ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sbthlem7 GIF version

Theorem sbthlem7 7029
Description: Lemma for isbth 7033. (Contributed by NM, 27-Mar-1998.)
Hypotheses
Ref Expression
sbthlem.1 𝐴 ∈ V
sbthlem.2 𝐷 = {𝑥 ∣ (𝑥𝐴 ∧ (𝑔 “ (𝐵 ∖ (𝑓𝑥))) ⊆ (𝐴𝑥))}
sbthlem.3 𝐻 = ((𝑓 𝐷) ∪ (𝑔 ↾ (𝐴 𝐷)))
Assertion
Ref Expression
sbthlem7 ((Fun 𝑓 ∧ Fun 𝑔) → Fun 𝐻)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝑥,𝐷   𝑥,𝑓   𝑥,𝑔   𝑥,𝐻
Allowed substitution hints:   𝐴(𝑓,𝑔)   𝐵(𝑓,𝑔)   𝐷(𝑓,𝑔)   𝐻(𝑓,𝑔)

Proof of Theorem sbthlem7
StepHypRef Expression
1 funres 5299 . . 3 (Fun 𝑓 → Fun (𝑓 𝐷))
2 funres 5299 . . 3 (Fun 𝑔 → Fun (𝑔 ↾ (𝐴 𝐷)))
3 dmres 4967 . . . . . . . . 9 dom (𝑓 𝐷) = ( 𝐷 ∩ dom 𝑓)
4 inss1 3383 . . . . . . . . 9 ( 𝐷 ∩ dom 𝑓) ⊆ 𝐷
53, 4eqsstri 3215 . . . . . . . 8 dom (𝑓 𝐷) ⊆ 𝐷
6 ssrin 3388 . . . . . . . 8 (dom (𝑓 𝐷) ⊆ 𝐷 → (dom (𝑓 𝐷) ∩ dom (𝑔 ↾ (𝐴 𝐷))) ⊆ ( 𝐷 ∩ dom (𝑔 ↾ (𝐴 𝐷))))
75, 6ax-mp 5 . . . . . . 7 (dom (𝑓 𝐷) ∩ dom (𝑔 ↾ (𝐴 𝐷))) ⊆ ( 𝐷 ∩ dom (𝑔 ↾ (𝐴 𝐷)))
8 dmres 4967 . . . . . . . . 9 dom (𝑔 ↾ (𝐴 𝐷)) = ((𝐴 𝐷) ∩ dom 𝑔)
9 inss1 3383 . . . . . . . . 9 ((𝐴 𝐷) ∩ dom 𝑔) ⊆ (𝐴 𝐷)
108, 9eqsstri 3215 . . . . . . . 8 dom (𝑔 ↾ (𝐴 𝐷)) ⊆ (𝐴 𝐷)
11 sslin 3389 . . . . . . . 8 (dom (𝑔 ↾ (𝐴 𝐷)) ⊆ (𝐴 𝐷) → ( 𝐷 ∩ dom (𝑔 ↾ (𝐴 𝐷))) ⊆ ( 𝐷 ∩ (𝐴 𝐷)))
1210, 11ax-mp 5 . . . . . . 7 ( 𝐷 ∩ dom (𝑔 ↾ (𝐴 𝐷))) ⊆ ( 𝐷 ∩ (𝐴 𝐷))
137, 12sstri 3192 . . . . . 6 (dom (𝑓 𝐷) ∩ dom (𝑔 ↾ (𝐴 𝐷))) ⊆ ( 𝐷 ∩ (𝐴 𝐷))
14 disjdif 3523 . . . . . 6 ( 𝐷 ∩ (𝐴 𝐷)) = ∅
1513, 14sseqtri 3217 . . . . 5 (dom (𝑓 𝐷) ∩ dom (𝑔 ↾ (𝐴 𝐷))) ⊆ ∅
16 ss0 3491 . . . . 5 ((dom (𝑓 𝐷) ∩ dom (𝑔 ↾ (𝐴 𝐷))) ⊆ ∅ → (dom (𝑓 𝐷) ∩ dom (𝑔 ↾ (𝐴 𝐷))) = ∅)
1715, 16ax-mp 5 . . . 4 (dom (𝑓 𝐷) ∩ dom (𝑔 ↾ (𝐴 𝐷))) = ∅
18 funun 5302 . . . 4 (((Fun (𝑓 𝐷) ∧ Fun (𝑔 ↾ (𝐴 𝐷))) ∧ (dom (𝑓 𝐷) ∩ dom (𝑔 ↾ (𝐴 𝐷))) = ∅) → Fun ((𝑓 𝐷) ∪ (𝑔 ↾ (𝐴 𝐷))))
1917, 18mpan2 425 . . 3 ((Fun (𝑓 𝐷) ∧ Fun (𝑔 ↾ (𝐴 𝐷))) → Fun ((𝑓 𝐷) ∪ (𝑔 ↾ (𝐴 𝐷))))
201, 2, 19syl2an 289 . 2 ((Fun 𝑓 ∧ Fun 𝑔) → Fun ((𝑓 𝐷) ∪ (𝑔 ↾ (𝐴 𝐷))))
21 sbthlem.3 . . 3 𝐻 = ((𝑓 𝐷) ∪ (𝑔 ↾ (𝐴 𝐷)))
2221funeqi 5279 . 2 (Fun 𝐻 ↔ Fun ((𝑓 𝐷) ∪ (𝑔 ↾ (𝐴 𝐷))))
2320, 22sylibr 134 1 ((Fun 𝑓 ∧ Fun 𝑔) → Fun 𝐻)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1364  wcel 2167  {cab 2182  Vcvv 2763  cdif 3154  cun 3155  cin 3156  wss 3157  c0 3450   cuni 3839  ccnv 4662  dom cdm 4663  cres 4665  cima 4666  Fun wfun 5252
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-14 2170  ax-ext 2178  ax-sep 4151  ax-pow 4207  ax-pr 4242
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ral 2480  df-rex 2481  df-v 2765  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3451  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-br 4034  df-opab 4095  df-id 4328  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-res 4675  df-fun 5260
This theorem is referenced by:  sbthlemi9  7031
  Copyright terms: Public domain W3C validator