ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  pcexp GIF version

Theorem pcexp 12263
Description: Prime power of an exponential. (Contributed by Mario Carneiro, 10-Aug-2015.)
Assertion
Ref Expression
pcexp ((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℚ ∧ 𝐴 ≠ 0) ∧ 𝑁 ∈ ℤ) → (𝑃 pCnt (𝐴𝑁)) = (𝑁 · (𝑃 pCnt 𝐴)))

Proof of Theorem pcexp
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq2 5861 . . . . 5 (𝑥 = 0 → (𝐴𝑥) = (𝐴↑0))
21oveq2d 5869 . . . 4 (𝑥 = 0 → (𝑃 pCnt (𝐴𝑥)) = (𝑃 pCnt (𝐴↑0)))
3 oveq1 5860 . . . 4 (𝑥 = 0 → (𝑥 · (𝑃 pCnt 𝐴)) = (0 · (𝑃 pCnt 𝐴)))
42, 3eqeq12d 2185 . . 3 (𝑥 = 0 → ((𝑃 pCnt (𝐴𝑥)) = (𝑥 · (𝑃 pCnt 𝐴)) ↔ (𝑃 pCnt (𝐴↑0)) = (0 · (𝑃 pCnt 𝐴))))
5 oveq2 5861 . . . . 5 (𝑥 = 𝑦 → (𝐴𝑥) = (𝐴𝑦))
65oveq2d 5869 . . . 4 (𝑥 = 𝑦 → (𝑃 pCnt (𝐴𝑥)) = (𝑃 pCnt (𝐴𝑦)))
7 oveq1 5860 . . . 4 (𝑥 = 𝑦 → (𝑥 · (𝑃 pCnt 𝐴)) = (𝑦 · (𝑃 pCnt 𝐴)))
86, 7eqeq12d 2185 . . 3 (𝑥 = 𝑦 → ((𝑃 pCnt (𝐴𝑥)) = (𝑥 · (𝑃 pCnt 𝐴)) ↔ (𝑃 pCnt (𝐴𝑦)) = (𝑦 · (𝑃 pCnt 𝐴))))
9 oveq2 5861 . . . . 5 (𝑥 = (𝑦 + 1) → (𝐴𝑥) = (𝐴↑(𝑦 + 1)))
109oveq2d 5869 . . . 4 (𝑥 = (𝑦 + 1) → (𝑃 pCnt (𝐴𝑥)) = (𝑃 pCnt (𝐴↑(𝑦 + 1))))
11 oveq1 5860 . . . 4 (𝑥 = (𝑦 + 1) → (𝑥 · (𝑃 pCnt 𝐴)) = ((𝑦 + 1) · (𝑃 pCnt 𝐴)))
1210, 11eqeq12d 2185 . . 3 (𝑥 = (𝑦 + 1) → ((𝑃 pCnt (𝐴𝑥)) = (𝑥 · (𝑃 pCnt 𝐴)) ↔ (𝑃 pCnt (𝐴↑(𝑦 + 1))) = ((𝑦 + 1) · (𝑃 pCnt 𝐴))))
13 oveq2 5861 . . . . 5 (𝑥 = -𝑦 → (𝐴𝑥) = (𝐴↑-𝑦))
1413oveq2d 5869 . . . 4 (𝑥 = -𝑦 → (𝑃 pCnt (𝐴𝑥)) = (𝑃 pCnt (𝐴↑-𝑦)))
15 oveq1 5860 . . . 4 (𝑥 = -𝑦 → (𝑥 · (𝑃 pCnt 𝐴)) = (-𝑦 · (𝑃 pCnt 𝐴)))
1614, 15eqeq12d 2185 . . 3 (𝑥 = -𝑦 → ((𝑃 pCnt (𝐴𝑥)) = (𝑥 · (𝑃 pCnt 𝐴)) ↔ (𝑃 pCnt (𝐴↑-𝑦)) = (-𝑦 · (𝑃 pCnt 𝐴))))
17 oveq2 5861 . . . . 5 (𝑥 = 𝑁 → (𝐴𝑥) = (𝐴𝑁))
1817oveq2d 5869 . . . 4 (𝑥 = 𝑁 → (𝑃 pCnt (𝐴𝑥)) = (𝑃 pCnt (𝐴𝑁)))
19 oveq1 5860 . . . 4 (𝑥 = 𝑁 → (𝑥 · (𝑃 pCnt 𝐴)) = (𝑁 · (𝑃 pCnt 𝐴)))
2018, 19eqeq12d 2185 . . 3 (𝑥 = 𝑁 → ((𝑃 pCnt (𝐴𝑥)) = (𝑥 · (𝑃 pCnt 𝐴)) ↔ (𝑃 pCnt (𝐴𝑁)) = (𝑁 · (𝑃 pCnt 𝐴))))
21 pc1 12259 . . . . 5 (𝑃 ∈ ℙ → (𝑃 pCnt 1) = 0)
2221adantr 274 . . . 4 ((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℚ ∧ 𝐴 ≠ 0)) → (𝑃 pCnt 1) = 0)
23 qcn 9593 . . . . . . 7 (𝐴 ∈ ℚ → 𝐴 ∈ ℂ)
2423ad2antrl 487 . . . . . 6 ((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℚ ∧ 𝐴 ≠ 0)) → 𝐴 ∈ ℂ)
2524exp0d 10603 . . . . 5 ((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℚ ∧ 𝐴 ≠ 0)) → (𝐴↑0) = 1)
2625oveq2d 5869 . . . 4 ((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℚ ∧ 𝐴 ≠ 0)) → (𝑃 pCnt (𝐴↑0)) = (𝑃 pCnt 1))
27 pcqcl 12260 . . . . . 6 ((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℚ ∧ 𝐴 ≠ 0)) → (𝑃 pCnt 𝐴) ∈ ℤ)
2827zcnd 9335 . . . . 5 ((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℚ ∧ 𝐴 ≠ 0)) → (𝑃 pCnt 𝐴) ∈ ℂ)
2928mul02d 8311 . . . 4 ((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℚ ∧ 𝐴 ≠ 0)) → (0 · (𝑃 pCnt 𝐴)) = 0)
3022, 26, 293eqtr4d 2213 . . 3 ((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℚ ∧ 𝐴 ≠ 0)) → (𝑃 pCnt (𝐴↑0)) = (0 · (𝑃 pCnt 𝐴)))
31 oveq1 5860 . . . . 5 ((𝑃 pCnt (𝐴𝑦)) = (𝑦 · (𝑃 pCnt 𝐴)) → ((𝑃 pCnt (𝐴𝑦)) + (𝑃 pCnt 𝐴)) = ((𝑦 · (𝑃 pCnt 𝐴)) + (𝑃 pCnt 𝐴)))
32 expp1 10483 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ 𝑦 ∈ ℕ0) → (𝐴↑(𝑦 + 1)) = ((𝐴𝑦) · 𝐴))
3324, 32sylan 281 . . . . . . . 8 (((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℚ ∧ 𝐴 ≠ 0)) ∧ 𝑦 ∈ ℕ0) → (𝐴↑(𝑦 + 1)) = ((𝐴𝑦) · 𝐴))
3433oveq2d 5869 . . . . . . 7 (((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℚ ∧ 𝐴 ≠ 0)) ∧ 𝑦 ∈ ℕ0) → (𝑃 pCnt (𝐴↑(𝑦 + 1))) = (𝑃 pCnt ((𝐴𝑦) · 𝐴)))
35 simpll 524 . . . . . . . 8 (((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℚ ∧ 𝐴 ≠ 0)) ∧ 𝑦 ∈ ℕ0) → 𝑃 ∈ ℙ)
36 simplrl 530 . . . . . . . . 9 (((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℚ ∧ 𝐴 ≠ 0)) ∧ 𝑦 ∈ ℕ0) → 𝐴 ∈ ℚ)
37 simplrr 531 . . . . . . . . 9 (((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℚ ∧ 𝐴 ≠ 0)) ∧ 𝑦 ∈ ℕ0) → 𝐴 ≠ 0)
38 nn0z 9232 . . . . . . . . . 10 (𝑦 ∈ ℕ0𝑦 ∈ ℤ)
3938adantl 275 . . . . . . . . 9 (((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℚ ∧ 𝐴 ≠ 0)) ∧ 𝑦 ∈ ℕ0) → 𝑦 ∈ ℤ)
40 qexpclz 10497 . . . . . . . . 9 ((𝐴 ∈ ℚ ∧ 𝐴 ≠ 0 ∧ 𝑦 ∈ ℤ) → (𝐴𝑦) ∈ ℚ)
4136, 37, 39, 40syl3anc 1233 . . . . . . . 8 (((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℚ ∧ 𝐴 ≠ 0)) ∧ 𝑦 ∈ ℕ0) → (𝐴𝑦) ∈ ℚ)
4224adantr 274 . . . . . . . . . 10 (((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℚ ∧ 𝐴 ≠ 0)) ∧ 𝑦 ∈ ℕ0) → 𝐴 ∈ ℂ)
43 0z 9223 . . . . . . . . . . . . 13 0 ∈ ℤ
44 zq 9585 . . . . . . . . . . . . 13 (0 ∈ ℤ → 0 ∈ ℚ)
4543, 44ax-mp 5 . . . . . . . . . . . 12 0 ∈ ℚ
46 qapne 9598 . . . . . . . . . . . 12 ((𝐴 ∈ ℚ ∧ 0 ∈ ℚ) → (𝐴 # 0 ↔ 𝐴 ≠ 0))
4736, 45, 46sylancl 411 . . . . . . . . . . 11 (((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℚ ∧ 𝐴 ≠ 0)) ∧ 𝑦 ∈ ℕ0) → (𝐴 # 0 ↔ 𝐴 ≠ 0))
4837, 47mpbird 166 . . . . . . . . . 10 (((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℚ ∧ 𝐴 ≠ 0)) ∧ 𝑦 ∈ ℕ0) → 𝐴 # 0)
4942, 48, 39expap0d 10615 . . . . . . . . 9 (((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℚ ∧ 𝐴 ≠ 0)) ∧ 𝑦 ∈ ℕ0) → (𝐴𝑦) # 0)
50 qapne 9598 . . . . . . . . . 10 (((𝐴𝑦) ∈ ℚ ∧ 0 ∈ ℚ) → ((𝐴𝑦) # 0 ↔ (𝐴𝑦) ≠ 0))
5141, 45, 50sylancl 411 . . . . . . . . 9 (((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℚ ∧ 𝐴 ≠ 0)) ∧ 𝑦 ∈ ℕ0) → ((𝐴𝑦) # 0 ↔ (𝐴𝑦) ≠ 0))
5249, 51mpbid 146 . . . . . . . 8 (((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℚ ∧ 𝐴 ≠ 0)) ∧ 𝑦 ∈ ℕ0) → (𝐴𝑦) ≠ 0)
53 pcqmul 12257 . . . . . . . 8 ((𝑃 ∈ ℙ ∧ ((𝐴𝑦) ∈ ℚ ∧ (𝐴𝑦) ≠ 0) ∧ (𝐴 ∈ ℚ ∧ 𝐴 ≠ 0)) → (𝑃 pCnt ((𝐴𝑦) · 𝐴)) = ((𝑃 pCnt (𝐴𝑦)) + (𝑃 pCnt 𝐴)))
5435, 41, 52, 36, 37, 53syl122anc 1242 . . . . . . 7 (((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℚ ∧ 𝐴 ≠ 0)) ∧ 𝑦 ∈ ℕ0) → (𝑃 pCnt ((𝐴𝑦) · 𝐴)) = ((𝑃 pCnt (𝐴𝑦)) + (𝑃 pCnt 𝐴)))
5534, 54eqtrd 2203 . . . . . 6 (((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℚ ∧ 𝐴 ≠ 0)) ∧ 𝑦 ∈ ℕ0) → (𝑃 pCnt (𝐴↑(𝑦 + 1))) = ((𝑃 pCnt (𝐴𝑦)) + (𝑃 pCnt 𝐴)))
56 nn0cn 9145 . . . . . . . 8 (𝑦 ∈ ℕ0𝑦 ∈ ℂ)
5756adantl 275 . . . . . . 7 (((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℚ ∧ 𝐴 ≠ 0)) ∧ 𝑦 ∈ ℕ0) → 𝑦 ∈ ℂ)
5828adantr 274 . . . . . . 7 (((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℚ ∧ 𝐴 ≠ 0)) ∧ 𝑦 ∈ ℕ0) → (𝑃 pCnt 𝐴) ∈ ℂ)
5957, 58adddirp1d 7946 . . . . . 6 (((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℚ ∧ 𝐴 ≠ 0)) ∧ 𝑦 ∈ ℕ0) → ((𝑦 + 1) · (𝑃 pCnt 𝐴)) = ((𝑦 · (𝑃 pCnt 𝐴)) + (𝑃 pCnt 𝐴)))
6055, 59eqeq12d 2185 . . . . 5 (((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℚ ∧ 𝐴 ≠ 0)) ∧ 𝑦 ∈ ℕ0) → ((𝑃 pCnt (𝐴↑(𝑦 + 1))) = ((𝑦 + 1) · (𝑃 pCnt 𝐴)) ↔ ((𝑃 pCnt (𝐴𝑦)) + (𝑃 pCnt 𝐴)) = ((𝑦 · (𝑃 pCnt 𝐴)) + (𝑃 pCnt 𝐴))))
6131, 60syl5ibr 155 . . . 4 (((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℚ ∧ 𝐴 ≠ 0)) ∧ 𝑦 ∈ ℕ0) → ((𝑃 pCnt (𝐴𝑦)) = (𝑦 · (𝑃 pCnt 𝐴)) → (𝑃 pCnt (𝐴↑(𝑦 + 1))) = ((𝑦 + 1) · (𝑃 pCnt 𝐴))))
6261ex 114 . . 3 ((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℚ ∧ 𝐴 ≠ 0)) → (𝑦 ∈ ℕ0 → ((𝑃 pCnt (𝐴𝑦)) = (𝑦 · (𝑃 pCnt 𝐴)) → (𝑃 pCnt (𝐴↑(𝑦 + 1))) = ((𝑦 + 1) · (𝑃 pCnt 𝐴)))))
63 negeq 8112 . . . . 5 ((𝑃 pCnt (𝐴𝑦)) = (𝑦 · (𝑃 pCnt 𝐴)) → -(𝑃 pCnt (𝐴𝑦)) = -(𝑦 · (𝑃 pCnt 𝐴)))
6424adantr 274 . . . . . . . . 9 (((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℚ ∧ 𝐴 ≠ 0)) ∧ 𝑦 ∈ ℕ) → 𝐴 ∈ ℂ)
65 nnnn0 9142 . . . . . . . . . 10 (𝑦 ∈ ℕ → 𝑦 ∈ ℕ0)
6665, 48sylan2 284 . . . . . . . . 9 (((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℚ ∧ 𝐴 ≠ 0)) ∧ 𝑦 ∈ ℕ) → 𝐴 # 0)
6765adantl 275 . . . . . . . . 9 (((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℚ ∧ 𝐴 ≠ 0)) ∧ 𝑦 ∈ ℕ) → 𝑦 ∈ ℕ0)
68 expnegap0 10484 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ 𝐴 # 0 ∧ 𝑦 ∈ ℕ0) → (𝐴↑-𝑦) = (1 / (𝐴𝑦)))
6964, 66, 67, 68syl3anc 1233 . . . . . . . 8 (((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℚ ∧ 𝐴 ≠ 0)) ∧ 𝑦 ∈ ℕ) → (𝐴↑-𝑦) = (1 / (𝐴𝑦)))
7069oveq2d 5869 . . . . . . 7 (((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℚ ∧ 𝐴 ≠ 0)) ∧ 𝑦 ∈ ℕ) → (𝑃 pCnt (𝐴↑-𝑦)) = (𝑃 pCnt (1 / (𝐴𝑦))))
71 simpll 524 . . . . . . . 8 (((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℚ ∧ 𝐴 ≠ 0)) ∧ 𝑦 ∈ ℕ) → 𝑃 ∈ ℙ)
7265, 41sylan2 284 . . . . . . . 8 (((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℚ ∧ 𝐴 ≠ 0)) ∧ 𝑦 ∈ ℕ) → (𝐴𝑦) ∈ ℚ)
7365, 52sylan2 284 . . . . . . . 8 (((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℚ ∧ 𝐴 ≠ 0)) ∧ 𝑦 ∈ ℕ) → (𝐴𝑦) ≠ 0)
74 pcrec 12262 . . . . . . . 8 ((𝑃 ∈ ℙ ∧ ((𝐴𝑦) ∈ ℚ ∧ (𝐴𝑦) ≠ 0)) → (𝑃 pCnt (1 / (𝐴𝑦))) = -(𝑃 pCnt (𝐴𝑦)))
7571, 72, 73, 74syl12anc 1231 . . . . . . 7 (((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℚ ∧ 𝐴 ≠ 0)) ∧ 𝑦 ∈ ℕ) → (𝑃 pCnt (1 / (𝐴𝑦))) = -(𝑃 pCnt (𝐴𝑦)))
7670, 75eqtrd 2203 . . . . . 6 (((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℚ ∧ 𝐴 ≠ 0)) ∧ 𝑦 ∈ ℕ) → (𝑃 pCnt (𝐴↑-𝑦)) = -(𝑃 pCnt (𝐴𝑦)))
77 nncn 8886 . . . . . . 7 (𝑦 ∈ ℕ → 𝑦 ∈ ℂ)
78 mulneg1 8314 . . . . . . 7 ((𝑦 ∈ ℂ ∧ (𝑃 pCnt 𝐴) ∈ ℂ) → (-𝑦 · (𝑃 pCnt 𝐴)) = -(𝑦 · (𝑃 pCnt 𝐴)))
7977, 28, 78syl2anr 288 . . . . . 6 (((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℚ ∧ 𝐴 ≠ 0)) ∧ 𝑦 ∈ ℕ) → (-𝑦 · (𝑃 pCnt 𝐴)) = -(𝑦 · (𝑃 pCnt 𝐴)))
8076, 79eqeq12d 2185 . . . . 5 (((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℚ ∧ 𝐴 ≠ 0)) ∧ 𝑦 ∈ ℕ) → ((𝑃 pCnt (𝐴↑-𝑦)) = (-𝑦 · (𝑃 pCnt 𝐴)) ↔ -(𝑃 pCnt (𝐴𝑦)) = -(𝑦 · (𝑃 pCnt 𝐴))))
8163, 80syl5ibr 155 . . . 4 (((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℚ ∧ 𝐴 ≠ 0)) ∧ 𝑦 ∈ ℕ) → ((𝑃 pCnt (𝐴𝑦)) = (𝑦 · (𝑃 pCnt 𝐴)) → (𝑃 pCnt (𝐴↑-𝑦)) = (-𝑦 · (𝑃 pCnt 𝐴))))
8281ex 114 . . 3 ((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℚ ∧ 𝐴 ≠ 0)) → (𝑦 ∈ ℕ → ((𝑃 pCnt (𝐴𝑦)) = (𝑦 · (𝑃 pCnt 𝐴)) → (𝑃 pCnt (𝐴↑-𝑦)) = (-𝑦 · (𝑃 pCnt 𝐴)))))
834, 8, 12, 16, 20, 30, 62, 82zindd 9330 . 2 ((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℚ ∧ 𝐴 ≠ 0)) → (𝑁 ∈ ℤ → (𝑃 pCnt (𝐴𝑁)) = (𝑁 · (𝑃 pCnt 𝐴))))
84833impia 1195 1 ((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℚ ∧ 𝐴 ≠ 0) ∧ 𝑁 ∈ ℤ) → (𝑃 pCnt (𝐴𝑁)) = (𝑁 · (𝑃 pCnt 𝐴)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104  w3a 973   = wceq 1348  wcel 2141  wne 2340   class class class wbr 3989  (class class class)co 5853  cc 7772  0cc0 7774  1c1 7775   + caddc 7777   · cmul 7779  -cneg 8091   # cap 8500   / cdiv 8589  cn 8878  0cn0 9135  cz 9212  cq 9578  cexp 10475  cprime 12061   pCnt cpc 12238
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-coll 4104  ax-sep 4107  ax-nul 4115  ax-pow 4160  ax-pr 4194  ax-un 4418  ax-setind 4521  ax-iinf 4572  ax-cnex 7865  ax-resscn 7866  ax-1cn 7867  ax-1re 7868  ax-icn 7869  ax-addcl 7870  ax-addrcl 7871  ax-mulcl 7872  ax-mulrcl 7873  ax-addcom 7874  ax-mulcom 7875  ax-addass 7876  ax-mulass 7877  ax-distr 7878  ax-i2m1 7879  ax-0lt1 7880  ax-1rid 7881  ax-0id 7882  ax-rnegex 7883  ax-precex 7884  ax-cnre 7885  ax-pre-ltirr 7886  ax-pre-ltwlin 7887  ax-pre-lttrn 7888  ax-pre-apti 7889  ax-pre-ltadd 7890  ax-pre-mulgt0 7891  ax-pre-mulext 7892  ax-arch 7893  ax-caucvg 7894
This theorem depends on definitions:  df-bi 116  df-dc 830  df-3or 974  df-3an 975  df-tru 1351  df-fal 1354  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ne 2341  df-nel 2436  df-ral 2453  df-rex 2454  df-reu 2455  df-rmo 2456  df-rab 2457  df-v 2732  df-sbc 2956  df-csb 3050  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-nul 3415  df-if 3527  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-int 3832  df-iun 3875  df-br 3990  df-opab 4051  df-mpt 4052  df-tr 4088  df-id 4278  df-po 4281  df-iso 4282  df-iord 4351  df-on 4353  df-ilim 4354  df-suc 4356  df-iom 4575  df-xp 4617  df-rel 4618  df-cnv 4619  df-co 4620  df-dm 4621  df-rn 4622  df-res 4623  df-ima 4624  df-iota 5160  df-fun 5200  df-fn 5201  df-f 5202  df-f1 5203  df-fo 5204  df-f1o 5205  df-fv 5206  df-isom 5207  df-riota 5809  df-ov 5856  df-oprab 5857  df-mpo 5858  df-1st 6119  df-2nd 6120  df-recs 6284  df-frec 6370  df-1o 6395  df-2o 6396  df-er 6513  df-en 6719  df-sup 6961  df-inf 6962  df-pnf 7956  df-mnf 7957  df-xr 7958  df-ltxr 7959  df-le 7960  df-sub 8092  df-neg 8093  df-reap 8494  df-ap 8501  df-div 8590  df-inn 8879  df-2 8937  df-3 8938  df-4 8939  df-n0 9136  df-z 9213  df-uz 9488  df-q 9579  df-rp 9611  df-fz 9966  df-fzo 10099  df-fl 10226  df-mod 10279  df-seqfrec 10402  df-exp 10476  df-cj 10806  df-re 10807  df-im 10808  df-rsqrt 10962  df-abs 10963  df-dvds 11750  df-gcd 11898  df-prm 12062  df-pc 12239
This theorem is referenced by:  qexpz  12304  expnprm  12305
  Copyright terms: Public domain W3C validator