ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ctiunctlemf GIF version

Theorem ctiunctlemf 12879
Description: Lemma for ctiunct 12881. (Contributed by Jim Kingdon, 28-Oct-2023.)
Hypotheses
Ref Expression
ctiunct.som (𝜑𝑆 ⊆ ω)
ctiunct.sdc (𝜑 → ∀𝑛 ∈ ω DECID 𝑛𝑆)
ctiunct.f (𝜑𝐹:𝑆onto𝐴)
ctiunct.tom ((𝜑𝑥𝐴) → 𝑇 ⊆ ω)
ctiunct.tdc ((𝜑𝑥𝐴) → ∀𝑛 ∈ ω DECID 𝑛𝑇)
ctiunct.g ((𝜑𝑥𝐴) → 𝐺:𝑇onto𝐵)
ctiunct.j (𝜑𝐽:ω–1-1-onto→(ω × ω))
ctiunct.u 𝑈 = {𝑧 ∈ ω ∣ ((1st ‘(𝐽𝑧)) ∈ 𝑆 ∧ (2nd ‘(𝐽𝑧)) ∈ (𝐹‘(1st ‘(𝐽𝑧))) / 𝑥𝑇)}
ctiunct.h 𝐻 = (𝑛𝑈 ↦ ((𝐹‘(1st ‘(𝐽𝑛))) / 𝑥𝐺‘(2nd ‘(𝐽𝑛))))
Assertion
Ref Expression
ctiunctlemf (𝜑𝐻:𝑈 𝑥𝐴 𝐵)
Distinct variable groups:   𝐴,𝑛,𝑥   𝐵,𝑛   𝑥,𝐹,𝑧   𝑥,𝐽,𝑧   𝑧,𝑆   𝑧,𝑇   𝑈,𝑛   𝜑,𝑛,𝑥   𝑥,𝑧,𝑛
Allowed substitution hints:   𝜑(𝑧)   𝐴(𝑧)   𝐵(𝑥,𝑧)   𝑆(𝑥,𝑛)   𝑇(𝑥,𝑛)   𝑈(𝑥,𝑧)   𝐹(𝑛)   𝐺(𝑥,𝑧,𝑛)   𝐻(𝑥,𝑧,𝑛)   𝐽(𝑛)

Proof of Theorem ctiunctlemf
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 ctiunct.f . . . . . . . 8 (𝜑𝐹:𝑆onto𝐴)
21adantr 276 . . . . . . 7 ((𝜑𝑛𝑈) → 𝐹:𝑆onto𝐴)
3 fof 5509 . . . . . . 7 (𝐹:𝑆onto𝐴𝐹:𝑆𝐴)
42, 3syl 14 . . . . . 6 ((𝜑𝑛𝑈) → 𝐹:𝑆𝐴)
5 ctiunct.som . . . . . . . 8 (𝜑𝑆 ⊆ ω)
65adantr 276 . . . . . . 7 ((𝜑𝑛𝑈) → 𝑆 ⊆ ω)
7 ctiunct.sdc . . . . . . . 8 (𝜑 → ∀𝑛 ∈ ω DECID 𝑛𝑆)
87adantr 276 . . . . . . 7 ((𝜑𝑛𝑈) → ∀𝑛 ∈ ω DECID 𝑛𝑆)
9 ctiunct.tom . . . . . . . 8 ((𝜑𝑥𝐴) → 𝑇 ⊆ ω)
109adantlr 477 . . . . . . 7 (((𝜑𝑛𝑈) ∧ 𝑥𝐴) → 𝑇 ⊆ ω)
11 ctiunct.tdc . . . . . . . 8 ((𝜑𝑥𝐴) → ∀𝑛 ∈ ω DECID 𝑛𝑇)
1211adantlr 477 . . . . . . 7 (((𝜑𝑛𝑈) ∧ 𝑥𝐴) → ∀𝑛 ∈ ω DECID 𝑛𝑇)
13 ctiunct.g . . . . . . . 8 ((𝜑𝑥𝐴) → 𝐺:𝑇onto𝐵)
1413adantlr 477 . . . . . . 7 (((𝜑𝑛𝑈) ∧ 𝑥𝐴) → 𝐺:𝑇onto𝐵)
15 ctiunct.j . . . . . . . 8 (𝜑𝐽:ω–1-1-onto→(ω × ω))
1615adantr 276 . . . . . . 7 ((𝜑𝑛𝑈) → 𝐽:ω–1-1-onto→(ω × ω))
17 ctiunct.u . . . . . . 7 𝑈 = {𝑧 ∈ ω ∣ ((1st ‘(𝐽𝑧)) ∈ 𝑆 ∧ (2nd ‘(𝐽𝑧)) ∈ (𝐹‘(1st ‘(𝐽𝑧))) / 𝑥𝑇)}
18 simpr 110 . . . . . . 7 ((𝜑𝑛𝑈) → 𝑛𝑈)
196, 8, 2, 10, 12, 14, 16, 17, 18ctiunctlemu1st 12875 . . . . . 6 ((𝜑𝑛𝑈) → (1st ‘(𝐽𝑛)) ∈ 𝑆)
204, 19ffvelcdmd 5728 . . . . 5 ((𝜑𝑛𝑈) → (𝐹‘(1st ‘(𝐽𝑛))) ∈ 𝐴)
21 fof 5509 . . . . . . . . . . 11 (𝐺:𝑇onto𝐵𝐺:𝑇𝐵)
2213, 21syl 14 . . . . . . . . . 10 ((𝜑𝑥𝐴) → 𝐺:𝑇𝐵)
2322ralrimiva 2580 . . . . . . . . 9 (𝜑 → ∀𝑥𝐴 𝐺:𝑇𝐵)
2423adantr 276 . . . . . . . 8 ((𝜑𝑛𝑈) → ∀𝑥𝐴 𝐺:𝑇𝐵)
25 rspsbc 3085 . . . . . . . 8 ((𝐹‘(1st ‘(𝐽𝑛))) ∈ 𝐴 → (∀𝑥𝐴 𝐺:𝑇𝐵[(𝐹‘(1st ‘(𝐽𝑛))) / 𝑥]𝐺:𝑇𝐵))
2620, 24, 25sylc 62 . . . . . . 7 ((𝜑𝑛𝑈) → [(𝐹‘(1st ‘(𝐽𝑛))) / 𝑥]𝐺:𝑇𝐵)
27 sbcfg 5433 . . . . . . . 8 ((𝐹‘(1st ‘(𝐽𝑛))) ∈ 𝐴 → ([(𝐹‘(1st ‘(𝐽𝑛))) / 𝑥]𝐺:𝑇𝐵(𝐹‘(1st ‘(𝐽𝑛))) / 𝑥𝐺:(𝐹‘(1st ‘(𝐽𝑛))) / 𝑥𝑇(𝐹‘(1st ‘(𝐽𝑛))) / 𝑥𝐵))
2820, 27syl 14 . . . . . . 7 ((𝜑𝑛𝑈) → ([(𝐹‘(1st ‘(𝐽𝑛))) / 𝑥]𝐺:𝑇𝐵(𝐹‘(1st ‘(𝐽𝑛))) / 𝑥𝐺:(𝐹‘(1st ‘(𝐽𝑛))) / 𝑥𝑇(𝐹‘(1st ‘(𝐽𝑛))) / 𝑥𝐵))
2926, 28mpbid 147 . . . . . 6 ((𝜑𝑛𝑈) → (𝐹‘(1st ‘(𝐽𝑛))) / 𝑥𝐺:(𝐹‘(1st ‘(𝐽𝑛))) / 𝑥𝑇(𝐹‘(1st ‘(𝐽𝑛))) / 𝑥𝐵)
306, 8, 2, 10, 12, 14, 16, 17, 18ctiunctlemu2nd 12876 . . . . . 6 ((𝜑𝑛𝑈) → (2nd ‘(𝐽𝑛)) ∈ (𝐹‘(1st ‘(𝐽𝑛))) / 𝑥𝑇)
3129, 30ffvelcdmd 5728 . . . . 5 ((𝜑𝑛𝑈) → ((𝐹‘(1st ‘(𝐽𝑛))) / 𝑥𝐺‘(2nd ‘(𝐽𝑛))) ∈ (𝐹‘(1st ‘(𝐽𝑛))) / 𝑥𝐵)
32 csbeq1 3100 . . . . . . 7 (𝑦 = (𝐹‘(1st ‘(𝐽𝑛))) → 𝑦 / 𝑥𝐵 = (𝐹‘(1st ‘(𝐽𝑛))) / 𝑥𝐵)
3332eleq2d 2276 . . . . . 6 (𝑦 = (𝐹‘(1st ‘(𝐽𝑛))) → (((𝐹‘(1st ‘(𝐽𝑛))) / 𝑥𝐺‘(2nd ‘(𝐽𝑛))) ∈ 𝑦 / 𝑥𝐵 ↔ ((𝐹‘(1st ‘(𝐽𝑛))) / 𝑥𝐺‘(2nd ‘(𝐽𝑛))) ∈ (𝐹‘(1st ‘(𝐽𝑛))) / 𝑥𝐵))
3433rspcev 2881 . . . . 5 (((𝐹‘(1st ‘(𝐽𝑛))) ∈ 𝐴 ∧ ((𝐹‘(1st ‘(𝐽𝑛))) / 𝑥𝐺‘(2nd ‘(𝐽𝑛))) ∈ (𝐹‘(1st ‘(𝐽𝑛))) / 𝑥𝐵) → ∃𝑦𝐴 ((𝐹‘(1st ‘(𝐽𝑛))) / 𝑥𝐺‘(2nd ‘(𝐽𝑛))) ∈ 𝑦 / 𝑥𝐵)
3520, 31, 34syl2anc 411 . . . 4 ((𝜑𝑛𝑈) → ∃𝑦𝐴 ((𝐹‘(1st ‘(𝐽𝑛))) / 𝑥𝐺‘(2nd ‘(𝐽𝑛))) ∈ 𝑦 / 𝑥𝐵)
36 eliun 3936 . . . 4 (((𝐹‘(1st ‘(𝐽𝑛))) / 𝑥𝐺‘(2nd ‘(𝐽𝑛))) ∈ 𝑦𝐴 𝑦 / 𝑥𝐵 ↔ ∃𝑦𝐴 ((𝐹‘(1st ‘(𝐽𝑛))) / 𝑥𝐺‘(2nd ‘(𝐽𝑛))) ∈ 𝑦 / 𝑥𝐵)
3735, 36sylibr 134 . . 3 ((𝜑𝑛𝑈) → ((𝐹‘(1st ‘(𝐽𝑛))) / 𝑥𝐺‘(2nd ‘(𝐽𝑛))) ∈ 𝑦𝐴 𝑦 / 𝑥𝐵)
38 nfcv 2349 . . . 4 𝑦𝐵
39 nfcsb1v 3130 . . . 4 𝑥𝑦 / 𝑥𝐵
40 csbeq1a 3106 . . . 4 (𝑥 = 𝑦𝐵 = 𝑦 / 𝑥𝐵)
4138, 39, 40cbviun 3969 . . 3 𝑥𝐴 𝐵 = 𝑦𝐴 𝑦 / 𝑥𝐵
4237, 41eleqtrrdi 2300 . 2 ((𝜑𝑛𝑈) → ((𝐹‘(1st ‘(𝐽𝑛))) / 𝑥𝐺‘(2nd ‘(𝐽𝑛))) ∈ 𝑥𝐴 𝐵)
43 ctiunct.h . 2 𝐻 = (𝑛𝑈 ↦ ((𝐹‘(1st ‘(𝐽𝑛))) / 𝑥𝐺‘(2nd ‘(𝐽𝑛))))
4442, 43fmptd 5746 1 (𝜑𝐻:𝑈 𝑥𝐴 𝐵)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  DECID wdc 836   = wceq 1373  wcel 2177  wral 2485  wrex 2486  {crab 2489  [wsbc 3002  csb 3097  wss 3170   ciun 3932  cmpt 4112  ωcom 4645   × cxp 4680  wf 5275  ontowfo 5277  1-1-ontowf1o 5278  cfv 5279  1st c1st 6236  2nd c2nd 6237
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-14 2180  ax-ext 2188  ax-sep 4169  ax-pow 4225  ax-pr 4260
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ral 2490  df-rex 2491  df-rab 2494  df-v 2775  df-sbc 3003  df-csb 3098  df-un 3174  df-in 3176  df-ss 3183  df-pw 3622  df-sn 3643  df-pr 3644  df-op 3646  df-uni 3856  df-iun 3934  df-br 4051  df-opab 4113  df-mpt 4114  df-id 4347  df-xp 4688  df-rel 4689  df-cnv 4690  df-co 4691  df-dm 4692  df-rn 4693  df-res 4694  df-ima 4695  df-iota 5240  df-fun 5281  df-fn 5282  df-f 5283  df-fo 5285  df-fv 5287
This theorem is referenced by:  ctiunctlemfo  12880
  Copyright terms: Public domain W3C validator