Step | Hyp | Ref
| Expression |
1 | | eqidd 2190 |
. 2
⊢ (𝑊 ∈ LMod →
(Scalar‘𝑊) =
(Scalar‘𝑊)) |
2 | | eqidd 2190 |
. 2
⊢ (𝑊 ∈ LMod →
(Base‘(Scalar‘𝑊)) = (Base‘(Scalar‘𝑊))) |
3 | | eqidd 2190 |
. 2
⊢ (𝑊 ∈ LMod →
(Base‘𝑊) =
(Base‘𝑊)) |
4 | | eqidd 2190 |
. 2
⊢ (𝑊 ∈ LMod →
(+g‘𝑊) =
(+g‘𝑊)) |
5 | | eqidd 2190 |
. 2
⊢ (𝑊 ∈ LMod → (
·𝑠 ‘𝑊) = ( ·𝑠
‘𝑊)) |
6 | | lss0cl.s |
. . 3
⊢ 𝑆 = (LSubSp‘𝑊) |
7 | 6 | a1i 9 |
. 2
⊢ (𝑊 ∈ LMod → 𝑆 = (LSubSp‘𝑊)) |
8 | | eqid 2189 |
. . . 4
⊢
(Base‘𝑊) =
(Base‘𝑊) |
9 | | lss0cl.z |
. . . 4
⊢ 0 =
(0g‘𝑊) |
10 | 8, 9 | lmod0vcl 13630 |
. . 3
⊢ (𝑊 ∈ LMod → 0 ∈
(Base‘𝑊)) |
11 | 10 | snssd 3752 |
. 2
⊢ (𝑊 ∈ LMod → { 0 } ⊆
(Base‘𝑊)) |
12 | | snmg 3725 |
. . 3
⊢ ( 0 ∈
(Base‘𝑊) →
∃𝑗 𝑗 ∈ { 0 }) |
13 | 10, 12 | syl 14 |
. 2
⊢ (𝑊 ∈ LMod → ∃𝑗 𝑗 ∈ { 0 }) |
14 | | simpr2 1006 |
. . . . . . . 8
⊢ ((𝑊 ∈ LMod ∧ (𝑥 ∈
(Base‘(Scalar‘𝑊)) ∧ 𝑎 ∈ { 0 } ∧ 𝑏 ∈ { 0 })) → 𝑎 ∈ { 0 }) |
15 | | elsni 3625 |
. . . . . . . 8
⊢ (𝑎 ∈ { 0 } → 𝑎 = 0 ) |
16 | 14, 15 | syl 14 |
. . . . . . 7
⊢ ((𝑊 ∈ LMod ∧ (𝑥 ∈
(Base‘(Scalar‘𝑊)) ∧ 𝑎 ∈ { 0 } ∧ 𝑏 ∈ { 0 })) → 𝑎 = 0 ) |
17 | 16 | oveq2d 5911 |
. . . . . 6
⊢ ((𝑊 ∈ LMod ∧ (𝑥 ∈
(Base‘(Scalar‘𝑊)) ∧ 𝑎 ∈ { 0 } ∧ 𝑏 ∈ { 0 })) → (𝑥(
·𝑠 ‘𝑊)𝑎) = (𝑥( ·𝑠
‘𝑊) 0
)) |
18 | | eqid 2189 |
. . . . . . . 8
⊢
(Scalar‘𝑊) =
(Scalar‘𝑊) |
19 | | eqid 2189 |
. . . . . . . 8
⊢ (
·𝑠 ‘𝑊) = ( ·𝑠
‘𝑊) |
20 | | eqid 2189 |
. . . . . . . 8
⊢
(Base‘(Scalar‘𝑊)) = (Base‘(Scalar‘𝑊)) |
21 | 18, 19, 20, 9 | lmodvs0 13635 |
. . . . . . 7
⊢ ((𝑊 ∈ LMod ∧ 𝑥 ∈
(Base‘(Scalar‘𝑊))) → (𝑥( ·𝑠
‘𝑊) 0 ) = 0
) |
22 | 21 | 3ad2antr1 1164 |
. . . . . 6
⊢ ((𝑊 ∈ LMod ∧ (𝑥 ∈
(Base‘(Scalar‘𝑊)) ∧ 𝑎 ∈ { 0 } ∧ 𝑏 ∈ { 0 })) → (𝑥(
·𝑠 ‘𝑊) 0 ) = 0 ) |
23 | 17, 22 | eqtrd 2222 |
. . . . 5
⊢ ((𝑊 ∈ LMod ∧ (𝑥 ∈
(Base‘(Scalar‘𝑊)) ∧ 𝑎 ∈ { 0 } ∧ 𝑏 ∈ { 0 })) → (𝑥(
·𝑠 ‘𝑊)𝑎) = 0 ) |
24 | | simpr3 1007 |
. . . . . 6
⊢ ((𝑊 ∈ LMod ∧ (𝑥 ∈
(Base‘(Scalar‘𝑊)) ∧ 𝑎 ∈ { 0 } ∧ 𝑏 ∈ { 0 })) → 𝑏 ∈ { 0 }) |
25 | | elsni 3625 |
. . . . . 6
⊢ (𝑏 ∈ { 0 } → 𝑏 = 0 ) |
26 | 24, 25 | syl 14 |
. . . . 5
⊢ ((𝑊 ∈ LMod ∧ (𝑥 ∈
(Base‘(Scalar‘𝑊)) ∧ 𝑎 ∈ { 0 } ∧ 𝑏 ∈ { 0 })) → 𝑏 = 0 ) |
27 | 23, 26 | oveq12d 5913 |
. . . 4
⊢ ((𝑊 ∈ LMod ∧ (𝑥 ∈
(Base‘(Scalar‘𝑊)) ∧ 𝑎 ∈ { 0 } ∧ 𝑏 ∈ { 0 })) → ((𝑥(
·𝑠 ‘𝑊)𝑎)(+g‘𝑊)𝑏) = ( 0 (+g‘𝑊) 0 )) |
28 | | eqid 2189 |
. . . . . . 7
⊢
(+g‘𝑊) = (+g‘𝑊) |
29 | 8, 28, 9 | lmod0vlid 13631 |
. . . . . 6
⊢ ((𝑊 ∈ LMod ∧ 0 ∈
(Base‘𝑊)) → (
0
(+g‘𝑊)
0 ) =
0
) |
30 | 10, 29 | mpdan 421 |
. . . . 5
⊢ (𝑊 ∈ LMod → ( 0
(+g‘𝑊)
0 ) =
0
) |
31 | 30 | adantr 276 |
. . . 4
⊢ ((𝑊 ∈ LMod ∧ (𝑥 ∈
(Base‘(Scalar‘𝑊)) ∧ 𝑎 ∈ { 0 } ∧ 𝑏 ∈ { 0 })) → ( 0
(+g‘𝑊)
0 ) =
0
) |
32 | 27, 31 | eqtrd 2222 |
. . 3
⊢ ((𝑊 ∈ LMod ∧ (𝑥 ∈
(Base‘(Scalar‘𝑊)) ∧ 𝑎 ∈ { 0 } ∧ 𝑏 ∈ { 0 })) → ((𝑥(
·𝑠 ‘𝑊)𝑎)(+g‘𝑊)𝑏) = 0 ) |
33 | | vex 2755 |
. . . . . . . 8
⊢ 𝑥 ∈ V |
34 | 33 | a1i 9 |
. . . . . . 7
⊢ (𝑊 ∈ LMod → 𝑥 ∈ V) |
35 | | vscaslid 12671 |
. . . . . . . 8
⊢ (
·𝑠 = Slot (
·𝑠 ‘ndx) ∧ (
·𝑠 ‘ndx) ∈
ℕ) |
36 | 35 | slotex 12538 |
. . . . . . 7
⊢ (𝑊 ∈ LMod → (
·𝑠 ‘𝑊) ∈ V) |
37 | | vex 2755 |
. . . . . . . 8
⊢ 𝑎 ∈ V |
38 | 37 | a1i 9 |
. . . . . . 7
⊢ (𝑊 ∈ LMod → 𝑎 ∈ V) |
39 | | ovexg 5929 |
. . . . . . 7
⊢ ((𝑥 ∈ V ∧ (
·𝑠 ‘𝑊) ∈ V ∧ 𝑎 ∈ V) → (𝑥( ·𝑠
‘𝑊)𝑎) ∈ V) |
40 | 34, 36, 38, 39 | syl3anc 1249 |
. . . . . 6
⊢ (𝑊 ∈ LMod → (𝑥(
·𝑠 ‘𝑊)𝑎) ∈ V) |
41 | | plusgslid 12621 |
. . . . . . 7
⊢
(+g = Slot (+g‘ndx) ∧
(+g‘ndx) ∈ ℕ) |
42 | 41 | slotex 12538 |
. . . . . 6
⊢ (𝑊 ∈ LMod →
(+g‘𝑊)
∈ V) |
43 | | vex 2755 |
. . . . . . 7
⊢ 𝑏 ∈ V |
44 | 43 | a1i 9 |
. . . . . 6
⊢ (𝑊 ∈ LMod → 𝑏 ∈ V) |
45 | | ovexg 5929 |
. . . . . 6
⊢ (((𝑥(
·𝑠 ‘𝑊)𝑎) ∈ V ∧ (+g‘𝑊) ∈ V ∧ 𝑏 ∈ V) → ((𝑥(
·𝑠 ‘𝑊)𝑎)(+g‘𝑊)𝑏) ∈ V) |
46 | 40, 42, 44, 45 | syl3anc 1249 |
. . . . 5
⊢ (𝑊 ∈ LMod → ((𝑥(
·𝑠 ‘𝑊)𝑎)(+g‘𝑊)𝑏) ∈ V) |
47 | | elsng 3622 |
. . . . 5
⊢ (((𝑥(
·𝑠 ‘𝑊)𝑎)(+g‘𝑊)𝑏) ∈ V → (((𝑥( ·𝑠
‘𝑊)𝑎)(+g‘𝑊)𝑏) ∈ { 0 } ↔ ((𝑥(
·𝑠 ‘𝑊)𝑎)(+g‘𝑊)𝑏) = 0 )) |
48 | 46, 47 | syl 14 |
. . . 4
⊢ (𝑊 ∈ LMod → (((𝑥(
·𝑠 ‘𝑊)𝑎)(+g‘𝑊)𝑏) ∈ { 0 } ↔ ((𝑥(
·𝑠 ‘𝑊)𝑎)(+g‘𝑊)𝑏) = 0 )) |
49 | 48 | adantr 276 |
. . 3
⊢ ((𝑊 ∈ LMod ∧ (𝑥 ∈
(Base‘(Scalar‘𝑊)) ∧ 𝑎 ∈ { 0 } ∧ 𝑏 ∈ { 0 })) → (((𝑥(
·𝑠 ‘𝑊)𝑎)(+g‘𝑊)𝑏) ∈ { 0 } ↔ ((𝑥(
·𝑠 ‘𝑊)𝑎)(+g‘𝑊)𝑏) = 0 )) |
50 | 32, 49 | mpbird 167 |
. 2
⊢ ((𝑊 ∈ LMod ∧ (𝑥 ∈
(Base‘(Scalar‘𝑊)) ∧ 𝑎 ∈ { 0 } ∧ 𝑏 ∈ { 0 })) → ((𝑥(
·𝑠 ‘𝑊)𝑎)(+g‘𝑊)𝑏) ∈ { 0 }) |
51 | | id 19 |
. 2
⊢ (𝑊 ∈ LMod → 𝑊 ∈ LMod) |
52 | 1, 2, 3, 4, 5, 7, 11, 13, 50, 51 | islssmd 13672 |
1
⊢ (𝑊 ∈ LMod → { 0 } ∈
𝑆) |