| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ntrss | GIF version | ||
| Description: Subset relationship for interior. (Contributed by NM, 3-Oct-2007.) (Revised by Jim Kingdon, 11-Mar-2023.) |
| Ref | Expression |
|---|---|
| clscld.1 | ⊢ 𝑋 = ∪ 𝐽 |
| Ref | Expression |
|---|---|
| ntrss | ⊢ ((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋 ∧ 𝑇 ⊆ 𝑆) → ((int‘𝐽)‘𝑇) ⊆ ((int‘𝐽)‘𝑆)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simp3 1004 | . . 3 ⊢ ((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋 ∧ 𝑇 ⊆ 𝑆) → 𝑇 ⊆ 𝑆) | |
| 2 | sspwb 4281 | . . . . 5 ⊢ (𝑇 ⊆ 𝑆 ↔ 𝒫 𝑇 ⊆ 𝒫 𝑆) | |
| 3 | sslin 3410 | . . . . 5 ⊢ (𝒫 𝑇 ⊆ 𝒫 𝑆 → (𝐽 ∩ 𝒫 𝑇) ⊆ (𝐽 ∩ 𝒫 𝑆)) | |
| 4 | 2, 3 | sylbi 121 | . . . 4 ⊢ (𝑇 ⊆ 𝑆 → (𝐽 ∩ 𝒫 𝑇) ⊆ (𝐽 ∩ 𝒫 𝑆)) |
| 5 | 4 | unissd 3891 | . . 3 ⊢ (𝑇 ⊆ 𝑆 → ∪ (𝐽 ∩ 𝒫 𝑇) ⊆ ∪ (𝐽 ∩ 𝒫 𝑆)) |
| 6 | 1, 5 | syl 14 | . 2 ⊢ ((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋 ∧ 𝑇 ⊆ 𝑆) → ∪ (𝐽 ∩ 𝒫 𝑇) ⊆ ∪ (𝐽 ∩ 𝒫 𝑆)) |
| 7 | simp1 1002 | . . 3 ⊢ ((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋 ∧ 𝑇 ⊆ 𝑆) → 𝐽 ∈ Top) | |
| 8 | simp2 1003 | . . . 4 ⊢ ((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋 ∧ 𝑇 ⊆ 𝑆) → 𝑆 ⊆ 𝑋) | |
| 9 | 1, 8 | sstrd 3214 | . . 3 ⊢ ((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋 ∧ 𝑇 ⊆ 𝑆) → 𝑇 ⊆ 𝑋) |
| 10 | clscld.1 | . . . 4 ⊢ 𝑋 = ∪ 𝐽 | |
| 11 | 10 | ntrval 14749 | . . 3 ⊢ ((𝐽 ∈ Top ∧ 𝑇 ⊆ 𝑋) → ((int‘𝐽)‘𝑇) = ∪ (𝐽 ∩ 𝒫 𝑇)) |
| 12 | 7, 9, 11 | syl2anc 411 | . 2 ⊢ ((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋 ∧ 𝑇 ⊆ 𝑆) → ((int‘𝐽)‘𝑇) = ∪ (𝐽 ∩ 𝒫 𝑇)) |
| 13 | 10 | ntrval 14749 | . . 3 ⊢ ((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋) → ((int‘𝐽)‘𝑆) = ∪ (𝐽 ∩ 𝒫 𝑆)) |
| 14 | 7, 8, 13 | syl2anc 411 | . 2 ⊢ ((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋 ∧ 𝑇 ⊆ 𝑆) → ((int‘𝐽)‘𝑆) = ∪ (𝐽 ∩ 𝒫 𝑆)) |
| 15 | 6, 12, 14 | 3sstr4d 3249 | 1 ⊢ ((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋 ∧ 𝑇 ⊆ 𝑆) → ((int‘𝐽)‘𝑇) ⊆ ((int‘𝐽)‘𝑆)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ w3a 983 = wceq 1375 ∈ wcel 2180 ∩ cin 3176 ⊆ wss 3177 𝒫 cpw 3629 ∪ cuni 3867 ‘cfv 5294 Topctop 14636 intcnt 14732 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 713 ax-5 1473 ax-7 1474 ax-gen 1475 ax-ie1 1519 ax-ie2 1520 ax-8 1530 ax-10 1531 ax-11 1532 ax-i12 1533 ax-bndl 1535 ax-4 1536 ax-17 1552 ax-i9 1556 ax-ial 1560 ax-i5r 1561 ax-13 2182 ax-14 2183 ax-ext 2191 ax-coll 4178 ax-sep 4181 ax-pow 4237 ax-pr 4272 ax-un 4501 |
| This theorem depends on definitions: df-bi 117 df-3an 985 df-tru 1378 df-nf 1487 df-sb 1789 df-eu 2060 df-mo 2061 df-clab 2196 df-cleq 2202 df-clel 2205 df-nfc 2341 df-ral 2493 df-rex 2494 df-reu 2495 df-rab 2497 df-v 2781 df-sbc 3009 df-csb 3105 df-un 3181 df-in 3183 df-ss 3190 df-pw 3631 df-sn 3652 df-pr 3653 df-op 3655 df-uni 3868 df-iun 3946 df-br 4063 df-opab 4125 df-mpt 4126 df-id 4361 df-xp 4702 df-rel 4703 df-cnv 4704 df-co 4705 df-dm 4706 df-rn 4707 df-res 4708 df-ima 4709 df-iota 5254 df-fun 5296 df-fn 5297 df-f 5298 df-f1 5299 df-fo 5300 df-f1o 5301 df-fv 5302 df-top 14637 df-ntr 14735 |
| This theorem is referenced by: ntrin 14763 ntrcls0 14770 |
| Copyright terms: Public domain | W3C validator |