Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > 3nsssucpw1 | GIF version |
Description: Negated excluded middle implies that 3o is not a subset of the successor of the power set of 1o. (Contributed by James E. Hanson and Jim Kingdon, 31-Jul-2024.) |
Ref | Expression |
---|---|
3nsssucpw1 | ⊢ (¬ EXMID → ¬ 3o ⊆ suc 𝒫 1o) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-3o 6386 | . . . . . 6 ⊢ 3o = suc 2o | |
2 | 1 | sseq1i 3168 | . . . . 5 ⊢ (3o ⊆ suc 𝒫 1o ↔ suc 2o ⊆ suc 𝒫 1o) |
3 | 1lt2o 6410 | . . . . . . . . 9 ⊢ 1o ∈ 2o | |
4 | ssnel 4546 | . . . . . . . . 9 ⊢ (2o ⊆ 1o → ¬ 1o ∈ 2o) | |
5 | 3, 4 | mt2 630 | . . . . . . . 8 ⊢ ¬ 2o ⊆ 1o |
6 | 2onn 6489 | . . . . . . . . . 10 ⊢ 2o ∈ ω | |
7 | 6 | elexi 2738 | . . . . . . . . 9 ⊢ 2o ∈ V |
8 | 7 | elpw 3565 | . . . . . . . 8 ⊢ (2o ∈ 𝒫 1o ↔ 2o ⊆ 1o) |
9 | 5, 8 | mtbir 661 | . . . . . . 7 ⊢ ¬ 2o ∈ 𝒫 1o |
10 | 9 | a1i 9 | . . . . . 6 ⊢ (suc 2o ⊆ suc 𝒫 1o → ¬ 2o ∈ 𝒫 1o) |
11 | sucssel 4402 | . . . . . . . . 9 ⊢ (2o ∈ ω → (suc 2o ⊆ suc 𝒫 1o → 2o ∈ suc 𝒫 1o)) | |
12 | 6, 11 | ax-mp 5 | . . . . . . . 8 ⊢ (suc 2o ⊆ suc 𝒫 1o → 2o ∈ suc 𝒫 1o) |
13 | elsuci 4381 | . . . . . . . 8 ⊢ (2o ∈ suc 𝒫 1o → (2o ∈ 𝒫 1o ∨ 2o = 𝒫 1o)) | |
14 | 12, 13 | syl 14 | . . . . . . 7 ⊢ (suc 2o ⊆ suc 𝒫 1o → (2o ∈ 𝒫 1o ∨ 2o = 𝒫 1o)) |
15 | 14 | orcomd 719 | . . . . . 6 ⊢ (suc 2o ⊆ suc 𝒫 1o → (2o = 𝒫 1o ∨ 2o ∈ 𝒫 1o)) |
16 | 10, 15 | ecased 1339 | . . . . 5 ⊢ (suc 2o ⊆ suc 𝒫 1o → 2o = 𝒫 1o) |
17 | 2, 16 | sylbi 120 | . . . 4 ⊢ (3o ⊆ suc 𝒫 1o → 2o = 𝒫 1o) |
18 | 17 | eqcomd 2171 | . . 3 ⊢ (3o ⊆ suc 𝒫 1o → 𝒫 1o = 2o) |
19 | exmidpweq 6875 | . . 3 ⊢ (EXMID ↔ 𝒫 1o = 2o) | |
20 | 18, 19 | sylibr 133 | . 2 ⊢ (3o ⊆ suc 𝒫 1o → EXMID) |
21 | 20 | con3i 622 | 1 ⊢ (¬ EXMID → ¬ 3o ⊆ suc 𝒫 1o) |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 → wi 4 ∨ wo 698 = wceq 1343 ∈ wcel 2136 ⊆ wss 3116 𝒫 cpw 3559 EXMIDwem 4173 suc csuc 4343 ωcom 4567 1oc1o 6377 2oc2o 6378 3oc3o 6379 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-13 2138 ax-14 2139 ax-ext 2147 ax-sep 4100 ax-nul 4108 ax-pow 4153 ax-pr 4187 ax-un 4411 ax-setind 4514 |
This theorem depends on definitions: df-bi 116 df-dc 825 df-3an 970 df-tru 1346 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ne 2337 df-ral 2449 df-rex 2450 df-v 2728 df-dif 3118 df-un 3120 df-in 3122 df-ss 3129 df-nul 3410 df-pw 3561 df-sn 3582 df-pr 3583 df-uni 3790 df-int 3825 df-tr 4081 df-exmid 4174 df-iord 4344 df-on 4346 df-suc 4349 df-iom 4568 df-1o 6384 df-2o 6385 df-3o 6386 |
This theorem is referenced by: onntri45 7197 |
Copyright terms: Public domain | W3C validator |