| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > sucpw1nss3 | GIF version | ||
| Description: Negated excluded middle implies that the successor of the power set of 1o is not a subset of 3o. (Contributed by James E. Hanson and Jim Kingdon, 31-Jul-2024.) |
| Ref | Expression |
|---|---|
| sucpw1nss3 | ⊢ (¬ EXMID → ¬ suc 𝒫 1o ⊆ 3o) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pw1nel3 7404 | . 2 ⊢ (¬ EXMID → ¬ 𝒫 1o ∈ 3o) | |
| 2 | pw1on 7399 | . . 3 ⊢ 𝒫 1o ∈ On | |
| 3 | sucssel 4512 | . . 3 ⊢ (𝒫 1o ∈ On → (suc 𝒫 1o ⊆ 3o → 𝒫 1o ∈ 3o)) | |
| 4 | 2, 3 | ax-mp 5 | . 2 ⊢ (suc 𝒫 1o ⊆ 3o → 𝒫 1o ∈ 3o) |
| 5 | 1, 4 | nsyl 631 | 1 ⊢ (¬ EXMID → ¬ suc 𝒫 1o ⊆ 3o) |
| Colors of variables: wff set class |
| Syntax hints: ¬ wn 3 → wi 4 ∈ wcel 2200 ⊆ wss 3197 𝒫 cpw 3649 EXMIDwem 4277 Oncon0 4451 suc csuc 4453 1oc1o 6545 3oc3o 6547 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-sep 4201 ax-nul 4209 ax-pow 4257 ax-pr 4292 ax-un 4521 ax-setind 4626 |
| This theorem depends on definitions: df-bi 117 df-dc 840 df-3an 1004 df-tru 1398 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-ral 2513 df-rex 2514 df-v 2801 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-nul 3492 df-pw 3651 df-sn 3672 df-pr 3673 df-uni 3888 df-tr 4182 df-exmid 4278 df-iord 4454 df-on 4456 df-suc 4459 df-1o 6552 df-2o 6553 df-3o 6554 |
| This theorem is referenced by: onntri45 7414 |
| Copyright terms: Public domain | W3C validator |