ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  smofvon2dm GIF version

Theorem smofvon2dm 6372
Description: The function values of a strictly monotone ordinal function are ordinals. (Contributed by Mario Carneiro, 12-Mar-2013.)
Assertion
Ref Expression
smofvon2dm ((Smo 𝐹𝐵 ∈ dom 𝐹) → (𝐹𝐵) ∈ On)

Proof of Theorem smofvon2dm
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dfsmo2 6363 . . 3 (Smo 𝐹 ↔ (𝐹:dom 𝐹⟶On ∧ Ord dom 𝐹 ∧ ∀𝑥 ∈ dom 𝐹𝑦𝑥 (𝐹𝑦) ∈ (𝐹𝑥)))
21simp1bi 1014 . 2 (Smo 𝐹𝐹:dom 𝐹⟶On)
32ffvelcdmda 5709 1 ((Smo 𝐹𝐵 ∈ dom 𝐹) → (𝐹𝐵) ∈ On)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wcel 2175  wral 2483  Ord word 4407  Oncon0 4408  dom cdm 4673  wf 5264  cfv 5268  Smo wsmo 6361
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-10 1527  ax-11 1528  ax-i12 1529  ax-bndl 1531  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557  ax-14 2178  ax-ext 2186  ax-sep 4161  ax-pow 4217  ax-pr 4252
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1375  df-nf 1483  df-sb 1785  df-eu 2056  df-mo 2057  df-clab 2191  df-cleq 2197  df-clel 2200  df-nfc 2336  df-ral 2488  df-rex 2489  df-v 2773  df-sbc 2998  df-un 3169  df-in 3171  df-ss 3178  df-pw 3617  df-sn 3638  df-pr 3639  df-op 3641  df-uni 3850  df-br 4044  df-opab 4105  df-tr 4142  df-id 4338  df-iord 4411  df-xp 4679  df-rel 4680  df-cnv 4681  df-co 4682  df-dm 4683  df-rn 4684  df-iota 5229  df-fun 5270  df-fn 5271  df-f 5272  df-fv 5276  df-smo 6362
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator