Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > smofvon2dm | GIF version |
Description: The function values of a strictly monotone ordinal function are ordinals. (Contributed by Mario Carneiro, 12-Mar-2013.) |
Ref | Expression |
---|---|
smofvon2dm | ⊢ ((Smo 𝐹 ∧ 𝐵 ∈ dom 𝐹) → (𝐹‘𝐵) ∈ On) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfsmo2 6255 | . . 3 ⊢ (Smo 𝐹 ↔ (𝐹:dom 𝐹⟶On ∧ Ord dom 𝐹 ∧ ∀𝑥 ∈ dom 𝐹∀𝑦 ∈ 𝑥 (𝐹‘𝑦) ∈ (𝐹‘𝑥))) | |
2 | 1 | simp1bi 1002 | . 2 ⊢ (Smo 𝐹 → 𝐹:dom 𝐹⟶On) |
3 | 2 | ffvelrnda 5620 | 1 ⊢ ((Smo 𝐹 ∧ 𝐵 ∈ dom 𝐹) → (𝐹‘𝐵) ∈ On) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 ∈ wcel 2136 ∀wral 2444 Ord word 4340 Oncon0 4341 dom cdm 4604 ⟶wf 5184 ‘cfv 5188 Smo wsmo 6253 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-14 2139 ax-ext 2147 ax-sep 4100 ax-pow 4153 ax-pr 4187 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ral 2449 df-rex 2450 df-v 2728 df-sbc 2952 df-un 3120 df-in 3122 df-ss 3129 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-uni 3790 df-br 3983 df-opab 4044 df-tr 4081 df-id 4271 df-iord 4344 df-xp 4610 df-rel 4611 df-cnv 4612 df-co 4613 df-dm 4614 df-rn 4615 df-iota 5153 df-fun 5190 df-fn 5191 df-f 5192 df-fv 5196 df-smo 6254 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |