ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  lsssn0 GIF version

Theorem lsssn0 13461
Description: The singleton of the zero vector is a subspace. (Contributed by NM, 13-Jan-2014.) (Revised by Mario Carneiro, 19-Jun-2014.)
Hypotheses
Ref Expression
lss0cl.z 0 = (0gβ€˜π‘Š)
lss0cl.s 𝑆 = (LSubSpβ€˜π‘Š)
Assertion
Ref Expression
lsssn0 (π‘Š ∈ LMod β†’ { 0 } ∈ 𝑆)

Proof of Theorem lsssn0
Dummy variables π‘₯ π‘Ž 𝑏 𝑗 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqidd 2178 . 2 (π‘Š ∈ LMod β†’ (Scalarβ€˜π‘Š) = (Scalarβ€˜π‘Š))
2 eqidd 2178 . 2 (π‘Š ∈ LMod β†’ (Baseβ€˜(Scalarβ€˜π‘Š)) = (Baseβ€˜(Scalarβ€˜π‘Š)))
3 eqidd 2178 . 2 (π‘Š ∈ LMod β†’ (Baseβ€˜π‘Š) = (Baseβ€˜π‘Š))
4 eqidd 2178 . 2 (π‘Š ∈ LMod β†’ (+gβ€˜π‘Š) = (+gβ€˜π‘Š))
5 eqidd 2178 . 2 (π‘Š ∈ LMod β†’ ( ·𝑠 β€˜π‘Š) = ( ·𝑠 β€˜π‘Š))
6 lss0cl.s . . 3 𝑆 = (LSubSpβ€˜π‘Š)
76a1i 9 . 2 (π‘Š ∈ LMod β†’ 𝑆 = (LSubSpβ€˜π‘Š))
8 eqid 2177 . . . 4 (Baseβ€˜π‘Š) = (Baseβ€˜π‘Š)
9 lss0cl.z . . . 4 0 = (0gβ€˜π‘Š)
108, 9lmod0vcl 13412 . . 3 (π‘Š ∈ LMod β†’ 0 ∈ (Baseβ€˜π‘Š))
1110snssd 3739 . 2 (π‘Š ∈ LMod β†’ { 0 } βŠ† (Baseβ€˜π‘Š))
12 snmg 3712 . . 3 ( 0 ∈ (Baseβ€˜π‘Š) β†’ βˆƒπ‘— 𝑗 ∈ { 0 })
1310, 12syl 14 . 2 (π‘Š ∈ LMod β†’ βˆƒπ‘— 𝑗 ∈ { 0 })
14 simpr2 1004 . . . . . . . 8 ((π‘Š ∈ LMod ∧ (π‘₯ ∈ (Baseβ€˜(Scalarβ€˜π‘Š)) ∧ π‘Ž ∈ { 0 } ∧ 𝑏 ∈ { 0 })) β†’ π‘Ž ∈ { 0 })
15 elsni 3612 . . . . . . . 8 (π‘Ž ∈ { 0 } β†’ π‘Ž = 0 )
1614, 15syl 14 . . . . . . 7 ((π‘Š ∈ LMod ∧ (π‘₯ ∈ (Baseβ€˜(Scalarβ€˜π‘Š)) ∧ π‘Ž ∈ { 0 } ∧ 𝑏 ∈ { 0 })) β†’ π‘Ž = 0 )
1716oveq2d 5893 . . . . . 6 ((π‘Š ∈ LMod ∧ (π‘₯ ∈ (Baseβ€˜(Scalarβ€˜π‘Š)) ∧ π‘Ž ∈ { 0 } ∧ 𝑏 ∈ { 0 })) β†’ (π‘₯( ·𝑠 β€˜π‘Š)π‘Ž) = (π‘₯( ·𝑠 β€˜π‘Š) 0 ))
18 eqid 2177 . . . . . . . 8 (Scalarβ€˜π‘Š) = (Scalarβ€˜π‘Š)
19 eqid 2177 . . . . . . . 8 ( ·𝑠 β€˜π‘Š) = ( ·𝑠 β€˜π‘Š)
20 eqid 2177 . . . . . . . 8 (Baseβ€˜(Scalarβ€˜π‘Š)) = (Baseβ€˜(Scalarβ€˜π‘Š))
2118, 19, 20, 9lmodvs0 13417 . . . . . . 7 ((π‘Š ∈ LMod ∧ π‘₯ ∈ (Baseβ€˜(Scalarβ€˜π‘Š))) β†’ (π‘₯( ·𝑠 β€˜π‘Š) 0 ) = 0 )
22213ad2antr1 1162 . . . . . 6 ((π‘Š ∈ LMod ∧ (π‘₯ ∈ (Baseβ€˜(Scalarβ€˜π‘Š)) ∧ π‘Ž ∈ { 0 } ∧ 𝑏 ∈ { 0 })) β†’ (π‘₯( ·𝑠 β€˜π‘Š) 0 ) = 0 )
2317, 22eqtrd 2210 . . . . 5 ((π‘Š ∈ LMod ∧ (π‘₯ ∈ (Baseβ€˜(Scalarβ€˜π‘Š)) ∧ π‘Ž ∈ { 0 } ∧ 𝑏 ∈ { 0 })) β†’ (π‘₯( ·𝑠 β€˜π‘Š)π‘Ž) = 0 )
24 simpr3 1005 . . . . . 6 ((π‘Š ∈ LMod ∧ (π‘₯ ∈ (Baseβ€˜(Scalarβ€˜π‘Š)) ∧ π‘Ž ∈ { 0 } ∧ 𝑏 ∈ { 0 })) β†’ 𝑏 ∈ { 0 })
25 elsni 3612 . . . . . 6 (𝑏 ∈ { 0 } β†’ 𝑏 = 0 )
2624, 25syl 14 . . . . 5 ((π‘Š ∈ LMod ∧ (π‘₯ ∈ (Baseβ€˜(Scalarβ€˜π‘Š)) ∧ π‘Ž ∈ { 0 } ∧ 𝑏 ∈ { 0 })) β†’ 𝑏 = 0 )
2723, 26oveq12d 5895 . . . 4 ((π‘Š ∈ LMod ∧ (π‘₯ ∈ (Baseβ€˜(Scalarβ€˜π‘Š)) ∧ π‘Ž ∈ { 0 } ∧ 𝑏 ∈ { 0 })) β†’ ((π‘₯( ·𝑠 β€˜π‘Š)π‘Ž)(+gβ€˜π‘Š)𝑏) = ( 0 (+gβ€˜π‘Š) 0 ))
28 eqid 2177 . . . . . . 7 (+gβ€˜π‘Š) = (+gβ€˜π‘Š)
298, 28, 9lmod0vlid 13413 . . . . . 6 ((π‘Š ∈ LMod ∧ 0 ∈ (Baseβ€˜π‘Š)) β†’ ( 0 (+gβ€˜π‘Š) 0 ) = 0 )
3010, 29mpdan 421 . . . . 5 (π‘Š ∈ LMod β†’ ( 0 (+gβ€˜π‘Š) 0 ) = 0 )
3130adantr 276 . . . 4 ((π‘Š ∈ LMod ∧ (π‘₯ ∈ (Baseβ€˜(Scalarβ€˜π‘Š)) ∧ π‘Ž ∈ { 0 } ∧ 𝑏 ∈ { 0 })) β†’ ( 0 (+gβ€˜π‘Š) 0 ) = 0 )
3227, 31eqtrd 2210 . . 3 ((π‘Š ∈ LMod ∧ (π‘₯ ∈ (Baseβ€˜(Scalarβ€˜π‘Š)) ∧ π‘Ž ∈ { 0 } ∧ 𝑏 ∈ { 0 })) β†’ ((π‘₯( ·𝑠 β€˜π‘Š)π‘Ž)(+gβ€˜π‘Š)𝑏) = 0 )
33 vex 2742 . . . . . . . 8 π‘₯ ∈ V
3433a1i 9 . . . . . . 7 (π‘Š ∈ LMod β†’ π‘₯ ∈ V)
35 vscaslid 12623 . . . . . . . 8 ( ·𝑠 = Slot ( ·𝑠 β€˜ndx) ∧ ( ·𝑠 β€˜ndx) ∈ β„•)
3635slotex 12491 . . . . . . 7 (π‘Š ∈ LMod β†’ ( ·𝑠 β€˜π‘Š) ∈ V)
37 vex 2742 . . . . . . . 8 π‘Ž ∈ V
3837a1i 9 . . . . . . 7 (π‘Š ∈ LMod β†’ π‘Ž ∈ V)
39 ovexg 5911 . . . . . . 7 ((π‘₯ ∈ V ∧ ( ·𝑠 β€˜π‘Š) ∈ V ∧ π‘Ž ∈ V) β†’ (π‘₯( ·𝑠 β€˜π‘Š)π‘Ž) ∈ V)
4034, 36, 38, 39syl3anc 1238 . . . . . 6 (π‘Š ∈ LMod β†’ (π‘₯( ·𝑠 β€˜π‘Š)π‘Ž) ∈ V)
41 plusgslid 12573 . . . . . . 7 (+g = Slot (+gβ€˜ndx) ∧ (+gβ€˜ndx) ∈ β„•)
4241slotex 12491 . . . . . 6 (π‘Š ∈ LMod β†’ (+gβ€˜π‘Š) ∈ V)
43 vex 2742 . . . . . . 7 𝑏 ∈ V
4443a1i 9 . . . . . 6 (π‘Š ∈ LMod β†’ 𝑏 ∈ V)
45 ovexg 5911 . . . . . 6 (((π‘₯( ·𝑠 β€˜π‘Š)π‘Ž) ∈ V ∧ (+gβ€˜π‘Š) ∈ V ∧ 𝑏 ∈ V) β†’ ((π‘₯( ·𝑠 β€˜π‘Š)π‘Ž)(+gβ€˜π‘Š)𝑏) ∈ V)
4640, 42, 44, 45syl3anc 1238 . . . . 5 (π‘Š ∈ LMod β†’ ((π‘₯( ·𝑠 β€˜π‘Š)π‘Ž)(+gβ€˜π‘Š)𝑏) ∈ V)
47 elsng 3609 . . . . 5 (((π‘₯( ·𝑠 β€˜π‘Š)π‘Ž)(+gβ€˜π‘Š)𝑏) ∈ V β†’ (((π‘₯( ·𝑠 β€˜π‘Š)π‘Ž)(+gβ€˜π‘Š)𝑏) ∈ { 0 } ↔ ((π‘₯( ·𝑠 β€˜π‘Š)π‘Ž)(+gβ€˜π‘Š)𝑏) = 0 ))
4846, 47syl 14 . . . 4 (π‘Š ∈ LMod β†’ (((π‘₯( ·𝑠 β€˜π‘Š)π‘Ž)(+gβ€˜π‘Š)𝑏) ∈ { 0 } ↔ ((π‘₯( ·𝑠 β€˜π‘Š)π‘Ž)(+gβ€˜π‘Š)𝑏) = 0 ))
4948adantr 276 . . 3 ((π‘Š ∈ LMod ∧ (π‘₯ ∈ (Baseβ€˜(Scalarβ€˜π‘Š)) ∧ π‘Ž ∈ { 0 } ∧ 𝑏 ∈ { 0 })) β†’ (((π‘₯( ·𝑠 β€˜π‘Š)π‘Ž)(+gβ€˜π‘Š)𝑏) ∈ { 0 } ↔ ((π‘₯( ·𝑠 β€˜π‘Š)π‘Ž)(+gβ€˜π‘Š)𝑏) = 0 ))
5032, 49mpbird 167 . 2 ((π‘Š ∈ LMod ∧ (π‘₯ ∈ (Baseβ€˜(Scalarβ€˜π‘Š)) ∧ π‘Ž ∈ { 0 } ∧ 𝑏 ∈ { 0 })) β†’ ((π‘₯( ·𝑠 β€˜π‘Š)π‘Ž)(+gβ€˜π‘Š)𝑏) ∈ { 0 })
51 id 19 . 2 (π‘Š ∈ LMod β†’ π‘Š ∈ LMod)
521, 2, 3, 4, 5, 7, 11, 13, 50, 51islssmd 13451 1 (π‘Š ∈ LMod β†’ { 0 } ∈ 𝑆)
Colors of variables: wff set class
Syntax hints:   β†’ wi 4   ∧ wa 104   ↔ wb 105   ∧ w3a 978   = wceq 1353  βˆƒwex 1492   ∈ wcel 2148  Vcvv 2739  {csn 3594  β€˜cfv 5218  (class class class)co 5877  Basecbs 12464  +gcplusg 12538  Scalarcsca 12541   ·𝑠 cvsca 12542  0gc0g 12710  LModclmod 13382  LSubSpclss 13447
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-sep 4123  ax-pow 4176  ax-pr 4211  ax-un 4435  ax-setind 4538  ax-cnex 7904  ax-resscn 7905  ax-1cn 7906  ax-1re 7907  ax-icn 7908  ax-addcl 7909  ax-addrcl 7910  ax-mulcl 7911  ax-addcom 7913  ax-addass 7915  ax-i2m1 7918  ax-0lt1 7919  ax-0id 7921  ax-rnegex 7922  ax-pre-ltirr 7925  ax-pre-ltadd 7929
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-nel 2443  df-ral 2460  df-rex 2461  df-reu 2462  df-rmo 2463  df-rab 2464  df-v 2741  df-sbc 2965  df-csb 3060  df-dif 3133  df-un 3135  df-in 3137  df-ss 3144  df-nul 3425  df-pw 3579  df-sn 3600  df-pr 3601  df-op 3603  df-uni 3812  df-int 3847  df-br 4006  df-opab 4067  df-mpt 4068  df-id 4295  df-xp 4634  df-rel 4635  df-cnv 4636  df-co 4637  df-dm 4638  df-rn 4639  df-res 4640  df-iota 5180  df-fun 5220  df-fn 5221  df-fv 5226  df-riota 5833  df-ov 5880  df-oprab 5881  df-mpo 5882  df-pnf 7996  df-mnf 7997  df-ltxr 7999  df-inn 8922  df-2 8980  df-3 8981  df-4 8982  df-5 8983  df-6 8984  df-ndx 12467  df-slot 12468  df-base 12470  df-sets 12471  df-plusg 12551  df-mulr 12552  df-sca 12554  df-vsca 12555  df-0g 12712  df-mgm 12780  df-sgrp 12813  df-mnd 12823  df-grp 12885  df-mgp 13136  df-ring 13186  df-lmod 13384  df-lssm 13448
This theorem is referenced by:  lspsn0  13513  lsp0  13514
  Copyright terms: Public domain W3C validator