → 𝑥P)
1918ad4antr 494 . . . . . . . . . . . . 13 ((((((𝜑 ∧ (𝑥P ∧ ∀𝑦𝐴 𝑦<P 𝑥)) ∧ 𝑠Q) ∧ 𝑠 ∈ (2nd𝑥)) ∧ 𝑡 ∈ (2nd𝐴)) ∧ (𝑢𝐴 ∧ (2nd𝑢) = 𝑡)) → 𝑥P)
20 breq1 4033 . . . . . . . . . . . . . . 15 (𝑦 = 𝑢 → (𝑦<P 𝑥𝑢<P 𝑥))
21 simprr 531 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (𝑥P ∧ ∀𝑦𝐴 𝑦<P 𝑥)) → ∀𝑦𝐴 𝑦<P 𝑥)
2221ad4antr 494 . . . . . . . . . . . . . . 15 ((((((𝜑 ∧ (𝑥P ∧ ∀𝑦𝐴 𝑦<P 𝑥)) ∧ 𝑠Q) ∧ 𝑠 ∈ (2nd𝑥)) ∧ 𝑡 ∈ (2nd𝐴)) ∧ (𝑢𝐴 ∧ (2nd𝑢) = 𝑡)) → ∀𝑦𝐴 𝑦<P 𝑥)
2320, 22, 16rspcdva 2870 . . . . . . . . . . . . . 14 ((((((𝜑 ∧ (𝑥P ∧ ∀𝑦𝐴 𝑦<P 𝑥)) ∧ 𝑠Q) ∧ 𝑠 ∈ (2nd𝑥)) ∧ 𝑡 ∈ (2nd𝐴)) ∧ (𝑢𝐴 ∧ (2nd𝑢) = 𝑡)) → 𝑢<P 𝑥)
24 ltsopr 7658 . . . . . . . . . . . . . . . . 17 <P Or P
25 so2nr 4353 . . . . . . . . . . . . . . . . 17 ((<P Or P ∧ (𝑢P𝑥P)) → ¬ (𝑢<P 𝑥𝑥<P 𝑢))
2624, 25mpan 424 . . . . . . . . . . . . . . . 16 ((𝑢P𝑥P) → ¬ (𝑢<P 𝑥𝑥<P 𝑢))
2717, 19, 26syl2anc 411 . . . . . . . . . . . . . . 15 ((((((𝜑 ∧ (𝑥P ∧ ∀𝑦𝐴 𝑦<P 𝑥)) ∧ 𝑠Q) ∧ 𝑠 ∈ (2nd𝑥)) ∧ 𝑡 ∈ (2nd𝐴)) ∧ (𝑢𝐴 ∧ (2nd𝑢) = 𝑡)) → ¬ (𝑢<P 𝑥𝑥<P 𝑢))
28 imnan 691 . . . . . . . . . . . . . . 15 ((𝑢<P 𝑥 → ¬ 𝑥<P 𝑢) ↔ ¬ (𝑢<P 𝑥𝑥<P 𝑢))
2927, 28sylibr 134 . . . . . . . . . . . . . 14 ((((((𝜑 ∧ (𝑥P ∧ ∀𝑦𝐴 𝑦<P 𝑥)) ∧ 𝑠Q) ∧ 𝑠 ∈ (2nd𝑥)) ∧ 𝑡 ∈ (2nd𝐴)) ∧ (𝑢𝐴 ∧ (2nd𝑢) = 𝑡)) → (𝑢<P 𝑥 → ¬ 𝑥<P 𝑢))
3023, 29mpd 13 . . . . . . . . . . . . 13 ((((((𝜑 ∧ (𝑥P ∧ ∀𝑦𝐴 𝑦<P 𝑥)) ∧ 𝑠Q) ∧ 𝑠 ∈ (2nd𝑥)) ∧ 𝑡 ∈ (2nd𝐴)) ∧ (𝑢𝐴 ∧ (2nd𝑢) = 𝑡)) → ¬ 𝑥<P 𝑢)
31 aptiprlemu 7702 . . . . . . . . . . . . 13 ((𝑢P𝑥P ∧ ¬ 𝑥<P 𝑢) → (2nd𝑥) ⊆ (2nd𝑢))
3217, 19, 30, 31syl3anc 1249 . . . . . . . . . . . 12 ((((((𝜑 ∧ (𝑥P ∧ ∀𝑦𝐴 𝑦<P 𝑥)) ∧ 𝑠Q) ∧ 𝑠 ∈ (2nd𝑥)) ∧ 𝑡 ∈ (2nd𝐴)) ∧ (𝑢𝐴 ∧ (2nd𝑢) = 𝑡)) → (2nd𝑥) ⊆ (2nd𝑢))
33 simpllr 534 . . . . . . . . . . . 12 ((((((𝜑 ∧ (𝑥P ∧ ∀𝑦𝐴 𝑦<P 𝑥)) ∧ 𝑠Q) ∧ 𝑠 ∈ (2nd𝑥)) ∧ 𝑡 ∈ (2nd𝐴)) ∧ (𝑢𝐴 ∧ (2nd𝑢) = 𝑡)) → 𝑠 ∈ (2nd𝑥))
3432, 33sseldd 3181 . . . . . . . . . . 11 ((((((𝜑 ∧ (𝑥P ∧ ∀𝑦𝐴 𝑦<P 𝑥)) ∧ 𝑠Q) ∧ 𝑠 ∈ (2nd𝑥)) ∧ 𝑡 ∈ (2nd𝐴)) ∧ (𝑢𝐴 ∧ (2nd𝑢) = 𝑡)) → 𝑠 ∈ (2nd𝑢))
35 simprr 531 . . . . . . . . . . 11 ((((((𝜑 ∧ (𝑥P ∧ ∀𝑦𝐴 𝑦<P 𝑥)) ∧ 𝑠Q) ∧ 𝑠 ∈ (2nd𝑥)) ∧ 𝑡 ∈ (2nd𝐴)) ∧ (𝑢𝐴 ∧ (2nd𝑢) = 𝑡)) → (2nd𝑢) = 𝑡)
3634, 35eleqtrd 2272 . . . . . . . . . 10 ((((((𝜑 ∧ (𝑥P ∧ ∀𝑦𝐴 𝑦<P 𝑥)) ∧ 𝑠Q) ∧ 𝑠 ∈ (2nd𝑥)) ∧ 𝑡 ∈ (2nd𝐴)) ∧ (𝑢𝐴 ∧ (2nd𝑢) = 𝑡)) → 𝑠𝑡)
3711, 36rexlimddv 2616 . . . . . . . . 9 (((((𝜑 ∧ (𝑥P ∧ ∀𝑦𝐴 𝑦<P 𝑥)) ∧ 𝑠Q) ∧ 𝑠 ∈ (2nd𝑥)) ∧ 𝑡 ∈ (2nd𝐴)) → 𝑠𝑡)
3837ralrimiva 2567 . . . . . . . 8 ((((𝜑 ∧ (𝑥P ∧ ∀𝑦𝐴 𝑦<P 𝑥)) ∧ 𝑠Q) ∧ 𝑠 ∈ (2nd𝑥)) → ∀𝑡 ∈ (2nd𝐴)𝑠𝑡)
39 vex 2763 . . . . . . . . 9 𝑠 ∈ V
4039elint2 3878 . . . . . . . 8 (𝑠 (2nd𝐴) ↔ ∀𝑡 ∈ (2nd𝐴)𝑠𝑡)
4138, 40sylibr 134 . . . . . . 7 ((((𝜑 ∧ (𝑥P ∧ ∀𝑦𝐴 𝑦<P 𝑥)) ∧ 𝑠Q) ∧ 𝑠 ∈ (2nd𝑥)) → 𝑠 (2nd𝐴))
4241ex 115 . . . . . 6 (((𝜑 ∧ (𝑥P ∧ ∀𝑦𝐴 𝑦<P 𝑥)) ∧ 𝑠Q) → (𝑠 ∈ (2nd𝑥) → 𝑠 (2nd𝐴)))
4342reximdva 2596 . . . . 5 ((𝜑 ∧ (𝑥P ∧ ∀𝑦𝐴 𝑦<P 𝑥)) → (∃𝑠Q 𝑠 ∈ (2nd𝑥) → ∃𝑠Q 𝑠 (2nd𝐴)))
445, 43mpd 13 . . . 4 ((𝜑 ∧ (𝑥P ∧ ∀𝑦𝐴 𝑦<P 𝑥)) → ∃𝑠Q 𝑠 (2nd𝐴))
451, 44rexlimddv 2616 . . 3 (𝜑 → ∃𝑠Q 𝑠 (2nd𝐴))
46 simprr 531 . . . . . . 7 ((𝜑 ∧ (𝑠Q𝑠 (2nd𝐴))) → 𝑠 (2nd𝐴))
47 simprl 529 . . . . . . . . 9 ((𝜑 ∧ (𝑠Q𝑠 (2nd𝐴))) → 𝑠Q)
48 1nq 7428 . . . . . . . . 9 1QQ
49 addclnq 7437 . . . . . . . . 9 ((𝑠Q ∧ 1QQ) → (𝑠 +Q 1Q) ∈ Q)
5047, 48, 49sylancl 413 . . . . . . . 8 ((𝜑 ∧ (𝑠Q𝑠 (2nd𝐴))) → (𝑠 +Q 1Q) ∈ Q)
51 ltaddnq 7469 . . . . . . . . 9 ((𝑠Q ∧ 1QQ) → 𝑠 <Q (𝑠 +Q 1Q))
5247, 48, 51sylancl 413 . . . . . . . 8 ((𝜑 ∧ (𝑠Q𝑠 (2nd𝐴))) → 𝑠 <Q (𝑠 +Q 1Q))
53 breq2 4034 . . . . . . . . 9 (𝑗 = (𝑠 +Q 1Q) → (𝑠 <Q 𝑗𝑠 <Q (𝑠 +Q 1Q)))
5453rspcev 2865 . . . . . . . 8 (((𝑠 +Q 1Q) ∈ Q𝑠 <Q (𝑠 +Q 1Q)) → ∃𝑗Q 𝑠 <Q 𝑗)
5550, 52, 54syl2anc 411 . . . . . . 7 ((𝜑 ∧ (𝑠Q𝑠 (2nd𝐴))) → ∃𝑗Q 𝑠 <Q 𝑗)
56 breq1 4033 . . . . . . . . 9 (𝑤 = 𝑠 → (𝑤 <Q 𝑗𝑠 <Q 𝑗))
5756rexbidv 2495 . . . . . . . 8 (𝑤 = 𝑠 → (∃𝑗Q 𝑤 <Q 𝑗 ↔ ∃𝑗Q 𝑠 <Q 𝑗))
5857rspcev 2865 . . . . . . 7 ((𝑠 (2nd𝐴) ∧ ∃𝑗Q 𝑠 <Q 𝑗) → ∃𝑤 (2nd𝐴)∃𝑗Q 𝑤 <Q 𝑗)
5946, 55, 58syl2anc 411 . . . . . 6 ((𝜑 ∧ (𝑠Q𝑠 (2nd𝐴))) → ∃𝑤 (2nd𝐴)∃𝑗Q 𝑤 <Q 𝑗)
60 rexcom 2658 . . . . . 6 (∃𝑤 (2nd𝐴)∃𝑗Q 𝑤 <Q 𝑗 ↔ ∃𝑗Q𝑤 (2nd𝐴)𝑤 <Q 𝑗)
6159, 60sylib 122 . . . . 5 ((𝜑 ∧ (𝑠Q𝑠 (2nd𝐴))) → ∃𝑗Q𝑤 (2nd𝐴)𝑤 <Q 𝑗)
62 ssid 3200 . . . . . 6 QQ
63 rexss 3247 . . . . . 6 (QQ → (∃𝑗Q𝑤 (2nd𝐴)𝑤 <Q 𝑗 ↔ ∃𝑗Q (𝑗Q ∧ ∃𝑤 (2nd𝐴)𝑤 <Q 𝑗)))
6462, 63ax-mp 5 . . . . 5 (∃𝑗Q𝑤 (2nd𝐴)𝑤 <Q 𝑗 ↔ ∃𝑗Q (𝑗Q ∧ ∃𝑤 (2nd𝐴)𝑤 <Q 𝑗))
6561, 64sylib 122 . . . 4 ((𝜑 ∧ (𝑠Q𝑠 (2nd𝐴))) → ∃𝑗Q (𝑗Q ∧ ∃𝑤 (2nd𝐴)𝑤 <Q 𝑗))
66 suplocexpr.b . . . . . . . . . 10 𝐵 = ⟨ (1st𝐴), {𝑢Q ∣ ∃𝑤 (2nd𝐴)𝑤 <Q 𝑢}⟩
6766suplocexprlem2b 7776 . . . . . . . . 9 (𝐴P → (2nd𝐵) = {𝑢Q ∣ ∃𝑤 (2nd𝐴)𝑤 <Q 𝑢})
6814, 67syl 14 . . . . . . . 8 (𝜑 → (2nd𝐵) = {𝑢Q ∣ ∃𝑤 (2nd𝐴)𝑤 <Q 𝑢})
6968eleq2d 2263 . . . . . . 7 (𝜑 → (𝑗 ∈ (2nd𝐵) ↔ 𝑗 ∈ {𝑢Q ∣ ∃𝑤 (2nd𝐴)𝑤 <Q 𝑢}))
70 breq2 4034 . . . . . . . . 9 (𝑢 = 𝑗 → (𝑤 <Q 𝑢𝑤 <Q 𝑗))
7170rexbidv 2495 . . . . . . . 8 (𝑢 = 𝑗 → (∃𝑤 (2nd𝐴)𝑤 <Q 𝑢 ↔ ∃𝑤 (2nd𝐴)𝑤 <Q 𝑗))
7271elrab 2917 . . . . . . 7 (𝑗 ∈ {𝑢Q ∣ ∃𝑤 (2nd𝐴)𝑤 <Q 𝑢} ↔ (𝑗Q ∧ ∃𝑤 (2nd𝐴)𝑤 <Q 𝑗))
7369, 72bitrdi 196 . . . . . 6 (𝜑 → (𝑗 ∈ (2nd𝐵) ↔ (𝑗Q ∧ ∃𝑤 (2nd𝐴)𝑤 <Q 𝑗)))
7473rexbidv 2495 . . . . 5 (𝜑 → (∃𝑗Q 𝑗 ∈ (2nd𝐵) ↔ ∃𝑗Q (𝑗Q ∧ ∃𝑤 (2nd𝐴)𝑤 <Q 𝑗)))
7574adantr 276 . . . 4 ((𝜑 ∧ (𝑠Q𝑠 (2nd𝐴))) → (∃𝑗Q 𝑗 ∈ (2nd𝐵) ↔ ∃𝑗Q (𝑗Q ∧ ∃𝑤 (2nd𝐴)𝑤 <Q 𝑗)))
7665, 75mpbird 167 . . 3 ((𝜑 ∧ (𝑠Q𝑠 (2nd𝐴))) → ∃𝑗Q 𝑗 ∈ (2nd𝐵))
7745, 76rexlimddv 2616 . 2 (𝜑 → ∃𝑗Q 𝑗 ∈ (2nd𝐵))
78 eleq1w 2254 . . 3 (𝑗 = 𝑠 → (𝑗 ∈ (2nd𝐵) ↔ 𝑠 ∈ (2nd𝐵)))
7978cbvrexv 2727 . 2 (∃𝑗Q 𝑗 ∈ (2nd𝐵) ↔ ∃𝑠Q 𝑠 ∈ (2nd𝐵))
8077, 79sylib 122 1 (𝜑 → ∃𝑠Q 𝑠 ∈ (2nd𝐵))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  wb 105  wo 709   = wceq 1364  wex 1503  wcel 2164  wral 2472  wrex 2473  {crab 2476  Vcvv 2760  wss 3154  cop 3622   cuni 3836   cint 3871   class class class wbr 4030   Or wor 4327  cima 4663  Fun wfun 5249  ontowfo 5253  cfv 5255  (class class class)co 5919  1st c1st 6193  2nd c2nd 6194  Qcnq 7342  1Qc1q 7343   +Q cplq 7344   <Q cltq 7347  Pcnp 7353  <P cltp 7357
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-coll 4145  ax-sep 4148  ax-nul 4156  ax-pow 4204  ax-pr 4239  ax-un 4465  ax-setind 4570  ax-iinf 4621
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-ral 2477  df-rex 2478  df-reu 2479  df-rab 2481  df-v 2762  df-sbc 2987  df-csb 3082  df-dif 3156  df-un 3158  df-in 3160  df-ss 3167  df-nul 3448  df-pw 3604  df-sn 3625  df-pr 3626  df-op 3628  df-uni 3837  df-int 3872  df-iun 3915  df-br 4031  df-opab 4092  df-mpt 4093  df-tr 4129  df-eprel 4321  df-id 4325  df-po 4328  df-iso 4329  df-iord 4398  df-on 4400  df-suc 4403  df-iom 4624  df-xp 4666  df-rel 4667  df-cnv 4668  df-co 4669  df-dm 4670  df-rn 4671  df-res 4672  df-ima 4673  df-iota 5216  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-ov 5922  df-oprab 5923  df-mpo 5924  df-1st 6195  df-2nd 6196  df-recs 6360  df-irdg 6425  df-1o 6471  df-2o 6472  df-oadd 6475  df-omul 6476  df-er 6589  df-ec 6591  df-qs 6595  df-ni 7366  df-pli 7367  df-mi 7368  df-lti 7369  df-plpq 7406  df-mpq 7407  df-enq 7409  df-nqqs 7410  df-plqqs 7411  df-mqqs 7412  df-1nqqs 7413  df-rq 7414  df-ltnqqs 7415  df-enq0 7486  df-nq0 7487  df-0nq0 7488  df-plq0 7489  df-mq0 7490  df-inp 7528  df-iltp 7532
This theorem is referenced by:  suplocexprlemex  7784
  Copyright terms: Public domain W3C validator