| Step | Hyp | Ref
| Expression |
| 1 | | eqidd 2197 |
. 2
⊢ (𝑊 ∈ LMod →
(Scalar‘𝑊) =
(Scalar‘𝑊)) |
| 2 | | eqidd 2197 |
. 2
⊢ (𝑊 ∈ LMod →
(Base‘(Scalar‘𝑊)) = (Base‘(Scalar‘𝑊))) |
| 3 | | eqidd 2197 |
. 2
⊢ (𝑊 ∈ LMod →
(Base‘𝑊) =
(Base‘𝑊)) |
| 4 | | eqidd 2197 |
. 2
⊢ (𝑊 ∈ LMod →
(+g‘𝑊) =
(+g‘𝑊)) |
| 5 | | eqidd 2197 |
. 2
⊢ (𝑊 ∈ LMod → (
·𝑠 ‘𝑊) = ( ·𝑠
‘𝑊)) |
| 6 | | lss0cl.s |
. . 3
⊢ 𝑆 = (LSubSp‘𝑊) |
| 7 | 6 | a1i 9 |
. 2
⊢ (𝑊 ∈ LMod → 𝑆 = (LSubSp‘𝑊)) |
| 8 | | eqid 2196 |
. . . 4
⊢
(Base‘𝑊) =
(Base‘𝑊) |
| 9 | | lss0cl.z |
. . . 4
⊢ 0 =
(0g‘𝑊) |
| 10 | 8, 9 | lmod0vcl 13873 |
. . 3
⊢ (𝑊 ∈ LMod → 0 ∈
(Base‘𝑊)) |
| 11 | 10 | snssd 3767 |
. 2
⊢ (𝑊 ∈ LMod → { 0 } ⊆
(Base‘𝑊)) |
| 12 | | snmg 3740 |
. . 3
⊢ ( 0 ∈
(Base‘𝑊) →
∃𝑗 𝑗 ∈ { 0 }) |
| 13 | 10, 12 | syl 14 |
. 2
⊢ (𝑊 ∈ LMod → ∃𝑗 𝑗 ∈ { 0 }) |
| 14 | | simpr2 1006 |
. . . . . . . 8
⊢ ((𝑊 ∈ LMod ∧ (𝑥 ∈
(Base‘(Scalar‘𝑊)) ∧ 𝑎 ∈ { 0 } ∧ 𝑏 ∈ { 0 })) → 𝑎 ∈ { 0 }) |
| 15 | | elsni 3640 |
. . . . . . . 8
⊢ (𝑎 ∈ { 0 } → 𝑎 = 0 ) |
| 16 | 14, 15 | syl 14 |
. . . . . . 7
⊢ ((𝑊 ∈ LMod ∧ (𝑥 ∈
(Base‘(Scalar‘𝑊)) ∧ 𝑎 ∈ { 0 } ∧ 𝑏 ∈ { 0 })) → 𝑎 = 0 ) |
| 17 | 16 | oveq2d 5938 |
. . . . . 6
⊢ ((𝑊 ∈ LMod ∧ (𝑥 ∈
(Base‘(Scalar‘𝑊)) ∧ 𝑎 ∈ { 0 } ∧ 𝑏 ∈ { 0 })) → (𝑥(
·𝑠 ‘𝑊)𝑎) = (𝑥( ·𝑠
‘𝑊) 0
)) |
| 18 | | eqid 2196 |
. . . . . . . 8
⊢
(Scalar‘𝑊) =
(Scalar‘𝑊) |
| 19 | | eqid 2196 |
. . . . . . . 8
⊢ (
·𝑠 ‘𝑊) = ( ·𝑠
‘𝑊) |
| 20 | | eqid 2196 |
. . . . . . . 8
⊢
(Base‘(Scalar‘𝑊)) = (Base‘(Scalar‘𝑊)) |
| 21 | 18, 19, 20, 9 | lmodvs0 13878 |
. . . . . . 7
⊢ ((𝑊 ∈ LMod ∧ 𝑥 ∈
(Base‘(Scalar‘𝑊))) → (𝑥( ·𝑠
‘𝑊) 0 ) = 0
) |
| 22 | 21 | 3ad2antr1 1164 |
. . . . . 6
⊢ ((𝑊 ∈ LMod ∧ (𝑥 ∈
(Base‘(Scalar‘𝑊)) ∧ 𝑎 ∈ { 0 } ∧ 𝑏 ∈ { 0 })) → (𝑥(
·𝑠 ‘𝑊) 0 ) = 0 ) |
| 23 | 17, 22 | eqtrd 2229 |
. . . . 5
⊢ ((𝑊 ∈ LMod ∧ (𝑥 ∈
(Base‘(Scalar‘𝑊)) ∧ 𝑎 ∈ { 0 } ∧ 𝑏 ∈ { 0 })) → (𝑥(
·𝑠 ‘𝑊)𝑎) = 0 ) |
| 24 | | simpr3 1007 |
. . . . . 6
⊢ ((𝑊 ∈ LMod ∧ (𝑥 ∈
(Base‘(Scalar‘𝑊)) ∧ 𝑎 ∈ { 0 } ∧ 𝑏 ∈ { 0 })) → 𝑏 ∈ { 0 }) |
| 25 | | elsni 3640 |
. . . . . 6
⊢ (𝑏 ∈ { 0 } → 𝑏 = 0 ) |
| 26 | 24, 25 | syl 14 |
. . . . 5
⊢ ((𝑊 ∈ LMod ∧ (𝑥 ∈
(Base‘(Scalar‘𝑊)) ∧ 𝑎 ∈ { 0 } ∧ 𝑏 ∈ { 0 })) → 𝑏 = 0 ) |
| 27 | 23, 26 | oveq12d 5940 |
. . . 4
⊢ ((𝑊 ∈ LMod ∧ (𝑥 ∈
(Base‘(Scalar‘𝑊)) ∧ 𝑎 ∈ { 0 } ∧ 𝑏 ∈ { 0 })) → ((𝑥(
·𝑠 ‘𝑊)𝑎)(+g‘𝑊)𝑏) = ( 0 (+g‘𝑊) 0 )) |
| 28 | | eqid 2196 |
. . . . . . 7
⊢
(+g‘𝑊) = (+g‘𝑊) |
| 29 | 8, 28, 9 | lmod0vlid 13874 |
. . . . . 6
⊢ ((𝑊 ∈ LMod ∧ 0 ∈
(Base‘𝑊)) → (
0
(+g‘𝑊)
0 ) =
0
) |
| 30 | 10, 29 | mpdan 421 |
. . . . 5
⊢ (𝑊 ∈ LMod → ( 0
(+g‘𝑊)
0 ) =
0
) |
| 31 | 30 | adantr 276 |
. . . 4
⊢ ((𝑊 ∈ LMod ∧ (𝑥 ∈
(Base‘(Scalar‘𝑊)) ∧ 𝑎 ∈ { 0 } ∧ 𝑏 ∈ { 0 })) → ( 0
(+g‘𝑊)
0 ) =
0
) |
| 32 | 27, 31 | eqtrd 2229 |
. . 3
⊢ ((𝑊 ∈ LMod ∧ (𝑥 ∈
(Base‘(Scalar‘𝑊)) ∧ 𝑎 ∈ { 0 } ∧ 𝑏 ∈ { 0 })) → ((𝑥(
·𝑠 ‘𝑊)𝑎)(+g‘𝑊)𝑏) = 0 ) |
| 33 | | vex 2766 |
. . . . . . . 8
⊢ 𝑥 ∈ V |
| 34 | 33 | a1i 9 |
. . . . . . 7
⊢ (𝑊 ∈ LMod → 𝑥 ∈ V) |
| 35 | | vscaslid 12840 |
. . . . . . . 8
⊢ (
·𝑠 = Slot (
·𝑠 ‘ndx) ∧ (
·𝑠 ‘ndx) ∈
ℕ) |
| 36 | 35 | slotex 12705 |
. . . . . . 7
⊢ (𝑊 ∈ LMod → (
·𝑠 ‘𝑊) ∈ V) |
| 37 | | vex 2766 |
. . . . . . . 8
⊢ 𝑎 ∈ V |
| 38 | 37 | a1i 9 |
. . . . . . 7
⊢ (𝑊 ∈ LMod → 𝑎 ∈ V) |
| 39 | | ovexg 5956 |
. . . . . . 7
⊢ ((𝑥 ∈ V ∧ (
·𝑠 ‘𝑊) ∈ V ∧ 𝑎 ∈ V) → (𝑥( ·𝑠
‘𝑊)𝑎) ∈ V) |
| 40 | 34, 36, 38, 39 | syl3anc 1249 |
. . . . . 6
⊢ (𝑊 ∈ LMod → (𝑥(
·𝑠 ‘𝑊)𝑎) ∈ V) |
| 41 | | plusgslid 12790 |
. . . . . . 7
⊢
(+g = Slot (+g‘ndx) ∧
(+g‘ndx) ∈ ℕ) |
| 42 | 41 | slotex 12705 |
. . . . . 6
⊢ (𝑊 ∈ LMod →
(+g‘𝑊)
∈ V) |
| 43 | | vex 2766 |
. . . . . . 7
⊢ 𝑏 ∈ V |
| 44 | 43 | a1i 9 |
. . . . . 6
⊢ (𝑊 ∈ LMod → 𝑏 ∈ V) |
| 45 | | ovexg 5956 |
. . . . . 6
⊢ (((𝑥(
·𝑠 ‘𝑊)𝑎) ∈ V ∧ (+g‘𝑊) ∈ V ∧ 𝑏 ∈ V) → ((𝑥(
·𝑠 ‘𝑊)𝑎)(+g‘𝑊)𝑏) ∈ V) |
| 46 | 40, 42, 44, 45 | syl3anc 1249 |
. . . . 5
⊢ (𝑊 ∈ LMod → ((𝑥(
·𝑠 ‘𝑊)𝑎)(+g‘𝑊)𝑏) ∈ V) |
| 47 | | elsng 3637 |
. . . . 5
⊢ (((𝑥(
·𝑠 ‘𝑊)𝑎)(+g‘𝑊)𝑏) ∈ V → (((𝑥( ·𝑠
‘𝑊)𝑎)(+g‘𝑊)𝑏) ∈ { 0 } ↔ ((𝑥(
·𝑠 ‘𝑊)𝑎)(+g‘𝑊)𝑏) = 0 )) |
| 48 | 46, 47 | syl 14 |
. . . 4
⊢ (𝑊 ∈ LMod → (((𝑥(
·𝑠 ‘𝑊)𝑎)(+g‘𝑊)𝑏) ∈ { 0 } ↔ ((𝑥(
·𝑠 ‘𝑊)𝑎)(+g‘𝑊)𝑏) = 0 )) |
| 49 | 48 | adantr 276 |
. . 3
⊢ ((𝑊 ∈ LMod ∧ (𝑥 ∈
(Base‘(Scalar‘𝑊)) ∧ 𝑎 ∈ { 0 } ∧ 𝑏 ∈ { 0 })) → (((𝑥(
·𝑠 ‘𝑊)𝑎)(+g‘𝑊)𝑏) ∈ { 0 } ↔ ((𝑥(
·𝑠 ‘𝑊)𝑎)(+g‘𝑊)𝑏) = 0 )) |
| 50 | 32, 49 | mpbird 167 |
. 2
⊢ ((𝑊 ∈ LMod ∧ (𝑥 ∈
(Base‘(Scalar‘𝑊)) ∧ 𝑎 ∈ { 0 } ∧ 𝑏 ∈ { 0 })) → ((𝑥(
·𝑠 ‘𝑊)𝑎)(+g‘𝑊)𝑏) ∈ { 0 }) |
| 51 | | id 19 |
. 2
⊢ (𝑊 ∈ LMod → 𝑊 ∈ LMod) |
| 52 | 1, 2, 3, 4, 5, 7, 11, 13, 50, 51 | islssmd 13915 |
1
⊢ (𝑊 ∈ LMod → { 0 } ∈
𝑆) |