ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  3nsssucpw1 GIF version

Theorem 3nsssucpw1 7298
Description: Negated excluded middle implies that 3o is not a subset of the successor of the power set of 1o. (Contributed by James E. Hanson and Jim Kingdon, 31-Jul-2024.)
Assertion
Ref Expression
3nsssucpw1 EXMID → ¬ 3o ⊆ suc 𝒫 1o)

Proof of Theorem 3nsssucpw1
StepHypRef Expression
1 df-3o 6473 . . . . . 6 3o = suc 2o
21sseq1i 3206 . . . . 5 (3o ⊆ suc 𝒫 1o ↔ suc 2o ⊆ suc 𝒫 1o)
3 1lt2o 6497 . . . . . . . . 9 1o ∈ 2o
4 ssnel 4602 . . . . . . . . 9 (2o ⊆ 1o → ¬ 1o ∈ 2o)
53, 4mt2 641 . . . . . . . 8 ¬ 2o ⊆ 1o
6 2onn 6576 . . . . . . . . . 10 2o ∈ ω
76elexi 2772 . . . . . . . . 9 2o ∈ V
87elpw 3608 . . . . . . . 8 (2o ∈ 𝒫 1o ↔ 2o ⊆ 1o)
95, 8mtbir 672 . . . . . . 7 ¬ 2o ∈ 𝒫 1o
109a1i 9 . . . . . 6 (suc 2o ⊆ suc 𝒫 1o → ¬ 2o ∈ 𝒫 1o)
11 sucssel 4456 . . . . . . . . 9 (2o ∈ ω → (suc 2o ⊆ suc 𝒫 1o → 2o ∈ suc 𝒫 1o))
126, 11ax-mp 5 . . . . . . . 8 (suc 2o ⊆ suc 𝒫 1o → 2o ∈ suc 𝒫 1o)
13 elsuci 4435 . . . . . . . 8 (2o ∈ suc 𝒫 1o → (2o ∈ 𝒫 1o ∨ 2o = 𝒫 1o))
1412, 13syl 14 . . . . . . 7 (suc 2o ⊆ suc 𝒫 1o → (2o ∈ 𝒫 1o ∨ 2o = 𝒫 1o))
1514orcomd 730 . . . . . 6 (suc 2o ⊆ suc 𝒫 1o → (2o = 𝒫 1o ∨ 2o ∈ 𝒫 1o))
1610, 15ecased 1360 . . . . 5 (suc 2o ⊆ suc 𝒫 1o → 2o = 𝒫 1o)
172, 16sylbi 121 . . . 4 (3o ⊆ suc 𝒫 1o → 2o = 𝒫 1o)
1817eqcomd 2199 . . 3 (3o ⊆ suc 𝒫 1o → 𝒫 1o = 2o)
19 exmidpweq 6967 . . 3 (EXMID ↔ 𝒫 1o = 2o)
2018, 19sylibr 134 . 2 (3o ⊆ suc 𝒫 1oEXMID)
2120con3i 633 1 EXMID → ¬ 3o ⊆ suc 𝒫 1o)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wo 709   = wceq 1364  wcel 2164  wss 3154  𝒫 cpw 3602  EXMIDwem 4224  suc csuc 4397  ωcom 4623  1oc1o 6464  2oc2o 6465  3oc3o 6466
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-sep 4148  ax-nul 4156  ax-pow 4204  ax-pr 4239  ax-un 4465  ax-setind 4570
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-ral 2477  df-rex 2478  df-v 2762  df-dif 3156  df-un 3158  df-in 3160  df-ss 3167  df-nul 3448  df-pw 3604  df-sn 3625  df-pr 3626  df-uni 3837  df-int 3872  df-tr 4129  df-exmid 4225  df-iord 4398  df-on 4400  df-suc 4403  df-iom 4624  df-1o 6471  df-2o 6472  df-3o 6473
This theorem is referenced by:  onntri45  7303
  Copyright terms: Public domain W3C validator