Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > dfuzi | GIF version |
Description: An expression for the upper integers that start at 𝑁 that is analogous to dfnn2 8880 for positive integers. (Contributed by NM, 6-Jul-2005.) (Proof shortened by Mario Carneiro, 3-May-2014.) |
Ref | Expression |
---|---|
dfuz.1 | ⊢ 𝑁 ∈ ℤ |
Ref | Expression |
---|---|
dfuzi | ⊢ {𝑧 ∈ ℤ ∣ 𝑁 ≤ 𝑧} = ∩ {𝑥 ∣ (𝑁 ∈ 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑦 + 1) ∈ 𝑥)} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssintab 3848 | . . 3 ⊢ ({𝑧 ∈ ℤ ∣ 𝑁 ≤ 𝑧} ⊆ ∩ {𝑥 ∣ (𝑁 ∈ 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑦 + 1) ∈ 𝑥)} ↔ ∀𝑥((𝑁 ∈ 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑦 + 1) ∈ 𝑥) → {𝑧 ∈ ℤ ∣ 𝑁 ≤ 𝑧} ⊆ 𝑥)) | |
2 | dfuz.1 | . . . 4 ⊢ 𝑁 ∈ ℤ | |
3 | 2 | peano5uzi 9321 | . . 3 ⊢ ((𝑁 ∈ 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑦 + 1) ∈ 𝑥) → {𝑧 ∈ ℤ ∣ 𝑁 ≤ 𝑧} ⊆ 𝑥) |
4 | 1, 3 | mpgbir 1446 | . 2 ⊢ {𝑧 ∈ ℤ ∣ 𝑁 ≤ 𝑧} ⊆ ∩ {𝑥 ∣ (𝑁 ∈ 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑦 + 1) ∈ 𝑥)} |
5 | 2 | zrei 9218 | . . . . . 6 ⊢ 𝑁 ∈ ℝ |
6 | 5 | leidi 8404 | . . . . 5 ⊢ 𝑁 ≤ 𝑁 |
7 | breq2 3993 | . . . . . 6 ⊢ (𝑧 = 𝑁 → (𝑁 ≤ 𝑧 ↔ 𝑁 ≤ 𝑁)) | |
8 | 7 | elrab 2886 | . . . . 5 ⊢ (𝑁 ∈ {𝑧 ∈ ℤ ∣ 𝑁 ≤ 𝑧} ↔ (𝑁 ∈ ℤ ∧ 𝑁 ≤ 𝑁)) |
9 | 2, 6, 8 | mpbir2an 937 | . . . 4 ⊢ 𝑁 ∈ {𝑧 ∈ ℤ ∣ 𝑁 ≤ 𝑧} |
10 | peano2uz2 9319 | . . . . . 6 ⊢ ((𝑁 ∈ ℤ ∧ 𝑦 ∈ {𝑧 ∈ ℤ ∣ 𝑁 ≤ 𝑧}) → (𝑦 + 1) ∈ {𝑧 ∈ ℤ ∣ 𝑁 ≤ 𝑧}) | |
11 | 2, 10 | mpan 422 | . . . . 5 ⊢ (𝑦 ∈ {𝑧 ∈ ℤ ∣ 𝑁 ≤ 𝑧} → (𝑦 + 1) ∈ {𝑧 ∈ ℤ ∣ 𝑁 ≤ 𝑧}) |
12 | 11 | rgen 2523 | . . . 4 ⊢ ∀𝑦 ∈ {𝑧 ∈ ℤ ∣ 𝑁 ≤ 𝑧} (𝑦 + 1) ∈ {𝑧 ∈ ℤ ∣ 𝑁 ≤ 𝑧} |
13 | zex 9221 | . . . . . 6 ⊢ ℤ ∈ V | |
14 | 13 | rabex 4133 | . . . . 5 ⊢ {𝑧 ∈ ℤ ∣ 𝑁 ≤ 𝑧} ∈ V |
15 | eleq2 2234 | . . . . . 6 ⊢ (𝑥 = {𝑧 ∈ ℤ ∣ 𝑁 ≤ 𝑧} → (𝑁 ∈ 𝑥 ↔ 𝑁 ∈ {𝑧 ∈ ℤ ∣ 𝑁 ≤ 𝑧})) | |
16 | eleq2 2234 | . . . . . . 7 ⊢ (𝑥 = {𝑧 ∈ ℤ ∣ 𝑁 ≤ 𝑧} → ((𝑦 + 1) ∈ 𝑥 ↔ (𝑦 + 1) ∈ {𝑧 ∈ ℤ ∣ 𝑁 ≤ 𝑧})) | |
17 | 16 | raleqbi1dv 2673 | . . . . . 6 ⊢ (𝑥 = {𝑧 ∈ ℤ ∣ 𝑁 ≤ 𝑧} → (∀𝑦 ∈ 𝑥 (𝑦 + 1) ∈ 𝑥 ↔ ∀𝑦 ∈ {𝑧 ∈ ℤ ∣ 𝑁 ≤ 𝑧} (𝑦 + 1) ∈ {𝑧 ∈ ℤ ∣ 𝑁 ≤ 𝑧})) |
18 | 15, 17 | anbi12d 470 | . . . . 5 ⊢ (𝑥 = {𝑧 ∈ ℤ ∣ 𝑁 ≤ 𝑧} → ((𝑁 ∈ 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑦 + 1) ∈ 𝑥) ↔ (𝑁 ∈ {𝑧 ∈ ℤ ∣ 𝑁 ≤ 𝑧} ∧ ∀𝑦 ∈ {𝑧 ∈ ℤ ∣ 𝑁 ≤ 𝑧} (𝑦 + 1) ∈ {𝑧 ∈ ℤ ∣ 𝑁 ≤ 𝑧}))) |
19 | 14, 18 | elab 2874 | . . . 4 ⊢ ({𝑧 ∈ ℤ ∣ 𝑁 ≤ 𝑧} ∈ {𝑥 ∣ (𝑁 ∈ 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑦 + 1) ∈ 𝑥)} ↔ (𝑁 ∈ {𝑧 ∈ ℤ ∣ 𝑁 ≤ 𝑧} ∧ ∀𝑦 ∈ {𝑧 ∈ ℤ ∣ 𝑁 ≤ 𝑧} (𝑦 + 1) ∈ {𝑧 ∈ ℤ ∣ 𝑁 ≤ 𝑧})) |
20 | 9, 12, 19 | mpbir2an 937 | . . 3 ⊢ {𝑧 ∈ ℤ ∣ 𝑁 ≤ 𝑧} ∈ {𝑥 ∣ (𝑁 ∈ 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑦 + 1) ∈ 𝑥)} |
21 | intss1 3846 | . . 3 ⊢ ({𝑧 ∈ ℤ ∣ 𝑁 ≤ 𝑧} ∈ {𝑥 ∣ (𝑁 ∈ 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑦 + 1) ∈ 𝑥)} → ∩ {𝑥 ∣ (𝑁 ∈ 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑦 + 1) ∈ 𝑥)} ⊆ {𝑧 ∈ ℤ ∣ 𝑁 ≤ 𝑧}) | |
22 | 20, 21 | ax-mp 5 | . 2 ⊢ ∩ {𝑥 ∣ (𝑁 ∈ 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑦 + 1) ∈ 𝑥)} ⊆ {𝑧 ∈ ℤ ∣ 𝑁 ≤ 𝑧} |
23 | 4, 22 | eqssi 3163 | 1 ⊢ {𝑧 ∈ ℤ ∣ 𝑁 ≤ 𝑧} = ∩ {𝑥 ∣ (𝑁 ∈ 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑦 + 1) ∈ 𝑥)} |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 = wceq 1348 ∈ wcel 2141 {cab 2156 ∀wral 2448 {crab 2452 ⊆ wss 3121 ∩ cint 3831 class class class wbr 3989 (class class class)co 5853 1c1 7775 + caddc 7777 ≤ cle 7955 ℤcz 9212 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-13 2143 ax-14 2144 ax-ext 2152 ax-sep 4107 ax-pow 4160 ax-pr 4194 ax-un 4418 ax-setind 4521 ax-cnex 7865 ax-resscn 7866 ax-1cn 7867 ax-1re 7868 ax-icn 7869 ax-addcl 7870 ax-addrcl 7871 ax-mulcl 7872 ax-addcom 7874 ax-addass 7876 ax-distr 7878 ax-i2m1 7879 ax-0lt1 7880 ax-0id 7882 ax-rnegex 7883 ax-cnre 7885 ax-pre-ltirr 7886 ax-pre-ltwlin 7887 ax-pre-lttrn 7888 ax-pre-ltadd 7890 |
This theorem depends on definitions: df-bi 116 df-3or 974 df-3an 975 df-tru 1351 df-fal 1354 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ne 2341 df-nel 2436 df-ral 2453 df-rex 2454 df-reu 2455 df-rab 2457 df-v 2732 df-sbc 2956 df-dif 3123 df-un 3125 df-in 3127 df-ss 3134 df-pw 3568 df-sn 3589 df-pr 3590 df-op 3592 df-uni 3797 df-int 3832 df-br 3990 df-opab 4051 df-id 4278 df-xp 4617 df-rel 4618 df-cnv 4619 df-co 4620 df-dm 4621 df-iota 5160 df-fun 5200 df-fv 5206 df-riota 5809 df-ov 5856 df-oprab 5857 df-mpo 5858 df-pnf 7956 df-mnf 7957 df-xr 7958 df-ltxr 7959 df-le 7960 df-sub 8092 df-neg 8093 df-inn 8879 df-n0 9136 df-z 9213 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |