ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nmznsg GIF version

Theorem nmznsg 13750
Description: Any subgroup is a normal subgroup of its normalizer. (Contributed by Mario Carneiro, 19-Jan-2015.)
Hypotheses
Ref Expression
elnmz.1 𝑁 = {𝑥𝑋 ∣ ∀𝑦𝑋 ((𝑥 + 𝑦) ∈ 𝑆 ↔ (𝑦 + 𝑥) ∈ 𝑆)}
nmzsubg.2 𝑋 = (Base‘𝐺)
nmzsubg.3 + = (+g𝐺)
nmznsg.4 𝐻 = (𝐺s 𝑁)
Assertion
Ref Expression
nmznsg (𝑆 ∈ (SubGrp‘𝐺) → 𝑆 ∈ (NrmSGrp‘𝐻))
Distinct variable groups:   𝑥,𝑦,𝐺   𝑥,𝑆,𝑦   𝑥, + ,𝑦   𝑥,𝑋,𝑦
Allowed substitution hints:   𝐻(𝑥,𝑦)   𝑁(𝑥,𝑦)

Proof of Theorem nmznsg
Dummy variables 𝑧 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 id 19 . . 3 (𝑆 ∈ (SubGrp‘𝐺) → 𝑆 ∈ (SubGrp‘𝐺))
2 elnmz.1 . . . 4 𝑁 = {𝑥𝑋 ∣ ∀𝑦𝑋 ((𝑥 + 𝑦) ∈ 𝑆 ↔ (𝑦 + 𝑥) ∈ 𝑆)}
3 nmzsubg.2 . . . 4 𝑋 = (Base‘𝐺)
4 nmzsubg.3 . . . 4 + = (+g𝐺)
52, 3, 4ssnmz 13748 . . 3 (𝑆 ∈ (SubGrp‘𝐺) → 𝑆𝑁)
6 subgrcl 13716 . . . . 5 (𝑆 ∈ (SubGrp‘𝐺) → 𝐺 ∈ Grp)
72, 3, 4nmzsubg 13747 . . . . 5 (𝐺 ∈ Grp → 𝑁 ∈ (SubGrp‘𝐺))
86, 7syl 14 . . . 4 (𝑆 ∈ (SubGrp‘𝐺) → 𝑁 ∈ (SubGrp‘𝐺))
9 nmznsg.4 . . . . 5 𝐻 = (𝐺s 𝑁)
109subsubg 13734 . . . 4 (𝑁 ∈ (SubGrp‘𝐺) → (𝑆 ∈ (SubGrp‘𝐻) ↔ (𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑆𝑁)))
118, 10syl 14 . . 3 (𝑆 ∈ (SubGrp‘𝐺) → (𝑆 ∈ (SubGrp‘𝐻) ↔ (𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑆𝑁)))
121, 5, 11mpbir2and 950 . 2 (𝑆 ∈ (SubGrp‘𝐺) → 𝑆 ∈ (SubGrp‘𝐻))
132ssrab3 3310 . . . . . 6 𝑁𝑋
1413sseli 3220 . . . . 5 (𝑤𝑁𝑤𝑋)
152nmzbi 13746 . . . . 5 ((𝑧𝑁𝑤𝑋) → ((𝑧 + 𝑤) ∈ 𝑆 ↔ (𝑤 + 𝑧) ∈ 𝑆))
1614, 15sylan2 286 . . . 4 ((𝑧𝑁𝑤𝑁) → ((𝑧 + 𝑤) ∈ 𝑆 ↔ (𝑤 + 𝑧) ∈ 𝑆))
1716rgen2 2616 . . 3 𝑧𝑁𝑤𝑁 ((𝑧 + 𝑤) ∈ 𝑆 ↔ (𝑤 + 𝑧) ∈ 𝑆)
189subgbas 13715 . . . . 5 (𝑁 ∈ (SubGrp‘𝐺) → 𝑁 = (Base‘𝐻))
198, 18syl 14 . . . 4 (𝑆 ∈ (SubGrp‘𝐺) → 𝑁 = (Base‘𝐻))
2019raleqdv 2734 . . . 4 (𝑆 ∈ (SubGrp‘𝐺) → (∀𝑤𝑁 ((𝑧 + 𝑤) ∈ 𝑆 ↔ (𝑤 + 𝑧) ∈ 𝑆) ↔ ∀𝑤 ∈ (Base‘𝐻)((𝑧 + 𝑤) ∈ 𝑆 ↔ (𝑤 + 𝑧) ∈ 𝑆)))
2119, 20raleqbidv 2744 . . 3 (𝑆 ∈ (SubGrp‘𝐺) → (∀𝑧𝑁𝑤𝑁 ((𝑧 + 𝑤) ∈ 𝑆 ↔ (𝑤 + 𝑧) ∈ 𝑆) ↔ ∀𝑧 ∈ (Base‘𝐻)∀𝑤 ∈ (Base‘𝐻)((𝑧 + 𝑤) ∈ 𝑆 ↔ (𝑤 + 𝑧) ∈ 𝑆)))
2217, 21mpbii 148 . 2 (𝑆 ∈ (SubGrp‘𝐺) → ∀𝑧 ∈ (Base‘𝐻)∀𝑤 ∈ (Base‘𝐻)((𝑧 + 𝑤) ∈ 𝑆 ↔ (𝑤 + 𝑧) ∈ 𝑆))
23 eqid 2229 . . . 4 (Base‘𝐻) = (Base‘𝐻)
24 eqid 2229 . . . 4 (+g𝐻) = (+g𝐻)
2523, 24isnsg 13739 . . 3 (𝑆 ∈ (NrmSGrp‘𝐻) ↔ (𝑆 ∈ (SubGrp‘𝐻) ∧ ∀𝑧 ∈ (Base‘𝐻)∀𝑤 ∈ (Base‘𝐻)((𝑧(+g𝐻)𝑤) ∈ 𝑆 ↔ (𝑤(+g𝐻)𝑧) ∈ 𝑆)))
269a1i 9 . . . . . . . . 9 (𝑆 ∈ (SubGrp‘𝐺) → 𝐻 = (𝐺s 𝑁))
274a1i 9 . . . . . . . . 9 (𝑆 ∈ (SubGrp‘𝐺) → + = (+g𝐺))
2826, 27, 8, 6ressplusgd 13162 . . . . . . . 8 (𝑆 ∈ (SubGrp‘𝐺) → + = (+g𝐻))
2928oveqd 6018 . . . . . . 7 (𝑆 ∈ (SubGrp‘𝐺) → (𝑧 + 𝑤) = (𝑧(+g𝐻)𝑤))
3029eleq1d 2298 . . . . . 6 (𝑆 ∈ (SubGrp‘𝐺) → ((𝑧 + 𝑤) ∈ 𝑆 ↔ (𝑧(+g𝐻)𝑤) ∈ 𝑆))
3128oveqd 6018 . . . . . . 7 (𝑆 ∈ (SubGrp‘𝐺) → (𝑤 + 𝑧) = (𝑤(+g𝐻)𝑧))
3231eleq1d 2298 . . . . . 6 (𝑆 ∈ (SubGrp‘𝐺) → ((𝑤 + 𝑧) ∈ 𝑆 ↔ (𝑤(+g𝐻)𝑧) ∈ 𝑆))
3330, 32bibi12d 235 . . . . 5 (𝑆 ∈ (SubGrp‘𝐺) → (((𝑧 + 𝑤) ∈ 𝑆 ↔ (𝑤 + 𝑧) ∈ 𝑆) ↔ ((𝑧(+g𝐻)𝑤) ∈ 𝑆 ↔ (𝑤(+g𝐻)𝑧) ∈ 𝑆)))
34332ralbidv 2554 . . . 4 (𝑆 ∈ (SubGrp‘𝐺) → (∀𝑧 ∈ (Base‘𝐻)∀𝑤 ∈ (Base‘𝐻)((𝑧 + 𝑤) ∈ 𝑆 ↔ (𝑤 + 𝑧) ∈ 𝑆) ↔ ∀𝑧 ∈ (Base‘𝐻)∀𝑤 ∈ (Base‘𝐻)((𝑧(+g𝐻)𝑤) ∈ 𝑆 ↔ (𝑤(+g𝐻)𝑧) ∈ 𝑆)))
3534anbi2d 464 . . 3 (𝑆 ∈ (SubGrp‘𝐺) → ((𝑆 ∈ (SubGrp‘𝐻) ∧ ∀𝑧 ∈ (Base‘𝐻)∀𝑤 ∈ (Base‘𝐻)((𝑧 + 𝑤) ∈ 𝑆 ↔ (𝑤 + 𝑧) ∈ 𝑆)) ↔ (𝑆 ∈ (SubGrp‘𝐻) ∧ ∀𝑧 ∈ (Base‘𝐻)∀𝑤 ∈ (Base‘𝐻)((𝑧(+g𝐻)𝑤) ∈ 𝑆 ↔ (𝑤(+g𝐻)𝑧) ∈ 𝑆))))
3625, 35bitr4id 199 . 2 (𝑆 ∈ (SubGrp‘𝐺) → (𝑆 ∈ (NrmSGrp‘𝐻) ↔ (𝑆 ∈ (SubGrp‘𝐻) ∧ ∀𝑧 ∈ (Base‘𝐻)∀𝑤 ∈ (Base‘𝐻)((𝑧 + 𝑤) ∈ 𝑆 ↔ (𝑤 + 𝑧) ∈ 𝑆))))
3712, 22, 36mpbir2and 950 1 (𝑆 ∈ (SubGrp‘𝐺) → 𝑆 ∈ (NrmSGrp‘𝐻))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105   = wceq 1395  wcel 2200  wral 2508  {crab 2512  wss 3197  cfv 5318  (class class class)co 6001  Basecbs 13032  s cress 13033  +gcplusg 13110  Grpcgrp 13533  SubGrpcsubg 13704  NrmSGrpcnsg 13705
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-coll 4199  ax-sep 4202  ax-pow 4258  ax-pr 4293  ax-un 4524  ax-setind 4629  ax-cnex 8090  ax-resscn 8091  ax-1cn 8092  ax-1re 8093  ax-icn 8094  ax-addcl 8095  ax-addrcl 8096  ax-mulcl 8097  ax-addcom 8099  ax-addass 8101  ax-i2m1 8104  ax-0lt1 8105  ax-0id 8107  ax-rnegex 8108  ax-pre-ltirr 8111  ax-pre-ltadd 8115
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-reu 2515  df-rmo 2516  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-int 3924  df-iun 3967  df-br 4084  df-opab 4146  df-mpt 4147  df-id 4384  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-rn 4730  df-res 4731  df-ima 4732  df-iota 5278  df-fun 5320  df-fn 5321  df-f 5322  df-f1 5323  df-fo 5324  df-f1o 5325  df-fv 5326  df-riota 5954  df-ov 6004  df-oprab 6005  df-mpo 6006  df-1st 6286  df-2nd 6287  df-pnf 8183  df-mnf 8184  df-ltxr 8186  df-inn 9111  df-2 9169  df-ndx 13035  df-slot 13036  df-base 13038  df-sets 13039  df-iress 13040  df-plusg 13123  df-0g 13291  df-mgm 13389  df-sgrp 13435  df-mnd 13450  df-grp 13536  df-minusg 13537  df-sbg 13538  df-subg 13707  df-nsg 13708
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator