ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sucpw1nss3 GIF version

Theorem sucpw1nss3 7236
Description: Negated excluded middle implies that the successor of the power set of 1o is not a subset of 3o. (Contributed by James E. Hanson and Jim Kingdon, 31-Jul-2024.)
Assertion
Ref Expression
sucpw1nss3 EXMID → ¬ suc 𝒫 1o ⊆ 3o)

Proof of Theorem sucpw1nss3
StepHypRef Expression
1 pw1nel3 7232 . 2 EXMID → ¬ 𝒫 1o ∈ 3o)
2 pw1on 7227 . . 3 𝒫 1o ∈ On
3 sucssel 4426 . . 3 (𝒫 1o ∈ On → (suc 𝒫 1o ⊆ 3o → 𝒫 1o ∈ 3o))
42, 3ax-mp 5 . 2 (suc 𝒫 1o ⊆ 3o → 𝒫 1o ∈ 3o)
51, 4nsyl 628 1 EXMID → ¬ suc 𝒫 1o ⊆ 3o)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wcel 2148  wss 3131  𝒫 cpw 3577  EXMIDwem 4196  Oncon0 4365  suc csuc 4367  1oc1o 6412  3oc3o 6414
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-sep 4123  ax-nul 4131  ax-pow 4176  ax-pr 4211  ax-un 4435  ax-setind 4538
This theorem depends on definitions:  df-bi 117  df-dc 835  df-3an 980  df-tru 1356  df-nf 1461  df-sb 1763  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-ral 2460  df-rex 2461  df-v 2741  df-dif 3133  df-un 3135  df-in 3137  df-ss 3144  df-nul 3425  df-pw 3579  df-sn 3600  df-pr 3601  df-uni 3812  df-tr 4104  df-exmid 4197  df-iord 4368  df-on 4370  df-suc 4373  df-1o 6419  df-2o 6420  df-3o 6421
This theorem is referenced by:  onntri45  7242
  Copyright terms: Public domain W3C validator