ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dfuzi GIF version

Theorem dfuzi 9336
Description: An expression for the upper integers that start at 𝑁 that is analogous to dfnn2 8894 for positive integers. (Contributed by NM, 6-Jul-2005.) (Proof shortened by Mario Carneiro, 3-May-2014.)
Hypothesis
Ref Expression
dfuz.1 𝑁 ∈ ℤ
Assertion
Ref Expression
dfuzi {𝑧 ∈ ℤ ∣ 𝑁𝑧} = {𝑥 ∣ (𝑁𝑥 ∧ ∀𝑦𝑥 (𝑦 + 1) ∈ 𝑥)}
Distinct variable group:   𝑥,𝑦,𝑧,𝑁

Proof of Theorem dfuzi
StepHypRef Expression
1 ssintab 3857 . . 3 ({𝑧 ∈ ℤ ∣ 𝑁𝑧} ⊆ {𝑥 ∣ (𝑁𝑥 ∧ ∀𝑦𝑥 (𝑦 + 1) ∈ 𝑥)} ↔ ∀𝑥((𝑁𝑥 ∧ ∀𝑦𝑥 (𝑦 + 1) ∈ 𝑥) → {𝑧 ∈ ℤ ∣ 𝑁𝑧} ⊆ 𝑥))
2 dfuz.1 . . . 4 𝑁 ∈ ℤ
32peano5uzi 9335 . . 3 ((𝑁𝑥 ∧ ∀𝑦𝑥 (𝑦 + 1) ∈ 𝑥) → {𝑧 ∈ ℤ ∣ 𝑁𝑧} ⊆ 𝑥)
41, 3mpgbir 1451 . 2 {𝑧 ∈ ℤ ∣ 𝑁𝑧} ⊆ {𝑥 ∣ (𝑁𝑥 ∧ ∀𝑦𝑥 (𝑦 + 1) ∈ 𝑥)}
52zrei 9232 . . . . . 6 𝑁 ∈ ℝ
65leidi 8416 . . . . 5 𝑁𝑁
7 breq2 4002 . . . . . 6 (𝑧 = 𝑁 → (𝑁𝑧𝑁𝑁))
87elrab 2891 . . . . 5 (𝑁 ∈ {𝑧 ∈ ℤ ∣ 𝑁𝑧} ↔ (𝑁 ∈ ℤ ∧ 𝑁𝑁))
92, 6, 8mpbir2an 942 . . . 4 𝑁 ∈ {𝑧 ∈ ℤ ∣ 𝑁𝑧}
10 peano2uz2 9333 . . . . . 6 ((𝑁 ∈ ℤ ∧ 𝑦 ∈ {𝑧 ∈ ℤ ∣ 𝑁𝑧}) → (𝑦 + 1) ∈ {𝑧 ∈ ℤ ∣ 𝑁𝑧})
112, 10mpan 424 . . . . 5 (𝑦 ∈ {𝑧 ∈ ℤ ∣ 𝑁𝑧} → (𝑦 + 1) ∈ {𝑧 ∈ ℤ ∣ 𝑁𝑧})
1211rgen 2528 . . . 4 𝑦 ∈ {𝑧 ∈ ℤ ∣ 𝑁𝑧} (𝑦 + 1) ∈ {𝑧 ∈ ℤ ∣ 𝑁𝑧}
13 zex 9235 . . . . . 6 ℤ ∈ V
1413rabex 4142 . . . . 5 {𝑧 ∈ ℤ ∣ 𝑁𝑧} ∈ V
15 eleq2 2239 . . . . . 6 (𝑥 = {𝑧 ∈ ℤ ∣ 𝑁𝑧} → (𝑁𝑥𝑁 ∈ {𝑧 ∈ ℤ ∣ 𝑁𝑧}))
16 eleq2 2239 . . . . . . 7 (𝑥 = {𝑧 ∈ ℤ ∣ 𝑁𝑧} → ((𝑦 + 1) ∈ 𝑥 ↔ (𝑦 + 1) ∈ {𝑧 ∈ ℤ ∣ 𝑁𝑧}))
1716raleqbi1dv 2678 . . . . . 6 (𝑥 = {𝑧 ∈ ℤ ∣ 𝑁𝑧} → (∀𝑦𝑥 (𝑦 + 1) ∈ 𝑥 ↔ ∀𝑦 ∈ {𝑧 ∈ ℤ ∣ 𝑁𝑧} (𝑦 + 1) ∈ {𝑧 ∈ ℤ ∣ 𝑁𝑧}))
1815, 17anbi12d 473 . . . . 5 (𝑥 = {𝑧 ∈ ℤ ∣ 𝑁𝑧} → ((𝑁𝑥 ∧ ∀𝑦𝑥 (𝑦 + 1) ∈ 𝑥) ↔ (𝑁 ∈ {𝑧 ∈ ℤ ∣ 𝑁𝑧} ∧ ∀𝑦 ∈ {𝑧 ∈ ℤ ∣ 𝑁𝑧} (𝑦 + 1) ∈ {𝑧 ∈ ℤ ∣ 𝑁𝑧})))
1914, 18elab 2879 . . . 4 ({𝑧 ∈ ℤ ∣ 𝑁𝑧} ∈ {𝑥 ∣ (𝑁𝑥 ∧ ∀𝑦𝑥 (𝑦 + 1) ∈ 𝑥)} ↔ (𝑁 ∈ {𝑧 ∈ ℤ ∣ 𝑁𝑧} ∧ ∀𝑦 ∈ {𝑧 ∈ ℤ ∣ 𝑁𝑧} (𝑦 + 1) ∈ {𝑧 ∈ ℤ ∣ 𝑁𝑧}))
209, 12, 19mpbir2an 942 . . 3 {𝑧 ∈ ℤ ∣ 𝑁𝑧} ∈ {𝑥 ∣ (𝑁𝑥 ∧ ∀𝑦𝑥 (𝑦 + 1) ∈ 𝑥)}
21 intss1 3855 . . 3 ({𝑧 ∈ ℤ ∣ 𝑁𝑧} ∈ {𝑥 ∣ (𝑁𝑥 ∧ ∀𝑦𝑥 (𝑦 + 1) ∈ 𝑥)} → {𝑥 ∣ (𝑁𝑥 ∧ ∀𝑦𝑥 (𝑦 + 1) ∈ 𝑥)} ⊆ {𝑧 ∈ ℤ ∣ 𝑁𝑧})
2220, 21ax-mp 5 . 2 {𝑥 ∣ (𝑁𝑥 ∧ ∀𝑦𝑥 (𝑦 + 1) ∈ 𝑥)} ⊆ {𝑧 ∈ ℤ ∣ 𝑁𝑧}
234, 22eqssi 3169 1 {𝑧 ∈ ℤ ∣ 𝑁𝑧} = {𝑥 ∣ (𝑁𝑥 ∧ ∀𝑦𝑥 (𝑦 + 1) ∈ 𝑥)}
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1353  wcel 2146  {cab 2161  wral 2453  {crab 2457  wss 3127   cint 3840   class class class wbr 3998  (class class class)co 5865  1c1 7787   + caddc 7789  cle 7967  cz 9226
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1445  ax-7 1446  ax-gen 1447  ax-ie1 1491  ax-ie2 1492  ax-8 1502  ax-10 1503  ax-11 1504  ax-i12 1505  ax-bndl 1507  ax-4 1508  ax-17 1524  ax-i9 1528  ax-ial 1532  ax-i5r 1533  ax-13 2148  ax-14 2149  ax-ext 2157  ax-sep 4116  ax-pow 4169  ax-pr 4203  ax-un 4427  ax-setind 4530  ax-cnex 7877  ax-resscn 7878  ax-1cn 7879  ax-1re 7880  ax-icn 7881  ax-addcl 7882  ax-addrcl 7883  ax-mulcl 7884  ax-addcom 7886  ax-addass 7888  ax-distr 7890  ax-i2m1 7891  ax-0lt1 7892  ax-0id 7894  ax-rnegex 7895  ax-cnre 7897  ax-pre-ltirr 7898  ax-pre-ltwlin 7899  ax-pre-lttrn 7900  ax-pre-ltadd 7902
This theorem depends on definitions:  df-bi 117  df-3or 979  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1459  df-sb 1761  df-eu 2027  df-mo 2028  df-clab 2162  df-cleq 2168  df-clel 2171  df-nfc 2306  df-ne 2346  df-nel 2441  df-ral 2458  df-rex 2459  df-reu 2460  df-rab 2462  df-v 2737  df-sbc 2961  df-dif 3129  df-un 3131  df-in 3133  df-ss 3140  df-pw 3574  df-sn 3595  df-pr 3596  df-op 3598  df-uni 3806  df-int 3841  df-br 3999  df-opab 4060  df-id 4287  df-xp 4626  df-rel 4627  df-cnv 4628  df-co 4629  df-dm 4630  df-iota 5170  df-fun 5210  df-fv 5216  df-riota 5821  df-ov 5868  df-oprab 5869  df-mpo 5870  df-pnf 7968  df-mnf 7969  df-xr 7970  df-ltxr 7971  df-le 7972  df-sub 8104  df-neg 8105  df-inn 8893  df-n0 9150  df-z 9227
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator