![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > pcprecl | GIF version |
Description: Closure of the prime power pre-function. (Contributed by Mario Carneiro, 23-Feb-2014.) |
Ref | Expression |
---|---|
pclem.1 | ⊢ 𝐴 = {𝑛 ∈ ℕ0 ∣ (𝑃↑𝑛) ∥ 𝑁} |
pclem.2 | ⊢ 𝑆 = sup(𝐴, ℝ, < ) |
Ref | Expression |
---|---|
pcprecl | ⊢ ((𝑃 ∈ (ℤ≥‘2) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) → (𝑆 ∈ ℕ0 ∧ (𝑃↑𝑆) ∥ 𝑁)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pclem.2 | . . 3 ⊢ 𝑆 = sup(𝐴, ℝ, < ) | |
2 | pclem.1 | . . . . . . 7 ⊢ 𝐴 = {𝑛 ∈ ℕ0 ∣ (𝑃↑𝑛) ∥ 𝑁} | |
3 | 2 | ssrab3 3253 | . . . . . 6 ⊢ 𝐴 ⊆ ℕ0 |
4 | nn0ssz 9285 | . . . . . 6 ⊢ ℕ0 ⊆ ℤ | |
5 | 3, 4 | sstri 3176 | . . . . 5 ⊢ 𝐴 ⊆ ℤ |
6 | 5 | a1i 9 | . . . 4 ⊢ ((𝑃 ∈ (ℤ≥‘2) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) → 𝐴 ⊆ ℤ) |
7 | 2 | pclemdc 12302 | . . . 4 ⊢ ((𝑃 ∈ (ℤ≥‘2) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) → ∀𝑥 ∈ ℤ DECID 𝑥 ∈ 𝐴) |
8 | 2 | pclemub 12301 | . . . 4 ⊢ ((𝑃 ∈ (ℤ≥‘2) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) → ∃𝑥 ∈ ℤ ∀𝑦 ∈ 𝐴 𝑦 ≤ 𝑥) |
9 | 2 | pclem0 12300 | . . . . 5 ⊢ ((𝑃 ∈ (ℤ≥‘2) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) → 0 ∈ 𝐴) |
10 | elex2 2765 | . . . . 5 ⊢ (0 ∈ 𝐴 → ∃𝑥 𝑥 ∈ 𝐴) | |
11 | 9, 10 | syl 14 | . . . 4 ⊢ ((𝑃 ∈ (ℤ≥‘2) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) → ∃𝑥 𝑥 ∈ 𝐴) |
12 | 6, 7, 8, 11 | suprzcl2dc 11970 | . . 3 ⊢ ((𝑃 ∈ (ℤ≥‘2) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) → sup(𝐴, ℝ, < ) ∈ 𝐴) |
13 | 1, 12 | eqeltrid 2274 | . 2 ⊢ ((𝑃 ∈ (ℤ≥‘2) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) → 𝑆 ∈ 𝐴) |
14 | oveq2 5896 | . . . 4 ⊢ (𝑧 = 𝑆 → (𝑃↑𝑧) = (𝑃↑𝑆)) | |
15 | 14 | breq1d 4025 | . . 3 ⊢ (𝑧 = 𝑆 → ((𝑃↑𝑧) ∥ 𝑁 ↔ (𝑃↑𝑆) ∥ 𝑁)) |
16 | oveq2 5896 | . . . . . 6 ⊢ (𝑛 = 𝑧 → (𝑃↑𝑛) = (𝑃↑𝑧)) | |
17 | 16 | breq1d 4025 | . . . . 5 ⊢ (𝑛 = 𝑧 → ((𝑃↑𝑛) ∥ 𝑁 ↔ (𝑃↑𝑧) ∥ 𝑁)) |
18 | 17 | cbvrabv 2748 | . . . 4 ⊢ {𝑛 ∈ ℕ0 ∣ (𝑃↑𝑛) ∥ 𝑁} = {𝑧 ∈ ℕ0 ∣ (𝑃↑𝑧) ∥ 𝑁} |
19 | 2, 18 | eqtri 2208 | . . 3 ⊢ 𝐴 = {𝑧 ∈ ℕ0 ∣ (𝑃↑𝑧) ∥ 𝑁} |
20 | 15, 19 | elrab2 2908 | . 2 ⊢ (𝑆 ∈ 𝐴 ↔ (𝑆 ∈ ℕ0 ∧ (𝑃↑𝑆) ∥ 𝑁)) |
21 | 13, 20 | sylib 122 | 1 ⊢ ((𝑃 ∈ (ℤ≥‘2) ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) → (𝑆 ∈ ℕ0 ∧ (𝑃↑𝑆) ∥ 𝑁)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 = wceq 1363 ∃wex 1502 ∈ wcel 2158 ≠ wne 2357 {crab 2469 ⊆ wss 3141 class class class wbr 4015 ‘cfv 5228 (class class class)co 5888 supcsup 6995 ℝcr 7824 0cc0 7825 < clt 8006 2c2 8984 ℕ0cn0 9190 ℤcz 9267 ℤ≥cuz 9542 ↑cexp 10533 ∥ cdvds 11808 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1457 ax-7 1458 ax-gen 1459 ax-ie1 1503 ax-ie2 1504 ax-8 1514 ax-10 1515 ax-11 1516 ax-i12 1517 ax-bndl 1519 ax-4 1520 ax-17 1536 ax-i9 1540 ax-ial 1544 ax-i5r 1545 ax-13 2160 ax-14 2161 ax-ext 2169 ax-coll 4130 ax-sep 4133 ax-nul 4141 ax-pow 4186 ax-pr 4221 ax-un 4445 ax-setind 4548 ax-iinf 4599 ax-cnex 7916 ax-resscn 7917 ax-1cn 7918 ax-1re 7919 ax-icn 7920 ax-addcl 7921 ax-addrcl 7922 ax-mulcl 7923 ax-mulrcl 7924 ax-addcom 7925 ax-mulcom 7926 ax-addass 7927 ax-mulass 7928 ax-distr 7929 ax-i2m1 7930 ax-0lt1 7931 ax-1rid 7932 ax-0id 7933 ax-rnegex 7934 ax-precex 7935 ax-cnre 7936 ax-pre-ltirr 7937 ax-pre-ltwlin 7938 ax-pre-lttrn 7939 ax-pre-apti 7940 ax-pre-ltadd 7941 ax-pre-mulgt0 7942 ax-pre-mulext 7943 ax-arch 7944 ax-caucvg 7945 |
This theorem depends on definitions: df-bi 117 df-dc 836 df-3or 980 df-3an 981 df-tru 1366 df-fal 1369 df-nf 1471 df-sb 1773 df-eu 2039 df-mo 2040 df-clab 2174 df-cleq 2180 df-clel 2183 df-nfc 2318 df-ne 2358 df-nel 2453 df-ral 2470 df-rex 2471 df-reu 2472 df-rmo 2473 df-rab 2474 df-v 2751 df-sbc 2975 df-csb 3070 df-dif 3143 df-un 3145 df-in 3147 df-ss 3154 df-nul 3435 df-if 3547 df-pw 3589 df-sn 3610 df-pr 3611 df-op 3613 df-uni 3822 df-int 3857 df-iun 3900 df-br 4016 df-opab 4077 df-mpt 4078 df-tr 4114 df-id 4305 df-po 4308 df-iso 4309 df-iord 4378 df-on 4380 df-ilim 4381 df-suc 4383 df-iom 4602 df-xp 4644 df-rel 4645 df-cnv 4646 df-co 4647 df-dm 4648 df-rn 4649 df-res 4650 df-ima 4651 df-iota 5190 df-fun 5230 df-fn 5231 df-f 5232 df-f1 5233 df-fo 5234 df-f1o 5235 df-fv 5236 df-isom 5237 df-riota 5844 df-ov 5891 df-oprab 5892 df-mpo 5893 df-1st 6155 df-2nd 6156 df-recs 6320 df-frec 6406 df-sup 6997 df-inf 6998 df-pnf 8008 df-mnf 8009 df-xr 8010 df-ltxr 8011 df-le 8012 df-sub 8144 df-neg 8145 df-reap 8546 df-ap 8553 df-div 8644 df-inn 8934 df-2 8992 df-3 8993 df-4 8994 df-n0 9191 df-z 9268 df-uz 9543 df-q 9634 df-rp 9668 df-fz 10023 df-fzo 10157 df-fl 10284 df-mod 10337 df-seqfrec 10460 df-exp 10534 df-cj 10865 df-re 10866 df-im 10867 df-rsqrt 11021 df-abs 11022 df-dvds 11809 |
This theorem is referenced by: pcprendvds 12304 pcprendvds2 12305 pcpre1 12306 pcpremul 12307 pceulem 12308 pceu 12309 pczpre 12311 pczcl 12312 pczdvds 12327 |
Copyright terms: Public domain | W3C validator |