Step | Hyp | Ref
| Expression |
1 | | oveq2 5859 |
. . . . 5
⊢ (𝑥 = 0 → (𝐴↑𝑥) = (𝐴↑0)) |
2 | 1 | oveq2d 5867 |
. . . 4
⊢ (𝑥 = 0 → (𝑃 pCnt (𝐴↑𝑥)) = (𝑃 pCnt (𝐴↑0))) |
3 | | oveq1 5858 |
. . . 4
⊢ (𝑥 = 0 → (𝑥 · (𝑃 pCnt 𝐴)) = (0 · (𝑃 pCnt 𝐴))) |
4 | 2, 3 | eqeq12d 2185 |
. . 3
⊢ (𝑥 = 0 → ((𝑃 pCnt (𝐴↑𝑥)) = (𝑥 · (𝑃 pCnt 𝐴)) ↔ (𝑃 pCnt (𝐴↑0)) = (0 · (𝑃 pCnt 𝐴)))) |
5 | | oveq2 5859 |
. . . . 5
⊢ (𝑥 = 𝑦 → (𝐴↑𝑥) = (𝐴↑𝑦)) |
6 | 5 | oveq2d 5867 |
. . . 4
⊢ (𝑥 = 𝑦 → (𝑃 pCnt (𝐴↑𝑥)) = (𝑃 pCnt (𝐴↑𝑦))) |
7 | | oveq1 5858 |
. . . 4
⊢ (𝑥 = 𝑦 → (𝑥 · (𝑃 pCnt 𝐴)) = (𝑦 · (𝑃 pCnt 𝐴))) |
8 | 6, 7 | eqeq12d 2185 |
. . 3
⊢ (𝑥 = 𝑦 → ((𝑃 pCnt (𝐴↑𝑥)) = (𝑥 · (𝑃 pCnt 𝐴)) ↔ (𝑃 pCnt (𝐴↑𝑦)) = (𝑦 · (𝑃 pCnt 𝐴)))) |
9 | | oveq2 5859 |
. . . . 5
⊢ (𝑥 = (𝑦 + 1) → (𝐴↑𝑥) = (𝐴↑(𝑦 + 1))) |
10 | 9 | oveq2d 5867 |
. . . 4
⊢ (𝑥 = (𝑦 + 1) → (𝑃 pCnt (𝐴↑𝑥)) = (𝑃 pCnt (𝐴↑(𝑦 + 1)))) |
11 | | oveq1 5858 |
. . . 4
⊢ (𝑥 = (𝑦 + 1) → (𝑥 · (𝑃 pCnt 𝐴)) = ((𝑦 + 1) · (𝑃 pCnt 𝐴))) |
12 | 10, 11 | eqeq12d 2185 |
. . 3
⊢ (𝑥 = (𝑦 + 1) → ((𝑃 pCnt (𝐴↑𝑥)) = (𝑥 · (𝑃 pCnt 𝐴)) ↔ (𝑃 pCnt (𝐴↑(𝑦 + 1))) = ((𝑦 + 1) · (𝑃 pCnt 𝐴)))) |
13 | | oveq2 5859 |
. . . . 5
⊢ (𝑥 = -𝑦 → (𝐴↑𝑥) = (𝐴↑-𝑦)) |
14 | 13 | oveq2d 5867 |
. . . 4
⊢ (𝑥 = -𝑦 → (𝑃 pCnt (𝐴↑𝑥)) = (𝑃 pCnt (𝐴↑-𝑦))) |
15 | | oveq1 5858 |
. . . 4
⊢ (𝑥 = -𝑦 → (𝑥 · (𝑃 pCnt 𝐴)) = (-𝑦 · (𝑃 pCnt 𝐴))) |
16 | 14, 15 | eqeq12d 2185 |
. . 3
⊢ (𝑥 = -𝑦 → ((𝑃 pCnt (𝐴↑𝑥)) = (𝑥 · (𝑃 pCnt 𝐴)) ↔ (𝑃 pCnt (𝐴↑-𝑦)) = (-𝑦 · (𝑃 pCnt 𝐴)))) |
17 | | oveq2 5859 |
. . . . 5
⊢ (𝑥 = 𝑁 → (𝐴↑𝑥) = (𝐴↑𝑁)) |
18 | 17 | oveq2d 5867 |
. . . 4
⊢ (𝑥 = 𝑁 → (𝑃 pCnt (𝐴↑𝑥)) = (𝑃 pCnt (𝐴↑𝑁))) |
19 | | oveq1 5858 |
. . . 4
⊢ (𝑥 = 𝑁 → (𝑥 · (𝑃 pCnt 𝐴)) = (𝑁 · (𝑃 pCnt 𝐴))) |
20 | 18, 19 | eqeq12d 2185 |
. . 3
⊢ (𝑥 = 𝑁 → ((𝑃 pCnt (𝐴↑𝑥)) = (𝑥 · (𝑃 pCnt 𝐴)) ↔ (𝑃 pCnt (𝐴↑𝑁)) = (𝑁 · (𝑃 pCnt 𝐴)))) |
21 | | pc1 12252 |
. . . . 5
⊢ (𝑃 ∈ ℙ → (𝑃 pCnt 1) = 0) |
22 | 21 | adantr 274 |
. . . 4
⊢ ((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℚ ∧ 𝐴 ≠ 0)) → (𝑃 pCnt 1) = 0) |
23 | | qcn 9586 |
. . . . . . 7
⊢ (𝐴 ∈ ℚ → 𝐴 ∈
ℂ) |
24 | 23 | ad2antrl 487 |
. . . . . 6
⊢ ((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℚ ∧ 𝐴 ≠ 0)) → 𝐴 ∈
ℂ) |
25 | 24 | exp0d 10596 |
. . . . 5
⊢ ((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℚ ∧ 𝐴 ≠ 0)) → (𝐴↑0) = 1) |
26 | 25 | oveq2d 5867 |
. . . 4
⊢ ((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℚ ∧ 𝐴 ≠ 0)) → (𝑃 pCnt (𝐴↑0)) = (𝑃 pCnt 1)) |
27 | | pcqcl 12253 |
. . . . . 6
⊢ ((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℚ ∧ 𝐴 ≠ 0)) → (𝑃 pCnt 𝐴) ∈ ℤ) |
28 | 27 | zcnd 9328 |
. . . . 5
⊢ ((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℚ ∧ 𝐴 ≠ 0)) → (𝑃 pCnt 𝐴) ∈ ℂ) |
29 | 28 | mul02d 8304 |
. . . 4
⊢ ((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℚ ∧ 𝐴 ≠ 0)) → (0 ·
(𝑃 pCnt 𝐴)) = 0) |
30 | 22, 26, 29 | 3eqtr4d 2213 |
. . 3
⊢ ((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℚ ∧ 𝐴 ≠ 0)) → (𝑃 pCnt (𝐴↑0)) = (0 · (𝑃 pCnt 𝐴))) |
31 | | oveq1 5858 |
. . . . 5
⊢ ((𝑃 pCnt (𝐴↑𝑦)) = (𝑦 · (𝑃 pCnt 𝐴)) → ((𝑃 pCnt (𝐴↑𝑦)) + (𝑃 pCnt 𝐴)) = ((𝑦 · (𝑃 pCnt 𝐴)) + (𝑃 pCnt 𝐴))) |
32 | | expp1 10476 |
. . . . . . . . 9
⊢ ((𝐴 ∈ ℂ ∧ 𝑦 ∈ ℕ0)
→ (𝐴↑(𝑦 + 1)) = ((𝐴↑𝑦) · 𝐴)) |
33 | 24, 32 | sylan 281 |
. . . . . . . 8
⊢ (((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℚ ∧ 𝐴 ≠ 0)) ∧ 𝑦 ∈ ℕ0)
→ (𝐴↑(𝑦 + 1)) = ((𝐴↑𝑦) · 𝐴)) |
34 | 33 | oveq2d 5867 |
. . . . . . 7
⊢ (((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℚ ∧ 𝐴 ≠ 0)) ∧ 𝑦 ∈ ℕ0)
→ (𝑃 pCnt (𝐴↑(𝑦 + 1))) = (𝑃 pCnt ((𝐴↑𝑦) · 𝐴))) |
35 | | simpll 524 |
. . . . . . . 8
⊢ (((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℚ ∧ 𝐴 ≠ 0)) ∧ 𝑦 ∈ ℕ0)
→ 𝑃 ∈
ℙ) |
36 | | simplrl 530 |
. . . . . . . . 9
⊢ (((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℚ ∧ 𝐴 ≠ 0)) ∧ 𝑦 ∈ ℕ0)
→ 𝐴 ∈
ℚ) |
37 | | simplrr 531 |
. . . . . . . . 9
⊢ (((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℚ ∧ 𝐴 ≠ 0)) ∧ 𝑦 ∈ ℕ0)
→ 𝐴 ≠
0) |
38 | | nn0z 9225 |
. . . . . . . . . 10
⊢ (𝑦 ∈ ℕ0
→ 𝑦 ∈
ℤ) |
39 | 38 | adantl 275 |
. . . . . . . . 9
⊢ (((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℚ ∧ 𝐴 ≠ 0)) ∧ 𝑦 ∈ ℕ0)
→ 𝑦 ∈
ℤ) |
40 | | qexpclz 10490 |
. . . . . . . . 9
⊢ ((𝐴 ∈ ℚ ∧ 𝐴 ≠ 0 ∧ 𝑦 ∈ ℤ) → (𝐴↑𝑦) ∈ ℚ) |
41 | 36, 37, 39, 40 | syl3anc 1233 |
. . . . . . . 8
⊢ (((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℚ ∧ 𝐴 ≠ 0)) ∧ 𝑦 ∈ ℕ0)
→ (𝐴↑𝑦) ∈
ℚ) |
42 | 24 | adantr 274 |
. . . . . . . . . 10
⊢ (((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℚ ∧ 𝐴 ≠ 0)) ∧ 𝑦 ∈ ℕ0)
→ 𝐴 ∈
ℂ) |
43 | | 0z 9216 |
. . . . . . . . . . . . 13
⊢ 0 ∈
ℤ |
44 | | zq 9578 |
. . . . . . . . . . . . 13
⊢ (0 ∈
ℤ → 0 ∈ ℚ) |
45 | 43, 44 | ax-mp 5 |
. . . . . . . . . . . 12
⊢ 0 ∈
ℚ |
46 | | qapne 9591 |
. . . . . . . . . . . 12
⊢ ((𝐴 ∈ ℚ ∧ 0 ∈
ℚ) → (𝐴 # 0
↔ 𝐴 ≠
0)) |
47 | 36, 45, 46 | sylancl 411 |
. . . . . . . . . . 11
⊢ (((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℚ ∧ 𝐴 ≠ 0)) ∧ 𝑦 ∈ ℕ0)
→ (𝐴 # 0 ↔ 𝐴 ≠ 0)) |
48 | 37, 47 | mpbird 166 |
. . . . . . . . . 10
⊢ (((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℚ ∧ 𝐴 ≠ 0)) ∧ 𝑦 ∈ ℕ0)
→ 𝐴 #
0) |
49 | 42, 48, 39 | expap0d 10608 |
. . . . . . . . 9
⊢ (((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℚ ∧ 𝐴 ≠ 0)) ∧ 𝑦 ∈ ℕ0)
→ (𝐴↑𝑦) # 0) |
50 | | qapne 9591 |
. . . . . . . . . 10
⊢ (((𝐴↑𝑦) ∈ ℚ ∧ 0 ∈ ℚ)
→ ((𝐴↑𝑦) # 0 ↔ (𝐴↑𝑦) ≠ 0)) |
51 | 41, 45, 50 | sylancl 411 |
. . . . . . . . 9
⊢ (((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℚ ∧ 𝐴 ≠ 0)) ∧ 𝑦 ∈ ℕ0)
→ ((𝐴↑𝑦) # 0 ↔ (𝐴↑𝑦) ≠ 0)) |
52 | 49, 51 | mpbid 146 |
. . . . . . . 8
⊢ (((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℚ ∧ 𝐴 ≠ 0)) ∧ 𝑦 ∈ ℕ0)
→ (𝐴↑𝑦) ≠ 0) |
53 | | pcqmul 12250 |
. . . . . . . 8
⊢ ((𝑃 ∈ ℙ ∧ ((𝐴↑𝑦) ∈ ℚ ∧ (𝐴↑𝑦) ≠ 0) ∧ (𝐴 ∈ ℚ ∧ 𝐴 ≠ 0)) → (𝑃 pCnt ((𝐴↑𝑦) · 𝐴)) = ((𝑃 pCnt (𝐴↑𝑦)) + (𝑃 pCnt 𝐴))) |
54 | 35, 41, 52, 36, 37, 53 | syl122anc 1242 |
. . . . . . 7
⊢ (((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℚ ∧ 𝐴 ≠ 0)) ∧ 𝑦 ∈ ℕ0)
→ (𝑃 pCnt ((𝐴↑𝑦) · 𝐴)) = ((𝑃 pCnt (𝐴↑𝑦)) + (𝑃 pCnt 𝐴))) |
55 | 34, 54 | eqtrd 2203 |
. . . . . 6
⊢ (((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℚ ∧ 𝐴 ≠ 0)) ∧ 𝑦 ∈ ℕ0)
→ (𝑃 pCnt (𝐴↑(𝑦 + 1))) = ((𝑃 pCnt (𝐴↑𝑦)) + (𝑃 pCnt 𝐴))) |
56 | | nn0cn 9138 |
. . . . . . . 8
⊢ (𝑦 ∈ ℕ0
→ 𝑦 ∈
ℂ) |
57 | 56 | adantl 275 |
. . . . . . 7
⊢ (((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℚ ∧ 𝐴 ≠ 0)) ∧ 𝑦 ∈ ℕ0)
→ 𝑦 ∈
ℂ) |
58 | 28 | adantr 274 |
. . . . . . 7
⊢ (((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℚ ∧ 𝐴 ≠ 0)) ∧ 𝑦 ∈ ℕ0)
→ (𝑃 pCnt 𝐴) ∈
ℂ) |
59 | 57, 58 | adddirp1d 7939 |
. . . . . 6
⊢ (((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℚ ∧ 𝐴 ≠ 0)) ∧ 𝑦 ∈ ℕ0)
→ ((𝑦 + 1) ·
(𝑃 pCnt 𝐴)) = ((𝑦 · (𝑃 pCnt 𝐴)) + (𝑃 pCnt 𝐴))) |
60 | 55, 59 | eqeq12d 2185 |
. . . . 5
⊢ (((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℚ ∧ 𝐴 ≠ 0)) ∧ 𝑦 ∈ ℕ0)
→ ((𝑃 pCnt (𝐴↑(𝑦 + 1))) = ((𝑦 + 1) · (𝑃 pCnt 𝐴)) ↔ ((𝑃 pCnt (𝐴↑𝑦)) + (𝑃 pCnt 𝐴)) = ((𝑦 · (𝑃 pCnt 𝐴)) + (𝑃 pCnt 𝐴)))) |
61 | 31, 60 | syl5ibr 155 |
. . . 4
⊢ (((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℚ ∧ 𝐴 ≠ 0)) ∧ 𝑦 ∈ ℕ0)
→ ((𝑃 pCnt (𝐴↑𝑦)) = (𝑦 · (𝑃 pCnt 𝐴)) → (𝑃 pCnt (𝐴↑(𝑦 + 1))) = ((𝑦 + 1) · (𝑃 pCnt 𝐴)))) |
62 | 61 | ex 114 |
. . 3
⊢ ((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℚ ∧ 𝐴 ≠ 0)) → (𝑦 ∈ ℕ0
→ ((𝑃 pCnt (𝐴↑𝑦)) = (𝑦 · (𝑃 pCnt 𝐴)) → (𝑃 pCnt (𝐴↑(𝑦 + 1))) = ((𝑦 + 1) · (𝑃 pCnt 𝐴))))) |
63 | | negeq 8105 |
. . . . 5
⊢ ((𝑃 pCnt (𝐴↑𝑦)) = (𝑦 · (𝑃 pCnt 𝐴)) → -(𝑃 pCnt (𝐴↑𝑦)) = -(𝑦 · (𝑃 pCnt 𝐴))) |
64 | 24 | adantr 274 |
. . . . . . . . 9
⊢ (((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℚ ∧ 𝐴 ≠ 0)) ∧ 𝑦 ∈ ℕ) → 𝐴 ∈
ℂ) |
65 | | nnnn0 9135 |
. . . . . . . . . 10
⊢ (𝑦 ∈ ℕ → 𝑦 ∈
ℕ0) |
66 | 65, 48 | sylan2 284 |
. . . . . . . . 9
⊢ (((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℚ ∧ 𝐴 ≠ 0)) ∧ 𝑦 ∈ ℕ) → 𝐴 # 0) |
67 | 65 | adantl 275 |
. . . . . . . . 9
⊢ (((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℚ ∧ 𝐴 ≠ 0)) ∧ 𝑦 ∈ ℕ) → 𝑦 ∈
ℕ0) |
68 | | expnegap0 10477 |
. . . . . . . . 9
⊢ ((𝐴 ∈ ℂ ∧ 𝐴 # 0 ∧ 𝑦 ∈ ℕ0) → (𝐴↑-𝑦) = (1 / (𝐴↑𝑦))) |
69 | 64, 66, 67, 68 | syl3anc 1233 |
. . . . . . . 8
⊢ (((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℚ ∧ 𝐴 ≠ 0)) ∧ 𝑦 ∈ ℕ) → (𝐴↑-𝑦) = (1 / (𝐴↑𝑦))) |
70 | 69 | oveq2d 5867 |
. . . . . . 7
⊢ (((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℚ ∧ 𝐴 ≠ 0)) ∧ 𝑦 ∈ ℕ) → (𝑃 pCnt (𝐴↑-𝑦)) = (𝑃 pCnt (1 / (𝐴↑𝑦)))) |
71 | | simpll 524 |
. . . . . . . 8
⊢ (((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℚ ∧ 𝐴 ≠ 0)) ∧ 𝑦 ∈ ℕ) → 𝑃 ∈
ℙ) |
72 | 65, 41 | sylan2 284 |
. . . . . . . 8
⊢ (((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℚ ∧ 𝐴 ≠ 0)) ∧ 𝑦 ∈ ℕ) → (𝐴↑𝑦) ∈ ℚ) |
73 | 65, 52 | sylan2 284 |
. . . . . . . 8
⊢ (((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℚ ∧ 𝐴 ≠ 0)) ∧ 𝑦 ∈ ℕ) → (𝐴↑𝑦) ≠ 0) |
74 | | pcrec 12255 |
. . . . . . . 8
⊢ ((𝑃 ∈ ℙ ∧ ((𝐴↑𝑦) ∈ ℚ ∧ (𝐴↑𝑦) ≠ 0)) → (𝑃 pCnt (1 / (𝐴↑𝑦))) = -(𝑃 pCnt (𝐴↑𝑦))) |
75 | 71, 72, 73, 74 | syl12anc 1231 |
. . . . . . 7
⊢ (((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℚ ∧ 𝐴 ≠ 0)) ∧ 𝑦 ∈ ℕ) → (𝑃 pCnt (1 / (𝐴↑𝑦))) = -(𝑃 pCnt (𝐴↑𝑦))) |
76 | 70, 75 | eqtrd 2203 |
. . . . . 6
⊢ (((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℚ ∧ 𝐴 ≠ 0)) ∧ 𝑦 ∈ ℕ) → (𝑃 pCnt (𝐴↑-𝑦)) = -(𝑃 pCnt (𝐴↑𝑦))) |
77 | | nncn 8879 |
. . . . . . 7
⊢ (𝑦 ∈ ℕ → 𝑦 ∈
ℂ) |
78 | | mulneg1 8307 |
. . . . . . 7
⊢ ((𝑦 ∈ ℂ ∧ (𝑃 pCnt 𝐴) ∈ ℂ) → (-𝑦 · (𝑃 pCnt 𝐴)) = -(𝑦 · (𝑃 pCnt 𝐴))) |
79 | 77, 28, 78 | syl2anr 288 |
. . . . . 6
⊢ (((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℚ ∧ 𝐴 ≠ 0)) ∧ 𝑦 ∈ ℕ) → (-𝑦 · (𝑃 pCnt 𝐴)) = -(𝑦 · (𝑃 pCnt 𝐴))) |
80 | 76, 79 | eqeq12d 2185 |
. . . . 5
⊢ (((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℚ ∧ 𝐴 ≠ 0)) ∧ 𝑦 ∈ ℕ) → ((𝑃 pCnt (𝐴↑-𝑦)) = (-𝑦 · (𝑃 pCnt 𝐴)) ↔ -(𝑃 pCnt (𝐴↑𝑦)) = -(𝑦 · (𝑃 pCnt 𝐴)))) |
81 | 63, 80 | syl5ibr 155 |
. . . 4
⊢ (((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℚ ∧ 𝐴 ≠ 0)) ∧ 𝑦 ∈ ℕ) → ((𝑃 pCnt (𝐴↑𝑦)) = (𝑦 · (𝑃 pCnt 𝐴)) → (𝑃 pCnt (𝐴↑-𝑦)) = (-𝑦 · (𝑃 pCnt 𝐴)))) |
82 | 81 | ex 114 |
. . 3
⊢ ((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℚ ∧ 𝐴 ≠ 0)) → (𝑦 ∈ ℕ → ((𝑃 pCnt (𝐴↑𝑦)) = (𝑦 · (𝑃 pCnt 𝐴)) → (𝑃 pCnt (𝐴↑-𝑦)) = (-𝑦 · (𝑃 pCnt 𝐴))))) |
83 | 4, 8, 12, 16, 20, 30, 62, 82 | zindd 9323 |
. 2
⊢ ((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℚ ∧ 𝐴 ≠ 0)) → (𝑁 ∈ ℤ → (𝑃 pCnt (𝐴↑𝑁)) = (𝑁 · (𝑃 pCnt 𝐴)))) |
84 | 83 | 3impia 1195 |
1
⊢ ((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℚ ∧ 𝐴 ≠ 0) ∧ 𝑁 ∈ ℤ) → (𝑃 pCnt (𝐴↑𝑁)) = (𝑁 · (𝑃 pCnt 𝐴))) |