Step | Hyp | Ref
| Expression |
1 | | 0z 9223 |
. . . . . . . . 9
⊢ 0 ∈
ℤ |
2 | | 0le1 8400 |
. . . . . . . . 9
⊢ 0 ≤
1 |
3 | | fveq2 5496 |
. . . . . . . . . . . 12
⊢ (𝑥 = 0 → (abs‘𝑥) =
(abs‘0)) |
4 | | abs0 11022 |
. . . . . . . . . . . 12
⊢
(abs‘0) = 0 |
5 | 3, 4 | eqtrdi 2219 |
. . . . . . . . . . 11
⊢ (𝑥 = 0 → (abs‘𝑥) = 0) |
6 | 5 | breq1d 3999 |
. . . . . . . . . 10
⊢ (𝑥 = 0 → ((abs‘𝑥) ≤ 1 ↔ 0 ≤
1)) |
7 | | lgsfcl2.z |
. . . . . . . . . 10
⊢ 𝑍 = {𝑥 ∈ ℤ ∣ (abs‘𝑥) ≤ 1} |
8 | 6, 7 | elrab2 2889 |
. . . . . . . . 9
⊢ (0 ∈
𝑍 ↔ (0 ∈ ℤ
∧ 0 ≤ 1)) |
9 | 1, 2, 8 | mpbir2an 937 |
. . . . . . . 8
⊢ 0 ∈
𝑍 |
10 | 9 | a1i 9 |
. . . . . . 7
⊢ ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) → 0 ∈ 𝑍) |
11 | | 1z 9238 |
. . . . . . . . . 10
⊢ 1 ∈
ℤ |
12 | | 1le1 8491 |
. . . . . . . . . 10
⊢ 1 ≤
1 |
13 | | fveq2 5496 |
. . . . . . . . . . . . 13
⊢ (𝑥 = 1 → (abs‘𝑥) =
(abs‘1)) |
14 | | abs1 11036 |
. . . . . . . . . . . . 13
⊢
(abs‘1) = 1 |
15 | 13, 14 | eqtrdi 2219 |
. . . . . . . . . . . 12
⊢ (𝑥 = 1 → (abs‘𝑥) = 1) |
16 | 15 | breq1d 3999 |
. . . . . . . . . . 11
⊢ (𝑥 = 1 → ((abs‘𝑥) ≤ 1 ↔ 1 ≤
1)) |
17 | 16, 7 | elrab2 2889 |
. . . . . . . . . 10
⊢ (1 ∈
𝑍 ↔ (1 ∈ ℤ
∧ 1 ≤ 1)) |
18 | 11, 12, 17 | mpbir2an 937 |
. . . . . . . . 9
⊢ 1 ∈
𝑍 |
19 | 18 | a1i 9 |
. . . . . . . 8
⊢ ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) → 1 ∈ 𝑍) |
20 | | neg1z 9244 |
. . . . . . . . . 10
⊢ -1 ∈
ℤ |
21 | | fveq2 5496 |
. . . . . . . . . . . . 13
⊢ (𝑥 = -1 → (abs‘𝑥) =
(abs‘-1)) |
22 | | ax-1cn 7867 |
. . . . . . . . . . . . . . 15
⊢ 1 ∈
ℂ |
23 | 22 | absnegi 11111 |
. . . . . . . . . . . . . 14
⊢
(abs‘-1) = (abs‘1) |
24 | 23, 14 | eqtri 2191 |
. . . . . . . . . . . . 13
⊢
(abs‘-1) = 1 |
25 | 21, 24 | eqtrdi 2219 |
. . . . . . . . . . . 12
⊢ (𝑥 = -1 → (abs‘𝑥) = 1) |
26 | 25 | breq1d 3999 |
. . . . . . . . . . 11
⊢ (𝑥 = -1 → ((abs‘𝑥) ≤ 1 ↔ 1 ≤
1)) |
27 | 26, 7 | elrab2 2889 |
. . . . . . . . . 10
⊢ (-1
∈ 𝑍 ↔ (-1 ∈
ℤ ∧ 1 ≤ 1)) |
28 | 20, 12, 27 | mpbir2an 937 |
. . . . . . . . 9
⊢ -1 ∈
𝑍 |
29 | 28 | a1i 9 |
. . . . . . . 8
⊢ ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) → -1 ∈ 𝑍) |
30 | | simp1 992 |
. . . . . . . . . . . . 13
⊢ ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) → 𝐴 ∈
ℤ) |
31 | | 8nn 9045 |
. . . . . . . . . . . . . 14
⊢ 8 ∈
ℕ |
32 | 31 | a1i 9 |
. . . . . . . . . . . . 13
⊢ ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) → 8 ∈
ℕ) |
33 | 30, 32 | zmodcld 10301 |
. . . . . . . . . . . 12
⊢ ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) → (𝐴 mod 8) ∈
ℕ0) |
34 | 33 | nn0zd 9332 |
. . . . . . . . . . 11
⊢ ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) → (𝐴 mod 8) ∈
ℤ) |
35 | | zdceq 9287 |
. . . . . . . . . . 11
⊢ (((𝐴 mod 8) ∈ ℤ ∧ 1
∈ ℤ) → DECID (𝐴 mod 8) = 1) |
36 | 34, 11, 35 | sylancl 411 |
. . . . . . . . . 10
⊢ ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) →
DECID (𝐴 mod
8) = 1) |
37 | | 7nn 9044 |
. . . . . . . . . . . 12
⊢ 7 ∈
ℕ |
38 | 37 | nnzi 9233 |
. . . . . . . . . . 11
⊢ 7 ∈
ℤ |
39 | | zdceq 9287 |
. . . . . . . . . . 11
⊢ (((𝐴 mod 8) ∈ ℤ ∧ 7
∈ ℤ) → DECID (𝐴 mod 8) = 7) |
40 | 34, 38, 39 | sylancl 411 |
. . . . . . . . . 10
⊢ ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) →
DECID (𝐴 mod
8) = 7) |
41 | | dcor 930 |
. . . . . . . . . 10
⊢
(DECID (𝐴 mod 8) = 1 → (DECID
(𝐴 mod 8) = 7 →
DECID ((𝐴
mod 8) = 1 ∨ (𝐴 mod 8) =
7))) |
42 | 36, 40, 41 | sylc 62 |
. . . . . . . . 9
⊢ ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) →
DECID ((𝐴
mod 8) = 1 ∨ (𝐴 mod 8) =
7)) |
43 | | elprg 3603 |
. . . . . . . . . . 11
⊢ ((𝐴 mod 8) ∈
ℕ0 → ((𝐴 mod 8) ∈ {1, 7} ↔ ((𝐴 mod 8) = 1 ∨ (𝐴 mod 8) = 7))) |
44 | 33, 43 | syl 14 |
. . . . . . . . . 10
⊢ ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) → ((𝐴 mod 8) ∈ {1, 7} ↔
((𝐴 mod 8) = 1 ∨ (𝐴 mod 8) = 7))) |
45 | 44 | dcbid 833 |
. . . . . . . . 9
⊢ ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) →
(DECID (𝐴
mod 8) ∈ {1, 7} ↔ DECID ((𝐴 mod 8) = 1 ∨ (𝐴 mod 8) = 7))) |
46 | 42, 45 | mpbird 166 |
. . . . . . . 8
⊢ ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) →
DECID (𝐴 mod
8) ∈ {1, 7}) |
47 | 19, 29, 46 | ifcldcd 3561 |
. . . . . . 7
⊢ ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) → if((𝐴 mod 8) ∈ {1, 7}, 1, -1)
∈ 𝑍) |
48 | | 2nn 9039 |
. . . . . . . . 9
⊢ 2 ∈
ℕ |
49 | 48 | a1i 9 |
. . . . . . . 8
⊢ ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) → 2 ∈
ℕ) |
50 | | dvdsdc 11760 |
. . . . . . . 8
⊢ ((2
∈ ℕ ∧ 𝐴
∈ ℤ) → DECID 2 ∥ 𝐴) |
51 | 49, 30, 50 | syl2anc 409 |
. . . . . . 7
⊢ ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) →
DECID 2 ∥ 𝐴) |
52 | 10, 47, 51 | ifcldcd 3561 |
. . . . . 6
⊢ ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) → if(2 ∥
𝐴, 0, if((𝐴 mod 8) ∈ {1, 7}, 1, -1)) ∈ 𝑍) |
53 | 52 | ad3antrrr 489 |
. . . . 5
⊢
(((((𝐴 ∈
ℤ ∧ 𝑁 ∈
ℤ ∧ 𝑁 ≠ 0)
∧ 𝑛 ∈ ℕ)
∧ 𝑛 ∈ ℙ)
∧ 𝑛 = 2) → if(2
∥ 𝐴, 0, if((𝐴 mod 8) ∈ {1, 7}, 1, -1))
∈ 𝑍) |
54 | | simpl1 995 |
. . . . . . 7
⊢ (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) ∧ 𝑛 ∈ ℕ) → 𝐴 ∈
ℤ) |
55 | 54 | ad2antrr 485 |
. . . . . 6
⊢
(((((𝐴 ∈
ℤ ∧ 𝑁 ∈
ℤ ∧ 𝑁 ≠ 0)
∧ 𝑛 ∈ ℕ)
∧ 𝑛 ∈ ℙ)
∧ ¬ 𝑛 = 2) →
𝐴 ∈
ℤ) |
56 | | simplr 525 |
. . . . . . 7
⊢
(((((𝐴 ∈
ℤ ∧ 𝑁 ∈
ℤ ∧ 𝑁 ≠ 0)
∧ 𝑛 ∈ ℕ)
∧ 𝑛 ∈ ℙ)
∧ ¬ 𝑛 = 2) →
𝑛 ∈
ℙ) |
57 | | simpr 109 |
. . . . . . . 8
⊢
(((((𝐴 ∈
ℤ ∧ 𝑁 ∈
ℤ ∧ 𝑁 ≠ 0)
∧ 𝑛 ∈ ℕ)
∧ 𝑛 ∈ ℙ)
∧ ¬ 𝑛 = 2) →
¬ 𝑛 =
2) |
58 | 57 | neqned 2347 |
. . . . . . 7
⊢
(((((𝐴 ∈
ℤ ∧ 𝑁 ∈
ℤ ∧ 𝑁 ≠ 0)
∧ 𝑛 ∈ ℕ)
∧ 𝑛 ∈ ℙ)
∧ ¬ 𝑛 = 2) →
𝑛 ≠ 2) |
59 | | eldifsn 3710 |
. . . . . . 7
⊢ (𝑛 ∈ (ℙ ∖ {2})
↔ (𝑛 ∈ ℙ
∧ 𝑛 ≠
2)) |
60 | 56, 58, 59 | sylanbrc 415 |
. . . . . 6
⊢
(((((𝐴 ∈
ℤ ∧ 𝑁 ∈
ℤ ∧ 𝑁 ≠ 0)
∧ 𝑛 ∈ ℕ)
∧ 𝑛 ∈ ℙ)
∧ ¬ 𝑛 = 2) →
𝑛 ∈ (ℙ ∖
{2})) |
61 | 7 | lgslem4 13698 |
. . . . . 6
⊢ ((𝐴 ∈ ℤ ∧ 𝑛 ∈ (ℙ ∖ {2}))
→ ((((𝐴↑((𝑛 − 1) / 2)) + 1) mod 𝑛) − 1) ∈ 𝑍) |
62 | 55, 60, 61 | syl2anc 409 |
. . . . 5
⊢
(((((𝐴 ∈
ℤ ∧ 𝑁 ∈
ℤ ∧ 𝑁 ≠ 0)
∧ 𝑛 ∈ ℕ)
∧ 𝑛 ∈ ℙ)
∧ ¬ 𝑛 = 2) →
((((𝐴↑((𝑛 − 1) / 2)) + 1) mod 𝑛) − 1) ∈ 𝑍) |
63 | | simplr 525 |
. . . . . . 7
⊢ ((((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) ∧ 𝑛 ∈ ℕ) ∧ 𝑛 ∈ ℙ) → 𝑛 ∈
ℕ) |
64 | 63 | nnzd 9333 |
. . . . . 6
⊢ ((((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) ∧ 𝑛 ∈ ℕ) ∧ 𝑛 ∈ ℙ) → 𝑛 ∈
ℤ) |
65 | | 2z 9240 |
. . . . . 6
⊢ 2 ∈
ℤ |
66 | | zdceq 9287 |
. . . . . 6
⊢ ((𝑛 ∈ ℤ ∧ 2 ∈
ℤ) → DECID 𝑛 = 2) |
67 | 64, 65, 66 | sylancl 411 |
. . . . 5
⊢ ((((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) ∧ 𝑛 ∈ ℕ) ∧ 𝑛 ∈ ℙ) →
DECID 𝑛 =
2) |
68 | 53, 62, 67 | ifcldadc 3555 |
. . . 4
⊢ ((((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) ∧ 𝑛 ∈ ℕ) ∧ 𝑛 ∈ ℙ) → if(𝑛 = 2, if(2 ∥ 𝐴, 0, if((𝐴 mod 8) ∈ {1, 7}, 1, -1)), ((((𝐴↑((𝑛 − 1) / 2)) + 1) mod 𝑛) − 1)) ∈ 𝑍) |
69 | | simpr 109 |
. . . . 5
⊢ ((((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) ∧ 𝑛 ∈ ℕ) ∧ 𝑛 ∈ ℙ) → 𝑛 ∈
ℙ) |
70 | | simpll2 1032 |
. . . . 5
⊢ ((((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) ∧ 𝑛 ∈ ℕ) ∧ 𝑛 ∈ ℙ) → 𝑁 ∈
ℤ) |
71 | | simpll3 1033 |
. . . . 5
⊢ ((((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) ∧ 𝑛 ∈ ℕ) ∧ 𝑛 ∈ ℙ) → 𝑁 ≠ 0) |
72 | | pczcl 12252 |
. . . . 5
⊢ ((𝑛 ∈ ℙ ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) → (𝑛 pCnt 𝑁) ∈
ℕ0) |
73 | 69, 70, 71, 72 | syl12anc 1231 |
. . . 4
⊢ ((((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) ∧ 𝑛 ∈ ℕ) ∧ 𝑛 ∈ ℙ) → (𝑛 pCnt 𝑁) ∈
ℕ0) |
74 | 7 | ssrab3 3233 |
. . . . . 6
⊢ 𝑍 ⊆
ℤ |
75 | | zsscn 9220 |
. . . . . 6
⊢ ℤ
⊆ ℂ |
76 | 74, 75 | sstri 3156 |
. . . . 5
⊢ 𝑍 ⊆
ℂ |
77 | 7 | lgslem3 13697 |
. . . . 5
⊢ ((𝑎 ∈ 𝑍 ∧ 𝑏 ∈ 𝑍) → (𝑎 · 𝑏) ∈ 𝑍) |
78 | 76, 77, 18 | expcllem 10487 |
. . . 4
⊢
((if(𝑛 = 2, if(2
∥ 𝐴, 0, if((𝐴 mod 8) ∈ {1, 7}, 1, -1)),
((((𝐴↑((𝑛 − 1) / 2)) + 1) mod 𝑛) − 1)) ∈ 𝑍 ∧ (𝑛 pCnt 𝑁) ∈ ℕ0) →
(if(𝑛 = 2, if(2 ∥
𝐴, 0, if((𝐴 mod 8) ∈ {1, 7}, 1, -1)), ((((𝐴↑((𝑛 − 1) / 2)) + 1) mod 𝑛) − 1))↑(𝑛 pCnt 𝑁)) ∈ 𝑍) |
79 | 68, 73, 78 | syl2anc 409 |
. . 3
⊢ ((((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) ∧ 𝑛 ∈ ℕ) ∧ 𝑛 ∈ ℙ) →
(if(𝑛 = 2, if(2 ∥
𝐴, 0, if((𝐴 mod 8) ∈ {1, 7}, 1, -1)), ((((𝐴↑((𝑛 − 1) / 2)) + 1) mod 𝑛) − 1))↑(𝑛 pCnt 𝑁)) ∈ 𝑍) |
80 | 18 | a1i 9 |
. . 3
⊢ ((((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) ∧ 𝑛 ∈ ℕ) ∧ ¬
𝑛 ∈ ℙ) → 1
∈ 𝑍) |
81 | | simpr 109 |
. . . 4
⊢ (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) ∧ 𝑛 ∈ ℕ) → 𝑛 ∈
ℕ) |
82 | | prmdc 12084 |
. . . 4
⊢ (𝑛 ∈ ℕ →
DECID 𝑛
∈ ℙ) |
83 | 81, 82 | syl 14 |
. . 3
⊢ (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) ∧ 𝑛 ∈ ℕ) →
DECID 𝑛
∈ ℙ) |
84 | 79, 80, 83 | ifcldadc 3555 |
. 2
⊢ (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) ∧ 𝑛 ∈ ℕ) → if(𝑛 ∈ ℙ, (if(𝑛 = 2, if(2 ∥ 𝐴, 0, if((𝐴 mod 8) ∈ {1, 7}, 1, -1)), ((((𝐴↑((𝑛 − 1) / 2)) + 1) mod 𝑛) − 1))↑(𝑛 pCnt 𝑁)), 1) ∈ 𝑍) |
85 | | lgsval.1 |
. 2
⊢ 𝐹 = (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, (if(𝑛 = 2, if(2 ∥ 𝐴, 0, if((𝐴 mod 8) ∈ {1, 7}, 1, -1)), ((((𝐴↑((𝑛 − 1) / 2)) + 1) mod 𝑛) − 1))↑(𝑛 pCnt 𝑁)), 1)) |
86 | 84, 85 | fmptd 5650 |
1
⊢ ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) → 𝐹:ℕ⟶𝑍) |