| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 3nsssucpw1 | GIF version | ||
| Description: Negated excluded middle implies that 3o is not a subset of the successor of the power set of 1o. (Contributed by James E. Hanson and Jim Kingdon, 31-Jul-2024.) |
| Ref | Expression |
|---|---|
| 3nsssucpw1 | ⊢ (¬ EXMID → ¬ 3o ⊆ suc 𝒫 1o) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-3o 6494 | . . . . . 6 ⊢ 3o = suc 2o | |
| 2 | 1 | sseq1i 3218 | . . . . 5 ⊢ (3o ⊆ suc 𝒫 1o ↔ suc 2o ⊆ suc 𝒫 1o) |
| 3 | 1lt2o 6518 | . . . . . . . . 9 ⊢ 1o ∈ 2o | |
| 4 | ssnel 4615 | . . . . . . . . 9 ⊢ (2o ⊆ 1o → ¬ 1o ∈ 2o) | |
| 5 | 3, 4 | mt2 641 | . . . . . . . 8 ⊢ ¬ 2o ⊆ 1o |
| 6 | 2onn 6597 | . . . . . . . . . 10 ⊢ 2o ∈ ω | |
| 7 | 6 | elexi 2783 | . . . . . . . . 9 ⊢ 2o ∈ V |
| 8 | 7 | elpw 3621 | . . . . . . . 8 ⊢ (2o ∈ 𝒫 1o ↔ 2o ⊆ 1o) |
| 9 | 5, 8 | mtbir 672 | . . . . . . 7 ⊢ ¬ 2o ∈ 𝒫 1o |
| 10 | 9 | a1i 9 | . . . . . 6 ⊢ (suc 2o ⊆ suc 𝒫 1o → ¬ 2o ∈ 𝒫 1o) |
| 11 | sucssel 4469 | . . . . . . . . 9 ⊢ (2o ∈ ω → (suc 2o ⊆ suc 𝒫 1o → 2o ∈ suc 𝒫 1o)) | |
| 12 | 6, 11 | ax-mp 5 | . . . . . . . 8 ⊢ (suc 2o ⊆ suc 𝒫 1o → 2o ∈ suc 𝒫 1o) |
| 13 | elsuci 4448 | . . . . . . . 8 ⊢ (2o ∈ suc 𝒫 1o → (2o ∈ 𝒫 1o ∨ 2o = 𝒫 1o)) | |
| 14 | 12, 13 | syl 14 | . . . . . . 7 ⊢ (suc 2o ⊆ suc 𝒫 1o → (2o ∈ 𝒫 1o ∨ 2o = 𝒫 1o)) |
| 15 | 14 | orcomd 730 | . . . . . 6 ⊢ (suc 2o ⊆ suc 𝒫 1o → (2o = 𝒫 1o ∨ 2o ∈ 𝒫 1o)) |
| 16 | 10, 15 | ecased 1361 | . . . . 5 ⊢ (suc 2o ⊆ suc 𝒫 1o → 2o = 𝒫 1o) |
| 17 | 2, 16 | sylbi 121 | . . . 4 ⊢ (3o ⊆ suc 𝒫 1o → 2o = 𝒫 1o) |
| 18 | 17 | eqcomd 2210 | . . 3 ⊢ (3o ⊆ suc 𝒫 1o → 𝒫 1o = 2o) |
| 19 | exmidpweq 6988 | . . 3 ⊢ (EXMID ↔ 𝒫 1o = 2o) | |
| 20 | 18, 19 | sylibr 134 | . 2 ⊢ (3o ⊆ suc 𝒫 1o → EXMID) |
| 21 | 20 | con3i 633 | 1 ⊢ (¬ EXMID → ¬ 3o ⊆ suc 𝒫 1o) |
| Colors of variables: wff set class |
| Syntax hints: ¬ wn 3 → wi 4 ∨ wo 709 = wceq 1372 ∈ wcel 2175 ⊆ wss 3165 𝒫 cpw 3615 EXMIDwem 4237 suc csuc 4410 ωcom 4636 1oc1o 6485 2oc2o 6486 3oc3o 6487 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-10 1527 ax-11 1528 ax-i12 1529 ax-bndl 1531 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-13 2177 ax-14 2178 ax-ext 2186 ax-sep 4161 ax-nul 4169 ax-pow 4217 ax-pr 4252 ax-un 4478 ax-setind 4583 |
| This theorem depends on definitions: df-bi 117 df-dc 836 df-3an 982 df-tru 1375 df-nf 1483 df-sb 1785 df-clab 2191 df-cleq 2197 df-clel 2200 df-nfc 2336 df-ne 2376 df-ral 2488 df-rex 2489 df-v 2773 df-dif 3167 df-un 3169 df-in 3171 df-ss 3178 df-nul 3460 df-pw 3617 df-sn 3638 df-pr 3639 df-uni 3850 df-int 3885 df-tr 4142 df-exmid 4238 df-iord 4411 df-on 4413 df-suc 4416 df-iom 4637 df-1o 6492 df-2o 6493 df-3o 6494 |
| This theorem is referenced by: onntri45 7335 |
| Copyright terms: Public domain | W3C validator |