ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sucpw1nss3 GIF version

Theorem sucpw1nss3 7295
Description: Negated excluded middle implies that the successor of the power set of 1o is not a subset of 3o. (Contributed by James E. Hanson and Jim Kingdon, 31-Jul-2024.)
Assertion
Ref Expression
sucpw1nss3 EXMID → ¬ suc 𝒫 1o ⊆ 3o)

Proof of Theorem sucpw1nss3
StepHypRef Expression
1 pw1nel3 7291 . 2 EXMID → ¬ 𝒫 1o ∈ 3o)
2 pw1on 7286 . . 3 𝒫 1o ∈ On
3 sucssel 4455 . . 3 (𝒫 1o ∈ On → (suc 𝒫 1o ⊆ 3o → 𝒫 1o ∈ 3o))
42, 3ax-mp 5 . 2 (suc 𝒫 1o ⊆ 3o → 𝒫 1o ∈ 3o)
51, 4nsyl 629 1 EXMID → ¬ suc 𝒫 1o ⊆ 3o)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wcel 2164  wss 3153  𝒫 cpw 3601  EXMIDwem 4223  Oncon0 4394  suc csuc 4396  1oc1o 6462  3oc3o 6464
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-sep 4147  ax-nul 4155  ax-pow 4203  ax-pr 4238  ax-un 4464  ax-setind 4569
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-ral 2477  df-rex 2478  df-v 2762  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3447  df-pw 3603  df-sn 3624  df-pr 3625  df-uni 3836  df-tr 4128  df-exmid 4224  df-iord 4397  df-on 4399  df-suc 4402  df-1o 6469  df-2o 6470  df-3o 6471
This theorem is referenced by:  onntri45  7301
  Copyright terms: Public domain W3C validator