ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sbthlem7 GIF version

Theorem sbthlem7 6844
Description: Lemma for isbth 6848. (Contributed by NM, 27-Mar-1998.)
Hypotheses
Ref Expression
sbthlem.1 𝐴 ∈ V
sbthlem.2 𝐷 = {𝑥 ∣ (𝑥𝐴 ∧ (𝑔 “ (𝐵 ∖ (𝑓𝑥))) ⊆ (𝐴𝑥))}
sbthlem.3 𝐻 = ((𝑓 𝐷) ∪ (𝑔 ↾ (𝐴 𝐷)))
Assertion
Ref Expression
sbthlem7 ((Fun 𝑓 ∧ Fun 𝑔) → Fun 𝐻)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝑥,𝐷   𝑥,𝑓   𝑥,𝑔   𝑥,𝐻
Allowed substitution hints:   𝐴(𝑓,𝑔)   𝐵(𝑓,𝑔)   𝐷(𝑓,𝑔)   𝐻(𝑓,𝑔)

Proof of Theorem sbthlem7
StepHypRef Expression
1 funres 5159 . . 3 (Fun 𝑓 → Fun (𝑓 𝐷))
2 funres 5159 . . 3 (Fun 𝑔 → Fun (𝑔 ↾ (𝐴 𝐷)))
3 dmres 4835 . . . . . . . . 9 dom (𝑓 𝐷) = ( 𝐷 ∩ dom 𝑓)
4 inss1 3291 . . . . . . . . 9 ( 𝐷 ∩ dom 𝑓) ⊆ 𝐷
53, 4eqsstri 3124 . . . . . . . 8 dom (𝑓 𝐷) ⊆ 𝐷
6 ssrin 3296 . . . . . . . 8 (dom (𝑓 𝐷) ⊆ 𝐷 → (dom (𝑓 𝐷) ∩ dom (𝑔 ↾ (𝐴 𝐷))) ⊆ ( 𝐷 ∩ dom (𝑔 ↾ (𝐴 𝐷))))
75, 6ax-mp 5 . . . . . . 7 (dom (𝑓 𝐷) ∩ dom (𝑔 ↾ (𝐴 𝐷))) ⊆ ( 𝐷 ∩ dom (𝑔 ↾ (𝐴 𝐷)))
8 dmres 4835 . . . . . . . . 9 dom (𝑔 ↾ (𝐴 𝐷)) = ((𝐴 𝐷) ∩ dom 𝑔)
9 inss1 3291 . . . . . . . . 9 ((𝐴 𝐷) ∩ dom 𝑔) ⊆ (𝐴 𝐷)
108, 9eqsstri 3124 . . . . . . . 8 dom (𝑔 ↾ (𝐴 𝐷)) ⊆ (𝐴 𝐷)
11 sslin 3297 . . . . . . . 8 (dom (𝑔 ↾ (𝐴 𝐷)) ⊆ (𝐴 𝐷) → ( 𝐷 ∩ dom (𝑔 ↾ (𝐴 𝐷))) ⊆ ( 𝐷 ∩ (𝐴 𝐷)))
1210, 11ax-mp 5 . . . . . . 7 ( 𝐷 ∩ dom (𝑔 ↾ (𝐴 𝐷))) ⊆ ( 𝐷 ∩ (𝐴 𝐷))
137, 12sstri 3101 . . . . . 6 (dom (𝑓 𝐷) ∩ dom (𝑔 ↾ (𝐴 𝐷))) ⊆ ( 𝐷 ∩ (𝐴 𝐷))
14 disjdif 3430 . . . . . 6 ( 𝐷 ∩ (𝐴 𝐷)) = ∅
1513, 14sseqtri 3126 . . . . 5 (dom (𝑓 𝐷) ∩ dom (𝑔 ↾ (𝐴 𝐷))) ⊆ ∅
16 ss0 3398 . . . . 5 ((dom (𝑓 𝐷) ∩ dom (𝑔 ↾ (𝐴 𝐷))) ⊆ ∅ → (dom (𝑓 𝐷) ∩ dom (𝑔 ↾ (𝐴 𝐷))) = ∅)
1715, 16ax-mp 5 . . . 4 (dom (𝑓 𝐷) ∩ dom (𝑔 ↾ (𝐴 𝐷))) = ∅
18 funun 5162 . . . 4 (((Fun (𝑓 𝐷) ∧ Fun (𝑔 ↾ (𝐴 𝐷))) ∧ (dom (𝑓 𝐷) ∩ dom (𝑔 ↾ (𝐴 𝐷))) = ∅) → Fun ((𝑓 𝐷) ∪ (𝑔 ↾ (𝐴 𝐷))))
1917, 18mpan2 421 . . 3 ((Fun (𝑓 𝐷) ∧ Fun (𝑔 ↾ (𝐴 𝐷))) → Fun ((𝑓 𝐷) ∪ (𝑔 ↾ (𝐴 𝐷))))
201, 2, 19syl2an 287 . 2 ((Fun 𝑓 ∧ Fun 𝑔) → Fun ((𝑓 𝐷) ∪ (𝑔 ↾ (𝐴 𝐷))))
21 sbthlem.3 . . 3 𝐻 = ((𝑓 𝐷) ∪ (𝑔 ↾ (𝐴 𝐷)))
2221funeqi 5139 . 2 (Fun 𝐻 ↔ Fun ((𝑓 𝐷) ∪ (𝑔 ↾ (𝐴 𝐷))))
2320, 22sylibr 133 1 ((Fun 𝑓 ∧ Fun 𝑔) → Fun 𝐻)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103   = wceq 1331  wcel 1480  {cab 2123  Vcvv 2681  cdif 3063  cun 3064  cin 3065  wss 3066  c0 3358   cuni 3731  ccnv 4533  dom cdm 4534  cres 4536  cima 4537  Fun wfun 5112
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2119  ax-sep 4041  ax-pow 4093  ax-pr 4126
This theorem depends on definitions:  df-bi 116  df-3an 964  df-tru 1334  df-nf 1437  df-sb 1736  df-eu 2000  df-mo 2001  df-clab 2124  df-cleq 2130  df-clel 2133  df-nfc 2268  df-ral 2419  df-rex 2420  df-v 2683  df-dif 3068  df-un 3070  df-in 3072  df-ss 3079  df-nul 3359  df-pw 3507  df-sn 3528  df-pr 3529  df-op 3531  df-br 3925  df-opab 3985  df-id 4210  df-xp 4540  df-rel 4541  df-cnv 4542  df-co 4543  df-dm 4544  df-res 4546  df-fun 5120
This theorem is referenced by:  sbthlemi9  6846
  Copyright terms: Public domain W3C validator