ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ctiunctlemf GIF version

Theorem ctiunctlemf 13004
Description: Lemma for ctiunct 13006. (Contributed by Jim Kingdon, 28-Oct-2023.)
Hypotheses
Ref Expression
ctiunct.som (𝜑𝑆 ⊆ ω)
ctiunct.sdc (𝜑 → ∀𝑛 ∈ ω DECID 𝑛𝑆)
ctiunct.f (𝜑𝐹:𝑆onto𝐴)
ctiunct.tom ((𝜑𝑥𝐴) → 𝑇 ⊆ ω)
ctiunct.tdc ((𝜑𝑥𝐴) → ∀𝑛 ∈ ω DECID 𝑛𝑇)
ctiunct.g ((𝜑𝑥𝐴) → 𝐺:𝑇onto𝐵)
ctiunct.j (𝜑𝐽:ω–1-1-onto→(ω × ω))
ctiunct.u 𝑈 = {𝑧 ∈ ω ∣ ((1st ‘(𝐽𝑧)) ∈ 𝑆 ∧ (2nd ‘(𝐽𝑧)) ∈ (𝐹‘(1st ‘(𝐽𝑧))) / 𝑥𝑇)}
ctiunct.h 𝐻 = (𝑛𝑈 ↦ ((𝐹‘(1st ‘(𝐽𝑛))) / 𝑥𝐺‘(2nd ‘(𝐽𝑛))))
Assertion
Ref Expression
ctiunctlemf (𝜑𝐻:𝑈 𝑥𝐴 𝐵)
Distinct variable groups:   𝐴,𝑛,𝑥   𝐵,𝑛   𝑥,𝐹,𝑧   𝑥,𝐽,𝑧   𝑧,𝑆   𝑧,𝑇   𝑈,𝑛   𝜑,𝑛,𝑥   𝑥,𝑧,𝑛
Allowed substitution hints:   𝜑(𝑧)   𝐴(𝑧)   𝐵(𝑥,𝑧)   𝑆(𝑥,𝑛)   𝑇(𝑥,𝑛)   𝑈(𝑥,𝑧)   𝐹(𝑛)   𝐺(𝑥,𝑧,𝑛)   𝐻(𝑥,𝑧,𝑛)   𝐽(𝑛)

Proof of Theorem ctiunctlemf
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 ctiunct.f . . . . . . . 8 (𝜑𝐹:𝑆onto𝐴)
21adantr 276 . . . . . . 7 ((𝜑𝑛𝑈) → 𝐹:𝑆onto𝐴)
3 fof 5547 . . . . . . 7 (𝐹:𝑆onto𝐴𝐹:𝑆𝐴)
42, 3syl 14 . . . . . 6 ((𝜑𝑛𝑈) → 𝐹:𝑆𝐴)
5 ctiunct.som . . . . . . . 8 (𝜑𝑆 ⊆ ω)
65adantr 276 . . . . . . 7 ((𝜑𝑛𝑈) → 𝑆 ⊆ ω)
7 ctiunct.sdc . . . . . . . 8 (𝜑 → ∀𝑛 ∈ ω DECID 𝑛𝑆)
87adantr 276 . . . . . . 7 ((𝜑𝑛𝑈) → ∀𝑛 ∈ ω DECID 𝑛𝑆)
9 ctiunct.tom . . . . . . . 8 ((𝜑𝑥𝐴) → 𝑇 ⊆ ω)
109adantlr 477 . . . . . . 7 (((𝜑𝑛𝑈) ∧ 𝑥𝐴) → 𝑇 ⊆ ω)
11 ctiunct.tdc . . . . . . . 8 ((𝜑𝑥𝐴) → ∀𝑛 ∈ ω DECID 𝑛𝑇)
1211adantlr 477 . . . . . . 7 (((𝜑𝑛𝑈) ∧ 𝑥𝐴) → ∀𝑛 ∈ ω DECID 𝑛𝑇)
13 ctiunct.g . . . . . . . 8 ((𝜑𝑥𝐴) → 𝐺:𝑇onto𝐵)
1413adantlr 477 . . . . . . 7 (((𝜑𝑛𝑈) ∧ 𝑥𝐴) → 𝐺:𝑇onto𝐵)
15 ctiunct.j . . . . . . . 8 (𝜑𝐽:ω–1-1-onto→(ω × ω))
1615adantr 276 . . . . . . 7 ((𝜑𝑛𝑈) → 𝐽:ω–1-1-onto→(ω × ω))
17 ctiunct.u . . . . . . 7 𝑈 = {𝑧 ∈ ω ∣ ((1st ‘(𝐽𝑧)) ∈ 𝑆 ∧ (2nd ‘(𝐽𝑧)) ∈ (𝐹‘(1st ‘(𝐽𝑧))) / 𝑥𝑇)}
18 simpr 110 . . . . . . 7 ((𝜑𝑛𝑈) → 𝑛𝑈)
196, 8, 2, 10, 12, 14, 16, 17, 18ctiunctlemu1st 13000 . . . . . 6 ((𝜑𝑛𝑈) → (1st ‘(𝐽𝑛)) ∈ 𝑆)
204, 19ffvelcdmd 5770 . . . . 5 ((𝜑𝑛𝑈) → (𝐹‘(1st ‘(𝐽𝑛))) ∈ 𝐴)
21 fof 5547 . . . . . . . . . . 11 (𝐺:𝑇onto𝐵𝐺:𝑇𝐵)
2213, 21syl 14 . . . . . . . . . 10 ((𝜑𝑥𝐴) → 𝐺:𝑇𝐵)
2322ralrimiva 2603 . . . . . . . . 9 (𝜑 → ∀𝑥𝐴 𝐺:𝑇𝐵)
2423adantr 276 . . . . . . . 8 ((𝜑𝑛𝑈) → ∀𝑥𝐴 𝐺:𝑇𝐵)
25 rspsbc 3112 . . . . . . . 8 ((𝐹‘(1st ‘(𝐽𝑛))) ∈ 𝐴 → (∀𝑥𝐴 𝐺:𝑇𝐵[(𝐹‘(1st ‘(𝐽𝑛))) / 𝑥]𝐺:𝑇𝐵))
2620, 24, 25sylc 62 . . . . . . 7 ((𝜑𝑛𝑈) → [(𝐹‘(1st ‘(𝐽𝑛))) / 𝑥]𝐺:𝑇𝐵)
27 sbcfg 5471 . . . . . . . 8 ((𝐹‘(1st ‘(𝐽𝑛))) ∈ 𝐴 → ([(𝐹‘(1st ‘(𝐽𝑛))) / 𝑥]𝐺:𝑇𝐵(𝐹‘(1st ‘(𝐽𝑛))) / 𝑥𝐺:(𝐹‘(1st ‘(𝐽𝑛))) / 𝑥𝑇(𝐹‘(1st ‘(𝐽𝑛))) / 𝑥𝐵))
2820, 27syl 14 . . . . . . 7 ((𝜑𝑛𝑈) → ([(𝐹‘(1st ‘(𝐽𝑛))) / 𝑥]𝐺:𝑇𝐵(𝐹‘(1st ‘(𝐽𝑛))) / 𝑥𝐺:(𝐹‘(1st ‘(𝐽𝑛))) / 𝑥𝑇(𝐹‘(1st ‘(𝐽𝑛))) / 𝑥𝐵))
2926, 28mpbid 147 . . . . . 6 ((𝜑𝑛𝑈) → (𝐹‘(1st ‘(𝐽𝑛))) / 𝑥𝐺:(𝐹‘(1st ‘(𝐽𝑛))) / 𝑥𝑇(𝐹‘(1st ‘(𝐽𝑛))) / 𝑥𝐵)
306, 8, 2, 10, 12, 14, 16, 17, 18ctiunctlemu2nd 13001 . . . . . 6 ((𝜑𝑛𝑈) → (2nd ‘(𝐽𝑛)) ∈ (𝐹‘(1st ‘(𝐽𝑛))) / 𝑥𝑇)
3129, 30ffvelcdmd 5770 . . . . 5 ((𝜑𝑛𝑈) → ((𝐹‘(1st ‘(𝐽𝑛))) / 𝑥𝐺‘(2nd ‘(𝐽𝑛))) ∈ (𝐹‘(1st ‘(𝐽𝑛))) / 𝑥𝐵)
32 csbeq1 3127 . . . . . . 7 (𝑦 = (𝐹‘(1st ‘(𝐽𝑛))) → 𝑦 / 𝑥𝐵 = (𝐹‘(1st ‘(𝐽𝑛))) / 𝑥𝐵)
3332eleq2d 2299 . . . . . 6 (𝑦 = (𝐹‘(1st ‘(𝐽𝑛))) → (((𝐹‘(1st ‘(𝐽𝑛))) / 𝑥𝐺‘(2nd ‘(𝐽𝑛))) ∈ 𝑦 / 𝑥𝐵 ↔ ((𝐹‘(1st ‘(𝐽𝑛))) / 𝑥𝐺‘(2nd ‘(𝐽𝑛))) ∈ (𝐹‘(1st ‘(𝐽𝑛))) / 𝑥𝐵))
3433rspcev 2907 . . . . 5 (((𝐹‘(1st ‘(𝐽𝑛))) ∈ 𝐴 ∧ ((𝐹‘(1st ‘(𝐽𝑛))) / 𝑥𝐺‘(2nd ‘(𝐽𝑛))) ∈ (𝐹‘(1st ‘(𝐽𝑛))) / 𝑥𝐵) → ∃𝑦𝐴 ((𝐹‘(1st ‘(𝐽𝑛))) / 𝑥𝐺‘(2nd ‘(𝐽𝑛))) ∈ 𝑦 / 𝑥𝐵)
3520, 31, 34syl2anc 411 . . . 4 ((𝜑𝑛𝑈) → ∃𝑦𝐴 ((𝐹‘(1st ‘(𝐽𝑛))) / 𝑥𝐺‘(2nd ‘(𝐽𝑛))) ∈ 𝑦 / 𝑥𝐵)
36 eliun 3968 . . . 4 (((𝐹‘(1st ‘(𝐽𝑛))) / 𝑥𝐺‘(2nd ‘(𝐽𝑛))) ∈ 𝑦𝐴 𝑦 / 𝑥𝐵 ↔ ∃𝑦𝐴 ((𝐹‘(1st ‘(𝐽𝑛))) / 𝑥𝐺‘(2nd ‘(𝐽𝑛))) ∈ 𝑦 / 𝑥𝐵)
3735, 36sylibr 134 . . 3 ((𝜑𝑛𝑈) → ((𝐹‘(1st ‘(𝐽𝑛))) / 𝑥𝐺‘(2nd ‘(𝐽𝑛))) ∈ 𝑦𝐴 𝑦 / 𝑥𝐵)
38 nfcv 2372 . . . 4 𝑦𝐵
39 nfcsb1v 3157 . . . 4 𝑥𝑦 / 𝑥𝐵
40 csbeq1a 3133 . . . 4 (𝑥 = 𝑦𝐵 = 𝑦 / 𝑥𝐵)
4138, 39, 40cbviun 4001 . . 3 𝑥𝐴 𝐵 = 𝑦𝐴 𝑦 / 𝑥𝐵
4237, 41eleqtrrdi 2323 . 2 ((𝜑𝑛𝑈) → ((𝐹‘(1st ‘(𝐽𝑛))) / 𝑥𝐺‘(2nd ‘(𝐽𝑛))) ∈ 𝑥𝐴 𝐵)
43 ctiunct.h . 2 𝐻 = (𝑛𝑈 ↦ ((𝐹‘(1st ‘(𝐽𝑛))) / 𝑥𝐺‘(2nd ‘(𝐽𝑛))))
4442, 43fmptd 5788 1 (𝜑𝐻:𝑈 𝑥𝐴 𝐵)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  DECID wdc 839   = wceq 1395  wcel 2200  wral 2508  wrex 2509  {crab 2512  [wsbc 3028  csb 3124  wss 3197   ciun 3964  cmpt 4144  ωcom 4681   × cxp 4716  wf 5313  ontowfo 5315  1-1-ontowf1o 5316  cfv 5317  1st c1st 6282  2nd c2nd 6283
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-14 2203  ax-ext 2211  ax-sep 4201  ax-pow 4257  ax-pr 4292
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ral 2513  df-rex 2514  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-iun 3966  df-br 4083  df-opab 4145  df-mpt 4146  df-id 4383  df-xp 4724  df-rel 4725  df-cnv 4726  df-co 4727  df-dm 4728  df-rn 4729  df-res 4730  df-ima 4731  df-iota 5277  df-fun 5319  df-fn 5320  df-f 5321  df-fo 5323  df-fv 5325
This theorem is referenced by:  ctiunctlemfo  13005
  Copyright terms: Public domain W3C validator