ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  lsssn0 GIF version

Theorem lsssn0 14002
Description: The singleton of the zero vector is a subspace. (Contributed by NM, 13-Jan-2014.) (Revised by Mario Carneiro, 19-Jun-2014.)
Hypotheses
Ref Expression
lss0cl.z 0 = (0g𝑊)
lss0cl.s 𝑆 = (LSubSp‘𝑊)
Assertion
Ref Expression
lsssn0 (𝑊 ∈ LMod → { 0 } ∈ 𝑆)

Proof of Theorem lsssn0
Dummy variables 𝑥 𝑎 𝑏 𝑗 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqidd 2197 . 2 (𝑊 ∈ LMod → (Scalar‘𝑊) = (Scalar‘𝑊))
2 eqidd 2197 . 2 (𝑊 ∈ LMod → (Base‘(Scalar‘𝑊)) = (Base‘(Scalar‘𝑊)))
3 eqidd 2197 . 2 (𝑊 ∈ LMod → (Base‘𝑊) = (Base‘𝑊))
4 eqidd 2197 . 2 (𝑊 ∈ LMod → (+g𝑊) = (+g𝑊))
5 eqidd 2197 . 2 (𝑊 ∈ LMod → ( ·𝑠𝑊) = ( ·𝑠𝑊))
6 lss0cl.s . . 3 𝑆 = (LSubSp‘𝑊)
76a1i 9 . 2 (𝑊 ∈ LMod → 𝑆 = (LSubSp‘𝑊))
8 eqid 2196 . . . 4 (Base‘𝑊) = (Base‘𝑊)
9 lss0cl.z . . . 4 0 = (0g𝑊)
108, 9lmod0vcl 13949 . . 3 (𝑊 ∈ LMod → 0 ∈ (Base‘𝑊))
1110snssd 3768 . 2 (𝑊 ∈ LMod → { 0 } ⊆ (Base‘𝑊))
12 snmg 3741 . . 3 ( 0 ∈ (Base‘𝑊) → ∃𝑗 𝑗 ∈ { 0 })
1310, 12syl 14 . 2 (𝑊 ∈ LMod → ∃𝑗 𝑗 ∈ { 0 })
14 simpr2 1006 . . . . . . . 8 ((𝑊 ∈ LMod ∧ (𝑥 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑎 ∈ { 0 } ∧ 𝑏 ∈ { 0 })) → 𝑎 ∈ { 0 })
15 elsni 3641 . . . . . . . 8 (𝑎 ∈ { 0 } → 𝑎 = 0 )
1614, 15syl 14 . . . . . . 7 ((𝑊 ∈ LMod ∧ (𝑥 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑎 ∈ { 0 } ∧ 𝑏 ∈ { 0 })) → 𝑎 = 0 )
1716oveq2d 5941 . . . . . 6 ((𝑊 ∈ LMod ∧ (𝑥 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑎 ∈ { 0 } ∧ 𝑏 ∈ { 0 })) → (𝑥( ·𝑠𝑊)𝑎) = (𝑥( ·𝑠𝑊) 0 ))
18 eqid 2196 . . . . . . . 8 (Scalar‘𝑊) = (Scalar‘𝑊)
19 eqid 2196 . . . . . . . 8 ( ·𝑠𝑊) = ( ·𝑠𝑊)
20 eqid 2196 . . . . . . . 8 (Base‘(Scalar‘𝑊)) = (Base‘(Scalar‘𝑊))
2118, 19, 20, 9lmodvs0 13954 . . . . . . 7 ((𝑊 ∈ LMod ∧ 𝑥 ∈ (Base‘(Scalar‘𝑊))) → (𝑥( ·𝑠𝑊) 0 ) = 0 )
22213ad2antr1 1164 . . . . . 6 ((𝑊 ∈ LMod ∧ (𝑥 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑎 ∈ { 0 } ∧ 𝑏 ∈ { 0 })) → (𝑥( ·𝑠𝑊) 0 ) = 0 )
2317, 22eqtrd 2229 . . . . 5 ((𝑊 ∈ LMod ∧ (𝑥 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑎 ∈ { 0 } ∧ 𝑏 ∈ { 0 })) → (𝑥( ·𝑠𝑊)𝑎) = 0 )
24 simpr3 1007 . . . . . 6 ((𝑊 ∈ LMod ∧ (𝑥 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑎 ∈ { 0 } ∧ 𝑏 ∈ { 0 })) → 𝑏 ∈ { 0 })
25 elsni 3641 . . . . . 6 (𝑏 ∈ { 0 } → 𝑏 = 0 )
2624, 25syl 14 . . . . 5 ((𝑊 ∈ LMod ∧ (𝑥 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑎 ∈ { 0 } ∧ 𝑏 ∈ { 0 })) → 𝑏 = 0 )
2723, 26oveq12d 5943 . . . 4 ((𝑊 ∈ LMod ∧ (𝑥 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑎 ∈ { 0 } ∧ 𝑏 ∈ { 0 })) → ((𝑥( ·𝑠𝑊)𝑎)(+g𝑊)𝑏) = ( 0 (+g𝑊) 0 ))
28 eqid 2196 . . . . . . 7 (+g𝑊) = (+g𝑊)
298, 28, 9lmod0vlid 13950 . . . . . 6 ((𝑊 ∈ LMod ∧ 0 ∈ (Base‘𝑊)) → ( 0 (+g𝑊) 0 ) = 0 )
3010, 29mpdan 421 . . . . 5 (𝑊 ∈ LMod → ( 0 (+g𝑊) 0 ) = 0 )
3130adantr 276 . . . 4 ((𝑊 ∈ LMod ∧ (𝑥 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑎 ∈ { 0 } ∧ 𝑏 ∈ { 0 })) → ( 0 (+g𝑊) 0 ) = 0 )
3227, 31eqtrd 2229 . . 3 ((𝑊 ∈ LMod ∧ (𝑥 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑎 ∈ { 0 } ∧ 𝑏 ∈ { 0 })) → ((𝑥( ·𝑠𝑊)𝑎)(+g𝑊)𝑏) = 0 )
33 vex 2766 . . . . . . . 8 𝑥 ∈ V
3433a1i 9 . . . . . . 7 (𝑊 ∈ LMod → 𝑥 ∈ V)
35 vscaslid 12865 . . . . . . . 8 ( ·𝑠 = Slot ( ·𝑠 ‘ndx) ∧ ( ·𝑠 ‘ndx) ∈ ℕ)
3635slotex 12730 . . . . . . 7 (𝑊 ∈ LMod → ( ·𝑠𝑊) ∈ V)
37 vex 2766 . . . . . . . 8 𝑎 ∈ V
3837a1i 9 . . . . . . 7 (𝑊 ∈ LMod → 𝑎 ∈ V)
39 ovexg 5959 . . . . . . 7 ((𝑥 ∈ V ∧ ( ·𝑠𝑊) ∈ V ∧ 𝑎 ∈ V) → (𝑥( ·𝑠𝑊)𝑎) ∈ V)
4034, 36, 38, 39syl3anc 1249 . . . . . 6 (𝑊 ∈ LMod → (𝑥( ·𝑠𝑊)𝑎) ∈ V)
41 plusgslid 12815 . . . . . . 7 (+g = Slot (+g‘ndx) ∧ (+g‘ndx) ∈ ℕ)
4241slotex 12730 . . . . . 6 (𝑊 ∈ LMod → (+g𝑊) ∈ V)
43 vex 2766 . . . . . . 7 𝑏 ∈ V
4443a1i 9 . . . . . 6 (𝑊 ∈ LMod → 𝑏 ∈ V)
45 ovexg 5959 . . . . . 6 (((𝑥( ·𝑠𝑊)𝑎) ∈ V ∧ (+g𝑊) ∈ V ∧ 𝑏 ∈ V) → ((𝑥( ·𝑠𝑊)𝑎)(+g𝑊)𝑏) ∈ V)
4640, 42, 44, 45syl3anc 1249 . . . . 5 (𝑊 ∈ LMod → ((𝑥( ·𝑠𝑊)𝑎)(+g𝑊)𝑏) ∈ V)
47 elsng 3638 . . . . 5 (((𝑥( ·𝑠𝑊)𝑎)(+g𝑊)𝑏) ∈ V → (((𝑥( ·𝑠𝑊)𝑎)(+g𝑊)𝑏) ∈ { 0 } ↔ ((𝑥( ·𝑠𝑊)𝑎)(+g𝑊)𝑏) = 0 ))
4846, 47syl 14 . . . 4 (𝑊 ∈ LMod → (((𝑥( ·𝑠𝑊)𝑎)(+g𝑊)𝑏) ∈ { 0 } ↔ ((𝑥( ·𝑠𝑊)𝑎)(+g𝑊)𝑏) = 0 ))
4948adantr 276 . . 3 ((𝑊 ∈ LMod ∧ (𝑥 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑎 ∈ { 0 } ∧ 𝑏 ∈ { 0 })) → (((𝑥( ·𝑠𝑊)𝑎)(+g𝑊)𝑏) ∈ { 0 } ↔ ((𝑥( ·𝑠𝑊)𝑎)(+g𝑊)𝑏) = 0 ))
5032, 49mpbird 167 . 2 ((𝑊 ∈ LMod ∧ (𝑥 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑎 ∈ { 0 } ∧ 𝑏 ∈ { 0 })) → ((𝑥( ·𝑠𝑊)𝑎)(+g𝑊)𝑏) ∈ { 0 })
51 id 19 . 2 (𝑊 ∈ LMod → 𝑊 ∈ LMod)
521, 2, 3, 4, 5, 7, 11, 13, 50, 51islssmd 13991 1 (𝑊 ∈ LMod → { 0 } ∈ 𝑆)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  w3a 980   = wceq 1364  wex 1506  wcel 2167  Vcvv 2763  {csn 3623  cfv 5259  (class class class)co 5925  Basecbs 12703  +gcplusg 12780  Scalarcsca 12783   ·𝑠 cvsca 12784  0gc0g 12958  LModclmod 13919  LSubSpclss 13984
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-sep 4152  ax-pow 4208  ax-pr 4243  ax-un 4469  ax-setind 4574  ax-cnex 7987  ax-resscn 7988  ax-1cn 7989  ax-1re 7990  ax-icn 7991  ax-addcl 7992  ax-addrcl 7993  ax-mulcl 7994  ax-addcom 7996  ax-addass 7998  ax-i2m1 8001  ax-0lt1 8002  ax-0id 8004  ax-rnegex 8005  ax-pre-ltirr 8008  ax-pre-ltadd 8012
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rmo 2483  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3452  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-int 3876  df-br 4035  df-opab 4096  df-mpt 4097  df-id 4329  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-rn 4675  df-res 4676  df-iota 5220  df-fun 5261  df-fn 5262  df-fv 5267  df-riota 5880  df-ov 5928  df-oprab 5929  df-mpo 5930  df-pnf 8080  df-mnf 8081  df-ltxr 8083  df-inn 9008  df-2 9066  df-3 9067  df-4 9068  df-5 9069  df-6 9070  df-ndx 12706  df-slot 12707  df-base 12709  df-sets 12710  df-plusg 12793  df-mulr 12794  df-sca 12796  df-vsca 12797  df-0g 12960  df-mgm 13058  df-sgrp 13104  df-mnd 13119  df-grp 13205  df-mgp 13553  df-ring 13630  df-lmod 13921  df-lssm 13985
This theorem is referenced by:  lspsn0  14054  lsp0  14055  lidl0  14121
  Copyright terms: Public domain W3C validator