| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > 3nsssucpw1 | GIF version | ||
| Description: Negated excluded middle implies that 3o is not a subset of the successor of the power set of 1o. (Contributed by James E. Hanson and Jim Kingdon, 31-Jul-2024.) | 
| Ref | Expression | 
|---|---|
| 3nsssucpw1 | ⊢ (¬ EXMID → ¬ 3o ⊆ suc 𝒫 1o) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | df-3o 6476 | . . . . . 6 ⊢ 3o = suc 2o | |
| 2 | 1 | sseq1i 3209 | . . . . 5 ⊢ (3o ⊆ suc 𝒫 1o ↔ suc 2o ⊆ suc 𝒫 1o) | 
| 3 | 1lt2o 6500 | . . . . . . . . 9 ⊢ 1o ∈ 2o | |
| 4 | ssnel 4605 | . . . . . . . . 9 ⊢ (2o ⊆ 1o → ¬ 1o ∈ 2o) | |
| 5 | 3, 4 | mt2 641 | . . . . . . . 8 ⊢ ¬ 2o ⊆ 1o | 
| 6 | 2onn 6579 | . . . . . . . . . 10 ⊢ 2o ∈ ω | |
| 7 | 6 | elexi 2775 | . . . . . . . . 9 ⊢ 2o ∈ V | 
| 8 | 7 | elpw 3611 | . . . . . . . 8 ⊢ (2o ∈ 𝒫 1o ↔ 2o ⊆ 1o) | 
| 9 | 5, 8 | mtbir 672 | . . . . . . 7 ⊢ ¬ 2o ∈ 𝒫 1o | 
| 10 | 9 | a1i 9 | . . . . . 6 ⊢ (suc 2o ⊆ suc 𝒫 1o → ¬ 2o ∈ 𝒫 1o) | 
| 11 | sucssel 4459 | . . . . . . . . 9 ⊢ (2o ∈ ω → (suc 2o ⊆ suc 𝒫 1o → 2o ∈ suc 𝒫 1o)) | |
| 12 | 6, 11 | ax-mp 5 | . . . . . . . 8 ⊢ (suc 2o ⊆ suc 𝒫 1o → 2o ∈ suc 𝒫 1o) | 
| 13 | elsuci 4438 | . . . . . . . 8 ⊢ (2o ∈ suc 𝒫 1o → (2o ∈ 𝒫 1o ∨ 2o = 𝒫 1o)) | |
| 14 | 12, 13 | syl 14 | . . . . . . 7 ⊢ (suc 2o ⊆ suc 𝒫 1o → (2o ∈ 𝒫 1o ∨ 2o = 𝒫 1o)) | 
| 15 | 14 | orcomd 730 | . . . . . 6 ⊢ (suc 2o ⊆ suc 𝒫 1o → (2o = 𝒫 1o ∨ 2o ∈ 𝒫 1o)) | 
| 16 | 10, 15 | ecased 1360 | . . . . 5 ⊢ (suc 2o ⊆ suc 𝒫 1o → 2o = 𝒫 1o) | 
| 17 | 2, 16 | sylbi 121 | . . . 4 ⊢ (3o ⊆ suc 𝒫 1o → 2o = 𝒫 1o) | 
| 18 | 17 | eqcomd 2202 | . . 3 ⊢ (3o ⊆ suc 𝒫 1o → 𝒫 1o = 2o) | 
| 19 | exmidpweq 6970 | . . 3 ⊢ (EXMID ↔ 𝒫 1o = 2o) | |
| 20 | 18, 19 | sylibr 134 | . 2 ⊢ (3o ⊆ suc 𝒫 1o → EXMID) | 
| 21 | 20 | con3i 633 | 1 ⊢ (¬ EXMID → ¬ 3o ⊆ suc 𝒫 1o) | 
| Colors of variables: wff set class | 
| Syntax hints: ¬ wn 3 → wi 4 ∨ wo 709 = wceq 1364 ∈ wcel 2167 ⊆ wss 3157 𝒫 cpw 3605 EXMIDwem 4227 suc csuc 4400 ωcom 4626 1oc1o 6467 2oc2o 6468 3oc3o 6469 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-sep 4151 ax-nul 4159 ax-pow 4207 ax-pr 4242 ax-un 4468 ax-setind 4573 | 
| This theorem depends on definitions: df-bi 117 df-dc 836 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-ral 2480 df-rex 2481 df-v 2765 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-nul 3451 df-pw 3607 df-sn 3628 df-pr 3629 df-uni 3840 df-int 3875 df-tr 4132 df-exmid 4228 df-iord 4401 df-on 4403 df-suc 4406 df-iom 4627 df-1o 6474 df-2o 6475 df-3o 6476 | 
| This theorem is referenced by: onntri45 7308 | 
| Copyright terms: Public domain | W3C validator |