ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nmznsg GIF version

Theorem nmznsg 13582
Description: Any subgroup is a normal subgroup of its normalizer. (Contributed by Mario Carneiro, 19-Jan-2015.)
Hypotheses
Ref Expression
elnmz.1 𝑁 = {𝑥𝑋 ∣ ∀𝑦𝑋 ((𝑥 + 𝑦) ∈ 𝑆 ↔ (𝑦 + 𝑥) ∈ 𝑆)}
nmzsubg.2 𝑋 = (Base‘𝐺)
nmzsubg.3 + = (+g𝐺)
nmznsg.4 𝐻 = (𝐺s 𝑁)
Assertion
Ref Expression
nmznsg (𝑆 ∈ (SubGrp‘𝐺) → 𝑆 ∈ (NrmSGrp‘𝐻))
Distinct variable groups:   𝑥,𝑦,𝐺   𝑥,𝑆,𝑦   𝑥, + ,𝑦   𝑥,𝑋,𝑦
Allowed substitution hints:   𝐻(𝑥,𝑦)   𝑁(𝑥,𝑦)

Proof of Theorem nmznsg
Dummy variables 𝑧 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 id 19 . . 3 (𝑆 ∈ (SubGrp‘𝐺) → 𝑆 ∈ (SubGrp‘𝐺))
2 elnmz.1 . . . 4 𝑁 = {𝑥𝑋 ∣ ∀𝑦𝑋 ((𝑥 + 𝑦) ∈ 𝑆 ↔ (𝑦 + 𝑥) ∈ 𝑆)}
3 nmzsubg.2 . . . 4 𝑋 = (Base‘𝐺)
4 nmzsubg.3 . . . 4 + = (+g𝐺)
52, 3, 4ssnmz 13580 . . 3 (𝑆 ∈ (SubGrp‘𝐺) → 𝑆𝑁)
6 subgrcl 13548 . . . . 5 (𝑆 ∈ (SubGrp‘𝐺) → 𝐺 ∈ Grp)
72, 3, 4nmzsubg 13579 . . . . 5 (𝐺 ∈ Grp → 𝑁 ∈ (SubGrp‘𝐺))
86, 7syl 14 . . . 4 (𝑆 ∈ (SubGrp‘𝐺) → 𝑁 ∈ (SubGrp‘𝐺))
9 nmznsg.4 . . . . 5 𝐻 = (𝐺s 𝑁)
109subsubg 13566 . . . 4 (𝑁 ∈ (SubGrp‘𝐺) → (𝑆 ∈ (SubGrp‘𝐻) ↔ (𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑆𝑁)))
118, 10syl 14 . . 3 (𝑆 ∈ (SubGrp‘𝐺) → (𝑆 ∈ (SubGrp‘𝐻) ↔ (𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑆𝑁)))
121, 5, 11mpbir2and 947 . 2 (𝑆 ∈ (SubGrp‘𝐺) → 𝑆 ∈ (SubGrp‘𝐻))
132ssrab3 3279 . . . . . 6 𝑁𝑋
1413sseli 3189 . . . . 5 (𝑤𝑁𝑤𝑋)
152nmzbi 13578 . . . . 5 ((𝑧𝑁𝑤𝑋) → ((𝑧 + 𝑤) ∈ 𝑆 ↔ (𝑤 + 𝑧) ∈ 𝑆))
1614, 15sylan2 286 . . . 4 ((𝑧𝑁𝑤𝑁) → ((𝑧 + 𝑤) ∈ 𝑆 ↔ (𝑤 + 𝑧) ∈ 𝑆))
1716rgen2 2592 . . 3 𝑧𝑁𝑤𝑁 ((𝑧 + 𝑤) ∈ 𝑆 ↔ (𝑤 + 𝑧) ∈ 𝑆)
189subgbas 13547 . . . . 5 (𝑁 ∈ (SubGrp‘𝐺) → 𝑁 = (Base‘𝐻))
198, 18syl 14 . . . 4 (𝑆 ∈ (SubGrp‘𝐺) → 𝑁 = (Base‘𝐻))
2019raleqdv 2708 . . . 4 (𝑆 ∈ (SubGrp‘𝐺) → (∀𝑤𝑁 ((𝑧 + 𝑤) ∈ 𝑆 ↔ (𝑤 + 𝑧) ∈ 𝑆) ↔ ∀𝑤 ∈ (Base‘𝐻)((𝑧 + 𝑤) ∈ 𝑆 ↔ (𝑤 + 𝑧) ∈ 𝑆)))
2119, 20raleqbidv 2718 . . 3 (𝑆 ∈ (SubGrp‘𝐺) → (∀𝑧𝑁𝑤𝑁 ((𝑧 + 𝑤) ∈ 𝑆 ↔ (𝑤 + 𝑧) ∈ 𝑆) ↔ ∀𝑧 ∈ (Base‘𝐻)∀𝑤 ∈ (Base‘𝐻)((𝑧 + 𝑤) ∈ 𝑆 ↔ (𝑤 + 𝑧) ∈ 𝑆)))
2217, 21mpbii 148 . 2 (𝑆 ∈ (SubGrp‘𝐺) → ∀𝑧 ∈ (Base‘𝐻)∀𝑤 ∈ (Base‘𝐻)((𝑧 + 𝑤) ∈ 𝑆 ↔ (𝑤 + 𝑧) ∈ 𝑆))
23 eqid 2205 . . . 4 (Base‘𝐻) = (Base‘𝐻)
24 eqid 2205 . . . 4 (+g𝐻) = (+g𝐻)
2523, 24isnsg 13571 . . 3 (𝑆 ∈ (NrmSGrp‘𝐻) ↔ (𝑆 ∈ (SubGrp‘𝐻) ∧ ∀𝑧 ∈ (Base‘𝐻)∀𝑤 ∈ (Base‘𝐻)((𝑧(+g𝐻)𝑤) ∈ 𝑆 ↔ (𝑤(+g𝐻)𝑧) ∈ 𝑆)))
269a1i 9 . . . . . . . . 9 (𝑆 ∈ (SubGrp‘𝐺) → 𝐻 = (𝐺s 𝑁))
274a1i 9 . . . . . . . . 9 (𝑆 ∈ (SubGrp‘𝐺) → + = (+g𝐺))
2826, 27, 8, 6ressplusgd 12994 . . . . . . . 8 (𝑆 ∈ (SubGrp‘𝐺) → + = (+g𝐻))
2928oveqd 5963 . . . . . . 7 (𝑆 ∈ (SubGrp‘𝐺) → (𝑧 + 𝑤) = (𝑧(+g𝐻)𝑤))
3029eleq1d 2274 . . . . . 6 (𝑆 ∈ (SubGrp‘𝐺) → ((𝑧 + 𝑤) ∈ 𝑆 ↔ (𝑧(+g𝐻)𝑤) ∈ 𝑆))
3128oveqd 5963 . . . . . . 7 (𝑆 ∈ (SubGrp‘𝐺) → (𝑤 + 𝑧) = (𝑤(+g𝐻)𝑧))
3231eleq1d 2274 . . . . . 6 (𝑆 ∈ (SubGrp‘𝐺) → ((𝑤 + 𝑧) ∈ 𝑆 ↔ (𝑤(+g𝐻)𝑧) ∈ 𝑆))
3330, 32bibi12d 235 . . . . 5 (𝑆 ∈ (SubGrp‘𝐺) → (((𝑧 + 𝑤) ∈ 𝑆 ↔ (𝑤 + 𝑧) ∈ 𝑆) ↔ ((𝑧(+g𝐻)𝑤) ∈ 𝑆 ↔ (𝑤(+g𝐻)𝑧) ∈ 𝑆)))
34332ralbidv 2530 . . . 4 (𝑆 ∈ (SubGrp‘𝐺) → (∀𝑧 ∈ (Base‘𝐻)∀𝑤 ∈ (Base‘𝐻)((𝑧 + 𝑤) ∈ 𝑆 ↔ (𝑤 + 𝑧) ∈ 𝑆) ↔ ∀𝑧 ∈ (Base‘𝐻)∀𝑤 ∈ (Base‘𝐻)((𝑧(+g𝐻)𝑤) ∈ 𝑆 ↔ (𝑤(+g𝐻)𝑧) ∈ 𝑆)))
3534anbi2d 464 . . 3 (𝑆 ∈ (SubGrp‘𝐺) → ((𝑆 ∈ (SubGrp‘𝐻) ∧ ∀𝑧 ∈ (Base‘𝐻)∀𝑤 ∈ (Base‘𝐻)((𝑧 + 𝑤) ∈ 𝑆 ↔ (𝑤 + 𝑧) ∈ 𝑆)) ↔ (𝑆 ∈ (SubGrp‘𝐻) ∧ ∀𝑧 ∈ (Base‘𝐻)∀𝑤 ∈ (Base‘𝐻)((𝑧(+g𝐻)𝑤) ∈ 𝑆 ↔ (𝑤(+g𝐻)𝑧) ∈ 𝑆))))
3625, 35bitr4id 199 . 2 (𝑆 ∈ (SubGrp‘𝐺) → (𝑆 ∈ (NrmSGrp‘𝐻) ↔ (𝑆 ∈ (SubGrp‘𝐻) ∧ ∀𝑧 ∈ (Base‘𝐻)∀𝑤 ∈ (Base‘𝐻)((𝑧 + 𝑤) ∈ 𝑆 ↔ (𝑤 + 𝑧) ∈ 𝑆))))
3712, 22, 36mpbir2and 947 1 (𝑆 ∈ (SubGrp‘𝐺) → 𝑆 ∈ (NrmSGrp‘𝐻))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105   = wceq 1373  wcel 2176  wral 2484  {crab 2488  wss 3166  cfv 5272  (class class class)co 5946  Basecbs 12865  s cress 12866  +gcplusg 12942  Grpcgrp 13365  SubGrpcsubg 13536  NrmSGrpcnsg 13537
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-13 2178  ax-14 2179  ax-ext 2187  ax-coll 4160  ax-sep 4163  ax-pow 4219  ax-pr 4254  ax-un 4481  ax-setind 4586  ax-cnex 8018  ax-resscn 8019  ax-1cn 8020  ax-1re 8021  ax-icn 8022  ax-addcl 8023  ax-addrcl 8024  ax-mulcl 8025  ax-addcom 8027  ax-addass 8029  ax-i2m1 8032  ax-0lt1 8033  ax-0id 8035  ax-rnegex 8036  ax-pre-ltirr 8039  ax-pre-ltadd 8043
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ne 2377  df-nel 2472  df-ral 2489  df-rex 2490  df-reu 2491  df-rmo 2492  df-rab 2493  df-v 2774  df-sbc 2999  df-csb 3094  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-nul 3461  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-uni 3851  df-int 3886  df-iun 3929  df-br 4046  df-opab 4107  df-mpt 4108  df-id 4341  df-xp 4682  df-rel 4683  df-cnv 4684  df-co 4685  df-dm 4686  df-rn 4687  df-res 4688  df-ima 4689  df-iota 5233  df-fun 5274  df-fn 5275  df-f 5276  df-f1 5277  df-fo 5278  df-f1o 5279  df-fv 5280  df-riota 5901  df-ov 5949  df-oprab 5950  df-mpo 5951  df-1st 6228  df-2nd 6229  df-pnf 8111  df-mnf 8112  df-ltxr 8114  df-inn 9039  df-2 9097  df-ndx 12868  df-slot 12869  df-base 12871  df-sets 12872  df-iress 12873  df-plusg 12955  df-0g 13123  df-mgm 13221  df-sgrp 13267  df-mnd 13282  df-grp 13368  df-minusg 13369  df-sbg 13370  df-subg 13539  df-nsg 13540
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator