| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > divdivap1d | GIF version | ||
| Description: Division into a fraction. (Contributed by Jim Kingdon, 8-Mar-2020.) |
| Ref | Expression |
|---|---|
| divcld.1 | ⊢ (𝜑 → 𝐴 ∈ ℂ) |
| divcld.2 | ⊢ (𝜑 → 𝐵 ∈ ℂ) |
| divmuld.3 | ⊢ (𝜑 → 𝐶 ∈ ℂ) |
| divmulapd.4 | ⊢ (𝜑 → 𝐵 # 0) |
| divdiv23apd.5 | ⊢ (𝜑 → 𝐶 # 0) |
| Ref | Expression |
|---|---|
| divdivap1d | ⊢ (𝜑 → ((𝐴 / 𝐵) / 𝐶) = (𝐴 / (𝐵 · 𝐶))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | divcld.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ ℂ) | |
| 2 | divcld.2 | . 2 ⊢ (𝜑 → 𝐵 ∈ ℂ) | |
| 3 | divmulapd.4 | . 2 ⊢ (𝜑 → 𝐵 # 0) | |
| 4 | divmuld.3 | . 2 ⊢ (𝜑 → 𝐶 ∈ ℂ) | |
| 5 | divdiv23apd.5 | . 2 ⊢ (𝜑 → 𝐶 # 0) | |
| 6 | divdivap1 8838 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ (𝐵 ∈ ℂ ∧ 𝐵 # 0) ∧ (𝐶 ∈ ℂ ∧ 𝐶 # 0)) → ((𝐴 / 𝐵) / 𝐶) = (𝐴 / (𝐵 · 𝐶))) | |
| 7 | 1, 2, 3, 4, 5, 6 | syl122anc 1261 | 1 ⊢ (𝜑 → ((𝐴 / 𝐵) / 𝐶) = (𝐴 / (𝐵 · 𝐶))) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1375 ∈ wcel 2180 class class class wbr 4062 (class class class)co 5974 ℂcc 7965 0cc0 7967 · cmul 7972 # cap 8696 / cdiv 8787 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 713 ax-5 1473 ax-7 1474 ax-gen 1475 ax-ie1 1519 ax-ie2 1520 ax-8 1530 ax-10 1531 ax-11 1532 ax-i12 1533 ax-bndl 1535 ax-4 1536 ax-17 1552 ax-i9 1556 ax-ial 1560 ax-i5r 1561 ax-13 2182 ax-14 2183 ax-ext 2191 ax-sep 4181 ax-pow 4237 ax-pr 4272 ax-un 4501 ax-setind 4606 ax-cnex 8058 ax-resscn 8059 ax-1cn 8060 ax-1re 8061 ax-icn 8062 ax-addcl 8063 ax-addrcl 8064 ax-mulcl 8065 ax-mulrcl 8066 ax-addcom 8067 ax-mulcom 8068 ax-addass 8069 ax-mulass 8070 ax-distr 8071 ax-i2m1 8072 ax-0lt1 8073 ax-1rid 8074 ax-0id 8075 ax-rnegex 8076 ax-precex 8077 ax-cnre 8078 ax-pre-ltirr 8079 ax-pre-ltwlin 8080 ax-pre-lttrn 8081 ax-pre-apti 8082 ax-pre-ltadd 8083 ax-pre-mulgt0 8084 ax-pre-mulext 8085 |
| This theorem depends on definitions: df-bi 117 df-3an 985 df-tru 1378 df-fal 1381 df-nf 1487 df-sb 1789 df-eu 2060 df-mo 2061 df-clab 2196 df-cleq 2202 df-clel 2205 df-nfc 2341 df-ne 2381 df-nel 2476 df-ral 2493 df-rex 2494 df-reu 2495 df-rmo 2496 df-rab 2497 df-v 2781 df-sbc 3009 df-dif 3179 df-un 3181 df-in 3183 df-ss 3190 df-pw 3631 df-sn 3652 df-pr 3653 df-op 3655 df-uni 3868 df-br 4063 df-opab 4125 df-id 4361 df-po 4364 df-iso 4365 df-xp 4702 df-rel 4703 df-cnv 4704 df-co 4705 df-dm 4706 df-iota 5254 df-fun 5296 df-fv 5302 df-riota 5927 df-ov 5977 df-oprab 5978 df-mpo 5979 df-pnf 8151 df-mnf 8152 df-xr 8153 df-ltxr 8154 df-le 8155 df-sub 8287 df-neg 8288 df-reap 8690 df-ap 8697 df-div 8788 |
| This theorem is referenced by: fldiv4lem1div2uz2 10493 resqrexlemcalc1 11491 resqrexlemcalc3 11493 eftlub 12167 tanval2ap 12190 flodddiv4t2lthalf 12416 bitsp1 12428 sqrt2irrlem 12649 pythagtriplem12 12764 pythagtriplem14 12766 pythagtriplem16 12768 4sqlem7 12873 4sqlem10 12876 dvrecap 15352 gausslemma2dlem3 15707 m1lgs 15729 2lgslem1a2 15731 |
| Copyright terms: Public domain | W3C validator |