![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > ntrss | GIF version |
Description: Subset relationship for interior. (Contributed by NM, 3-Oct-2007.) (Revised by Jim Kingdon, 11-Mar-2023.) |
Ref | Expression |
---|---|
clscld.1 | ⊢ 𝑋 = ∪ 𝐽 |
Ref | Expression |
---|---|
ntrss | ⊢ ((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋 ∧ 𝑇 ⊆ 𝑆) → ((int‘𝐽)‘𝑇) ⊆ ((int‘𝐽)‘𝑆)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simp3 966 | . . 3 ⊢ ((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋 ∧ 𝑇 ⊆ 𝑆) → 𝑇 ⊆ 𝑆) | |
2 | sspwb 4098 | . . . . 5 ⊢ (𝑇 ⊆ 𝑆 ↔ 𝒫 𝑇 ⊆ 𝒫 𝑆) | |
3 | sslin 3268 | . . . . 5 ⊢ (𝒫 𝑇 ⊆ 𝒫 𝑆 → (𝐽 ∩ 𝒫 𝑇) ⊆ (𝐽 ∩ 𝒫 𝑆)) | |
4 | 2, 3 | sylbi 120 | . . . 4 ⊢ (𝑇 ⊆ 𝑆 → (𝐽 ∩ 𝒫 𝑇) ⊆ (𝐽 ∩ 𝒫 𝑆)) |
5 | 4 | unissd 3726 | . . 3 ⊢ (𝑇 ⊆ 𝑆 → ∪ (𝐽 ∩ 𝒫 𝑇) ⊆ ∪ (𝐽 ∩ 𝒫 𝑆)) |
6 | 1, 5 | syl 14 | . 2 ⊢ ((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋 ∧ 𝑇 ⊆ 𝑆) → ∪ (𝐽 ∩ 𝒫 𝑇) ⊆ ∪ (𝐽 ∩ 𝒫 𝑆)) |
7 | simp1 964 | . . 3 ⊢ ((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋 ∧ 𝑇 ⊆ 𝑆) → 𝐽 ∈ Top) | |
8 | simp2 965 | . . . 4 ⊢ ((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋 ∧ 𝑇 ⊆ 𝑆) → 𝑆 ⊆ 𝑋) | |
9 | 1, 8 | sstrd 3073 | . . 3 ⊢ ((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋 ∧ 𝑇 ⊆ 𝑆) → 𝑇 ⊆ 𝑋) |
10 | clscld.1 | . . . 4 ⊢ 𝑋 = ∪ 𝐽 | |
11 | 10 | ntrval 12122 | . . 3 ⊢ ((𝐽 ∈ Top ∧ 𝑇 ⊆ 𝑋) → ((int‘𝐽)‘𝑇) = ∪ (𝐽 ∩ 𝒫 𝑇)) |
12 | 7, 9, 11 | syl2anc 406 | . 2 ⊢ ((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋 ∧ 𝑇 ⊆ 𝑆) → ((int‘𝐽)‘𝑇) = ∪ (𝐽 ∩ 𝒫 𝑇)) |
13 | 10 | ntrval 12122 | . . 3 ⊢ ((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋) → ((int‘𝐽)‘𝑆) = ∪ (𝐽 ∩ 𝒫 𝑆)) |
14 | 7, 8, 13 | syl2anc 406 | . 2 ⊢ ((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋 ∧ 𝑇 ⊆ 𝑆) → ((int‘𝐽)‘𝑆) = ∪ (𝐽 ∩ 𝒫 𝑆)) |
15 | 6, 12, 14 | 3sstr4d 3108 | 1 ⊢ ((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋 ∧ 𝑇 ⊆ 𝑆) → ((int‘𝐽)‘𝑇) ⊆ ((int‘𝐽)‘𝑆)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ w3a 945 = wceq 1314 ∈ wcel 1463 ∩ cin 3036 ⊆ wss 3037 𝒫 cpw 3476 ∪ cuni 3702 ‘cfv 5081 Topctop 12007 intcnt 12105 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 681 ax-5 1406 ax-7 1407 ax-gen 1408 ax-ie1 1452 ax-ie2 1453 ax-8 1465 ax-10 1466 ax-11 1467 ax-i12 1468 ax-bndl 1469 ax-4 1470 ax-13 1474 ax-14 1475 ax-17 1489 ax-i9 1493 ax-ial 1497 ax-i5r 1498 ax-ext 2097 ax-coll 4003 ax-sep 4006 ax-pow 4058 ax-pr 4091 ax-un 4315 |
This theorem depends on definitions: df-bi 116 df-3an 947 df-tru 1317 df-nf 1420 df-sb 1719 df-eu 1978 df-mo 1979 df-clab 2102 df-cleq 2108 df-clel 2111 df-nfc 2244 df-ral 2395 df-rex 2396 df-reu 2397 df-rab 2399 df-v 2659 df-sbc 2879 df-csb 2972 df-un 3041 df-in 3043 df-ss 3050 df-pw 3478 df-sn 3499 df-pr 3500 df-op 3502 df-uni 3703 df-iun 3781 df-br 3896 df-opab 3950 df-mpt 3951 df-id 4175 df-xp 4505 df-rel 4506 df-cnv 4507 df-co 4508 df-dm 4509 df-rn 4510 df-res 4511 df-ima 4512 df-iota 5046 df-fun 5083 df-fn 5084 df-f 5085 df-f1 5086 df-fo 5087 df-f1o 5088 df-fv 5089 df-top 12008 df-ntr 12108 |
This theorem is referenced by: ntrin 12136 ntrcls0 12143 |
Copyright terms: Public domain | W3C validator |