ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  suplocexprlemmu GIF version

Theorem suplocexprlemmu 7785
Description: Lemma for suplocexpr 7792. The upper cut of the putative supremum is inhabited. (Contributed by Jim Kingdon, 7-Jan-2024.)
Hypotheses
Ref Expression
suplocexpr.m (𝜑 → ∃𝑥 𝑥𝐴)
suplocexpr.ub (𝜑 → ∃𝑥P𝑦𝐴 𝑦<P 𝑥)
suplocexpr.loc (𝜑 → ∀𝑥P𝑦P (𝑥<P 𝑦 → (∃𝑧𝐴 𝑥<P 𝑧 ∨ ∀𝑧𝐴 𝑧<P 𝑦)))
suplocexpr.b 𝐵 = ⟨ (1st𝐴), {𝑢Q ∣ ∃𝑤 (2nd𝐴)𝑤 <Q 𝑢}⟩
Assertion
Ref Expression
suplocexprlemmu (𝜑 → ∃𝑠Q 𝑠 ∈ (2nd𝐵))
Distinct variable groups:   𝐴,𝑠,𝑢,𝑤   𝑥,𝐴,𝑦,𝑠,𝑢   𝐵,𝑠   𝜑,𝑠,𝑢,𝑥,𝑦
Allowed substitution hints:   𝜑(𝑧,𝑤)   𝐴(𝑧)   𝐵(𝑥,𝑦,𝑧,𝑤,𝑢)

Proof of Theorem suplocexprlemmu
Dummy variables 𝑗 𝑡 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 suplocexpr.ub . . . 4 (𝜑 → ∃𝑥P𝑦𝐴 𝑦<P 𝑥)
2 prop 7542 . . . . . . 7 (𝑥P → ⟨(1st𝑥), (2nd𝑥)⟩ ∈ P)
3 prmu 7545 . . . . . . 7 (⟨(1st𝑥), (2nd𝑥)⟩ ∈ P → ∃𝑠Q 𝑠 ∈ (2nd𝑥))
42, 3syl 14 . . . . . 6 (𝑥P → ∃𝑠Q 𝑠 ∈ (2nd𝑥))
54ad2antrl 490 . . . . 5 ((𝜑 ∧ (𝑥P ∧ ∀𝑦𝐴 𝑦<P 𝑥)) → ∃𝑠Q 𝑠 ∈ (2nd𝑥))
6 fo2nd 6216 . . . . . . . . . . . . 13 2nd :V–onto→V
7 fofun 5481 . . . . . . . . . . . . 13 (2nd :V–onto→V → Fun 2nd )
86, 7ax-mp 5 . . . . . . . . . . . 12 Fun 2nd
9 fvelima 5612 . . . . . . . . . . . 12 ((Fun 2nd𝑡 ∈ (2nd𝐴)) → ∃𝑢𝐴 (2nd𝑢) = 𝑡)
108, 9mpan 424 . . . . . . . . . . 11 (𝑡 ∈ (2nd𝐴) → ∃𝑢𝐴 (2nd𝑢) = 𝑡)
1110adantl 277 . . . . . . . . . 10 (((((𝜑 ∧ (𝑥P ∧ ∀𝑦𝐴 𝑦<P 𝑥)) ∧ 𝑠Q) ∧ 𝑠 ∈ (2nd𝑥)) ∧ 𝑡 ∈ (2nd𝐴)) → ∃𝑢𝐴 (2nd𝑢) = 𝑡)
12 suplocexpr.m . . . . . . . . . . . . . . . 16 (𝜑 → ∃𝑥 𝑥𝐴)
13 suplocexpr.loc . . . . . . . . . . . . . . . 16 (𝜑 → ∀𝑥P𝑦P (𝑥<P 𝑦 → (∃𝑧𝐴 𝑥<P 𝑧 ∨ ∀𝑧𝐴 𝑧<P 𝑦)))
1412, 1, 13suplocexprlemss 7782 . . . . . . . . . . . . . . 15 (𝜑𝐴P)
1514ad5antr 496 . . . . . . . . . . . . . 14 ((((((𝜑 ∧ (𝑥P ∧ ∀𝑦𝐴 𝑦<P 𝑥)) ∧ 𝑠Q) ∧ 𝑠 ∈ (2nd𝑥)) ∧ 𝑡 ∈ (2nd𝐴)) ∧ (𝑢𝐴 ∧ (2nd𝑢) = 𝑡)) → 𝐴P)
16 simprl 529 . . . . . . . . . . . . . 14 ((((((𝜑 ∧ (𝑥P ∧ ∀𝑦𝐴 𝑦<P 𝑥)) ∧ 𝑠Q) ∧ 𝑠 ∈ (2nd𝑥)) ∧ 𝑡 ∈ (2nd𝐴)) ∧ (𝑢𝐴 ∧ (2nd𝑢) = 𝑡)) → 𝑢𝐴)
1715, 16sseldd 3184 . . . . . . . . . . . . 13 ((((((𝜑 ∧ (𝑥P ∧ ∀𝑦𝐴 𝑦<P 𝑥)) ∧ 𝑠Q) ∧ 𝑠 ∈ (2nd𝑥)) ∧ 𝑡 ∈ (2nd𝐴)) ∧ (𝑢𝐴 ∧ (2nd𝑢) = 𝑡)) → 𝑢P)
18 simprl 529 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑥P ∧ ∀𝑦𝐴 𝑦<P 𝑥)) → 𝑥P)
1918ad4antr 494 . . . . . . . . . . . . 13 ((((((𝜑 ∧ (𝑥P ∧ ∀𝑦𝐴 𝑦<P 𝑥)) ∧ 𝑠Q) ∧ 𝑠 ∈ (2nd𝑥)) ∧ 𝑡 ∈ (2nd𝐴)) ∧ (𝑢𝐴 ∧ (2nd𝑢) = 𝑡)) → 𝑥P)
20 breq1 4036 . . . . . . . . . . . . . . 15 (𝑦 = 𝑢 → (𝑦<P 𝑥𝑢<P 𝑥))
21 simprr 531 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (𝑥P ∧ ∀𝑦𝐴 𝑦<P 𝑥)) → ∀𝑦𝐴 𝑦<P 𝑥)
2221ad4antr 494 . . . . . . . . . . . . . . 15 ((((((𝜑 ∧ (𝑥P ∧ ∀𝑦𝐴 𝑦<P 𝑥)) ∧ 𝑠Q) ∧ 𝑠 ∈ (2nd𝑥)) ∧ 𝑡 ∈ (2nd𝐴)) ∧ (𝑢𝐴 ∧ (2nd𝑢) = 𝑡)) → ∀𝑦𝐴 𝑦<P 𝑥)
2320, 22, 16rspcdva 2873 . . . . . . . . . . . . . 14 ((((((𝜑 ∧ (𝑥P ∧ ∀𝑦𝐴 𝑦<P 𝑥)) ∧ 𝑠Q) ∧ 𝑠 ∈ (2nd𝑥)) ∧ 𝑡 ∈ (2nd𝐴)) ∧ (𝑢𝐴 ∧ (2nd𝑢) = 𝑡)) → 𝑢<P 𝑥)
24 ltsopr 7663 . . . . . . . . . . . . . . . . 17 <P Or P
25 so2nr 4356 . . . . . . . . . . . . . . . . 17 ((<P Or P ∧ (𝑢P𝑥P)) → ¬ (𝑢<P 𝑥𝑥<P 𝑢))
2624, 25mpan 424 . . . . . . . . . . . . . . . 16 ((𝑢P𝑥P) → ¬ (𝑢<P 𝑥𝑥<P 𝑢))
2717, 19, 26syl2anc 411 . . . . . . . . . . . . . . 15 ((((((𝜑 ∧ (𝑥P ∧ ∀𝑦𝐴 𝑦<P 𝑥)) ∧ 𝑠Q) ∧ 𝑠 ∈ (2nd𝑥)) ∧ 𝑡 ∈ (2nd𝐴)) ∧ (𝑢𝐴 ∧ (2nd𝑢) = 𝑡)) → ¬ (𝑢<P 𝑥𝑥<P 𝑢))
28 imnan 691 . . . . . . . . . . . . . . 15 ((𝑢<P 𝑥 → ¬ 𝑥<P 𝑢) ↔ ¬ (𝑢<P 𝑥𝑥<P 𝑢))
2927, 28sylibr 134 . . . . . . . . . . . . . 14 ((((((𝜑 ∧ (𝑥P ∧ ∀𝑦𝐴 𝑦<P 𝑥)) ∧ 𝑠Q) ∧ 𝑠 ∈ (2nd𝑥)) ∧ 𝑡 ∈ (2nd𝐴)) ∧ (𝑢𝐴 ∧ (2nd𝑢) = 𝑡)) → (𝑢<P 𝑥 → ¬ 𝑥<P 𝑢))
3023, 29mpd 13 . . . . . . . . . . . . 13 ((((((𝜑 ∧ (𝑥P ∧ ∀𝑦𝐴 𝑦<P 𝑥)) ∧ 𝑠Q) ∧ 𝑠 ∈ (2nd𝑥)) ∧ 𝑡 ∈ (2nd𝐴)) ∧ (𝑢𝐴 ∧ (2nd𝑢) = 𝑡)) → ¬ 𝑥<P 𝑢)
31 aptiprlemu 7707 . . . . . . . . . . . . 13 ((𝑢P𝑥P ∧ ¬ 𝑥<P 𝑢) → (2nd𝑥) ⊆ (2nd𝑢))
3217, 19, 30, 31syl3anc 1249 . . . . . . . . . . . 12 ((((((𝜑 ∧ (𝑥P ∧ ∀𝑦𝐴 𝑦<P 𝑥)) ∧ 𝑠Q) ∧ 𝑠 ∈ (2nd𝑥)) ∧ 𝑡 ∈ (2nd𝐴)) ∧ (𝑢𝐴 ∧ (2nd𝑢) = 𝑡)) → (2nd𝑥) ⊆ (2nd𝑢))
33 simpllr 534 . . . . . . . . . . . 12 ((((((𝜑 ∧ (𝑥P ∧ ∀𝑦𝐴 𝑦<P 𝑥)) ∧ 𝑠Q) ∧ 𝑠 ∈ (2nd𝑥)) ∧ 𝑡 ∈ (2nd𝐴)) ∧ (𝑢𝐴 ∧ (2nd𝑢) = 𝑡)) → 𝑠 ∈ (2nd𝑥))
3432, 33sseldd 3184 . . . . . . . . . . 11 ((((((𝜑 ∧ (𝑥P ∧ ∀𝑦𝐴 𝑦<P 𝑥)) ∧ 𝑠Q) ∧ 𝑠 ∈ (2nd𝑥)) ∧ 𝑡 ∈ (2nd𝐴)) ∧ (𝑢𝐴 ∧ (2nd𝑢) = 𝑡)) → 𝑠 ∈ (2nd𝑢))
35 simprr 531 . . . . . . . . . . 11 ((((((𝜑 ∧ (𝑥P ∧ ∀𝑦𝐴 𝑦<P 𝑥)) ∧ 𝑠Q) ∧ 𝑠 ∈ (2nd𝑥)) ∧ 𝑡 ∈ (2nd𝐴)) ∧ (𝑢𝐴 ∧ (2nd𝑢) = 𝑡)) → (2nd𝑢) = 𝑡)
3634, 35eleqtrd 2275 . . . . . . . . . 10 ((((((𝜑 ∧ (𝑥P ∧ ∀𝑦𝐴 𝑦<P 𝑥)) ∧ 𝑠Q) ∧ 𝑠 ∈ (2nd𝑥)) ∧ 𝑡 ∈ (2nd𝐴)) ∧ (𝑢𝐴 ∧ (2nd𝑢) = 𝑡)) → 𝑠𝑡)
3711, 36rexlimddv 2619 . . . . . . . . 9 (((((𝜑 ∧ (𝑥P ∧ ∀𝑦𝐴 𝑦<P 𝑥)) ∧ 𝑠Q) ∧ 𝑠 ∈ (2nd𝑥)) ∧ 𝑡 ∈ (2nd𝐴)) → 𝑠𝑡)
3837ralrimiva 2570 . . . . . . . 8 ((((𝜑 ∧ (𝑥P ∧ ∀𝑦𝐴 𝑦<P 𝑥)) ∧ 𝑠Q) ∧ 𝑠 ∈ (2nd𝑥)) → ∀𝑡 ∈ (2nd𝐴)𝑠𝑡)
39 vex 2766 . . . . . . . . 9 𝑠 ∈ V
4039elint2 3881 . . . . . . . 8 (𝑠 (2nd𝐴) ↔ ∀𝑡 ∈ (2nd𝐴)𝑠𝑡)
4138, 40sylibr 134 . . . . . . 7 ((((𝜑 ∧ (𝑥P ∧ ∀𝑦𝐴 𝑦<P 𝑥)) ∧ 𝑠Q) ∧ 𝑠 ∈ (2nd𝑥)) → 𝑠 (2nd𝐴))
4241ex 115 . . . . . 6 (((𝜑 ∧ (𝑥P ∧ ∀𝑦𝐴 𝑦<P 𝑥)) ∧ 𝑠Q) → (𝑠 ∈ (2nd𝑥) → 𝑠 (2nd𝐴)))
4342reximdva 2599 . . . . 5 ((𝜑 ∧ (𝑥P ∧ ∀𝑦𝐴 𝑦<P 𝑥)) → (∃𝑠Q 𝑠 ∈ (2nd𝑥) → ∃𝑠Q 𝑠 (2nd𝐴)))
445, 43mpd 13 . . . 4 ((𝜑 ∧ (𝑥P ∧ ∀𝑦𝐴 𝑦<P 𝑥)) → ∃𝑠Q 𝑠 (2nd𝐴))
451, 44rexlimddv 2619 . . 3 (𝜑 → ∃𝑠Q 𝑠 (2nd𝐴))
46 simprr 531 . . . . . . 7 ((𝜑 ∧ (𝑠Q𝑠 (2nd𝐴))) → 𝑠 (2nd𝐴))
47 simprl 529 . . . . . . . . 9 ((𝜑 ∧ (𝑠Q𝑠 (2nd𝐴))) → 𝑠Q)
48 1nq 7433 . . . . . . . . 9 1QQ
49 addclnq 7442 . . . . . . . . 9 ((𝑠Q ∧ 1QQ) → (𝑠 +Q 1Q) ∈ Q)
5047, 48, 49sylancl 413 . . . . . . . 8 ((𝜑 ∧ (𝑠Q𝑠 (2nd𝐴))) → (𝑠 +Q 1Q) ∈ Q)
51 ltaddnq 7474 . . . . . . . . 9 ((𝑠Q ∧ 1QQ) → 𝑠 <Q (𝑠 +Q 1Q))
5247, 48, 51sylancl 413 . . . . . . . 8 ((𝜑 ∧ (𝑠Q𝑠 (2nd𝐴))) → 𝑠 <Q (𝑠 +Q 1Q))
53 breq2 4037 . . . . . . . . 9 (𝑗 = (𝑠 +Q 1Q) → (𝑠 <Q 𝑗𝑠 <Q (𝑠 +Q 1Q)))
5453rspcev 2868 . . . . . . . 8 (((𝑠 +Q 1Q) ∈ Q𝑠 <Q (𝑠 +Q 1Q)) → ∃𝑗Q 𝑠 <Q 𝑗)
5550, 52, 54syl2anc 411 . . . . . . 7 ((𝜑 ∧ (𝑠Q𝑠 (2nd𝐴))) → ∃𝑗Q 𝑠 <Q 𝑗)
56 breq1 4036 . . . . . . . . 9 (𝑤 = 𝑠 → (𝑤 <Q 𝑗𝑠 <Q 𝑗))
5756rexbidv 2498 . . . . . . . 8 (𝑤 = 𝑠 → (∃𝑗Q 𝑤 <Q 𝑗 ↔ ∃𝑗Q 𝑠 <Q 𝑗))
5857rspcev 2868 . . . . . . 7 ((𝑠 (2nd𝐴) ∧ ∃𝑗Q 𝑠 <Q 𝑗) → ∃𝑤 (2nd𝐴)∃𝑗Q 𝑤 <Q 𝑗)
5946, 55, 58syl2anc 411 . . . . . 6 ((𝜑 ∧ (𝑠Q𝑠 (2nd𝐴))) → ∃𝑤 (2nd𝐴)∃𝑗Q 𝑤 <Q 𝑗)
60 rexcom 2661 . . . . . 6 (∃𝑤 (2nd𝐴)∃𝑗Q 𝑤 <Q 𝑗 ↔ ∃𝑗Q𝑤 (2nd𝐴)𝑤 <Q 𝑗)
6159, 60sylib 122 . . . . 5 ((𝜑 ∧ (𝑠Q𝑠 (2nd𝐴))) → ∃𝑗Q𝑤 (2nd𝐴)𝑤 <Q 𝑗)
62 ssid 3203 . . . . . 6 QQ
63 rexss 3250 . . . . . 6 (QQ → (∃𝑗Q𝑤 (2nd𝐴)𝑤 <Q 𝑗 ↔ ∃𝑗Q (𝑗Q ∧ ∃𝑤 (2nd𝐴)𝑤 <Q 𝑗)))
6462, 63ax-mp 5 . . . . 5 (∃𝑗Q𝑤 (2nd𝐴)𝑤 <Q 𝑗 ↔ ∃𝑗Q (𝑗Q ∧ ∃𝑤 (2nd𝐴)𝑤 <Q 𝑗))
6561, 64sylib 122 . . . 4 ((𝜑 ∧ (𝑠Q𝑠 (2nd𝐴))) → ∃𝑗Q (𝑗Q ∧ ∃𝑤 (2nd𝐴)𝑤 <Q 𝑗))
66 suplocexpr.b . . . . . . . . . 10 𝐵 = ⟨ (1st𝐴), {𝑢Q ∣ ∃𝑤 (2nd𝐴)𝑤 <Q 𝑢}⟩
6766suplocexprlem2b 7781 . . . . . . . . 9 (𝐴P → (2nd𝐵) = {𝑢Q ∣ ∃𝑤 (2nd𝐴)𝑤 <Q 𝑢})
6814, 67syl 14 . . . . . . . 8 (𝜑 → (2nd𝐵) = {𝑢Q ∣ ∃𝑤 (2nd𝐴)𝑤 <Q 𝑢})
6968eleq2d 2266 . . . . . . 7 (𝜑 → (𝑗 ∈ (2nd𝐵) ↔ 𝑗 ∈ {𝑢Q ∣ ∃𝑤 (2nd𝐴)𝑤 <Q 𝑢}))
70 breq2 4037 . . . . . . . . 9 (𝑢 = 𝑗 → (𝑤 <Q 𝑢𝑤 <Q 𝑗))
7170rexbidv 2498 . . . . . . . 8 (𝑢 = 𝑗 → (∃𝑤 (2nd𝐴)𝑤 <Q 𝑢 ↔ ∃𝑤 (2nd𝐴)𝑤 <Q 𝑗))
7271elrab 2920 . . . . . . 7 (𝑗 ∈ {𝑢Q ∣ ∃𝑤 (2nd𝐴)𝑤 <Q 𝑢} ↔ (𝑗Q ∧ ∃𝑤 (2nd𝐴)𝑤 <Q 𝑗))
7369, 72bitrdi 196 . . . . . 6 (𝜑 → (𝑗 ∈ (2nd𝐵) ↔ (𝑗Q ∧ ∃𝑤 (2nd𝐴)𝑤 <Q 𝑗)))
7473rexbidv 2498 . . . . 5 (𝜑 → (∃𝑗Q 𝑗 ∈ (2nd𝐵) ↔ ∃𝑗Q (𝑗Q ∧ ∃𝑤 (2nd𝐴)𝑤 <Q 𝑗)))
7574adantr 276 . . . 4 ((𝜑 ∧ (𝑠Q𝑠 (2nd𝐴))) → (∃𝑗Q 𝑗 ∈ (2nd𝐵) ↔ ∃𝑗Q (𝑗Q ∧ ∃𝑤 (2nd𝐴)𝑤 <Q 𝑗)))
7665, 75mpbird 167 . . 3 ((𝜑 ∧ (𝑠Q𝑠 (2nd𝐴))) → ∃𝑗Q 𝑗 ∈ (2nd𝐵))
7745, 76rexlimddv 2619 . 2 (𝜑 → ∃𝑗Q 𝑗 ∈ (2nd𝐵))
78 eleq1w 2257 . . 3 (𝑗 = 𝑠 → (𝑗 ∈ (2nd𝐵) ↔ 𝑠 ∈ (2nd𝐵)))
7978cbvrexv 2730 . 2 (∃𝑗Q 𝑗 ∈ (2nd𝐵) ↔ ∃𝑠Q 𝑠 ∈ (2nd𝐵))
8077, 79sylib 122 1 (𝜑 → ∃𝑠Q 𝑠 ∈ (2nd𝐵))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  wb 105  wo 709   = wceq 1364  wex 1506  wcel 2167  wral 2475  wrex 2476  {crab 2479  Vcvv 2763  wss 3157  cop 3625   cuni 3839   cint 3874   class class class wbr 4033   Or wor 4330  cima 4666  Fun wfun 5252  ontowfo 5256  cfv 5258  (class class class)co 5922  1st c1st 6196  2nd c2nd 6197  Qcnq 7347  1Qc1q 7348   +Q cplq 7349   <Q cltq 7352  Pcnp 7358  <P cltp 7362
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4148  ax-sep 4151  ax-nul 4159  ax-pow 4207  ax-pr 4242  ax-un 4468  ax-setind 4573  ax-iinf 4624
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-ral 2480  df-rex 2481  df-reu 2482  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3451  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-int 3875  df-iun 3918  df-br 4034  df-opab 4095  df-mpt 4096  df-tr 4132  df-eprel 4324  df-id 4328  df-po 4331  df-iso 4332  df-iord 4401  df-on 4403  df-suc 4406  df-iom 4627  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-rn 4674  df-res 4675  df-ima 4676  df-iota 5219  df-fun 5260  df-fn 5261  df-f 5262  df-f1 5263  df-fo 5264  df-f1o 5265  df-fv 5266  df-ov 5925  df-oprab 5926  df-mpo 5927  df-1st 6198  df-2nd 6199  df-recs 6363  df-irdg 6428  df-1o 6474  df-2o 6475  df-oadd 6478  df-omul 6479  df-er 6592  df-ec 6594  df-qs 6598  df-ni 7371  df-pli 7372  df-mi 7373  df-lti 7374  df-plpq 7411  df-mpq 7412  df-enq 7414  df-nqqs 7415  df-plqqs 7416  df-mqqs 7417  df-1nqqs 7418  df-rq 7419  df-ltnqqs 7420  df-enq0 7491  df-nq0 7492  df-0nq0 7493  df-plq0 7494  df-mq0 7495  df-inp 7533  df-iltp 7537
This theorem is referenced by:  suplocexprlemex  7789
  Copyright terms: Public domain W3C validator