ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  lsssn0 GIF version

Theorem lsssn0 14202
Description: The singleton of the zero vector is a subspace. (Contributed by NM, 13-Jan-2014.) (Revised by Mario Carneiro, 19-Jun-2014.)
Hypotheses
Ref Expression
lss0cl.z 0 = (0g𝑊)
lss0cl.s 𝑆 = (LSubSp‘𝑊)
Assertion
Ref Expression
lsssn0 (𝑊 ∈ LMod → { 0 } ∈ 𝑆)

Proof of Theorem lsssn0
Dummy variables 𝑥 𝑎 𝑏 𝑗 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqidd 2207 . 2 (𝑊 ∈ LMod → (Scalar‘𝑊) = (Scalar‘𝑊))
2 eqidd 2207 . 2 (𝑊 ∈ LMod → (Base‘(Scalar‘𝑊)) = (Base‘(Scalar‘𝑊)))
3 eqidd 2207 . 2 (𝑊 ∈ LMod → (Base‘𝑊) = (Base‘𝑊))
4 eqidd 2207 . 2 (𝑊 ∈ LMod → (+g𝑊) = (+g𝑊))
5 eqidd 2207 . 2 (𝑊 ∈ LMod → ( ·𝑠𝑊) = ( ·𝑠𝑊))
6 lss0cl.s . . 3 𝑆 = (LSubSp‘𝑊)
76a1i 9 . 2 (𝑊 ∈ LMod → 𝑆 = (LSubSp‘𝑊))
8 eqid 2206 . . . 4 (Base‘𝑊) = (Base‘𝑊)
9 lss0cl.z . . . 4 0 = (0g𝑊)
108, 9lmod0vcl 14149 . . 3 (𝑊 ∈ LMod → 0 ∈ (Base‘𝑊))
1110snssd 3783 . 2 (𝑊 ∈ LMod → { 0 } ⊆ (Base‘𝑊))
12 snmg 3755 . . 3 ( 0 ∈ (Base‘𝑊) → ∃𝑗 𝑗 ∈ { 0 })
1310, 12syl 14 . 2 (𝑊 ∈ LMod → ∃𝑗 𝑗 ∈ { 0 })
14 simpr2 1007 . . . . . . . 8 ((𝑊 ∈ LMod ∧ (𝑥 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑎 ∈ { 0 } ∧ 𝑏 ∈ { 0 })) → 𝑎 ∈ { 0 })
15 elsni 3655 . . . . . . . 8 (𝑎 ∈ { 0 } → 𝑎 = 0 )
1614, 15syl 14 . . . . . . 7 ((𝑊 ∈ LMod ∧ (𝑥 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑎 ∈ { 0 } ∧ 𝑏 ∈ { 0 })) → 𝑎 = 0 )
1716oveq2d 5972 . . . . . 6 ((𝑊 ∈ LMod ∧ (𝑥 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑎 ∈ { 0 } ∧ 𝑏 ∈ { 0 })) → (𝑥( ·𝑠𝑊)𝑎) = (𝑥( ·𝑠𝑊) 0 ))
18 eqid 2206 . . . . . . . 8 (Scalar‘𝑊) = (Scalar‘𝑊)
19 eqid 2206 . . . . . . . 8 ( ·𝑠𝑊) = ( ·𝑠𝑊)
20 eqid 2206 . . . . . . . 8 (Base‘(Scalar‘𝑊)) = (Base‘(Scalar‘𝑊))
2118, 19, 20, 9lmodvs0 14154 . . . . . . 7 ((𝑊 ∈ LMod ∧ 𝑥 ∈ (Base‘(Scalar‘𝑊))) → (𝑥( ·𝑠𝑊) 0 ) = 0 )
22213ad2antr1 1165 . . . . . 6 ((𝑊 ∈ LMod ∧ (𝑥 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑎 ∈ { 0 } ∧ 𝑏 ∈ { 0 })) → (𝑥( ·𝑠𝑊) 0 ) = 0 )
2317, 22eqtrd 2239 . . . . 5 ((𝑊 ∈ LMod ∧ (𝑥 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑎 ∈ { 0 } ∧ 𝑏 ∈ { 0 })) → (𝑥( ·𝑠𝑊)𝑎) = 0 )
24 simpr3 1008 . . . . . 6 ((𝑊 ∈ LMod ∧ (𝑥 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑎 ∈ { 0 } ∧ 𝑏 ∈ { 0 })) → 𝑏 ∈ { 0 })
25 elsni 3655 . . . . . 6 (𝑏 ∈ { 0 } → 𝑏 = 0 )
2624, 25syl 14 . . . . 5 ((𝑊 ∈ LMod ∧ (𝑥 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑎 ∈ { 0 } ∧ 𝑏 ∈ { 0 })) → 𝑏 = 0 )
2723, 26oveq12d 5974 . . . 4 ((𝑊 ∈ LMod ∧ (𝑥 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑎 ∈ { 0 } ∧ 𝑏 ∈ { 0 })) → ((𝑥( ·𝑠𝑊)𝑎)(+g𝑊)𝑏) = ( 0 (+g𝑊) 0 ))
28 eqid 2206 . . . . . . 7 (+g𝑊) = (+g𝑊)
298, 28, 9lmod0vlid 14150 . . . . . 6 ((𝑊 ∈ LMod ∧ 0 ∈ (Base‘𝑊)) → ( 0 (+g𝑊) 0 ) = 0 )
3010, 29mpdan 421 . . . . 5 (𝑊 ∈ LMod → ( 0 (+g𝑊) 0 ) = 0 )
3130adantr 276 . . . 4 ((𝑊 ∈ LMod ∧ (𝑥 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑎 ∈ { 0 } ∧ 𝑏 ∈ { 0 })) → ( 0 (+g𝑊) 0 ) = 0 )
3227, 31eqtrd 2239 . . 3 ((𝑊 ∈ LMod ∧ (𝑥 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑎 ∈ { 0 } ∧ 𝑏 ∈ { 0 })) → ((𝑥( ·𝑠𝑊)𝑎)(+g𝑊)𝑏) = 0 )
33 vex 2776 . . . . . . . 8 𝑥 ∈ V
3433a1i 9 . . . . . . 7 (𝑊 ∈ LMod → 𝑥 ∈ V)
35 vscaslid 13065 . . . . . . . 8 ( ·𝑠 = Slot ( ·𝑠 ‘ndx) ∧ ( ·𝑠 ‘ndx) ∈ ℕ)
3635slotex 12929 . . . . . . 7 (𝑊 ∈ LMod → ( ·𝑠𝑊) ∈ V)
37 vex 2776 . . . . . . . 8 𝑎 ∈ V
3837a1i 9 . . . . . . 7 (𝑊 ∈ LMod → 𝑎 ∈ V)
39 ovexg 5990 . . . . . . 7 ((𝑥 ∈ V ∧ ( ·𝑠𝑊) ∈ V ∧ 𝑎 ∈ V) → (𝑥( ·𝑠𝑊)𝑎) ∈ V)
4034, 36, 38, 39syl3anc 1250 . . . . . 6 (𝑊 ∈ LMod → (𝑥( ·𝑠𝑊)𝑎) ∈ V)
41 plusgslid 13014 . . . . . . 7 (+g = Slot (+g‘ndx) ∧ (+g‘ndx) ∈ ℕ)
4241slotex 12929 . . . . . 6 (𝑊 ∈ LMod → (+g𝑊) ∈ V)
43 vex 2776 . . . . . . 7 𝑏 ∈ V
4443a1i 9 . . . . . 6 (𝑊 ∈ LMod → 𝑏 ∈ V)
45 ovexg 5990 . . . . . 6 (((𝑥( ·𝑠𝑊)𝑎) ∈ V ∧ (+g𝑊) ∈ V ∧ 𝑏 ∈ V) → ((𝑥( ·𝑠𝑊)𝑎)(+g𝑊)𝑏) ∈ V)
4640, 42, 44, 45syl3anc 1250 . . . . 5 (𝑊 ∈ LMod → ((𝑥( ·𝑠𝑊)𝑎)(+g𝑊)𝑏) ∈ V)
47 elsng 3652 . . . . 5 (((𝑥( ·𝑠𝑊)𝑎)(+g𝑊)𝑏) ∈ V → (((𝑥( ·𝑠𝑊)𝑎)(+g𝑊)𝑏) ∈ { 0 } ↔ ((𝑥( ·𝑠𝑊)𝑎)(+g𝑊)𝑏) = 0 ))
4846, 47syl 14 . . . 4 (𝑊 ∈ LMod → (((𝑥( ·𝑠𝑊)𝑎)(+g𝑊)𝑏) ∈ { 0 } ↔ ((𝑥( ·𝑠𝑊)𝑎)(+g𝑊)𝑏) = 0 ))
4948adantr 276 . . 3 ((𝑊 ∈ LMod ∧ (𝑥 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑎 ∈ { 0 } ∧ 𝑏 ∈ { 0 })) → (((𝑥( ·𝑠𝑊)𝑎)(+g𝑊)𝑏) ∈ { 0 } ↔ ((𝑥( ·𝑠𝑊)𝑎)(+g𝑊)𝑏) = 0 ))
5032, 49mpbird 167 . 2 ((𝑊 ∈ LMod ∧ (𝑥 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑎 ∈ { 0 } ∧ 𝑏 ∈ { 0 })) → ((𝑥( ·𝑠𝑊)𝑎)(+g𝑊)𝑏) ∈ { 0 })
51 id 19 . 2 (𝑊 ∈ LMod → 𝑊 ∈ LMod)
521, 2, 3, 4, 5, 7, 11, 13, 50, 51islssmd 14191 1 (𝑊 ∈ LMod → { 0 } ∈ 𝑆)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  w3a 981   = wceq 1373  wex 1516  wcel 2177  Vcvv 2773  {csn 3637  cfv 5279  (class class class)co 5956  Basecbs 12902  +gcplusg 12979  Scalarcsca 12982   ·𝑠 cvsca 12983  0gc0g 13158  LModclmod 14119  LSubSpclss 14184
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2179  ax-14 2180  ax-ext 2188  ax-sep 4169  ax-pow 4225  ax-pr 4260  ax-un 4487  ax-setind 4592  ax-cnex 8031  ax-resscn 8032  ax-1cn 8033  ax-1re 8034  ax-icn 8035  ax-addcl 8036  ax-addrcl 8037  ax-mulcl 8038  ax-addcom 8040  ax-addass 8042  ax-i2m1 8045  ax-0lt1 8046  ax-0id 8048  ax-rnegex 8049  ax-pre-ltirr 8052  ax-pre-ltadd 8056
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ne 2378  df-nel 2473  df-ral 2490  df-rex 2491  df-reu 2492  df-rmo 2493  df-rab 2494  df-v 2775  df-sbc 3003  df-csb 3098  df-dif 3172  df-un 3174  df-in 3176  df-ss 3183  df-nul 3465  df-pw 3622  df-sn 3643  df-pr 3644  df-op 3646  df-uni 3856  df-int 3891  df-br 4051  df-opab 4113  df-mpt 4114  df-id 4347  df-xp 4688  df-rel 4689  df-cnv 4690  df-co 4691  df-dm 4692  df-rn 4693  df-res 4694  df-iota 5240  df-fun 5281  df-fn 5282  df-fv 5287  df-riota 5911  df-ov 5959  df-oprab 5960  df-mpo 5961  df-pnf 8124  df-mnf 8125  df-ltxr 8127  df-inn 9052  df-2 9110  df-3 9111  df-4 9112  df-5 9113  df-6 9114  df-ndx 12905  df-slot 12906  df-base 12908  df-sets 12909  df-plusg 12992  df-mulr 12993  df-sca 12995  df-vsca 12996  df-0g 13160  df-mgm 13258  df-sgrp 13304  df-mnd 13319  df-grp 13405  df-mgp 13753  df-ring 13830  df-lmod 14121  df-lssm 14185
This theorem is referenced by:  lspsn0  14254  lsp0  14255  lidl0  14321
  Copyright terms: Public domain W3C validator