| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > dfuzi | GIF version | ||
| Description: An expression for the upper integers that start at 𝑁 that is analogous to dfnn2 9009 for positive integers. (Contributed by NM, 6-Jul-2005.) (Proof shortened by Mario Carneiro, 3-May-2014.) |
| Ref | Expression |
|---|---|
| dfuz.1 | ⊢ 𝑁 ∈ ℤ |
| Ref | Expression |
|---|---|
| dfuzi | ⊢ {𝑧 ∈ ℤ ∣ 𝑁 ≤ 𝑧} = ∩ {𝑥 ∣ (𝑁 ∈ 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑦 + 1) ∈ 𝑥)} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssintab 3892 | . . 3 ⊢ ({𝑧 ∈ ℤ ∣ 𝑁 ≤ 𝑧} ⊆ ∩ {𝑥 ∣ (𝑁 ∈ 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑦 + 1) ∈ 𝑥)} ↔ ∀𝑥((𝑁 ∈ 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑦 + 1) ∈ 𝑥) → {𝑧 ∈ ℤ ∣ 𝑁 ≤ 𝑧} ⊆ 𝑥)) | |
| 2 | dfuz.1 | . . . 4 ⊢ 𝑁 ∈ ℤ | |
| 3 | 2 | peano5uzi 9452 | . . 3 ⊢ ((𝑁 ∈ 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑦 + 1) ∈ 𝑥) → {𝑧 ∈ ℤ ∣ 𝑁 ≤ 𝑧} ⊆ 𝑥) |
| 4 | 1, 3 | mpgbir 1467 | . 2 ⊢ {𝑧 ∈ ℤ ∣ 𝑁 ≤ 𝑧} ⊆ ∩ {𝑥 ∣ (𝑁 ∈ 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑦 + 1) ∈ 𝑥)} |
| 5 | 2 | zrei 9349 | . . . . . 6 ⊢ 𝑁 ∈ ℝ |
| 6 | 5 | leidi 8529 | . . . . 5 ⊢ 𝑁 ≤ 𝑁 |
| 7 | breq2 4038 | . . . . . 6 ⊢ (𝑧 = 𝑁 → (𝑁 ≤ 𝑧 ↔ 𝑁 ≤ 𝑁)) | |
| 8 | 7 | elrab 2920 | . . . . 5 ⊢ (𝑁 ∈ {𝑧 ∈ ℤ ∣ 𝑁 ≤ 𝑧} ↔ (𝑁 ∈ ℤ ∧ 𝑁 ≤ 𝑁)) |
| 9 | 2, 6, 8 | mpbir2an 944 | . . . 4 ⊢ 𝑁 ∈ {𝑧 ∈ ℤ ∣ 𝑁 ≤ 𝑧} |
| 10 | peano2uz2 9450 | . . . . . 6 ⊢ ((𝑁 ∈ ℤ ∧ 𝑦 ∈ {𝑧 ∈ ℤ ∣ 𝑁 ≤ 𝑧}) → (𝑦 + 1) ∈ {𝑧 ∈ ℤ ∣ 𝑁 ≤ 𝑧}) | |
| 11 | 2, 10 | mpan 424 | . . . . 5 ⊢ (𝑦 ∈ {𝑧 ∈ ℤ ∣ 𝑁 ≤ 𝑧} → (𝑦 + 1) ∈ {𝑧 ∈ ℤ ∣ 𝑁 ≤ 𝑧}) |
| 12 | 11 | rgen 2550 | . . . 4 ⊢ ∀𝑦 ∈ {𝑧 ∈ ℤ ∣ 𝑁 ≤ 𝑧} (𝑦 + 1) ∈ {𝑧 ∈ ℤ ∣ 𝑁 ≤ 𝑧} |
| 13 | zex 9352 | . . . . . 6 ⊢ ℤ ∈ V | |
| 14 | 13 | rabex 4178 | . . . . 5 ⊢ {𝑧 ∈ ℤ ∣ 𝑁 ≤ 𝑧} ∈ V |
| 15 | eleq2 2260 | . . . . . 6 ⊢ (𝑥 = {𝑧 ∈ ℤ ∣ 𝑁 ≤ 𝑧} → (𝑁 ∈ 𝑥 ↔ 𝑁 ∈ {𝑧 ∈ ℤ ∣ 𝑁 ≤ 𝑧})) | |
| 16 | eleq2 2260 | . . . . . . 7 ⊢ (𝑥 = {𝑧 ∈ ℤ ∣ 𝑁 ≤ 𝑧} → ((𝑦 + 1) ∈ 𝑥 ↔ (𝑦 + 1) ∈ {𝑧 ∈ ℤ ∣ 𝑁 ≤ 𝑧})) | |
| 17 | 16 | raleqbi1dv 2705 | . . . . . 6 ⊢ (𝑥 = {𝑧 ∈ ℤ ∣ 𝑁 ≤ 𝑧} → (∀𝑦 ∈ 𝑥 (𝑦 + 1) ∈ 𝑥 ↔ ∀𝑦 ∈ {𝑧 ∈ ℤ ∣ 𝑁 ≤ 𝑧} (𝑦 + 1) ∈ {𝑧 ∈ ℤ ∣ 𝑁 ≤ 𝑧})) |
| 18 | 15, 17 | anbi12d 473 | . . . . 5 ⊢ (𝑥 = {𝑧 ∈ ℤ ∣ 𝑁 ≤ 𝑧} → ((𝑁 ∈ 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑦 + 1) ∈ 𝑥) ↔ (𝑁 ∈ {𝑧 ∈ ℤ ∣ 𝑁 ≤ 𝑧} ∧ ∀𝑦 ∈ {𝑧 ∈ ℤ ∣ 𝑁 ≤ 𝑧} (𝑦 + 1) ∈ {𝑧 ∈ ℤ ∣ 𝑁 ≤ 𝑧}))) |
| 19 | 14, 18 | elab 2908 | . . . 4 ⊢ ({𝑧 ∈ ℤ ∣ 𝑁 ≤ 𝑧} ∈ {𝑥 ∣ (𝑁 ∈ 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑦 + 1) ∈ 𝑥)} ↔ (𝑁 ∈ {𝑧 ∈ ℤ ∣ 𝑁 ≤ 𝑧} ∧ ∀𝑦 ∈ {𝑧 ∈ ℤ ∣ 𝑁 ≤ 𝑧} (𝑦 + 1) ∈ {𝑧 ∈ ℤ ∣ 𝑁 ≤ 𝑧})) |
| 20 | 9, 12, 19 | mpbir2an 944 | . . 3 ⊢ {𝑧 ∈ ℤ ∣ 𝑁 ≤ 𝑧} ∈ {𝑥 ∣ (𝑁 ∈ 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑦 + 1) ∈ 𝑥)} |
| 21 | intss1 3890 | . . 3 ⊢ ({𝑧 ∈ ℤ ∣ 𝑁 ≤ 𝑧} ∈ {𝑥 ∣ (𝑁 ∈ 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑦 + 1) ∈ 𝑥)} → ∩ {𝑥 ∣ (𝑁 ∈ 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑦 + 1) ∈ 𝑥)} ⊆ {𝑧 ∈ ℤ ∣ 𝑁 ≤ 𝑧}) | |
| 22 | 20, 21 | ax-mp 5 | . 2 ⊢ ∩ {𝑥 ∣ (𝑁 ∈ 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑦 + 1) ∈ 𝑥)} ⊆ {𝑧 ∈ ℤ ∣ 𝑁 ≤ 𝑧} |
| 23 | 4, 22 | eqssi 3200 | 1 ⊢ {𝑧 ∈ ℤ ∣ 𝑁 ≤ 𝑧} = ∩ {𝑥 ∣ (𝑁 ∈ 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑦 + 1) ∈ 𝑥)} |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 = wceq 1364 ∈ wcel 2167 {cab 2182 ∀wral 2475 {crab 2479 ⊆ wss 3157 ∩ cint 3875 class class class wbr 4034 (class class class)co 5925 1c1 7897 + caddc 7899 ≤ cle 8079 ℤcz 9343 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-sep 4152 ax-pow 4208 ax-pr 4243 ax-un 4469 ax-setind 4574 ax-cnex 7987 ax-resscn 7988 ax-1cn 7989 ax-1re 7990 ax-icn 7991 ax-addcl 7992 ax-addrcl 7993 ax-mulcl 7994 ax-addcom 7996 ax-addass 7998 ax-distr 8000 ax-i2m1 8001 ax-0lt1 8002 ax-0id 8004 ax-rnegex 8005 ax-cnre 8007 ax-pre-ltirr 8008 ax-pre-ltwlin 8009 ax-pre-lttrn 8010 ax-pre-ltadd 8012 |
| This theorem depends on definitions: df-bi 117 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-nel 2463 df-ral 2480 df-rex 2481 df-reu 2482 df-rab 2484 df-v 2765 df-sbc 2990 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-pw 3608 df-sn 3629 df-pr 3630 df-op 3632 df-uni 3841 df-int 3876 df-br 4035 df-opab 4096 df-id 4329 df-xp 4670 df-rel 4671 df-cnv 4672 df-co 4673 df-dm 4674 df-iota 5220 df-fun 5261 df-fv 5267 df-riota 5880 df-ov 5928 df-oprab 5929 df-mpo 5930 df-pnf 8080 df-mnf 8081 df-xr 8082 df-ltxr 8083 df-le 8084 df-sub 8216 df-neg 8217 df-inn 9008 df-n0 9267 df-z 9344 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |