ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ntrss GIF version

Theorem ntrss 12288
Description: Subset relationship for interior. (Contributed by NM, 3-Oct-2007.) (Revised by Jim Kingdon, 11-Mar-2023.)
Hypothesis
Ref Expression
clscld.1 𝑋 = 𝐽
Assertion
Ref Expression
ntrss ((𝐽 ∈ Top ∧ 𝑆𝑋𝑇𝑆) → ((int‘𝐽)‘𝑇) ⊆ ((int‘𝐽)‘𝑆))

Proof of Theorem ntrss
StepHypRef Expression
1 simp3 983 . . 3 ((𝐽 ∈ Top ∧ 𝑆𝑋𝑇𝑆) → 𝑇𝑆)
2 sspwb 4138 . . . . 5 (𝑇𝑆 ↔ 𝒫 𝑇 ⊆ 𝒫 𝑆)
3 sslin 3302 . . . . 5 (𝒫 𝑇 ⊆ 𝒫 𝑆 → (𝐽 ∩ 𝒫 𝑇) ⊆ (𝐽 ∩ 𝒫 𝑆))
42, 3sylbi 120 . . . 4 (𝑇𝑆 → (𝐽 ∩ 𝒫 𝑇) ⊆ (𝐽 ∩ 𝒫 𝑆))
54unissd 3760 . . 3 (𝑇𝑆 (𝐽 ∩ 𝒫 𝑇) ⊆ (𝐽 ∩ 𝒫 𝑆))
61, 5syl 14 . 2 ((𝐽 ∈ Top ∧ 𝑆𝑋𝑇𝑆) → (𝐽 ∩ 𝒫 𝑇) ⊆ (𝐽 ∩ 𝒫 𝑆))
7 simp1 981 . . 3 ((𝐽 ∈ Top ∧ 𝑆𝑋𝑇𝑆) → 𝐽 ∈ Top)
8 simp2 982 . . . 4 ((𝐽 ∈ Top ∧ 𝑆𝑋𝑇𝑆) → 𝑆𝑋)
91, 8sstrd 3107 . . 3 ((𝐽 ∈ Top ∧ 𝑆𝑋𝑇𝑆) → 𝑇𝑋)
10 clscld.1 . . . 4 𝑋 = 𝐽
1110ntrval 12279 . . 3 ((𝐽 ∈ Top ∧ 𝑇𝑋) → ((int‘𝐽)‘𝑇) = (𝐽 ∩ 𝒫 𝑇))
127, 9, 11syl2anc 408 . 2 ((𝐽 ∈ Top ∧ 𝑆𝑋𝑇𝑆) → ((int‘𝐽)‘𝑇) = (𝐽 ∩ 𝒫 𝑇))
1310ntrval 12279 . . 3 ((𝐽 ∈ Top ∧ 𝑆𝑋) → ((int‘𝐽)‘𝑆) = (𝐽 ∩ 𝒫 𝑆))
147, 8, 13syl2anc 408 . 2 ((𝐽 ∈ Top ∧ 𝑆𝑋𝑇𝑆) → ((int‘𝐽)‘𝑆) = (𝐽 ∩ 𝒫 𝑆))
156, 12, 143sstr4d 3142 1 ((𝐽 ∈ Top ∧ 𝑆𝑋𝑇𝑆) → ((int‘𝐽)‘𝑇) ⊆ ((int‘𝐽)‘𝑆))
Colors of variables: wff set class
Syntax hints:  wi 4  w3a 962   = wceq 1331  wcel 1480  cin 3070  wss 3071  𝒫 cpw 3510   cuni 3736  cfv 5123  Topctop 12164  intcnt 12262
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121  ax-coll 4043  ax-sep 4046  ax-pow 4098  ax-pr 4131  ax-un 4355
This theorem depends on definitions:  df-bi 116  df-3an 964  df-tru 1334  df-nf 1437  df-sb 1736  df-eu 2002  df-mo 2003  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-ral 2421  df-rex 2422  df-reu 2423  df-rab 2425  df-v 2688  df-sbc 2910  df-csb 3004  df-un 3075  df-in 3077  df-ss 3084  df-pw 3512  df-sn 3533  df-pr 3534  df-op 3536  df-uni 3737  df-iun 3815  df-br 3930  df-opab 3990  df-mpt 3991  df-id 4215  df-xp 4545  df-rel 4546  df-cnv 4547  df-co 4548  df-dm 4549  df-rn 4550  df-res 4551  df-ima 4552  df-iota 5088  df-fun 5125  df-fn 5126  df-f 5127  df-f1 5128  df-fo 5129  df-f1o 5130  df-fv 5131  df-top 12165  df-ntr 12265
This theorem is referenced by:  ntrin  12293  ntrcls0  12300
  Copyright terms: Public domain W3C validator