ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  lsssn0 GIF version

Theorem lsssn0 13683
Description: The singleton of the zero vector is a subspace. (Contributed by NM, 13-Jan-2014.) (Revised by Mario Carneiro, 19-Jun-2014.)
Hypotheses
Ref Expression
lss0cl.z 0 = (0g𝑊)
lss0cl.s 𝑆 = (LSubSp‘𝑊)
Assertion
Ref Expression
lsssn0 (𝑊 ∈ LMod → { 0 } ∈ 𝑆)

Proof of Theorem lsssn0
Dummy variables 𝑥 𝑎 𝑏 𝑗 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqidd 2190 . 2 (𝑊 ∈ LMod → (Scalar‘𝑊) = (Scalar‘𝑊))
2 eqidd 2190 . 2 (𝑊 ∈ LMod → (Base‘(Scalar‘𝑊)) = (Base‘(Scalar‘𝑊)))
3 eqidd 2190 . 2 (𝑊 ∈ LMod → (Base‘𝑊) = (Base‘𝑊))
4 eqidd 2190 . 2 (𝑊 ∈ LMod → (+g𝑊) = (+g𝑊))
5 eqidd 2190 . 2 (𝑊 ∈ LMod → ( ·𝑠𝑊) = ( ·𝑠𝑊))
6 lss0cl.s . . 3 𝑆 = (LSubSp‘𝑊)
76a1i 9 . 2 (𝑊 ∈ LMod → 𝑆 = (LSubSp‘𝑊))
8 eqid 2189 . . . 4 (Base‘𝑊) = (Base‘𝑊)
9 lss0cl.z . . . 4 0 = (0g𝑊)
108, 9lmod0vcl 13630 . . 3 (𝑊 ∈ LMod → 0 ∈ (Base‘𝑊))
1110snssd 3752 . 2 (𝑊 ∈ LMod → { 0 } ⊆ (Base‘𝑊))
12 snmg 3725 . . 3 ( 0 ∈ (Base‘𝑊) → ∃𝑗 𝑗 ∈ { 0 })
1310, 12syl 14 . 2 (𝑊 ∈ LMod → ∃𝑗 𝑗 ∈ { 0 })
14 simpr2 1006 . . . . . . . 8 ((𝑊 ∈ LMod ∧ (𝑥 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑎 ∈ { 0 } ∧ 𝑏 ∈ { 0 })) → 𝑎 ∈ { 0 })
15 elsni 3625 . . . . . . . 8 (𝑎 ∈ { 0 } → 𝑎 = 0 )
1614, 15syl 14 . . . . . . 7 ((𝑊 ∈ LMod ∧ (𝑥 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑎 ∈ { 0 } ∧ 𝑏 ∈ { 0 })) → 𝑎 = 0 )
1716oveq2d 5911 . . . . . 6 ((𝑊 ∈ LMod ∧ (𝑥 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑎 ∈ { 0 } ∧ 𝑏 ∈ { 0 })) → (𝑥( ·𝑠𝑊)𝑎) = (𝑥( ·𝑠𝑊) 0 ))
18 eqid 2189 . . . . . . . 8 (Scalar‘𝑊) = (Scalar‘𝑊)
19 eqid 2189 . . . . . . . 8 ( ·𝑠𝑊) = ( ·𝑠𝑊)
20 eqid 2189 . . . . . . . 8 (Base‘(Scalar‘𝑊)) = (Base‘(Scalar‘𝑊))
2118, 19, 20, 9lmodvs0 13635 . . . . . . 7 ((𝑊 ∈ LMod ∧ 𝑥 ∈ (Base‘(Scalar‘𝑊))) → (𝑥( ·𝑠𝑊) 0 ) = 0 )
22213ad2antr1 1164 . . . . . 6 ((𝑊 ∈ LMod ∧ (𝑥 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑎 ∈ { 0 } ∧ 𝑏 ∈ { 0 })) → (𝑥( ·𝑠𝑊) 0 ) = 0 )
2317, 22eqtrd 2222 . . . . 5 ((𝑊 ∈ LMod ∧ (𝑥 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑎 ∈ { 0 } ∧ 𝑏 ∈ { 0 })) → (𝑥( ·𝑠𝑊)𝑎) = 0 )
24 simpr3 1007 . . . . . 6 ((𝑊 ∈ LMod ∧ (𝑥 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑎 ∈ { 0 } ∧ 𝑏 ∈ { 0 })) → 𝑏 ∈ { 0 })
25 elsni 3625 . . . . . 6 (𝑏 ∈ { 0 } → 𝑏 = 0 )
2624, 25syl 14 . . . . 5 ((𝑊 ∈ LMod ∧ (𝑥 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑎 ∈ { 0 } ∧ 𝑏 ∈ { 0 })) → 𝑏 = 0 )
2723, 26oveq12d 5913 . . . 4 ((𝑊 ∈ LMod ∧ (𝑥 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑎 ∈ { 0 } ∧ 𝑏 ∈ { 0 })) → ((𝑥( ·𝑠𝑊)𝑎)(+g𝑊)𝑏) = ( 0 (+g𝑊) 0 ))
28 eqid 2189 . . . . . . 7 (+g𝑊) = (+g𝑊)
298, 28, 9lmod0vlid 13631 . . . . . 6 ((𝑊 ∈ LMod ∧ 0 ∈ (Base‘𝑊)) → ( 0 (+g𝑊) 0 ) = 0 )
3010, 29mpdan 421 . . . . 5 (𝑊 ∈ LMod → ( 0 (+g𝑊) 0 ) = 0 )
3130adantr 276 . . . 4 ((𝑊 ∈ LMod ∧ (𝑥 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑎 ∈ { 0 } ∧ 𝑏 ∈ { 0 })) → ( 0 (+g𝑊) 0 ) = 0 )
3227, 31eqtrd 2222 . . 3 ((𝑊 ∈ LMod ∧ (𝑥 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑎 ∈ { 0 } ∧ 𝑏 ∈ { 0 })) → ((𝑥( ·𝑠𝑊)𝑎)(+g𝑊)𝑏) = 0 )
33 vex 2755 . . . . . . . 8 𝑥 ∈ V
3433a1i 9 . . . . . . 7 (𝑊 ∈ LMod → 𝑥 ∈ V)
35 vscaslid 12671 . . . . . . . 8 ( ·𝑠 = Slot ( ·𝑠 ‘ndx) ∧ ( ·𝑠 ‘ndx) ∈ ℕ)
3635slotex 12538 . . . . . . 7 (𝑊 ∈ LMod → ( ·𝑠𝑊) ∈ V)
37 vex 2755 . . . . . . . 8 𝑎 ∈ V
3837a1i 9 . . . . . . 7 (𝑊 ∈ LMod → 𝑎 ∈ V)
39 ovexg 5929 . . . . . . 7 ((𝑥 ∈ V ∧ ( ·𝑠𝑊) ∈ V ∧ 𝑎 ∈ V) → (𝑥( ·𝑠𝑊)𝑎) ∈ V)
4034, 36, 38, 39syl3anc 1249 . . . . . 6 (𝑊 ∈ LMod → (𝑥( ·𝑠𝑊)𝑎) ∈ V)
41 plusgslid 12621 . . . . . . 7 (+g = Slot (+g‘ndx) ∧ (+g‘ndx) ∈ ℕ)
4241slotex 12538 . . . . . 6 (𝑊 ∈ LMod → (+g𝑊) ∈ V)
43 vex 2755 . . . . . . 7 𝑏 ∈ V
4443a1i 9 . . . . . 6 (𝑊 ∈ LMod → 𝑏 ∈ V)
45 ovexg 5929 . . . . . 6 (((𝑥( ·𝑠𝑊)𝑎) ∈ V ∧ (+g𝑊) ∈ V ∧ 𝑏 ∈ V) → ((𝑥( ·𝑠𝑊)𝑎)(+g𝑊)𝑏) ∈ V)
4640, 42, 44, 45syl3anc 1249 . . . . 5 (𝑊 ∈ LMod → ((𝑥( ·𝑠𝑊)𝑎)(+g𝑊)𝑏) ∈ V)
47 elsng 3622 . . . . 5 (((𝑥( ·𝑠𝑊)𝑎)(+g𝑊)𝑏) ∈ V → (((𝑥( ·𝑠𝑊)𝑎)(+g𝑊)𝑏) ∈ { 0 } ↔ ((𝑥( ·𝑠𝑊)𝑎)(+g𝑊)𝑏) = 0 ))
4846, 47syl 14 . . . 4 (𝑊 ∈ LMod → (((𝑥( ·𝑠𝑊)𝑎)(+g𝑊)𝑏) ∈ { 0 } ↔ ((𝑥( ·𝑠𝑊)𝑎)(+g𝑊)𝑏) = 0 ))
4948adantr 276 . . 3 ((𝑊 ∈ LMod ∧ (𝑥 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑎 ∈ { 0 } ∧ 𝑏 ∈ { 0 })) → (((𝑥( ·𝑠𝑊)𝑎)(+g𝑊)𝑏) ∈ { 0 } ↔ ((𝑥( ·𝑠𝑊)𝑎)(+g𝑊)𝑏) = 0 ))
5032, 49mpbird 167 . 2 ((𝑊 ∈ LMod ∧ (𝑥 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑎 ∈ { 0 } ∧ 𝑏 ∈ { 0 })) → ((𝑥( ·𝑠𝑊)𝑎)(+g𝑊)𝑏) ∈ { 0 })
51 id 19 . 2 (𝑊 ∈ LMod → 𝑊 ∈ LMod)
521, 2, 3, 4, 5, 7, 11, 13, 50, 51islssmd 13672 1 (𝑊 ∈ LMod → { 0 } ∈ 𝑆)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  w3a 980   = wceq 1364  wex 1503  wcel 2160  Vcvv 2752  {csn 3607  cfv 5235  (class class class)co 5895  Basecbs 12511  +gcplusg 12586  Scalarcsca 12589   ·𝑠 cvsca 12590  0gc0g 12758  LModclmod 13600  LSubSpclss 13665
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2162  ax-14 2163  ax-ext 2171  ax-sep 4136  ax-pow 4192  ax-pr 4227  ax-un 4451  ax-setind 4554  ax-cnex 7931  ax-resscn 7932  ax-1cn 7933  ax-1re 7934  ax-icn 7935  ax-addcl 7936  ax-addrcl 7937  ax-mulcl 7938  ax-addcom 7940  ax-addass 7942  ax-i2m1 7945  ax-0lt1 7946  ax-0id 7948  ax-rnegex 7949  ax-pre-ltirr 7952  ax-pre-ltadd 7956
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2041  df-mo 2042  df-clab 2176  df-cleq 2182  df-clel 2185  df-nfc 2321  df-ne 2361  df-nel 2456  df-ral 2473  df-rex 2474  df-reu 2475  df-rmo 2476  df-rab 2477  df-v 2754  df-sbc 2978  df-csb 3073  df-dif 3146  df-un 3148  df-in 3150  df-ss 3157  df-nul 3438  df-pw 3592  df-sn 3613  df-pr 3614  df-op 3616  df-uni 3825  df-int 3860  df-br 4019  df-opab 4080  df-mpt 4081  df-id 4311  df-xp 4650  df-rel 4651  df-cnv 4652  df-co 4653  df-dm 4654  df-rn 4655  df-res 4656  df-iota 5196  df-fun 5237  df-fn 5238  df-fv 5243  df-riota 5851  df-ov 5898  df-oprab 5899  df-mpo 5900  df-pnf 8023  df-mnf 8024  df-ltxr 8026  df-inn 8949  df-2 9007  df-3 9008  df-4 9009  df-5 9010  df-6 9011  df-ndx 12514  df-slot 12515  df-base 12517  df-sets 12518  df-plusg 12599  df-mulr 12600  df-sca 12602  df-vsca 12603  df-0g 12760  df-mgm 12829  df-sgrp 12862  df-mnd 12875  df-grp 12945  df-mgp 13272  df-ring 13349  df-lmod 13602  df-lssm 13666
This theorem is referenced by:  lspsn0  13735  lsp0  13736  lidl0  13802
  Copyright terms: Public domain W3C validator