| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ntrss | GIF version | ||
| Description: Subset relationship for interior. (Contributed by NM, 3-Oct-2007.) (Revised by Jim Kingdon, 11-Mar-2023.) |
| Ref | Expression |
|---|---|
| clscld.1 | ⊢ 𝑋 = ∪ 𝐽 |
| Ref | Expression |
|---|---|
| ntrss | ⊢ ((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋 ∧ 𝑇 ⊆ 𝑆) → ((int‘𝐽)‘𝑇) ⊆ ((int‘𝐽)‘𝑆)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simp3 1002 | . . 3 ⊢ ((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋 ∧ 𝑇 ⊆ 𝑆) → 𝑇 ⊆ 𝑆) | |
| 2 | sspwb 4264 | . . . . 5 ⊢ (𝑇 ⊆ 𝑆 ↔ 𝒫 𝑇 ⊆ 𝒫 𝑆) | |
| 3 | sslin 3400 | . . . . 5 ⊢ (𝒫 𝑇 ⊆ 𝒫 𝑆 → (𝐽 ∩ 𝒫 𝑇) ⊆ (𝐽 ∩ 𝒫 𝑆)) | |
| 4 | 2, 3 | sylbi 121 | . . . 4 ⊢ (𝑇 ⊆ 𝑆 → (𝐽 ∩ 𝒫 𝑇) ⊆ (𝐽 ∩ 𝒫 𝑆)) |
| 5 | 4 | unissd 3876 | . . 3 ⊢ (𝑇 ⊆ 𝑆 → ∪ (𝐽 ∩ 𝒫 𝑇) ⊆ ∪ (𝐽 ∩ 𝒫 𝑆)) |
| 6 | 1, 5 | syl 14 | . 2 ⊢ ((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋 ∧ 𝑇 ⊆ 𝑆) → ∪ (𝐽 ∩ 𝒫 𝑇) ⊆ ∪ (𝐽 ∩ 𝒫 𝑆)) |
| 7 | simp1 1000 | . . 3 ⊢ ((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋 ∧ 𝑇 ⊆ 𝑆) → 𝐽 ∈ Top) | |
| 8 | simp2 1001 | . . . 4 ⊢ ((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋 ∧ 𝑇 ⊆ 𝑆) → 𝑆 ⊆ 𝑋) | |
| 9 | 1, 8 | sstrd 3204 | . . 3 ⊢ ((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋 ∧ 𝑇 ⊆ 𝑆) → 𝑇 ⊆ 𝑋) |
| 10 | clscld.1 | . . . 4 ⊢ 𝑋 = ∪ 𝐽 | |
| 11 | 10 | ntrval 14626 | . . 3 ⊢ ((𝐽 ∈ Top ∧ 𝑇 ⊆ 𝑋) → ((int‘𝐽)‘𝑇) = ∪ (𝐽 ∩ 𝒫 𝑇)) |
| 12 | 7, 9, 11 | syl2anc 411 | . 2 ⊢ ((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋 ∧ 𝑇 ⊆ 𝑆) → ((int‘𝐽)‘𝑇) = ∪ (𝐽 ∩ 𝒫 𝑇)) |
| 13 | 10 | ntrval 14626 | . . 3 ⊢ ((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋) → ((int‘𝐽)‘𝑆) = ∪ (𝐽 ∩ 𝒫 𝑆)) |
| 14 | 7, 8, 13 | syl2anc 411 | . 2 ⊢ ((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋 ∧ 𝑇 ⊆ 𝑆) → ((int‘𝐽)‘𝑆) = ∪ (𝐽 ∩ 𝒫 𝑆)) |
| 15 | 6, 12, 14 | 3sstr4d 3239 | 1 ⊢ ((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋 ∧ 𝑇 ⊆ 𝑆) → ((int‘𝐽)‘𝑇) ⊆ ((int‘𝐽)‘𝑆)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ w3a 981 = wceq 1373 ∈ wcel 2177 ∩ cin 3166 ⊆ wss 3167 𝒫 cpw 3617 ∪ cuni 3852 ‘cfv 5276 Topctop 14513 intcnt 14609 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2179 ax-14 2180 ax-ext 2188 ax-coll 4163 ax-sep 4166 ax-pow 4222 ax-pr 4257 ax-un 4484 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ral 2490 df-rex 2491 df-reu 2492 df-rab 2494 df-v 2775 df-sbc 3000 df-csb 3095 df-un 3171 df-in 3173 df-ss 3180 df-pw 3619 df-sn 3640 df-pr 3641 df-op 3643 df-uni 3853 df-iun 3931 df-br 4048 df-opab 4110 df-mpt 4111 df-id 4344 df-xp 4685 df-rel 4686 df-cnv 4687 df-co 4688 df-dm 4689 df-rn 4690 df-res 4691 df-ima 4692 df-iota 5237 df-fun 5278 df-fn 5279 df-f 5280 df-f1 5281 df-fo 5282 df-f1o 5283 df-fv 5284 df-top 14514 df-ntr 14612 |
| This theorem is referenced by: ntrin 14640 ntrcls0 14647 |
| Copyright terms: Public domain | W3C validator |