ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  3nsssucpw1 GIF version

Theorem 3nsssucpw1 7192
Description: Negated excluded middle implies that 3o is not a subset of the successor of the power set of 1o. (Contributed by James E. Hanson and Jim Kingdon, 31-Jul-2024.)
Assertion
Ref Expression
3nsssucpw1 EXMID → ¬ 3o ⊆ suc 𝒫 1o)

Proof of Theorem 3nsssucpw1
StepHypRef Expression
1 df-3o 6386 . . . . . 6 3o = suc 2o
21sseq1i 3168 . . . . 5 (3o ⊆ suc 𝒫 1o ↔ suc 2o ⊆ suc 𝒫 1o)
3 1lt2o 6410 . . . . . . . . 9 1o ∈ 2o
4 ssnel 4546 . . . . . . . . 9 (2o ⊆ 1o → ¬ 1o ∈ 2o)
53, 4mt2 630 . . . . . . . 8 ¬ 2o ⊆ 1o
6 2onn 6489 . . . . . . . . . 10 2o ∈ ω
76elexi 2738 . . . . . . . . 9 2o ∈ V
87elpw 3565 . . . . . . . 8 (2o ∈ 𝒫 1o ↔ 2o ⊆ 1o)
95, 8mtbir 661 . . . . . . 7 ¬ 2o ∈ 𝒫 1o
109a1i 9 . . . . . 6 (suc 2o ⊆ suc 𝒫 1o → ¬ 2o ∈ 𝒫 1o)
11 sucssel 4402 . . . . . . . . 9 (2o ∈ ω → (suc 2o ⊆ suc 𝒫 1o → 2o ∈ suc 𝒫 1o))
126, 11ax-mp 5 . . . . . . . 8 (suc 2o ⊆ suc 𝒫 1o → 2o ∈ suc 𝒫 1o)
13 elsuci 4381 . . . . . . . 8 (2o ∈ suc 𝒫 1o → (2o ∈ 𝒫 1o ∨ 2o = 𝒫 1o))
1412, 13syl 14 . . . . . . 7 (suc 2o ⊆ suc 𝒫 1o → (2o ∈ 𝒫 1o ∨ 2o = 𝒫 1o))
1514orcomd 719 . . . . . 6 (suc 2o ⊆ suc 𝒫 1o → (2o = 𝒫 1o ∨ 2o ∈ 𝒫 1o))
1610, 15ecased 1339 . . . . 5 (suc 2o ⊆ suc 𝒫 1o → 2o = 𝒫 1o)
172, 16sylbi 120 . . . 4 (3o ⊆ suc 𝒫 1o → 2o = 𝒫 1o)
1817eqcomd 2171 . . 3 (3o ⊆ suc 𝒫 1o → 𝒫 1o = 2o)
19 exmidpweq 6875 . . 3 (EXMID ↔ 𝒫 1o = 2o)
2018, 19sylibr 133 . 2 (3o ⊆ suc 𝒫 1oEXMID)
2120con3i 622 1 EXMID → ¬ 3o ⊆ suc 𝒫 1o)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wo 698   = wceq 1343  wcel 2136  wss 3116  𝒫 cpw 3559  EXMIDwem 4173  suc csuc 4343  ωcom 4567  1oc1o 6377  2oc2o 6378  3oc3o 6379
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-sep 4100  ax-nul 4108  ax-pow 4153  ax-pr 4187  ax-un 4411  ax-setind 4514
This theorem depends on definitions:  df-bi 116  df-dc 825  df-3an 970  df-tru 1346  df-nf 1449  df-sb 1751  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ne 2337  df-ral 2449  df-rex 2450  df-v 2728  df-dif 3118  df-un 3120  df-in 3122  df-ss 3129  df-nul 3410  df-pw 3561  df-sn 3582  df-pr 3583  df-uni 3790  df-int 3825  df-tr 4081  df-exmid 4174  df-iord 4344  df-on 4346  df-suc 4349  df-iom 4568  df-1o 6384  df-2o 6385  df-3o 6386
This theorem is referenced by:  onntri45  7197
  Copyright terms: Public domain W3C validator