ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  3nsssucpw1 GIF version

Theorem 3nsssucpw1 7330
Description: Negated excluded middle implies that 3o is not a subset of the successor of the power set of 1o. (Contributed by James E. Hanson and Jim Kingdon, 31-Jul-2024.)
Assertion
Ref Expression
3nsssucpw1 EXMID → ¬ 3o ⊆ suc 𝒫 1o)

Proof of Theorem 3nsssucpw1
StepHypRef Expression
1 df-3o 6494 . . . . . 6 3o = suc 2o
21sseq1i 3218 . . . . 5 (3o ⊆ suc 𝒫 1o ↔ suc 2o ⊆ suc 𝒫 1o)
3 1lt2o 6518 . . . . . . . . 9 1o ∈ 2o
4 ssnel 4615 . . . . . . . . 9 (2o ⊆ 1o → ¬ 1o ∈ 2o)
53, 4mt2 641 . . . . . . . 8 ¬ 2o ⊆ 1o
6 2onn 6597 . . . . . . . . . 10 2o ∈ ω
76elexi 2783 . . . . . . . . 9 2o ∈ V
87elpw 3621 . . . . . . . 8 (2o ∈ 𝒫 1o ↔ 2o ⊆ 1o)
95, 8mtbir 672 . . . . . . 7 ¬ 2o ∈ 𝒫 1o
109a1i 9 . . . . . 6 (suc 2o ⊆ suc 𝒫 1o → ¬ 2o ∈ 𝒫 1o)
11 sucssel 4469 . . . . . . . . 9 (2o ∈ ω → (suc 2o ⊆ suc 𝒫 1o → 2o ∈ suc 𝒫 1o))
126, 11ax-mp 5 . . . . . . . 8 (suc 2o ⊆ suc 𝒫 1o → 2o ∈ suc 𝒫 1o)
13 elsuci 4448 . . . . . . . 8 (2o ∈ suc 𝒫 1o → (2o ∈ 𝒫 1o ∨ 2o = 𝒫 1o))
1412, 13syl 14 . . . . . . 7 (suc 2o ⊆ suc 𝒫 1o → (2o ∈ 𝒫 1o ∨ 2o = 𝒫 1o))
1514orcomd 730 . . . . . 6 (suc 2o ⊆ suc 𝒫 1o → (2o = 𝒫 1o ∨ 2o ∈ 𝒫 1o))
1610, 15ecased 1361 . . . . 5 (suc 2o ⊆ suc 𝒫 1o → 2o = 𝒫 1o)
172, 16sylbi 121 . . . 4 (3o ⊆ suc 𝒫 1o → 2o = 𝒫 1o)
1817eqcomd 2210 . . 3 (3o ⊆ suc 𝒫 1o → 𝒫 1o = 2o)
19 exmidpweq 6988 . . 3 (EXMID ↔ 𝒫 1o = 2o)
2018, 19sylibr 134 . 2 (3o ⊆ suc 𝒫 1oEXMID)
2120con3i 633 1 EXMID → ¬ 3o ⊆ suc 𝒫 1o)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wo 709   = wceq 1372  wcel 2175  wss 3165  𝒫 cpw 3615  EXMIDwem 4237  suc csuc 4410  ωcom 4636  1oc1o 6485  2oc2o 6486  3oc3o 6487
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-10 1527  ax-11 1528  ax-i12 1529  ax-bndl 1531  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557  ax-13 2177  ax-14 2178  ax-ext 2186  ax-sep 4161  ax-nul 4169  ax-pow 4217  ax-pr 4252  ax-un 4478  ax-setind 4583
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3an 982  df-tru 1375  df-nf 1483  df-sb 1785  df-clab 2191  df-cleq 2197  df-clel 2200  df-nfc 2336  df-ne 2376  df-ral 2488  df-rex 2489  df-v 2773  df-dif 3167  df-un 3169  df-in 3171  df-ss 3178  df-nul 3460  df-pw 3617  df-sn 3638  df-pr 3639  df-uni 3850  df-int 3885  df-tr 4142  df-exmid 4238  df-iord 4411  df-on 4413  df-suc 4416  df-iom 4637  df-1o 6492  df-2o 6493  df-3o 6494
This theorem is referenced by:  onntri45  7335
  Copyright terms: Public domain W3C validator