Step | Hyp | Ref
| Expression |
1 | | eqidd 2178 |
. 2
β’ (π β LMod β
(Scalarβπ) =
(Scalarβπ)) |
2 | | eqidd 2178 |
. 2
β’ (π β LMod β
(Baseβ(Scalarβπ)) = (Baseβ(Scalarβπ))) |
3 | | eqidd 2178 |
. 2
β’ (π β LMod β
(Baseβπ) =
(Baseβπ)) |
4 | | eqidd 2178 |
. 2
β’ (π β LMod β
(+gβπ) =
(+gβπ)) |
5 | | eqidd 2178 |
. 2
β’ (π β LMod β (
Β·π βπ) = ( Β·π
βπ)) |
6 | | lss0cl.s |
. . 3
β’ π = (LSubSpβπ) |
7 | 6 | a1i 9 |
. 2
β’ (π β LMod β π = (LSubSpβπ)) |
8 | | eqid 2177 |
. . . 4
β’
(Baseβπ) =
(Baseβπ) |
9 | | lss0cl.z |
. . . 4
β’ 0 =
(0gβπ) |
10 | 8, 9 | lmod0vcl 13412 |
. . 3
β’ (π β LMod β 0 β
(Baseβπ)) |
11 | 10 | snssd 3739 |
. 2
β’ (π β LMod β { 0 } β
(Baseβπ)) |
12 | | snmg 3712 |
. . 3
β’ ( 0 β
(Baseβπ) β
βπ π β { 0 }) |
13 | 10, 12 | syl 14 |
. 2
β’ (π β LMod β βπ π β { 0 }) |
14 | | simpr2 1004 |
. . . . . . . 8
β’ ((π β LMod β§ (π₯ β
(Baseβ(Scalarβπ)) β§ π β { 0 } β§ π β { 0 })) β π β { 0 }) |
15 | | elsni 3612 |
. . . . . . . 8
β’ (π β { 0 } β π = 0 ) |
16 | 14, 15 | syl 14 |
. . . . . . 7
β’ ((π β LMod β§ (π₯ β
(Baseβ(Scalarβπ)) β§ π β { 0 } β§ π β { 0 })) β π = 0 ) |
17 | 16 | oveq2d 5893 |
. . . . . 6
β’ ((π β LMod β§ (π₯ β
(Baseβ(Scalarβπ)) β§ π β { 0 } β§ π β { 0 })) β (π₯(
Β·π βπ)π) = (π₯( Β·π
βπ) 0
)) |
18 | | eqid 2177 |
. . . . . . . 8
β’
(Scalarβπ) =
(Scalarβπ) |
19 | | eqid 2177 |
. . . . . . . 8
β’ (
Β·π βπ) = ( Β·π
βπ) |
20 | | eqid 2177 |
. . . . . . . 8
β’
(Baseβ(Scalarβπ)) = (Baseβ(Scalarβπ)) |
21 | 18, 19, 20, 9 | lmodvs0 13417 |
. . . . . . 7
β’ ((π β LMod β§ π₯ β
(Baseβ(Scalarβπ))) β (π₯( Β·π
βπ) 0 ) = 0
) |
22 | 21 | 3ad2antr1 1162 |
. . . . . 6
β’ ((π β LMod β§ (π₯ β
(Baseβ(Scalarβπ)) β§ π β { 0 } β§ π β { 0 })) β (π₯(
Β·π βπ) 0 ) = 0 ) |
23 | 17, 22 | eqtrd 2210 |
. . . . 5
β’ ((π β LMod β§ (π₯ β
(Baseβ(Scalarβπ)) β§ π β { 0 } β§ π β { 0 })) β (π₯(
Β·π βπ)π) = 0 ) |
24 | | simpr3 1005 |
. . . . . 6
β’ ((π β LMod β§ (π₯ β
(Baseβ(Scalarβπ)) β§ π β { 0 } β§ π β { 0 })) β π β { 0 }) |
25 | | elsni 3612 |
. . . . . 6
β’ (π β { 0 } β π = 0 ) |
26 | 24, 25 | syl 14 |
. . . . 5
β’ ((π β LMod β§ (π₯ β
(Baseβ(Scalarβπ)) β§ π β { 0 } β§ π β { 0 })) β π = 0 ) |
27 | 23, 26 | oveq12d 5895 |
. . . 4
β’ ((π β LMod β§ (π₯ β
(Baseβ(Scalarβπ)) β§ π β { 0 } β§ π β { 0 })) β ((π₯(
Β·π βπ)π)(+gβπ)π) = ( 0 (+gβπ) 0 )) |
28 | | eqid 2177 |
. . . . . . 7
β’
(+gβπ) = (+gβπ) |
29 | 8, 28, 9 | lmod0vlid 13413 |
. . . . . 6
β’ ((π β LMod β§ 0 β
(Baseβπ)) β (
0
(+gβπ)
0 ) =
0
) |
30 | 10, 29 | mpdan 421 |
. . . . 5
β’ (π β LMod β ( 0
(+gβπ)
0 ) =
0
) |
31 | 30 | adantr 276 |
. . . 4
β’ ((π β LMod β§ (π₯ β
(Baseβ(Scalarβπ)) β§ π β { 0 } β§ π β { 0 })) β ( 0
(+gβπ)
0 ) =
0
) |
32 | 27, 31 | eqtrd 2210 |
. . 3
β’ ((π β LMod β§ (π₯ β
(Baseβ(Scalarβπ)) β§ π β { 0 } β§ π β { 0 })) β ((π₯(
Β·π βπ)π)(+gβπ)π) = 0 ) |
33 | | vex 2742 |
. . . . . . . 8
β’ π₯ β V |
34 | 33 | a1i 9 |
. . . . . . 7
β’ (π β LMod β π₯ β V) |
35 | | vscaslid 12623 |
. . . . . . . 8
β’ (
Β·π = Slot (
Β·π βndx) β§ (
Β·π βndx) β
β) |
36 | 35 | slotex 12491 |
. . . . . . 7
β’ (π β LMod β (
Β·π βπ) β V) |
37 | | vex 2742 |
. . . . . . . 8
β’ π β V |
38 | 37 | a1i 9 |
. . . . . . 7
β’ (π β LMod β π β V) |
39 | | ovexg 5911 |
. . . . . . 7
β’ ((π₯ β V β§ (
Β·π βπ) β V β§ π β V) β (π₯( Β·π
βπ)π) β V) |
40 | 34, 36, 38, 39 | syl3anc 1238 |
. . . . . 6
β’ (π β LMod β (π₯(
Β·π βπ)π) β V) |
41 | | plusgslid 12573 |
. . . . . . 7
β’
(+g = Slot (+gβndx) β§
(+gβndx) β β) |
42 | 41 | slotex 12491 |
. . . . . 6
β’ (π β LMod β
(+gβπ)
β V) |
43 | | vex 2742 |
. . . . . . 7
β’ π β V |
44 | 43 | a1i 9 |
. . . . . 6
β’ (π β LMod β π β V) |
45 | | ovexg 5911 |
. . . . . 6
β’ (((π₯(
Β·π βπ)π) β V β§ (+gβπ) β V β§ π β V) β ((π₯(
Β·π βπ)π)(+gβπ)π) β V) |
46 | 40, 42, 44, 45 | syl3anc 1238 |
. . . . 5
β’ (π β LMod β ((π₯(
Β·π βπ)π)(+gβπ)π) β V) |
47 | | elsng 3609 |
. . . . 5
β’ (((π₯(
Β·π βπ)π)(+gβπ)π) β V β (((π₯( Β·π
βπ)π)(+gβπ)π) β { 0 } β ((π₯(
Β·π βπ)π)(+gβπ)π) = 0 )) |
48 | 46, 47 | syl 14 |
. . . 4
β’ (π β LMod β (((π₯(
Β·π βπ)π)(+gβπ)π) β { 0 } β ((π₯(
Β·π βπ)π)(+gβπ)π) = 0 )) |
49 | 48 | adantr 276 |
. . 3
β’ ((π β LMod β§ (π₯ β
(Baseβ(Scalarβπ)) β§ π β { 0 } β§ π β { 0 })) β (((π₯(
Β·π βπ)π)(+gβπ)π) β { 0 } β ((π₯(
Β·π βπ)π)(+gβπ)π) = 0 )) |
50 | 32, 49 | mpbird 167 |
. 2
β’ ((π β LMod β§ (π₯ β
(Baseβ(Scalarβπ)) β§ π β { 0 } β§ π β { 0 })) β ((π₯(
Β·π βπ)π)(+gβπ)π) β { 0 }) |
51 | | id 19 |
. 2
β’ (π β LMod β π β LMod) |
52 | 1, 2, 3, 4, 5, 7, 11, 13, 50, 51 | islssmd 13451 |
1
β’ (π β LMod β { 0 } β
π) |