| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > sucpw1nss3 | GIF version | ||
| Description: Negated excluded middle implies that the successor of the power set of 1o is not a subset of 3o. (Contributed by James E. Hanson and Jim Kingdon, 31-Jul-2024.) |
| Ref | Expression |
|---|---|
| sucpw1nss3 | ⊢ (¬ EXMID → ¬ suc 𝒫 1o ⊆ 3o) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pw1nel3 7358 | . 2 ⊢ (¬ EXMID → ¬ 𝒫 1o ∈ 3o) | |
| 2 | pw1on 7353 | . . 3 ⊢ 𝒫 1o ∈ On | |
| 3 | sucssel 4478 | . . 3 ⊢ (𝒫 1o ∈ On → (suc 𝒫 1o ⊆ 3o → 𝒫 1o ∈ 3o)) | |
| 4 | 2, 3 | ax-mp 5 | . 2 ⊢ (suc 𝒫 1o ⊆ 3o → 𝒫 1o ∈ 3o) |
| 5 | 1, 4 | nsyl 629 | 1 ⊢ (¬ EXMID → ¬ suc 𝒫 1o ⊆ 3o) |
| Colors of variables: wff set class |
| Syntax hints: ¬ wn 3 → wi 4 ∈ wcel 2177 ⊆ wss 3170 𝒫 cpw 3620 EXMIDwem 4245 Oncon0 4417 suc csuc 4419 1oc1o 6507 3oc3o 6509 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2179 ax-14 2180 ax-ext 2188 ax-sep 4169 ax-nul 4177 ax-pow 4225 ax-pr 4260 ax-un 4487 ax-setind 4592 |
| This theorem depends on definitions: df-bi 117 df-dc 837 df-3an 983 df-tru 1376 df-nf 1485 df-sb 1787 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ne 2378 df-ral 2490 df-rex 2491 df-v 2775 df-dif 3172 df-un 3174 df-in 3176 df-ss 3183 df-nul 3465 df-pw 3622 df-sn 3643 df-pr 3644 df-uni 3856 df-tr 4150 df-exmid 4246 df-iord 4420 df-on 4422 df-suc 4425 df-1o 6514 df-2o 6515 df-3o 6516 |
| This theorem is referenced by: onntri45 7368 |
| Copyright terms: Public domain | W3C validator |