ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dfuzi GIF version

Theorem dfuzi 9292
Description: An expression for the upper integers that start at 𝑁 that is analogous to dfnn2 8850 for positive integers. (Contributed by NM, 6-Jul-2005.) (Proof shortened by Mario Carneiro, 3-May-2014.)
Hypothesis
Ref Expression
dfuz.1 𝑁 ∈ ℤ
Assertion
Ref Expression
dfuzi {𝑧 ∈ ℤ ∣ 𝑁𝑧} = {𝑥 ∣ (𝑁𝑥 ∧ ∀𝑦𝑥 (𝑦 + 1) ∈ 𝑥)}
Distinct variable group:   𝑥,𝑦,𝑧,𝑁

Proof of Theorem dfuzi
StepHypRef Expression
1 ssintab 3835 . . 3 ({𝑧 ∈ ℤ ∣ 𝑁𝑧} ⊆ {𝑥 ∣ (𝑁𝑥 ∧ ∀𝑦𝑥 (𝑦 + 1) ∈ 𝑥)} ↔ ∀𝑥((𝑁𝑥 ∧ ∀𝑦𝑥 (𝑦 + 1) ∈ 𝑥) → {𝑧 ∈ ℤ ∣ 𝑁𝑧} ⊆ 𝑥))
2 dfuz.1 . . . 4 𝑁 ∈ ℤ
32peano5uzi 9291 . . 3 ((𝑁𝑥 ∧ ∀𝑦𝑥 (𝑦 + 1) ∈ 𝑥) → {𝑧 ∈ ℤ ∣ 𝑁𝑧} ⊆ 𝑥)
41, 3mpgbir 1440 . 2 {𝑧 ∈ ℤ ∣ 𝑁𝑧} ⊆ {𝑥 ∣ (𝑁𝑥 ∧ ∀𝑦𝑥 (𝑦 + 1) ∈ 𝑥)}
52zrei 9188 . . . . . 6 𝑁 ∈ ℝ
65leidi 8374 . . . . 5 𝑁𝑁
7 breq2 3980 . . . . . 6 (𝑧 = 𝑁 → (𝑁𝑧𝑁𝑁))
87elrab 2877 . . . . 5 (𝑁 ∈ {𝑧 ∈ ℤ ∣ 𝑁𝑧} ↔ (𝑁 ∈ ℤ ∧ 𝑁𝑁))
92, 6, 8mpbir2an 931 . . . 4 𝑁 ∈ {𝑧 ∈ ℤ ∣ 𝑁𝑧}
10 peano2uz2 9289 . . . . . 6 ((𝑁 ∈ ℤ ∧ 𝑦 ∈ {𝑧 ∈ ℤ ∣ 𝑁𝑧}) → (𝑦 + 1) ∈ {𝑧 ∈ ℤ ∣ 𝑁𝑧})
112, 10mpan 421 . . . . 5 (𝑦 ∈ {𝑧 ∈ ℤ ∣ 𝑁𝑧} → (𝑦 + 1) ∈ {𝑧 ∈ ℤ ∣ 𝑁𝑧})
1211rgen 2517 . . . 4 𝑦 ∈ {𝑧 ∈ ℤ ∣ 𝑁𝑧} (𝑦 + 1) ∈ {𝑧 ∈ ℤ ∣ 𝑁𝑧}
13 zex 9191 . . . . . 6 ℤ ∈ V
1413rabex 4120 . . . . 5 {𝑧 ∈ ℤ ∣ 𝑁𝑧} ∈ V
15 eleq2 2228 . . . . . 6 (𝑥 = {𝑧 ∈ ℤ ∣ 𝑁𝑧} → (𝑁𝑥𝑁 ∈ {𝑧 ∈ ℤ ∣ 𝑁𝑧}))
16 eleq2 2228 . . . . . . 7 (𝑥 = {𝑧 ∈ ℤ ∣ 𝑁𝑧} → ((𝑦 + 1) ∈ 𝑥 ↔ (𝑦 + 1) ∈ {𝑧 ∈ ℤ ∣ 𝑁𝑧}))
1716raleqbi1dv 2667 . . . . . 6 (𝑥 = {𝑧 ∈ ℤ ∣ 𝑁𝑧} → (∀𝑦𝑥 (𝑦 + 1) ∈ 𝑥 ↔ ∀𝑦 ∈ {𝑧 ∈ ℤ ∣ 𝑁𝑧} (𝑦 + 1) ∈ {𝑧 ∈ ℤ ∣ 𝑁𝑧}))
1815, 17anbi12d 465 . . . . 5 (𝑥 = {𝑧 ∈ ℤ ∣ 𝑁𝑧} → ((𝑁𝑥 ∧ ∀𝑦𝑥 (𝑦 + 1) ∈ 𝑥) ↔ (𝑁 ∈ {𝑧 ∈ ℤ ∣ 𝑁𝑧} ∧ ∀𝑦 ∈ {𝑧 ∈ ℤ ∣ 𝑁𝑧} (𝑦 + 1) ∈ {𝑧 ∈ ℤ ∣ 𝑁𝑧})))
1914, 18elab 2865 . . . 4 ({𝑧 ∈ ℤ ∣ 𝑁𝑧} ∈ {𝑥 ∣ (𝑁𝑥 ∧ ∀𝑦𝑥 (𝑦 + 1) ∈ 𝑥)} ↔ (𝑁 ∈ {𝑧 ∈ ℤ ∣ 𝑁𝑧} ∧ ∀𝑦 ∈ {𝑧 ∈ ℤ ∣ 𝑁𝑧} (𝑦 + 1) ∈ {𝑧 ∈ ℤ ∣ 𝑁𝑧}))
209, 12, 19mpbir2an 931 . . 3 {𝑧 ∈ ℤ ∣ 𝑁𝑧} ∈ {𝑥 ∣ (𝑁𝑥 ∧ ∀𝑦𝑥 (𝑦 + 1) ∈ 𝑥)}
21 intss1 3833 . . 3 ({𝑧 ∈ ℤ ∣ 𝑁𝑧} ∈ {𝑥 ∣ (𝑁𝑥 ∧ ∀𝑦𝑥 (𝑦 + 1) ∈ 𝑥)} → {𝑥 ∣ (𝑁𝑥 ∧ ∀𝑦𝑥 (𝑦 + 1) ∈ 𝑥)} ⊆ {𝑧 ∈ ℤ ∣ 𝑁𝑧})
2220, 21ax-mp 5 . 2 {𝑥 ∣ (𝑁𝑥 ∧ ∀𝑦𝑥 (𝑦 + 1) ∈ 𝑥)} ⊆ {𝑧 ∈ ℤ ∣ 𝑁𝑧}
234, 22eqssi 3153 1 {𝑧 ∈ ℤ ∣ 𝑁𝑧} = {𝑥 ∣ (𝑁𝑥 ∧ ∀𝑦𝑥 (𝑦 + 1) ∈ 𝑥)}
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103   = wceq 1342  wcel 2135  {cab 2150  wral 2442  {crab 2446  wss 3111   cint 3818   class class class wbr 3976  (class class class)co 5836  1c1 7745   + caddc 7747  cle 7925  cz 9182
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1434  ax-7 1435  ax-gen 1436  ax-ie1 1480  ax-ie2 1481  ax-8 1491  ax-10 1492  ax-11 1493  ax-i12 1494  ax-bndl 1496  ax-4 1497  ax-17 1513  ax-i9 1517  ax-ial 1521  ax-i5r 1522  ax-13 2137  ax-14 2138  ax-ext 2146  ax-sep 4094  ax-pow 4147  ax-pr 4181  ax-un 4405  ax-setind 4508  ax-cnex 7835  ax-resscn 7836  ax-1cn 7837  ax-1re 7838  ax-icn 7839  ax-addcl 7840  ax-addrcl 7841  ax-mulcl 7842  ax-addcom 7844  ax-addass 7846  ax-distr 7848  ax-i2m1 7849  ax-0lt1 7850  ax-0id 7852  ax-rnegex 7853  ax-cnre 7855  ax-pre-ltirr 7856  ax-pre-ltwlin 7857  ax-pre-lttrn 7858  ax-pre-ltadd 7860
This theorem depends on definitions:  df-bi 116  df-3or 968  df-3an 969  df-tru 1345  df-fal 1348  df-nf 1448  df-sb 1750  df-eu 2016  df-mo 2017  df-clab 2151  df-cleq 2157  df-clel 2160  df-nfc 2295  df-ne 2335  df-nel 2430  df-ral 2447  df-rex 2448  df-reu 2449  df-rab 2451  df-v 2723  df-sbc 2947  df-dif 3113  df-un 3115  df-in 3117  df-ss 3124  df-pw 3555  df-sn 3576  df-pr 3577  df-op 3579  df-uni 3784  df-int 3819  df-br 3977  df-opab 4038  df-id 4265  df-xp 4604  df-rel 4605  df-cnv 4606  df-co 4607  df-dm 4608  df-iota 5147  df-fun 5184  df-fv 5190  df-riota 5792  df-ov 5839  df-oprab 5840  df-mpo 5841  df-pnf 7926  df-mnf 7927  df-xr 7928  df-ltxr 7929  df-le 7930  df-sub 8062  df-neg 8063  df-inn 8849  df-n0 9106  df-z 9183
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator