ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  3nsssucpw1 GIF version

Theorem 3nsssucpw1 7213
Description: Negated excluded middle implies that 3o is not a subset of the successor of the power set of 1o. (Contributed by James E. Hanson and Jim Kingdon, 31-Jul-2024.)
Assertion
Ref Expression
3nsssucpw1 EXMID → ¬ 3o ⊆ suc 𝒫 1o)

Proof of Theorem 3nsssucpw1
StepHypRef Expression
1 df-3o 6397 . . . . . 6 3o = suc 2o
21sseq1i 3173 . . . . 5 (3o ⊆ suc 𝒫 1o ↔ suc 2o ⊆ suc 𝒫 1o)
3 1lt2o 6421 . . . . . . . . 9 1o ∈ 2o
4 ssnel 4553 . . . . . . . . 9 (2o ⊆ 1o → ¬ 1o ∈ 2o)
53, 4mt2 635 . . . . . . . 8 ¬ 2o ⊆ 1o
6 2onn 6500 . . . . . . . . . 10 2o ∈ ω
76elexi 2742 . . . . . . . . 9 2o ∈ V
87elpw 3572 . . . . . . . 8 (2o ∈ 𝒫 1o ↔ 2o ⊆ 1o)
95, 8mtbir 666 . . . . . . 7 ¬ 2o ∈ 𝒫 1o
109a1i 9 . . . . . 6 (suc 2o ⊆ suc 𝒫 1o → ¬ 2o ∈ 𝒫 1o)
11 sucssel 4409 . . . . . . . . 9 (2o ∈ ω → (suc 2o ⊆ suc 𝒫 1o → 2o ∈ suc 𝒫 1o))
126, 11ax-mp 5 . . . . . . . 8 (suc 2o ⊆ suc 𝒫 1o → 2o ∈ suc 𝒫 1o)
13 elsuci 4388 . . . . . . . 8 (2o ∈ suc 𝒫 1o → (2o ∈ 𝒫 1o ∨ 2o = 𝒫 1o))
1412, 13syl 14 . . . . . . 7 (suc 2o ⊆ suc 𝒫 1o → (2o ∈ 𝒫 1o ∨ 2o = 𝒫 1o))
1514orcomd 724 . . . . . 6 (suc 2o ⊆ suc 𝒫 1o → (2o = 𝒫 1o ∨ 2o ∈ 𝒫 1o))
1610, 15ecased 1344 . . . . 5 (suc 2o ⊆ suc 𝒫 1o → 2o = 𝒫 1o)
172, 16sylbi 120 . . . 4 (3o ⊆ suc 𝒫 1o → 2o = 𝒫 1o)
1817eqcomd 2176 . . 3 (3o ⊆ suc 𝒫 1o → 𝒫 1o = 2o)
19 exmidpweq 6887 . . 3 (EXMID ↔ 𝒫 1o = 2o)
2018, 19sylibr 133 . 2 (3o ⊆ suc 𝒫 1oEXMID)
2120con3i 627 1 EXMID → ¬ 3o ⊆ suc 𝒫 1o)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wo 703   = wceq 1348  wcel 2141  wss 3121  𝒫 cpw 3566  EXMIDwem 4180  suc csuc 4350  ωcom 4574  1oc1o 6388  2oc2o 6389  3oc3o 6390
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-sep 4107  ax-nul 4115  ax-pow 4160  ax-pr 4194  ax-un 4418  ax-setind 4521
This theorem depends on definitions:  df-bi 116  df-dc 830  df-3an 975  df-tru 1351  df-nf 1454  df-sb 1756  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ne 2341  df-ral 2453  df-rex 2454  df-v 2732  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-nul 3415  df-pw 3568  df-sn 3589  df-pr 3590  df-uni 3797  df-int 3832  df-tr 4088  df-exmid 4181  df-iord 4351  df-on 4353  df-suc 4356  df-iom 4575  df-1o 6395  df-2o 6396  df-3o 6397
This theorem is referenced by:  onntri45  7218
  Copyright terms: Public domain W3C validator