| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 3nsssucpw1 | GIF version | ||
| Description: Negated excluded middle implies that 3o is not a subset of the successor of the power set of 1o. (Contributed by James E. Hanson and Jim Kingdon, 31-Jul-2024.) |
| Ref | Expression |
|---|---|
| 3nsssucpw1 | ⊢ (¬ EXMID → ¬ 3o ⊆ suc 𝒫 1o) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-3o 6562 | . . . . . 6 ⊢ 3o = suc 2o | |
| 2 | 1 | sseq1i 3250 | . . . . 5 ⊢ (3o ⊆ suc 𝒫 1o ↔ suc 2o ⊆ suc 𝒫 1o) |
| 3 | 1lt2o 6586 | . . . . . . . . 9 ⊢ 1o ∈ 2o | |
| 4 | ssnel 4660 | . . . . . . . . 9 ⊢ (2o ⊆ 1o → ¬ 1o ∈ 2o) | |
| 5 | 3, 4 | mt2 643 | . . . . . . . 8 ⊢ ¬ 2o ⊆ 1o |
| 6 | 2onn 6665 | . . . . . . . . . 10 ⊢ 2o ∈ ω | |
| 7 | 6 | elexi 2812 | . . . . . . . . 9 ⊢ 2o ∈ V |
| 8 | 7 | elpw 3655 | . . . . . . . 8 ⊢ (2o ∈ 𝒫 1o ↔ 2o ⊆ 1o) |
| 9 | 5, 8 | mtbir 675 | . . . . . . 7 ⊢ ¬ 2o ∈ 𝒫 1o |
| 10 | 9 | a1i 9 | . . . . . 6 ⊢ (suc 2o ⊆ suc 𝒫 1o → ¬ 2o ∈ 𝒫 1o) |
| 11 | sucssel 4514 | . . . . . . . . 9 ⊢ (2o ∈ ω → (suc 2o ⊆ suc 𝒫 1o → 2o ∈ suc 𝒫 1o)) | |
| 12 | 6, 11 | ax-mp 5 | . . . . . . . 8 ⊢ (suc 2o ⊆ suc 𝒫 1o → 2o ∈ suc 𝒫 1o) |
| 13 | elsuci 4493 | . . . . . . . 8 ⊢ (2o ∈ suc 𝒫 1o → (2o ∈ 𝒫 1o ∨ 2o = 𝒫 1o)) | |
| 14 | 12, 13 | syl 14 | . . . . . . 7 ⊢ (suc 2o ⊆ suc 𝒫 1o → (2o ∈ 𝒫 1o ∨ 2o = 𝒫 1o)) |
| 15 | 14 | orcomd 734 | . . . . . 6 ⊢ (suc 2o ⊆ suc 𝒫 1o → (2o = 𝒫 1o ∨ 2o ∈ 𝒫 1o)) |
| 16 | 10, 15 | ecased 1383 | . . . . 5 ⊢ (suc 2o ⊆ suc 𝒫 1o → 2o = 𝒫 1o) |
| 17 | 2, 16 | sylbi 121 | . . . 4 ⊢ (3o ⊆ suc 𝒫 1o → 2o = 𝒫 1o) |
| 18 | 17 | eqcomd 2235 | . . 3 ⊢ (3o ⊆ suc 𝒫 1o → 𝒫 1o = 2o) |
| 19 | exmidpweq 7067 | . . 3 ⊢ (EXMID ↔ 𝒫 1o = 2o) | |
| 20 | 18, 19 | sylibr 134 | . 2 ⊢ (3o ⊆ suc 𝒫 1o → EXMID) |
| 21 | 20 | con3i 635 | 1 ⊢ (¬ EXMID → ¬ 3o ⊆ suc 𝒫 1o) |
| Colors of variables: wff set class |
| Syntax hints: ¬ wn 3 → wi 4 ∨ wo 713 = wceq 1395 ∈ wcel 2200 ⊆ wss 3197 𝒫 cpw 3649 EXMIDwem 4277 suc csuc 4455 ωcom 4681 1oc1o 6553 2oc2o 6554 3oc3o 6555 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-sep 4201 ax-nul 4209 ax-pow 4257 ax-pr 4292 ax-un 4523 ax-setind 4628 |
| This theorem depends on definitions: df-bi 117 df-dc 840 df-3an 1004 df-tru 1398 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-ral 2513 df-rex 2514 df-v 2801 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-nul 3492 df-pw 3651 df-sn 3672 df-pr 3673 df-uni 3888 df-int 3923 df-tr 4182 df-exmid 4278 df-iord 4456 df-on 4458 df-suc 4461 df-iom 4682 df-1o 6560 df-2o 6561 df-3o 6562 |
| This theorem is referenced by: onntri45 7422 |
| Copyright terms: Public domain | W3C validator |