Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > ntrss | GIF version |
Description: Subset relationship for interior. (Contributed by NM, 3-Oct-2007.) (Revised by Jim Kingdon, 11-Mar-2023.) |
Ref | Expression |
---|---|
clscld.1 | ⊢ 𝑋 = ∪ 𝐽 |
Ref | Expression |
---|---|
ntrss | ⊢ ((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋 ∧ 𝑇 ⊆ 𝑆) → ((int‘𝐽)‘𝑇) ⊆ ((int‘𝐽)‘𝑆)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simp3 994 | . . 3 ⊢ ((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋 ∧ 𝑇 ⊆ 𝑆) → 𝑇 ⊆ 𝑆) | |
2 | sspwb 4201 | . . . . 5 ⊢ (𝑇 ⊆ 𝑆 ↔ 𝒫 𝑇 ⊆ 𝒫 𝑆) | |
3 | sslin 3353 | . . . . 5 ⊢ (𝒫 𝑇 ⊆ 𝒫 𝑆 → (𝐽 ∩ 𝒫 𝑇) ⊆ (𝐽 ∩ 𝒫 𝑆)) | |
4 | 2, 3 | sylbi 120 | . . . 4 ⊢ (𝑇 ⊆ 𝑆 → (𝐽 ∩ 𝒫 𝑇) ⊆ (𝐽 ∩ 𝒫 𝑆)) |
5 | 4 | unissd 3820 | . . 3 ⊢ (𝑇 ⊆ 𝑆 → ∪ (𝐽 ∩ 𝒫 𝑇) ⊆ ∪ (𝐽 ∩ 𝒫 𝑆)) |
6 | 1, 5 | syl 14 | . 2 ⊢ ((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋 ∧ 𝑇 ⊆ 𝑆) → ∪ (𝐽 ∩ 𝒫 𝑇) ⊆ ∪ (𝐽 ∩ 𝒫 𝑆)) |
7 | simp1 992 | . . 3 ⊢ ((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋 ∧ 𝑇 ⊆ 𝑆) → 𝐽 ∈ Top) | |
8 | simp2 993 | . . . 4 ⊢ ((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋 ∧ 𝑇 ⊆ 𝑆) → 𝑆 ⊆ 𝑋) | |
9 | 1, 8 | sstrd 3157 | . . 3 ⊢ ((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋 ∧ 𝑇 ⊆ 𝑆) → 𝑇 ⊆ 𝑋) |
10 | clscld.1 | . . . 4 ⊢ 𝑋 = ∪ 𝐽 | |
11 | 10 | ntrval 12904 | . . 3 ⊢ ((𝐽 ∈ Top ∧ 𝑇 ⊆ 𝑋) → ((int‘𝐽)‘𝑇) = ∪ (𝐽 ∩ 𝒫 𝑇)) |
12 | 7, 9, 11 | syl2anc 409 | . 2 ⊢ ((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋 ∧ 𝑇 ⊆ 𝑆) → ((int‘𝐽)‘𝑇) = ∪ (𝐽 ∩ 𝒫 𝑇)) |
13 | 10 | ntrval 12904 | . . 3 ⊢ ((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋) → ((int‘𝐽)‘𝑆) = ∪ (𝐽 ∩ 𝒫 𝑆)) |
14 | 7, 8, 13 | syl2anc 409 | . 2 ⊢ ((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋 ∧ 𝑇 ⊆ 𝑆) → ((int‘𝐽)‘𝑆) = ∪ (𝐽 ∩ 𝒫 𝑆)) |
15 | 6, 12, 14 | 3sstr4d 3192 | 1 ⊢ ((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋 ∧ 𝑇 ⊆ 𝑆) → ((int‘𝐽)‘𝑇) ⊆ ((int‘𝐽)‘𝑆)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ w3a 973 = wceq 1348 ∈ wcel 2141 ∩ cin 3120 ⊆ wss 3121 𝒫 cpw 3566 ∪ cuni 3796 ‘cfv 5198 Topctop 12789 intcnt 12887 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-13 2143 ax-14 2144 ax-ext 2152 ax-coll 4104 ax-sep 4107 ax-pow 4160 ax-pr 4194 ax-un 4418 |
This theorem depends on definitions: df-bi 116 df-3an 975 df-tru 1351 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ral 2453 df-rex 2454 df-reu 2455 df-rab 2457 df-v 2732 df-sbc 2956 df-csb 3050 df-un 3125 df-in 3127 df-ss 3134 df-pw 3568 df-sn 3589 df-pr 3590 df-op 3592 df-uni 3797 df-iun 3875 df-br 3990 df-opab 4051 df-mpt 4052 df-id 4278 df-xp 4617 df-rel 4618 df-cnv 4619 df-co 4620 df-dm 4621 df-rn 4622 df-res 4623 df-ima 4624 df-iota 5160 df-fun 5200 df-fn 5201 df-f 5202 df-f1 5203 df-fo 5204 df-f1o 5205 df-fv 5206 df-top 12790 df-ntr 12890 |
This theorem is referenced by: ntrin 12918 ntrcls0 12925 |
Copyright terms: Public domain | W3C validator |