| Step | Hyp | Ref
| Expression |
| 1 | | ctiunct.f |
. . . . . . . 8
⊢ (𝜑 → 𝐹:𝑆–onto→𝐴) |
| 2 | 1 | adantr 276 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑛 ∈ 𝑈) → 𝐹:𝑆–onto→𝐴) |
| 3 | | fof 5480 |
. . . . . . 7
⊢ (𝐹:𝑆–onto→𝐴 → 𝐹:𝑆⟶𝐴) |
| 4 | 2, 3 | syl 14 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑛 ∈ 𝑈) → 𝐹:𝑆⟶𝐴) |
| 5 | | ctiunct.som |
. . . . . . . 8
⊢ (𝜑 → 𝑆 ⊆ ω) |
| 6 | 5 | adantr 276 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑛 ∈ 𝑈) → 𝑆 ⊆ ω) |
| 7 | | ctiunct.sdc |
. . . . . . . 8
⊢ (𝜑 → ∀𝑛 ∈ ω DECID 𝑛 ∈ 𝑆) |
| 8 | 7 | adantr 276 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑛 ∈ 𝑈) → ∀𝑛 ∈ ω DECID 𝑛 ∈ 𝑆) |
| 9 | | ctiunct.tom |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝑇 ⊆ ω) |
| 10 | 9 | adantlr 477 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑛 ∈ 𝑈) ∧ 𝑥 ∈ 𝐴) → 𝑇 ⊆ ω) |
| 11 | | ctiunct.tdc |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → ∀𝑛 ∈ ω DECID 𝑛 ∈ 𝑇) |
| 12 | 11 | adantlr 477 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑛 ∈ 𝑈) ∧ 𝑥 ∈ 𝐴) → ∀𝑛 ∈ ω DECID 𝑛 ∈ 𝑇) |
| 13 | | ctiunct.g |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐺:𝑇–onto→𝐵) |
| 14 | 13 | adantlr 477 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑛 ∈ 𝑈) ∧ 𝑥 ∈ 𝐴) → 𝐺:𝑇–onto→𝐵) |
| 15 | | ctiunct.j |
. . . . . . . 8
⊢ (𝜑 → 𝐽:ω–1-1-onto→(ω × ω)) |
| 16 | 15 | adantr 276 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑛 ∈ 𝑈) → 𝐽:ω–1-1-onto→(ω × ω)) |
| 17 | | ctiunct.u |
. . . . . . 7
⊢ 𝑈 = {𝑧 ∈ ω ∣ ((1st
‘(𝐽‘𝑧)) ∈ 𝑆 ∧ (2nd ‘(𝐽‘𝑧)) ∈ ⦋(𝐹‘(1st ‘(𝐽‘𝑧))) / 𝑥⦌𝑇)} |
| 18 | | simpr 110 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑛 ∈ 𝑈) → 𝑛 ∈ 𝑈) |
| 19 | 6, 8, 2, 10, 12, 14, 16, 17, 18 | ctiunctlemu1st 12651 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑛 ∈ 𝑈) → (1st ‘(𝐽‘𝑛)) ∈ 𝑆) |
| 20 | 4, 19 | ffvelcdmd 5698 |
. . . . 5
⊢ ((𝜑 ∧ 𝑛 ∈ 𝑈) → (𝐹‘(1st ‘(𝐽‘𝑛))) ∈ 𝐴) |
| 21 | | fof 5480 |
. . . . . . . . . . 11
⊢ (𝐺:𝑇–onto→𝐵 → 𝐺:𝑇⟶𝐵) |
| 22 | 13, 21 | syl 14 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐺:𝑇⟶𝐵) |
| 23 | 22 | ralrimiva 2570 |
. . . . . . . . 9
⊢ (𝜑 → ∀𝑥 ∈ 𝐴 𝐺:𝑇⟶𝐵) |
| 24 | 23 | adantr 276 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑛 ∈ 𝑈) → ∀𝑥 ∈ 𝐴 𝐺:𝑇⟶𝐵) |
| 25 | | rspsbc 3072 |
. . . . . . . 8
⊢ ((𝐹‘(1st
‘(𝐽‘𝑛))) ∈ 𝐴 → (∀𝑥 ∈ 𝐴 𝐺:𝑇⟶𝐵 → [(𝐹‘(1st ‘(𝐽‘𝑛))) / 𝑥]𝐺:𝑇⟶𝐵)) |
| 26 | 20, 24, 25 | sylc 62 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑛 ∈ 𝑈) → [(𝐹‘(1st ‘(𝐽‘𝑛))) / 𝑥]𝐺:𝑇⟶𝐵) |
| 27 | | sbcfg 5406 |
. . . . . . . 8
⊢ ((𝐹‘(1st
‘(𝐽‘𝑛))) ∈ 𝐴 → ([(𝐹‘(1st ‘(𝐽‘𝑛))) / 𝑥]𝐺:𝑇⟶𝐵 ↔ ⦋(𝐹‘(1st ‘(𝐽‘𝑛))) / 𝑥⦌𝐺:⦋(𝐹‘(1st ‘(𝐽‘𝑛))) / 𝑥⦌𝑇⟶⦋(𝐹‘(1st ‘(𝐽‘𝑛))) / 𝑥⦌𝐵)) |
| 28 | 20, 27 | syl 14 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑛 ∈ 𝑈) → ([(𝐹‘(1st ‘(𝐽‘𝑛))) / 𝑥]𝐺:𝑇⟶𝐵 ↔ ⦋(𝐹‘(1st ‘(𝐽‘𝑛))) / 𝑥⦌𝐺:⦋(𝐹‘(1st ‘(𝐽‘𝑛))) / 𝑥⦌𝑇⟶⦋(𝐹‘(1st ‘(𝐽‘𝑛))) / 𝑥⦌𝐵)) |
| 29 | 26, 28 | mpbid 147 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑛 ∈ 𝑈) → ⦋(𝐹‘(1st ‘(𝐽‘𝑛))) / 𝑥⦌𝐺:⦋(𝐹‘(1st ‘(𝐽‘𝑛))) / 𝑥⦌𝑇⟶⦋(𝐹‘(1st ‘(𝐽‘𝑛))) / 𝑥⦌𝐵) |
| 30 | 6, 8, 2, 10, 12, 14, 16, 17, 18 | ctiunctlemu2nd 12652 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑛 ∈ 𝑈) → (2nd ‘(𝐽‘𝑛)) ∈ ⦋(𝐹‘(1st ‘(𝐽‘𝑛))) / 𝑥⦌𝑇) |
| 31 | 29, 30 | ffvelcdmd 5698 |
. . . . 5
⊢ ((𝜑 ∧ 𝑛 ∈ 𝑈) → (⦋(𝐹‘(1st ‘(𝐽‘𝑛))) / 𝑥⦌𝐺‘(2nd ‘(𝐽‘𝑛))) ∈ ⦋(𝐹‘(1st ‘(𝐽‘𝑛))) / 𝑥⦌𝐵) |
| 32 | | csbeq1 3087 |
. . . . . . 7
⊢ (𝑦 = (𝐹‘(1st ‘(𝐽‘𝑛))) → ⦋𝑦 / 𝑥⦌𝐵 = ⦋(𝐹‘(1st ‘(𝐽‘𝑛))) / 𝑥⦌𝐵) |
| 33 | 32 | eleq2d 2266 |
. . . . . 6
⊢ (𝑦 = (𝐹‘(1st ‘(𝐽‘𝑛))) → ((⦋(𝐹‘(1st
‘(𝐽‘𝑛))) / 𝑥⦌𝐺‘(2nd ‘(𝐽‘𝑛))) ∈ ⦋𝑦 / 𝑥⦌𝐵 ↔ (⦋(𝐹‘(1st ‘(𝐽‘𝑛))) / 𝑥⦌𝐺‘(2nd ‘(𝐽‘𝑛))) ∈ ⦋(𝐹‘(1st ‘(𝐽‘𝑛))) / 𝑥⦌𝐵)) |
| 34 | 33 | rspcev 2868 |
. . . . 5
⊢ (((𝐹‘(1st
‘(𝐽‘𝑛))) ∈ 𝐴 ∧ (⦋(𝐹‘(1st ‘(𝐽‘𝑛))) / 𝑥⦌𝐺‘(2nd ‘(𝐽‘𝑛))) ∈ ⦋(𝐹‘(1st ‘(𝐽‘𝑛))) / 𝑥⦌𝐵) → ∃𝑦 ∈ 𝐴 (⦋(𝐹‘(1st ‘(𝐽‘𝑛))) / 𝑥⦌𝐺‘(2nd ‘(𝐽‘𝑛))) ∈ ⦋𝑦 / 𝑥⦌𝐵) |
| 35 | 20, 31, 34 | syl2anc 411 |
. . . 4
⊢ ((𝜑 ∧ 𝑛 ∈ 𝑈) → ∃𝑦 ∈ 𝐴 (⦋(𝐹‘(1st ‘(𝐽‘𝑛))) / 𝑥⦌𝐺‘(2nd ‘(𝐽‘𝑛))) ∈ ⦋𝑦 / 𝑥⦌𝐵) |
| 36 | | eliun 3920 |
. . . 4
⊢
((⦋(𝐹‘(1st ‘(𝐽‘𝑛))) / 𝑥⦌𝐺‘(2nd ‘(𝐽‘𝑛))) ∈ ∪ 𝑦 ∈ 𝐴 ⦋𝑦 / 𝑥⦌𝐵 ↔ ∃𝑦 ∈ 𝐴 (⦋(𝐹‘(1st ‘(𝐽‘𝑛))) / 𝑥⦌𝐺‘(2nd ‘(𝐽‘𝑛))) ∈ ⦋𝑦 / 𝑥⦌𝐵) |
| 37 | 35, 36 | sylibr 134 |
. . 3
⊢ ((𝜑 ∧ 𝑛 ∈ 𝑈) → (⦋(𝐹‘(1st ‘(𝐽‘𝑛))) / 𝑥⦌𝐺‘(2nd ‘(𝐽‘𝑛))) ∈ ∪ 𝑦 ∈ 𝐴 ⦋𝑦 / 𝑥⦌𝐵) |
| 38 | | nfcv 2339 |
. . . 4
⊢
Ⅎ𝑦𝐵 |
| 39 | | nfcsb1v 3117 |
. . . 4
⊢
Ⅎ𝑥⦋𝑦 / 𝑥⦌𝐵 |
| 40 | | csbeq1a 3093 |
. . . 4
⊢ (𝑥 = 𝑦 → 𝐵 = ⦋𝑦 / 𝑥⦌𝐵) |
| 41 | 38, 39, 40 | cbviun 3953 |
. . 3
⊢ ∪ 𝑥 ∈ 𝐴 𝐵 = ∪ 𝑦 ∈ 𝐴 ⦋𝑦 / 𝑥⦌𝐵 |
| 42 | 37, 41 | eleqtrrdi 2290 |
. 2
⊢ ((𝜑 ∧ 𝑛 ∈ 𝑈) → (⦋(𝐹‘(1st ‘(𝐽‘𝑛))) / 𝑥⦌𝐺‘(2nd ‘(𝐽‘𝑛))) ∈ ∪ 𝑥 ∈ 𝐴 𝐵) |
| 43 | | ctiunct.h |
. 2
⊢ 𝐻 = (𝑛 ∈ 𝑈 ↦ (⦋(𝐹‘(1st ‘(𝐽‘𝑛))) / 𝑥⦌𝐺‘(2nd ‘(𝐽‘𝑛)))) |
| 44 | 42, 43 | fmptd 5716 |
1
⊢ (𝜑 → 𝐻:𝑈⟶∪
𝑥 ∈ 𝐴 𝐵) |