ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sucpw1nss3 GIF version

Theorem sucpw1nss3 7318
Description: Negated excluded middle implies that the successor of the power set of 1o is not a subset of 3o. (Contributed by James E. Hanson and Jim Kingdon, 31-Jul-2024.)
Assertion
Ref Expression
sucpw1nss3 EXMID → ¬ suc 𝒫 1o ⊆ 3o)

Proof of Theorem sucpw1nss3
StepHypRef Expression
1 pw1nel3 7314 . 2 EXMID → ¬ 𝒫 1o ∈ 3o)
2 pw1on 7309 . . 3 𝒫 1o ∈ On
3 sucssel 4460 . . 3 (𝒫 1o ∈ On → (suc 𝒫 1o ⊆ 3o → 𝒫 1o ∈ 3o))
42, 3ax-mp 5 . 2 (suc 𝒫 1o ⊆ 3o → 𝒫 1o ∈ 3o)
51, 4nsyl 629 1 EXMID → ¬ suc 𝒫 1o ⊆ 3o)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wcel 2167  wss 3157  𝒫 cpw 3606  EXMIDwem 4228  Oncon0 4399  suc csuc 4401  1oc1o 6476  3oc3o 6478
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-sep 4152  ax-nul 4160  ax-pow 4208  ax-pr 4243  ax-un 4469  ax-setind 4574
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3an 982  df-tru 1367  df-nf 1475  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-ral 2480  df-rex 2481  df-v 2765  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3452  df-pw 3608  df-sn 3629  df-pr 3630  df-uni 3841  df-tr 4133  df-exmid 4229  df-iord 4402  df-on 4404  df-suc 4407  df-1o 6483  df-2o 6484  df-3o 6485
This theorem is referenced by:  onntri45  7324
  Copyright terms: Public domain W3C validator