![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > f1ocnvfv3 | GIF version |
Description: Value of the converse of a one-to-one onto function. (Contributed by NM, 26-May-2006.) (Proof shortened by Mario Carneiro, 24-Dec-2016.) |
Ref | Expression |
---|---|
f1ocnvfv3 | ⊢ ((𝐹:𝐴–1-1-onto→𝐵 ∧ 𝐶 ∈ 𝐵) → (◡𝐹‘𝐶) = (℩𝑥 ∈ 𝐴 (𝐹‘𝑥) = 𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | f1ocnvdm 5560 | . . 3 ⊢ ((𝐹:𝐴–1-1-onto→𝐵 ∧ 𝐶 ∈ 𝐵) → (◡𝐹‘𝐶) ∈ 𝐴) | |
2 | f1ocnvfvb 5559 | . . . . . 6 ⊢ ((𝐹:𝐴–1-1-onto→𝐵 ∧ 𝑥 ∈ 𝐴 ∧ 𝐶 ∈ 𝐵) → ((𝐹‘𝑥) = 𝐶 ↔ (◡𝐹‘𝐶) = 𝑥)) | |
3 | 2 | 3expa 1143 | . . . . 5 ⊢ (((𝐹:𝐴–1-1-onto→𝐵 ∧ 𝑥 ∈ 𝐴) ∧ 𝐶 ∈ 𝐵) → ((𝐹‘𝑥) = 𝐶 ↔ (◡𝐹‘𝐶) = 𝑥)) |
4 | 3 | an32s 535 | . . . 4 ⊢ (((𝐹:𝐴–1-1-onto→𝐵 ∧ 𝐶 ∈ 𝐵) ∧ 𝑥 ∈ 𝐴) → ((𝐹‘𝑥) = 𝐶 ↔ (◡𝐹‘𝐶) = 𝑥)) |
5 | eqcom 2090 | . . . 4 ⊢ (𝑥 = (◡𝐹‘𝐶) ↔ (◡𝐹‘𝐶) = 𝑥) | |
6 | 4, 5 | syl6bbr 196 | . . 3 ⊢ (((𝐹:𝐴–1-1-onto→𝐵 ∧ 𝐶 ∈ 𝐵) ∧ 𝑥 ∈ 𝐴) → ((𝐹‘𝑥) = 𝐶 ↔ 𝑥 = (◡𝐹‘𝐶))) |
7 | 1, 6 | riota5 5633 | . 2 ⊢ ((𝐹:𝐴–1-1-onto→𝐵 ∧ 𝐶 ∈ 𝐵) → (℩𝑥 ∈ 𝐴 (𝐹‘𝑥) = 𝐶) = (◡𝐹‘𝐶)) |
8 | 7 | eqcomd 2093 | 1 ⊢ ((𝐹:𝐴–1-1-onto→𝐵 ∧ 𝐶 ∈ 𝐵) → (◡𝐹‘𝐶) = (℩𝑥 ∈ 𝐴 (𝐹‘𝑥) = 𝐶)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 102 ↔ wb 103 = wceq 1289 ∈ wcel 1438 ◡ccnv 4437 –1-1-onto→wf1o 5014 ‘cfv 5015 ℩crio 5607 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-io 665 ax-5 1381 ax-7 1382 ax-gen 1383 ax-ie1 1427 ax-ie2 1428 ax-8 1440 ax-10 1441 ax-11 1442 ax-i12 1443 ax-bndl 1444 ax-4 1445 ax-14 1450 ax-17 1464 ax-i9 1468 ax-ial 1472 ax-i5r 1473 ax-ext 2070 ax-sep 3957 ax-pow 4009 ax-pr 4036 |
This theorem depends on definitions: df-bi 115 df-3an 926 df-tru 1292 df-nf 1395 df-sb 1693 df-eu 1951 df-mo 1952 df-clab 2075 df-cleq 2081 df-clel 2084 df-nfc 2217 df-ral 2364 df-rex 2365 df-reu 2366 df-v 2621 df-sbc 2841 df-un 3003 df-in 3005 df-ss 3012 df-pw 3431 df-sn 3452 df-pr 3453 df-op 3455 df-uni 3654 df-br 3846 df-opab 3900 df-id 4120 df-xp 4444 df-rel 4445 df-cnv 4446 df-co 4447 df-dm 4448 df-rn 4449 df-res 4450 df-ima 4451 df-iota 4980 df-fun 5017 df-fn 5018 df-f 5019 df-f1 5020 df-fo 5021 df-f1o 5022 df-fv 5023 df-riota 5608 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |