![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > 3nsssucpw1 | GIF version |
Description: Negated excluded middle implies that 3o is not a subset of the successor of the power set of 1o. (Contributed by James E. Hanson and Jim Kingdon, 31-Jul-2024.) |
Ref | Expression |
---|---|
3nsssucpw1 | ⊢ (¬ EXMID → ¬ 3o ⊆ suc 𝒫 1o) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-3o 6473 | . . . . . 6 ⊢ 3o = suc 2o | |
2 | 1 | sseq1i 3206 | . . . . 5 ⊢ (3o ⊆ suc 𝒫 1o ↔ suc 2o ⊆ suc 𝒫 1o) |
3 | 1lt2o 6497 | . . . . . . . . 9 ⊢ 1o ∈ 2o | |
4 | ssnel 4602 | . . . . . . . . 9 ⊢ (2o ⊆ 1o → ¬ 1o ∈ 2o) | |
5 | 3, 4 | mt2 641 | . . . . . . . 8 ⊢ ¬ 2o ⊆ 1o |
6 | 2onn 6576 | . . . . . . . . . 10 ⊢ 2o ∈ ω | |
7 | 6 | elexi 2772 | . . . . . . . . 9 ⊢ 2o ∈ V |
8 | 7 | elpw 3608 | . . . . . . . 8 ⊢ (2o ∈ 𝒫 1o ↔ 2o ⊆ 1o) |
9 | 5, 8 | mtbir 672 | . . . . . . 7 ⊢ ¬ 2o ∈ 𝒫 1o |
10 | 9 | a1i 9 | . . . . . 6 ⊢ (suc 2o ⊆ suc 𝒫 1o → ¬ 2o ∈ 𝒫 1o) |
11 | sucssel 4456 | . . . . . . . . 9 ⊢ (2o ∈ ω → (suc 2o ⊆ suc 𝒫 1o → 2o ∈ suc 𝒫 1o)) | |
12 | 6, 11 | ax-mp 5 | . . . . . . . 8 ⊢ (suc 2o ⊆ suc 𝒫 1o → 2o ∈ suc 𝒫 1o) |
13 | elsuci 4435 | . . . . . . . 8 ⊢ (2o ∈ suc 𝒫 1o → (2o ∈ 𝒫 1o ∨ 2o = 𝒫 1o)) | |
14 | 12, 13 | syl 14 | . . . . . . 7 ⊢ (suc 2o ⊆ suc 𝒫 1o → (2o ∈ 𝒫 1o ∨ 2o = 𝒫 1o)) |
15 | 14 | orcomd 730 | . . . . . 6 ⊢ (suc 2o ⊆ suc 𝒫 1o → (2o = 𝒫 1o ∨ 2o ∈ 𝒫 1o)) |
16 | 10, 15 | ecased 1360 | . . . . 5 ⊢ (suc 2o ⊆ suc 𝒫 1o → 2o = 𝒫 1o) |
17 | 2, 16 | sylbi 121 | . . . 4 ⊢ (3o ⊆ suc 𝒫 1o → 2o = 𝒫 1o) |
18 | 17 | eqcomd 2199 | . . 3 ⊢ (3o ⊆ suc 𝒫 1o → 𝒫 1o = 2o) |
19 | exmidpweq 6967 | . . 3 ⊢ (EXMID ↔ 𝒫 1o = 2o) | |
20 | 18, 19 | sylibr 134 | . 2 ⊢ (3o ⊆ suc 𝒫 1o → EXMID) |
21 | 20 | con3i 633 | 1 ⊢ (¬ EXMID → ¬ 3o ⊆ suc 𝒫 1o) |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 → wi 4 ∨ wo 709 = wceq 1364 ∈ wcel 2164 ⊆ wss 3154 𝒫 cpw 3602 EXMIDwem 4224 suc csuc 4397 ωcom 4623 1oc1o 6464 2oc2o 6465 3oc3o 6466 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2166 ax-14 2167 ax-ext 2175 ax-sep 4148 ax-nul 4156 ax-pow 4204 ax-pr 4239 ax-un 4465 ax-setind 4570 |
This theorem depends on definitions: df-bi 117 df-dc 836 df-3an 982 df-tru 1367 df-nf 1472 df-sb 1774 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ne 2365 df-ral 2477 df-rex 2478 df-v 2762 df-dif 3156 df-un 3158 df-in 3160 df-ss 3167 df-nul 3448 df-pw 3604 df-sn 3625 df-pr 3626 df-uni 3837 df-int 3872 df-tr 4129 df-exmid 4225 df-iord 4398 df-on 4400 df-suc 4403 df-iom 4624 df-1o 6471 df-2o 6472 df-3o 6473 |
This theorem is referenced by: onntri45 7303 |
Copyright terms: Public domain | W3C validator |