| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > pcprecl | GIF version | ||
| Description: Closure of the prime power pre-function. (Contributed by Mario Carneiro, 23-Feb-2014.) | 
| Ref | Expression | 
|---|---|
| pclem.1 | ⊢ 𝐴 = {𝑛 ∈ ℕ0 ∣ (𝑃↑𝑛) ∥ 𝑁} | 
| pclem.2 | ⊢ 𝑆 = sup(𝐴, ℝ, < ) | 
| Ref | Expression | 
|---|---|
| pcprecl | ⊢ ((𝑃 ∈ (ℤ≥‘2) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) → (𝑆 ∈ ℕ0 ∧ (𝑃↑𝑆) ∥ 𝑁)) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | pclem.2 | . . 3 ⊢ 𝑆 = sup(𝐴, ℝ, < ) | |
| 2 | pclem.1 | . . . . . . 7 ⊢ 𝐴 = {𝑛 ∈ ℕ0 ∣ (𝑃↑𝑛) ∥ 𝑁} | |
| 3 | 2 | ssrab3 3269 | . . . . . 6 ⊢ 𝐴 ⊆ ℕ0 | 
| 4 | nn0ssz 9344 | . . . . . 6 ⊢ ℕ0 ⊆ ℤ | |
| 5 | 3, 4 | sstri 3192 | . . . . 5 ⊢ 𝐴 ⊆ ℤ | 
| 6 | 5 | a1i 9 | . . . 4 ⊢ ((𝑃 ∈ (ℤ≥‘2) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) → 𝐴 ⊆ ℤ) | 
| 7 | 2 | pclemdc 12457 | . . . 4 ⊢ ((𝑃 ∈ (ℤ≥‘2) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) → ∀𝑥 ∈ ℤ DECID 𝑥 ∈ 𝐴) | 
| 8 | 2 | pclemub 12456 | . . . 4 ⊢ ((𝑃 ∈ (ℤ≥‘2) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) → ∃𝑥 ∈ ℤ ∀𝑦 ∈ 𝐴 𝑦 ≤ 𝑥) | 
| 9 | 2 | pclem0 12455 | . . . . 5 ⊢ ((𝑃 ∈ (ℤ≥‘2) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) → 0 ∈ 𝐴) | 
| 10 | elex2 2779 | . . . . 5 ⊢ (0 ∈ 𝐴 → ∃𝑥 𝑥 ∈ 𝐴) | |
| 11 | 9, 10 | syl 14 | . . . 4 ⊢ ((𝑃 ∈ (ℤ≥‘2) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) → ∃𝑥 𝑥 ∈ 𝐴) | 
| 12 | 6, 7, 8, 11 | suprzcl2dc 10329 | . . 3 ⊢ ((𝑃 ∈ (ℤ≥‘2) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) → sup(𝐴, ℝ, < ) ∈ 𝐴) | 
| 13 | 1, 12 | eqeltrid 2283 | . 2 ⊢ ((𝑃 ∈ (ℤ≥‘2) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) → 𝑆 ∈ 𝐴) | 
| 14 | oveq2 5930 | . . . 4 ⊢ (𝑧 = 𝑆 → (𝑃↑𝑧) = (𝑃↑𝑆)) | |
| 15 | 14 | breq1d 4043 | . . 3 ⊢ (𝑧 = 𝑆 → ((𝑃↑𝑧) ∥ 𝑁 ↔ (𝑃↑𝑆) ∥ 𝑁)) | 
| 16 | oveq2 5930 | . . . . . 6 ⊢ (𝑛 = 𝑧 → (𝑃↑𝑛) = (𝑃↑𝑧)) | |
| 17 | 16 | breq1d 4043 | . . . . 5 ⊢ (𝑛 = 𝑧 → ((𝑃↑𝑛) ∥ 𝑁 ↔ (𝑃↑𝑧) ∥ 𝑁)) | 
| 18 | 17 | cbvrabv 2762 | . . . 4 ⊢ {𝑛 ∈ ℕ0 ∣ (𝑃↑𝑛) ∥ 𝑁} = {𝑧 ∈ ℕ0 ∣ (𝑃↑𝑧) ∥ 𝑁} | 
| 19 | 2, 18 | eqtri 2217 | . . 3 ⊢ 𝐴 = {𝑧 ∈ ℕ0 ∣ (𝑃↑𝑧) ∥ 𝑁} | 
| 20 | 15, 19 | elrab2 2923 | . 2 ⊢ (𝑆 ∈ 𝐴 ↔ (𝑆 ∈ ℕ0 ∧ (𝑃↑𝑆) ∥ 𝑁)) | 
| 21 | 13, 20 | sylib 122 | 1 ⊢ ((𝑃 ∈ (ℤ≥‘2) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) → (𝑆 ∈ ℕ0 ∧ (𝑃↑𝑆) ∥ 𝑁)) | 
| Colors of variables: wff set class | 
| Syntax hints: → wi 4 ∧ wa 104 = wceq 1364 ∃wex 1506 ∈ wcel 2167 ≠ wne 2367 {crab 2479 ⊆ wss 3157 class class class wbr 4033 ‘cfv 5258 (class class class)co 5922 supcsup 7048 ℝcr 7878 0cc0 7879 < clt 8061 2c2 9041 ℕ0cn0 9249 ℤcz 9326 ℤ≥cuz 9601 ↑cexp 10630 ∥ cdvds 11952 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-coll 4148 ax-sep 4151 ax-nul 4159 ax-pow 4207 ax-pr 4242 ax-un 4468 ax-setind 4573 ax-iinf 4624 ax-cnex 7970 ax-resscn 7971 ax-1cn 7972 ax-1re 7973 ax-icn 7974 ax-addcl 7975 ax-addrcl 7976 ax-mulcl 7977 ax-mulrcl 7978 ax-addcom 7979 ax-mulcom 7980 ax-addass 7981 ax-mulass 7982 ax-distr 7983 ax-i2m1 7984 ax-0lt1 7985 ax-1rid 7986 ax-0id 7987 ax-rnegex 7988 ax-precex 7989 ax-cnre 7990 ax-pre-ltirr 7991 ax-pre-ltwlin 7992 ax-pre-lttrn 7993 ax-pre-apti 7994 ax-pre-ltadd 7995 ax-pre-mulgt0 7996 ax-pre-mulext 7997 ax-arch 7998 ax-caucvg 7999 | 
| This theorem depends on definitions: df-bi 117 df-dc 836 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-nel 2463 df-ral 2480 df-rex 2481 df-reu 2482 df-rmo 2483 df-rab 2484 df-v 2765 df-sbc 2990 df-csb 3085 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-nul 3451 df-if 3562 df-pw 3607 df-sn 3628 df-pr 3629 df-op 3631 df-uni 3840 df-int 3875 df-iun 3918 df-br 4034 df-opab 4095 df-mpt 4096 df-tr 4132 df-id 4328 df-po 4331 df-iso 4332 df-iord 4401 df-on 4403 df-ilim 4404 df-suc 4406 df-iom 4627 df-xp 4669 df-rel 4670 df-cnv 4671 df-co 4672 df-dm 4673 df-rn 4674 df-res 4675 df-ima 4676 df-iota 5219 df-fun 5260 df-fn 5261 df-f 5262 df-f1 5263 df-fo 5264 df-f1o 5265 df-fv 5266 df-isom 5267 df-riota 5877 df-ov 5925 df-oprab 5926 df-mpo 5927 df-1st 6198 df-2nd 6199 df-recs 6363 df-frec 6449 df-sup 7050 df-inf 7051 df-pnf 8063 df-mnf 8064 df-xr 8065 df-ltxr 8066 df-le 8067 df-sub 8199 df-neg 8200 df-reap 8602 df-ap 8609 df-div 8700 df-inn 8991 df-2 9049 df-3 9050 df-4 9051 df-n0 9250 df-z 9327 df-uz 9602 df-q 9694 df-rp 9729 df-fz 10084 df-fzo 10218 df-fl 10360 df-mod 10415 df-seqfrec 10540 df-exp 10631 df-cj 11007 df-re 11008 df-im 11009 df-rsqrt 11163 df-abs 11164 df-dvds 11953 | 
| This theorem is referenced by: pcprendvds 12459 pcprendvds2 12460 pcpre1 12461 pcpremul 12462 pceulem 12463 pceu 12464 pczpre 12466 pczcl 12467 pczdvds 12483 | 
| Copyright terms: Public domain | W3C validator |