ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  pcexp GIF version

Theorem pcexp 12200
Description: Prime power of an exponential. (Contributed by Mario Carneiro, 10-Aug-2015.)
Assertion
Ref Expression
pcexp ((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℚ ∧ 𝐴 ≠ 0) ∧ 𝑁 ∈ ℤ) → (𝑃 pCnt (𝐴𝑁)) = (𝑁 · (𝑃 pCnt 𝐴)))

Proof of Theorem pcexp
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq2 5835 . . . . 5 (𝑥 = 0 → (𝐴𝑥) = (𝐴↑0))
21oveq2d 5843 . . . 4 (𝑥 = 0 → (𝑃 pCnt (𝐴𝑥)) = (𝑃 pCnt (𝐴↑0)))
3 oveq1 5834 . . . 4 (𝑥 = 0 → (𝑥 · (𝑃 pCnt 𝐴)) = (0 · (𝑃 pCnt 𝐴)))
42, 3eqeq12d 2172 . . 3 (𝑥 = 0 → ((𝑃 pCnt (𝐴𝑥)) = (𝑥 · (𝑃 pCnt 𝐴)) ↔ (𝑃 pCnt (𝐴↑0)) = (0 · (𝑃 pCnt 𝐴))))
5 oveq2 5835 . . . . 5 (𝑥 = 𝑦 → (𝐴𝑥) = (𝐴𝑦))
65oveq2d 5843 . . . 4 (𝑥 = 𝑦 → (𝑃 pCnt (𝐴𝑥)) = (𝑃 pCnt (𝐴𝑦)))
7 oveq1 5834 . . . 4 (𝑥 = 𝑦 → (𝑥 · (𝑃 pCnt 𝐴)) = (𝑦 · (𝑃 pCnt 𝐴)))
86, 7eqeq12d 2172 . . 3 (𝑥 = 𝑦 → ((𝑃 pCnt (𝐴𝑥)) = (𝑥 · (𝑃 pCnt 𝐴)) ↔ (𝑃 pCnt (𝐴𝑦)) = (𝑦 · (𝑃 pCnt 𝐴))))
9 oveq2 5835 . . . . 5 (𝑥 = (𝑦 + 1) → (𝐴𝑥) = (𝐴↑(𝑦 + 1)))
109oveq2d 5843 . . . 4 (𝑥 = (𝑦 + 1) → (𝑃 pCnt (𝐴𝑥)) = (𝑃 pCnt (𝐴↑(𝑦 + 1))))
11 oveq1 5834 . . . 4 (𝑥 = (𝑦 + 1) → (𝑥 · (𝑃 pCnt 𝐴)) = ((𝑦 + 1) · (𝑃 pCnt 𝐴)))
1210, 11eqeq12d 2172 . . 3 (𝑥 = (𝑦 + 1) → ((𝑃 pCnt (𝐴𝑥)) = (𝑥 · (𝑃 pCnt 𝐴)) ↔ (𝑃 pCnt (𝐴↑(𝑦 + 1))) = ((𝑦 + 1) · (𝑃 pCnt 𝐴))))
13 oveq2 5835 . . . . 5 (𝑥 = -𝑦 → (𝐴𝑥) = (𝐴↑-𝑦))
1413oveq2d 5843 . . . 4 (𝑥 = -𝑦 → (𝑃 pCnt (𝐴𝑥)) = (𝑃 pCnt (𝐴↑-𝑦)))
15 oveq1 5834 . . . 4 (𝑥 = -𝑦 → (𝑥 · (𝑃 pCnt 𝐴)) = (-𝑦 · (𝑃 pCnt 𝐴)))
1614, 15eqeq12d 2172 . . 3 (𝑥 = -𝑦 → ((𝑃 pCnt (𝐴𝑥)) = (𝑥 · (𝑃 pCnt 𝐴)) ↔ (𝑃 pCnt (𝐴↑-𝑦)) = (-𝑦 · (𝑃 pCnt 𝐴))))
17 oveq2 5835 . . . . 5 (𝑥 = 𝑁 → (𝐴𝑥) = (𝐴𝑁))
1817oveq2d 5843 . . . 4 (𝑥 = 𝑁 → (𝑃 pCnt (𝐴𝑥)) = (𝑃 pCnt (𝐴𝑁)))
19 oveq1 5834 . . . 4 (𝑥 = 𝑁 → (𝑥 · (𝑃 pCnt 𝐴)) = (𝑁 · (𝑃 pCnt 𝐴)))
2018, 19eqeq12d 2172 . . 3 (𝑥 = 𝑁 → ((𝑃 pCnt (𝐴𝑥)) = (𝑥 · (𝑃 pCnt 𝐴)) ↔ (𝑃 pCnt (𝐴𝑁)) = (𝑁 · (𝑃 pCnt 𝐴))))
21 pc1 12196 . . . . 5 (𝑃 ∈ ℙ → (𝑃 pCnt 1) = 0)
2221adantr 274 . . . 4 ((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℚ ∧ 𝐴 ≠ 0)) → (𝑃 pCnt 1) = 0)
23 qcn 9550 . . . . . . 7 (𝐴 ∈ ℚ → 𝐴 ∈ ℂ)
2423ad2antrl 482 . . . . . 6 ((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℚ ∧ 𝐴 ≠ 0)) → 𝐴 ∈ ℂ)
2524exp0d 10555 . . . . 5 ((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℚ ∧ 𝐴 ≠ 0)) → (𝐴↑0) = 1)
2625oveq2d 5843 . . . 4 ((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℚ ∧ 𝐴 ≠ 0)) → (𝑃 pCnt (𝐴↑0)) = (𝑃 pCnt 1))
27 pcqcl 12197 . . . . . 6 ((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℚ ∧ 𝐴 ≠ 0)) → (𝑃 pCnt 𝐴) ∈ ℤ)
2827zcnd 9293 . . . . 5 ((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℚ ∧ 𝐴 ≠ 0)) → (𝑃 pCnt 𝐴) ∈ ℂ)
2928mul02d 8272 . . . 4 ((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℚ ∧ 𝐴 ≠ 0)) → (0 · (𝑃 pCnt 𝐴)) = 0)
3022, 26, 293eqtr4d 2200 . . 3 ((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℚ ∧ 𝐴 ≠ 0)) → (𝑃 pCnt (𝐴↑0)) = (0 · (𝑃 pCnt 𝐴)))
31 oveq1 5834 . . . . 5 ((𝑃 pCnt (𝐴𝑦)) = (𝑦 · (𝑃 pCnt 𝐴)) → ((𝑃 pCnt (𝐴𝑦)) + (𝑃 pCnt 𝐴)) = ((𝑦 · (𝑃 pCnt 𝐴)) + (𝑃 pCnt 𝐴)))
32 expp1 10436 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ 𝑦 ∈ ℕ0) → (𝐴↑(𝑦 + 1)) = ((𝐴𝑦) · 𝐴))
3324, 32sylan 281 . . . . . . . 8 (((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℚ ∧ 𝐴 ≠ 0)) ∧ 𝑦 ∈ ℕ0) → (𝐴↑(𝑦 + 1)) = ((𝐴𝑦) · 𝐴))
3433oveq2d 5843 . . . . . . 7 (((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℚ ∧ 𝐴 ≠ 0)) ∧ 𝑦 ∈ ℕ0) → (𝑃 pCnt (𝐴↑(𝑦 + 1))) = (𝑃 pCnt ((𝐴𝑦) · 𝐴)))
35 simpll 519 . . . . . . . 8 (((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℚ ∧ 𝐴 ≠ 0)) ∧ 𝑦 ∈ ℕ0) → 𝑃 ∈ ℙ)
36 simplrl 525 . . . . . . . . 9 (((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℚ ∧ 𝐴 ≠ 0)) ∧ 𝑦 ∈ ℕ0) → 𝐴 ∈ ℚ)
37 simplrr 526 . . . . . . . . 9 (((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℚ ∧ 𝐴 ≠ 0)) ∧ 𝑦 ∈ ℕ0) → 𝐴 ≠ 0)
38 nn0z 9193 . . . . . . . . . 10 (𝑦 ∈ ℕ0𝑦 ∈ ℤ)
3938adantl 275 . . . . . . . . 9 (((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℚ ∧ 𝐴 ≠ 0)) ∧ 𝑦 ∈ ℕ0) → 𝑦 ∈ ℤ)
40 qexpclz 10450 . . . . . . . . 9 ((𝐴 ∈ ℚ ∧ 𝐴 ≠ 0 ∧ 𝑦 ∈ ℤ) → (𝐴𝑦) ∈ ℚ)
4136, 37, 39, 40syl3anc 1220 . . . . . . . 8 (((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℚ ∧ 𝐴 ≠ 0)) ∧ 𝑦 ∈ ℕ0) → (𝐴𝑦) ∈ ℚ)
4224adantr 274 . . . . . . . . . 10 (((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℚ ∧ 𝐴 ≠ 0)) ∧ 𝑦 ∈ ℕ0) → 𝐴 ∈ ℂ)
43 0z 9184 . . . . . . . . . . . . 13 0 ∈ ℤ
44 zq 9542 . . . . . . . . . . . . 13 (0 ∈ ℤ → 0 ∈ ℚ)
4543, 44ax-mp 5 . . . . . . . . . . . 12 0 ∈ ℚ
46 qapne 9555 . . . . . . . . . . . 12 ((𝐴 ∈ ℚ ∧ 0 ∈ ℚ) → (𝐴 # 0 ↔ 𝐴 ≠ 0))
4736, 45, 46sylancl 410 . . . . . . . . . . 11 (((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℚ ∧ 𝐴 ≠ 0)) ∧ 𝑦 ∈ ℕ0) → (𝐴 # 0 ↔ 𝐴 ≠ 0))
4837, 47mpbird 166 . . . . . . . . . 10 (((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℚ ∧ 𝐴 ≠ 0)) ∧ 𝑦 ∈ ℕ0) → 𝐴 # 0)
4942, 48, 39expap0d 10567 . . . . . . . . 9 (((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℚ ∧ 𝐴 ≠ 0)) ∧ 𝑦 ∈ ℕ0) → (𝐴𝑦) # 0)
50 qapne 9555 . . . . . . . . . 10 (((𝐴𝑦) ∈ ℚ ∧ 0 ∈ ℚ) → ((𝐴𝑦) # 0 ↔ (𝐴𝑦) ≠ 0))
5141, 45, 50sylancl 410 . . . . . . . . 9 (((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℚ ∧ 𝐴 ≠ 0)) ∧ 𝑦 ∈ ℕ0) → ((𝐴𝑦) # 0 ↔ (𝐴𝑦) ≠ 0))
5249, 51mpbid 146 . . . . . . . 8 (((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℚ ∧ 𝐴 ≠ 0)) ∧ 𝑦 ∈ ℕ0) → (𝐴𝑦) ≠ 0)
53 pcqmul 12194 . . . . . . . 8 ((𝑃 ∈ ℙ ∧ ((𝐴𝑦) ∈ ℚ ∧ (𝐴𝑦) ≠ 0) ∧ (𝐴 ∈ ℚ ∧ 𝐴 ≠ 0)) → (𝑃 pCnt ((𝐴𝑦) · 𝐴)) = ((𝑃 pCnt (𝐴𝑦)) + (𝑃 pCnt 𝐴)))
5435, 41, 52, 36, 37, 53syl122anc 1229 . . . . . . 7 (((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℚ ∧ 𝐴 ≠ 0)) ∧ 𝑦 ∈ ℕ0) → (𝑃 pCnt ((𝐴𝑦) · 𝐴)) = ((𝑃 pCnt (𝐴𝑦)) + (𝑃 pCnt 𝐴)))
5534, 54eqtrd 2190 . . . . . 6 (((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℚ ∧ 𝐴 ≠ 0)) ∧ 𝑦 ∈ ℕ0) → (𝑃 pCnt (𝐴↑(𝑦 + 1))) = ((𝑃 pCnt (𝐴𝑦)) + (𝑃 pCnt 𝐴)))
56 nn0cn 9106 . . . . . . . 8 (𝑦 ∈ ℕ0𝑦 ∈ ℂ)
5756adantl 275 . . . . . . 7 (((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℚ ∧ 𝐴 ≠ 0)) ∧ 𝑦 ∈ ℕ0) → 𝑦 ∈ ℂ)
5828adantr 274 . . . . . . 7 (((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℚ ∧ 𝐴 ≠ 0)) ∧ 𝑦 ∈ ℕ0) → (𝑃 pCnt 𝐴) ∈ ℂ)
5957, 58adddirp1d 7907 . . . . . 6 (((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℚ ∧ 𝐴 ≠ 0)) ∧ 𝑦 ∈ ℕ0) → ((𝑦 + 1) · (𝑃 pCnt 𝐴)) = ((𝑦 · (𝑃 pCnt 𝐴)) + (𝑃 pCnt 𝐴)))
6055, 59eqeq12d 2172 . . . . 5 (((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℚ ∧ 𝐴 ≠ 0)) ∧ 𝑦 ∈ ℕ0) → ((𝑃 pCnt (𝐴↑(𝑦 + 1))) = ((𝑦 + 1) · (𝑃 pCnt 𝐴)) ↔ ((𝑃 pCnt (𝐴𝑦)) + (𝑃 pCnt 𝐴)) = ((𝑦 · (𝑃 pCnt 𝐴)) + (𝑃 pCnt 𝐴))))
6131, 60syl5ibr 155 . . . 4 (((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℚ ∧ 𝐴 ≠ 0)) ∧ 𝑦 ∈ ℕ0) → ((𝑃 pCnt (𝐴𝑦)) = (𝑦 · (𝑃 pCnt 𝐴)) → (𝑃 pCnt (𝐴↑(𝑦 + 1))) = ((𝑦 + 1) · (𝑃 pCnt 𝐴))))
6261ex 114 . . 3 ((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℚ ∧ 𝐴 ≠ 0)) → (𝑦 ∈ ℕ0 → ((𝑃 pCnt (𝐴𝑦)) = (𝑦 · (𝑃 pCnt 𝐴)) → (𝑃 pCnt (𝐴↑(𝑦 + 1))) = ((𝑦 + 1) · (𝑃 pCnt 𝐴)))))
63 negeq 8073 . . . . 5 ((𝑃 pCnt (𝐴𝑦)) = (𝑦 · (𝑃 pCnt 𝐴)) → -(𝑃 pCnt (𝐴𝑦)) = -(𝑦 · (𝑃 pCnt 𝐴)))
6424adantr 274 . . . . . . . . 9 (((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℚ ∧ 𝐴 ≠ 0)) ∧ 𝑦 ∈ ℕ) → 𝐴 ∈ ℂ)
65 nnnn0 9103 . . . . . . . . . 10 (𝑦 ∈ ℕ → 𝑦 ∈ ℕ0)
6665, 48sylan2 284 . . . . . . . . 9 (((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℚ ∧ 𝐴 ≠ 0)) ∧ 𝑦 ∈ ℕ) → 𝐴 # 0)
6765adantl 275 . . . . . . . . 9 (((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℚ ∧ 𝐴 ≠ 0)) ∧ 𝑦 ∈ ℕ) → 𝑦 ∈ ℕ0)
68 expnegap0 10437 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ 𝐴 # 0 ∧ 𝑦 ∈ ℕ0) → (𝐴↑-𝑦) = (1 / (𝐴𝑦)))
6964, 66, 67, 68syl3anc 1220 . . . . . . . 8 (((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℚ ∧ 𝐴 ≠ 0)) ∧ 𝑦 ∈ ℕ) → (𝐴↑-𝑦) = (1 / (𝐴𝑦)))
7069oveq2d 5843 . . . . . . 7 (((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℚ ∧ 𝐴 ≠ 0)) ∧ 𝑦 ∈ ℕ) → (𝑃 pCnt (𝐴↑-𝑦)) = (𝑃 pCnt (1 / (𝐴𝑦))))
71 simpll 519 . . . . . . . 8 (((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℚ ∧ 𝐴 ≠ 0)) ∧ 𝑦 ∈ ℕ) → 𝑃 ∈ ℙ)
7265, 41sylan2 284 . . . . . . . 8 (((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℚ ∧ 𝐴 ≠ 0)) ∧ 𝑦 ∈ ℕ) → (𝐴𝑦) ∈ ℚ)
7365, 52sylan2 284 . . . . . . . 8 (((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℚ ∧ 𝐴 ≠ 0)) ∧ 𝑦 ∈ ℕ) → (𝐴𝑦) ≠ 0)
74 pcrec 12199 . . . . . . . 8 ((𝑃 ∈ ℙ ∧ ((𝐴𝑦) ∈ ℚ ∧ (𝐴𝑦) ≠ 0)) → (𝑃 pCnt (1 / (𝐴𝑦))) = -(𝑃 pCnt (𝐴𝑦)))
7571, 72, 73, 74syl12anc 1218 . . . . . . 7 (((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℚ ∧ 𝐴 ≠ 0)) ∧ 𝑦 ∈ ℕ) → (𝑃 pCnt (1 / (𝐴𝑦))) = -(𝑃 pCnt (𝐴𝑦)))
7670, 75eqtrd 2190 . . . . . 6 (((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℚ ∧ 𝐴 ≠ 0)) ∧ 𝑦 ∈ ℕ) → (𝑃 pCnt (𝐴↑-𝑦)) = -(𝑃 pCnt (𝐴𝑦)))
77 nncn 8847 . . . . . . 7 (𝑦 ∈ ℕ → 𝑦 ∈ ℂ)
78 mulneg1 8275 . . . . . . 7 ((𝑦 ∈ ℂ ∧ (𝑃 pCnt 𝐴) ∈ ℂ) → (-𝑦 · (𝑃 pCnt 𝐴)) = -(𝑦 · (𝑃 pCnt 𝐴)))
7977, 28, 78syl2anr 288 . . . . . 6 (((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℚ ∧ 𝐴 ≠ 0)) ∧ 𝑦 ∈ ℕ) → (-𝑦 · (𝑃 pCnt 𝐴)) = -(𝑦 · (𝑃 pCnt 𝐴)))
8076, 79eqeq12d 2172 . . . . 5 (((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℚ ∧ 𝐴 ≠ 0)) ∧ 𝑦 ∈ ℕ) → ((𝑃 pCnt (𝐴↑-𝑦)) = (-𝑦 · (𝑃 pCnt 𝐴)) ↔ -(𝑃 pCnt (𝐴𝑦)) = -(𝑦 · (𝑃 pCnt 𝐴))))
8163, 80syl5ibr 155 . . . 4 (((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℚ ∧ 𝐴 ≠ 0)) ∧ 𝑦 ∈ ℕ) → ((𝑃 pCnt (𝐴𝑦)) = (𝑦 · (𝑃 pCnt 𝐴)) → (𝑃 pCnt (𝐴↑-𝑦)) = (-𝑦 · (𝑃 pCnt 𝐴))))
8281ex 114 . . 3 ((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℚ ∧ 𝐴 ≠ 0)) → (𝑦 ∈ ℕ → ((𝑃 pCnt (𝐴𝑦)) = (𝑦 · (𝑃 pCnt 𝐴)) → (𝑃 pCnt (𝐴↑-𝑦)) = (-𝑦 · (𝑃 pCnt 𝐴)))))
834, 8, 12, 16, 20, 30, 62, 82zindd 9288 . 2 ((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℚ ∧ 𝐴 ≠ 0)) → (𝑁 ∈ ℤ → (𝑃 pCnt (𝐴𝑁)) = (𝑁 · (𝑃 pCnt 𝐴))))
84833impia 1182 1 ((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℚ ∧ 𝐴 ≠ 0) ∧ 𝑁 ∈ ℤ) → (𝑃 pCnt (𝐴𝑁)) = (𝑁 · (𝑃 pCnt 𝐴)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104  w3a 963   = wceq 1335  wcel 2128  wne 2327   class class class wbr 3967  (class class class)co 5827  cc 7733  0cc0 7735  1c1 7736   + caddc 7738   · cmul 7740  -cneg 8052   # cap 8461   / cdiv 8550  cn 8839  0cn0 9096  cz 9173  cq 9535  cexp 10428  cprime 12000   pCnt cpc 12175
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1427  ax-7 1428  ax-gen 1429  ax-ie1 1473  ax-ie2 1474  ax-8 1484  ax-10 1485  ax-11 1486  ax-i12 1487  ax-bndl 1489  ax-4 1490  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-13 2130  ax-14 2131  ax-ext 2139  ax-coll 4082  ax-sep 4085  ax-nul 4093  ax-pow 4138  ax-pr 4172  ax-un 4396  ax-setind 4499  ax-iinf 4550  ax-cnex 7826  ax-resscn 7827  ax-1cn 7828  ax-1re 7829  ax-icn 7830  ax-addcl 7831  ax-addrcl 7832  ax-mulcl 7833  ax-mulrcl 7834  ax-addcom 7835  ax-mulcom 7836  ax-addass 7837  ax-mulass 7838  ax-distr 7839  ax-i2m1 7840  ax-0lt1 7841  ax-1rid 7842  ax-0id 7843  ax-rnegex 7844  ax-precex 7845  ax-cnre 7846  ax-pre-ltirr 7847  ax-pre-ltwlin 7848  ax-pre-lttrn 7849  ax-pre-apti 7850  ax-pre-ltadd 7851  ax-pre-mulgt0 7852  ax-pre-mulext 7853  ax-arch 7854  ax-caucvg 7855
This theorem depends on definitions:  df-bi 116  df-dc 821  df-3or 964  df-3an 965  df-tru 1338  df-fal 1341  df-nf 1441  df-sb 1743  df-eu 2009  df-mo 2010  df-clab 2144  df-cleq 2150  df-clel 2153  df-nfc 2288  df-ne 2328  df-nel 2423  df-ral 2440  df-rex 2441  df-reu 2442  df-rmo 2443  df-rab 2444  df-v 2714  df-sbc 2938  df-csb 3032  df-dif 3104  df-un 3106  df-in 3108  df-ss 3115  df-nul 3396  df-if 3507  df-pw 3546  df-sn 3567  df-pr 3568  df-op 3570  df-uni 3775  df-int 3810  df-iun 3853  df-br 3968  df-opab 4029  df-mpt 4030  df-tr 4066  df-id 4256  df-po 4259  df-iso 4260  df-iord 4329  df-on 4331  df-ilim 4332  df-suc 4334  df-iom 4553  df-xp 4595  df-rel 4596  df-cnv 4597  df-co 4598  df-dm 4599  df-rn 4600  df-res 4601  df-ima 4602  df-iota 5138  df-fun 5175  df-fn 5176  df-f 5177  df-f1 5178  df-fo 5179  df-f1o 5180  df-fv 5181  df-isom 5182  df-riota 5783  df-ov 5830  df-oprab 5831  df-mpo 5832  df-1st 6091  df-2nd 6092  df-recs 6255  df-frec 6341  df-1o 6366  df-2o 6367  df-er 6483  df-en 6689  df-sup 6931  df-inf 6932  df-pnf 7917  df-mnf 7918  df-xr 7919  df-ltxr 7920  df-le 7921  df-sub 8053  df-neg 8054  df-reap 8455  df-ap 8462  df-div 8551  df-inn 8840  df-2 8898  df-3 8899  df-4 8900  df-n0 9097  df-z 9174  df-uz 9446  df-q 9536  df-rp 9568  df-fz 9920  df-fzo 10052  df-fl 10179  df-mod 10232  df-seqfrec 10355  df-exp 10429  df-cj 10754  df-re 10755  df-im 10756  df-rsqrt 10910  df-abs 10911  df-dvds 11696  df-gcd 11843  df-prm 12001  df-pc 12176
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator