ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ntrss GIF version

Theorem ntrss 14298
Description: Subset relationship for interior. (Contributed by NM, 3-Oct-2007.) (Revised by Jim Kingdon, 11-Mar-2023.)
Hypothesis
Ref Expression
clscld.1 𝑋 = 𝐽
Assertion
Ref Expression
ntrss ((𝐽 ∈ Top ∧ 𝑆𝑋𝑇𝑆) → ((int‘𝐽)‘𝑇) ⊆ ((int‘𝐽)‘𝑆))

Proof of Theorem ntrss
StepHypRef Expression
1 simp3 1001 . . 3 ((𝐽 ∈ Top ∧ 𝑆𝑋𝑇𝑆) → 𝑇𝑆)
2 sspwb 4246 . . . . 5 (𝑇𝑆 ↔ 𝒫 𝑇 ⊆ 𝒫 𝑆)
3 sslin 3386 . . . . 5 (𝒫 𝑇 ⊆ 𝒫 𝑆 → (𝐽 ∩ 𝒫 𝑇) ⊆ (𝐽 ∩ 𝒫 𝑆))
42, 3sylbi 121 . . . 4 (𝑇𝑆 → (𝐽 ∩ 𝒫 𝑇) ⊆ (𝐽 ∩ 𝒫 𝑆))
54unissd 3860 . . 3 (𝑇𝑆 (𝐽 ∩ 𝒫 𝑇) ⊆ (𝐽 ∩ 𝒫 𝑆))
61, 5syl 14 . 2 ((𝐽 ∈ Top ∧ 𝑆𝑋𝑇𝑆) → (𝐽 ∩ 𝒫 𝑇) ⊆ (𝐽 ∩ 𝒫 𝑆))
7 simp1 999 . . 3 ((𝐽 ∈ Top ∧ 𝑆𝑋𝑇𝑆) → 𝐽 ∈ Top)
8 simp2 1000 . . . 4 ((𝐽 ∈ Top ∧ 𝑆𝑋𝑇𝑆) → 𝑆𝑋)
91, 8sstrd 3190 . . 3 ((𝐽 ∈ Top ∧ 𝑆𝑋𝑇𝑆) → 𝑇𝑋)
10 clscld.1 . . . 4 𝑋 = 𝐽
1110ntrval 14289 . . 3 ((𝐽 ∈ Top ∧ 𝑇𝑋) → ((int‘𝐽)‘𝑇) = (𝐽 ∩ 𝒫 𝑇))
127, 9, 11syl2anc 411 . 2 ((𝐽 ∈ Top ∧ 𝑆𝑋𝑇𝑆) → ((int‘𝐽)‘𝑇) = (𝐽 ∩ 𝒫 𝑇))
1310ntrval 14289 . . 3 ((𝐽 ∈ Top ∧ 𝑆𝑋) → ((int‘𝐽)‘𝑆) = (𝐽 ∩ 𝒫 𝑆))
147, 8, 13syl2anc 411 . 2 ((𝐽 ∈ Top ∧ 𝑆𝑋𝑇𝑆) → ((int‘𝐽)‘𝑆) = (𝐽 ∩ 𝒫 𝑆))
156, 12, 143sstr4d 3225 1 ((𝐽 ∈ Top ∧ 𝑆𝑋𝑇𝑆) → ((int‘𝐽)‘𝑇) ⊆ ((int‘𝐽)‘𝑆))
Colors of variables: wff set class
Syntax hints:  wi 4  w3a 980   = wceq 1364  wcel 2164  cin 3153  wss 3154  𝒫 cpw 3602   cuni 3836  cfv 5255  Topctop 14176  intcnt 14272
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-coll 4145  ax-sep 4148  ax-pow 4204  ax-pr 4239  ax-un 4465
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ral 2477  df-rex 2478  df-reu 2479  df-rab 2481  df-v 2762  df-sbc 2987  df-csb 3082  df-un 3158  df-in 3160  df-ss 3167  df-pw 3604  df-sn 3625  df-pr 3626  df-op 3628  df-uni 3837  df-iun 3915  df-br 4031  df-opab 4092  df-mpt 4093  df-id 4325  df-xp 4666  df-rel 4667  df-cnv 4668  df-co 4669  df-dm 4670  df-rn 4671  df-res 4672  df-ima 4673  df-iota 5216  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-top 14177  df-ntr 14275
This theorem is referenced by:  ntrin  14303  ntrcls0  14310
  Copyright terms: Public domain W3C validator