Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > sucpw1nss3 | GIF version |
Description: Negated excluded middle implies that the successor of the power set of 1o is not a subset of 3o. (Contributed by James E. Hanson and Jim Kingdon, 31-Jul-2024.) |
Ref | Expression |
---|---|
sucpw1nss3 | ⊢ (¬ EXMID → ¬ suc 𝒫 1o ⊆ 3o) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pw1nel3 7149 | . 2 ⊢ (¬ EXMID → ¬ 𝒫 1o ∈ 3o) | |
2 | pw1on 7144 | . . 3 ⊢ 𝒫 1o ∈ On | |
3 | sucssel 4383 | . . 3 ⊢ (𝒫 1o ∈ On → (suc 𝒫 1o ⊆ 3o → 𝒫 1o ∈ 3o)) | |
4 | 2, 3 | ax-mp 5 | . 2 ⊢ (suc 𝒫 1o ⊆ 3o → 𝒫 1o ∈ 3o) |
5 | 1, 4 | nsyl 618 | 1 ⊢ (¬ EXMID → ¬ suc 𝒫 1o ⊆ 3o) |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 → wi 4 ∈ wcel 2128 ⊆ wss 3102 𝒫 cpw 3543 EXMIDwem 4154 Oncon0 4322 suc csuc 4324 1oc1o 6350 3oc3o 6352 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1427 ax-7 1428 ax-gen 1429 ax-ie1 1473 ax-ie2 1474 ax-8 1484 ax-10 1485 ax-11 1486 ax-i12 1487 ax-bndl 1489 ax-4 1490 ax-17 1506 ax-i9 1510 ax-ial 1514 ax-i5r 1515 ax-13 2130 ax-14 2131 ax-ext 2139 ax-sep 4082 ax-nul 4090 ax-pow 4134 ax-pr 4168 ax-un 4392 ax-setind 4494 |
This theorem depends on definitions: df-bi 116 df-dc 821 df-3an 965 df-tru 1338 df-nf 1441 df-sb 1743 df-clab 2144 df-cleq 2150 df-clel 2153 df-nfc 2288 df-ne 2328 df-ral 2440 df-rex 2441 df-v 2714 df-dif 3104 df-un 3106 df-in 3108 df-ss 3115 df-nul 3395 df-pw 3545 df-sn 3566 df-pr 3567 df-uni 3773 df-tr 4063 df-exmid 4155 df-iord 4325 df-on 4327 df-suc 4330 df-1o 6357 df-2o 6358 df-3o 6359 |
This theorem is referenced by: onntri45 7159 |
Copyright terms: Public domain | W3C validator |