![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > dfuzi | GIF version |
Description: An expression for the upper integers that start at 𝑁 that is analogous to dfnn2 8923 for positive integers. (Contributed by NM, 6-Jul-2005.) (Proof shortened by Mario Carneiro, 3-May-2014.) |
Ref | Expression |
---|---|
dfuz.1 | ⊢ 𝑁 ∈ ℤ |
Ref | Expression |
---|---|
dfuzi | ⊢ {𝑧 ∈ ℤ ∣ 𝑁 ≤ 𝑧} = ∩ {𝑥 ∣ (𝑁 ∈ 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑦 + 1) ∈ 𝑥)} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssintab 3863 | . . 3 ⊢ ({𝑧 ∈ ℤ ∣ 𝑁 ≤ 𝑧} ⊆ ∩ {𝑥 ∣ (𝑁 ∈ 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑦 + 1) ∈ 𝑥)} ↔ ∀𝑥((𝑁 ∈ 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑦 + 1) ∈ 𝑥) → {𝑧 ∈ ℤ ∣ 𝑁 ≤ 𝑧} ⊆ 𝑥)) | |
2 | dfuz.1 | . . . 4 ⊢ 𝑁 ∈ ℤ | |
3 | 2 | peano5uzi 9364 | . . 3 ⊢ ((𝑁 ∈ 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑦 + 1) ∈ 𝑥) → {𝑧 ∈ ℤ ∣ 𝑁 ≤ 𝑧} ⊆ 𝑥) |
4 | 1, 3 | mpgbir 1453 | . 2 ⊢ {𝑧 ∈ ℤ ∣ 𝑁 ≤ 𝑧} ⊆ ∩ {𝑥 ∣ (𝑁 ∈ 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑦 + 1) ∈ 𝑥)} |
5 | 2 | zrei 9261 | . . . . . 6 ⊢ 𝑁 ∈ ℝ |
6 | 5 | leidi 8444 | . . . . 5 ⊢ 𝑁 ≤ 𝑁 |
7 | breq2 4009 | . . . . . 6 ⊢ (𝑧 = 𝑁 → (𝑁 ≤ 𝑧 ↔ 𝑁 ≤ 𝑁)) | |
8 | 7 | elrab 2895 | . . . . 5 ⊢ (𝑁 ∈ {𝑧 ∈ ℤ ∣ 𝑁 ≤ 𝑧} ↔ (𝑁 ∈ ℤ ∧ 𝑁 ≤ 𝑁)) |
9 | 2, 6, 8 | mpbir2an 942 | . . . 4 ⊢ 𝑁 ∈ {𝑧 ∈ ℤ ∣ 𝑁 ≤ 𝑧} |
10 | peano2uz2 9362 | . . . . . 6 ⊢ ((𝑁 ∈ ℤ ∧ 𝑦 ∈ {𝑧 ∈ ℤ ∣ 𝑁 ≤ 𝑧}) → (𝑦 + 1) ∈ {𝑧 ∈ ℤ ∣ 𝑁 ≤ 𝑧}) | |
11 | 2, 10 | mpan 424 | . . . . 5 ⊢ (𝑦 ∈ {𝑧 ∈ ℤ ∣ 𝑁 ≤ 𝑧} → (𝑦 + 1) ∈ {𝑧 ∈ ℤ ∣ 𝑁 ≤ 𝑧}) |
12 | 11 | rgen 2530 | . . . 4 ⊢ ∀𝑦 ∈ {𝑧 ∈ ℤ ∣ 𝑁 ≤ 𝑧} (𝑦 + 1) ∈ {𝑧 ∈ ℤ ∣ 𝑁 ≤ 𝑧} |
13 | zex 9264 | . . . . . 6 ⊢ ℤ ∈ V | |
14 | 13 | rabex 4149 | . . . . 5 ⊢ {𝑧 ∈ ℤ ∣ 𝑁 ≤ 𝑧} ∈ V |
15 | eleq2 2241 | . . . . . 6 ⊢ (𝑥 = {𝑧 ∈ ℤ ∣ 𝑁 ≤ 𝑧} → (𝑁 ∈ 𝑥 ↔ 𝑁 ∈ {𝑧 ∈ ℤ ∣ 𝑁 ≤ 𝑧})) | |
16 | eleq2 2241 | . . . . . . 7 ⊢ (𝑥 = {𝑧 ∈ ℤ ∣ 𝑁 ≤ 𝑧} → ((𝑦 + 1) ∈ 𝑥 ↔ (𝑦 + 1) ∈ {𝑧 ∈ ℤ ∣ 𝑁 ≤ 𝑧})) | |
17 | 16 | raleqbi1dv 2681 | . . . . . 6 ⊢ (𝑥 = {𝑧 ∈ ℤ ∣ 𝑁 ≤ 𝑧} → (∀𝑦 ∈ 𝑥 (𝑦 + 1) ∈ 𝑥 ↔ ∀𝑦 ∈ {𝑧 ∈ ℤ ∣ 𝑁 ≤ 𝑧} (𝑦 + 1) ∈ {𝑧 ∈ ℤ ∣ 𝑁 ≤ 𝑧})) |
18 | 15, 17 | anbi12d 473 | . . . . 5 ⊢ (𝑥 = {𝑧 ∈ ℤ ∣ 𝑁 ≤ 𝑧} → ((𝑁 ∈ 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑦 + 1) ∈ 𝑥) ↔ (𝑁 ∈ {𝑧 ∈ ℤ ∣ 𝑁 ≤ 𝑧} ∧ ∀𝑦 ∈ {𝑧 ∈ ℤ ∣ 𝑁 ≤ 𝑧} (𝑦 + 1) ∈ {𝑧 ∈ ℤ ∣ 𝑁 ≤ 𝑧}))) |
19 | 14, 18 | elab 2883 | . . . 4 ⊢ ({𝑧 ∈ ℤ ∣ 𝑁 ≤ 𝑧} ∈ {𝑥 ∣ (𝑁 ∈ 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑦 + 1) ∈ 𝑥)} ↔ (𝑁 ∈ {𝑧 ∈ ℤ ∣ 𝑁 ≤ 𝑧} ∧ ∀𝑦 ∈ {𝑧 ∈ ℤ ∣ 𝑁 ≤ 𝑧} (𝑦 + 1) ∈ {𝑧 ∈ ℤ ∣ 𝑁 ≤ 𝑧})) |
20 | 9, 12, 19 | mpbir2an 942 | . . 3 ⊢ {𝑧 ∈ ℤ ∣ 𝑁 ≤ 𝑧} ∈ {𝑥 ∣ (𝑁 ∈ 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑦 + 1) ∈ 𝑥)} |
21 | intss1 3861 | . . 3 ⊢ ({𝑧 ∈ ℤ ∣ 𝑁 ≤ 𝑧} ∈ {𝑥 ∣ (𝑁 ∈ 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑦 + 1) ∈ 𝑥)} → ∩ {𝑥 ∣ (𝑁 ∈ 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑦 + 1) ∈ 𝑥)} ⊆ {𝑧 ∈ ℤ ∣ 𝑁 ≤ 𝑧}) | |
22 | 20, 21 | ax-mp 5 | . 2 ⊢ ∩ {𝑥 ∣ (𝑁 ∈ 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑦 + 1) ∈ 𝑥)} ⊆ {𝑧 ∈ ℤ ∣ 𝑁 ≤ 𝑧} |
23 | 4, 22 | eqssi 3173 | 1 ⊢ {𝑧 ∈ ℤ ∣ 𝑁 ≤ 𝑧} = ∩ {𝑥 ∣ (𝑁 ∈ 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑦 + 1) ∈ 𝑥)} |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 = wceq 1353 ∈ wcel 2148 {cab 2163 ∀wral 2455 {crab 2459 ⊆ wss 3131 ∩ cint 3846 class class class wbr 4005 (class class class)co 5877 1c1 7814 + caddc 7816 ≤ cle 7995 ℤcz 9255 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 614 ax-in2 615 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-13 2150 ax-14 2151 ax-ext 2159 ax-sep 4123 ax-pow 4176 ax-pr 4211 ax-un 4435 ax-setind 4538 ax-cnex 7904 ax-resscn 7905 ax-1cn 7906 ax-1re 7907 ax-icn 7908 ax-addcl 7909 ax-addrcl 7910 ax-mulcl 7911 ax-addcom 7913 ax-addass 7915 ax-distr 7917 ax-i2m1 7918 ax-0lt1 7919 ax-0id 7921 ax-rnegex 7922 ax-cnre 7924 ax-pre-ltirr 7925 ax-pre-ltwlin 7926 ax-pre-lttrn 7927 ax-pre-ltadd 7929 |
This theorem depends on definitions: df-bi 117 df-3or 979 df-3an 980 df-tru 1356 df-fal 1359 df-nf 1461 df-sb 1763 df-eu 2029 df-mo 2030 df-clab 2164 df-cleq 2170 df-clel 2173 df-nfc 2308 df-ne 2348 df-nel 2443 df-ral 2460 df-rex 2461 df-reu 2462 df-rab 2464 df-v 2741 df-sbc 2965 df-dif 3133 df-un 3135 df-in 3137 df-ss 3144 df-pw 3579 df-sn 3600 df-pr 3601 df-op 3603 df-uni 3812 df-int 3847 df-br 4006 df-opab 4067 df-id 4295 df-xp 4634 df-rel 4635 df-cnv 4636 df-co 4637 df-dm 4638 df-iota 5180 df-fun 5220 df-fv 5226 df-riota 5833 df-ov 5880 df-oprab 5881 df-mpo 5882 df-pnf 7996 df-mnf 7997 df-xr 7998 df-ltxr 7999 df-le 8000 df-sub 8132 df-neg 8133 df-inn 8922 df-n0 9179 df-z 9256 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |