ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  pcexp GIF version

Theorem pcexp 12344
Description: Prime power of an exponential. (Contributed by Mario Carneiro, 10-Aug-2015.)
Assertion
Ref Expression
pcexp ((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℚ ∧ 𝐴 ≠ 0) ∧ 𝑁 ∈ ℤ) → (𝑃 pCnt (𝐴𝑁)) = (𝑁 · (𝑃 pCnt 𝐴)))

Proof of Theorem pcexp
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq2 5905 . . . . 5 (𝑥 = 0 → (𝐴𝑥) = (𝐴↑0))
21oveq2d 5913 . . . 4 (𝑥 = 0 → (𝑃 pCnt (𝐴𝑥)) = (𝑃 pCnt (𝐴↑0)))
3 oveq1 5904 . . . 4 (𝑥 = 0 → (𝑥 · (𝑃 pCnt 𝐴)) = (0 · (𝑃 pCnt 𝐴)))
42, 3eqeq12d 2204 . . 3 (𝑥 = 0 → ((𝑃 pCnt (𝐴𝑥)) = (𝑥 · (𝑃 pCnt 𝐴)) ↔ (𝑃 pCnt (𝐴↑0)) = (0 · (𝑃 pCnt 𝐴))))
5 oveq2 5905 . . . . 5 (𝑥 = 𝑦 → (𝐴𝑥) = (𝐴𝑦))
65oveq2d 5913 . . . 4 (𝑥 = 𝑦 → (𝑃 pCnt (𝐴𝑥)) = (𝑃 pCnt (𝐴𝑦)))
7 oveq1 5904 . . . 4 (𝑥 = 𝑦 → (𝑥 · (𝑃 pCnt 𝐴)) = (𝑦 · (𝑃 pCnt 𝐴)))
86, 7eqeq12d 2204 . . 3 (𝑥 = 𝑦 → ((𝑃 pCnt (𝐴𝑥)) = (𝑥 · (𝑃 pCnt 𝐴)) ↔ (𝑃 pCnt (𝐴𝑦)) = (𝑦 · (𝑃 pCnt 𝐴))))
9 oveq2 5905 . . . . 5 (𝑥 = (𝑦 + 1) → (𝐴𝑥) = (𝐴↑(𝑦 + 1)))
109oveq2d 5913 . . . 4 (𝑥 = (𝑦 + 1) → (𝑃 pCnt (𝐴𝑥)) = (𝑃 pCnt (𝐴↑(𝑦 + 1))))
11 oveq1 5904 . . . 4 (𝑥 = (𝑦 + 1) → (𝑥 · (𝑃 pCnt 𝐴)) = ((𝑦 + 1) · (𝑃 pCnt 𝐴)))
1210, 11eqeq12d 2204 . . 3 (𝑥 = (𝑦 + 1) → ((𝑃 pCnt (𝐴𝑥)) = (𝑥 · (𝑃 pCnt 𝐴)) ↔ (𝑃 pCnt (𝐴↑(𝑦 + 1))) = ((𝑦 + 1) · (𝑃 pCnt 𝐴))))
13 oveq2 5905 . . . . 5 (𝑥 = -𝑦 → (𝐴𝑥) = (𝐴↑-𝑦))
1413oveq2d 5913 . . . 4 (𝑥 = -𝑦 → (𝑃 pCnt (𝐴𝑥)) = (𝑃 pCnt (𝐴↑-𝑦)))
15 oveq1 5904 . . . 4 (𝑥 = -𝑦 → (𝑥 · (𝑃 pCnt 𝐴)) = (-𝑦 · (𝑃 pCnt 𝐴)))
1614, 15eqeq12d 2204 . . 3 (𝑥 = -𝑦 → ((𝑃 pCnt (𝐴𝑥)) = (𝑥 · (𝑃 pCnt 𝐴)) ↔ (𝑃 pCnt (𝐴↑-𝑦)) = (-𝑦 · (𝑃 pCnt 𝐴))))
17 oveq2 5905 . . . . 5 (𝑥 = 𝑁 → (𝐴𝑥) = (𝐴𝑁))
1817oveq2d 5913 . . . 4 (𝑥 = 𝑁 → (𝑃 pCnt (𝐴𝑥)) = (𝑃 pCnt (𝐴𝑁)))
19 oveq1 5904 . . . 4 (𝑥 = 𝑁 → (𝑥 · (𝑃 pCnt 𝐴)) = (𝑁 · (𝑃 pCnt 𝐴)))
2018, 19eqeq12d 2204 . . 3 (𝑥 = 𝑁 → ((𝑃 pCnt (𝐴𝑥)) = (𝑥 · (𝑃 pCnt 𝐴)) ↔ (𝑃 pCnt (𝐴𝑁)) = (𝑁 · (𝑃 pCnt 𝐴))))
21 pc1 12340 . . . . 5 (𝑃 ∈ ℙ → (𝑃 pCnt 1) = 0)
2221adantr 276 . . . 4 ((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℚ ∧ 𝐴 ≠ 0)) → (𝑃 pCnt 1) = 0)
23 qcn 9666 . . . . . . 7 (𝐴 ∈ ℚ → 𝐴 ∈ ℂ)
2423ad2antrl 490 . . . . . 6 ((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℚ ∧ 𝐴 ≠ 0)) → 𝐴 ∈ ℂ)
2524exp0d 10682 . . . . 5 ((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℚ ∧ 𝐴 ≠ 0)) → (𝐴↑0) = 1)
2625oveq2d 5913 . . . 4 ((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℚ ∧ 𝐴 ≠ 0)) → (𝑃 pCnt (𝐴↑0)) = (𝑃 pCnt 1))
27 pcqcl 12341 . . . . . 6 ((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℚ ∧ 𝐴 ≠ 0)) → (𝑃 pCnt 𝐴) ∈ ℤ)
2827zcnd 9407 . . . . 5 ((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℚ ∧ 𝐴 ≠ 0)) → (𝑃 pCnt 𝐴) ∈ ℂ)
2928mul02d 8380 . . . 4 ((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℚ ∧ 𝐴 ≠ 0)) → (0 · (𝑃 pCnt 𝐴)) = 0)
3022, 26, 293eqtr4d 2232 . . 3 ((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℚ ∧ 𝐴 ≠ 0)) → (𝑃 pCnt (𝐴↑0)) = (0 · (𝑃 pCnt 𝐴)))
31 oveq1 5904 . . . . 5 ((𝑃 pCnt (𝐴𝑦)) = (𝑦 · (𝑃 pCnt 𝐴)) → ((𝑃 pCnt (𝐴𝑦)) + (𝑃 pCnt 𝐴)) = ((𝑦 · (𝑃 pCnt 𝐴)) + (𝑃 pCnt 𝐴)))
32 expp1 10561 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ 𝑦 ∈ ℕ0) → (𝐴↑(𝑦 + 1)) = ((𝐴𝑦) · 𝐴))
3324, 32sylan 283 . . . . . . . 8 (((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℚ ∧ 𝐴 ≠ 0)) ∧ 𝑦 ∈ ℕ0) → (𝐴↑(𝑦 + 1)) = ((𝐴𝑦) · 𝐴))
3433oveq2d 5913 . . . . . . 7 (((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℚ ∧ 𝐴 ≠ 0)) ∧ 𝑦 ∈ ℕ0) → (𝑃 pCnt (𝐴↑(𝑦 + 1))) = (𝑃 pCnt ((𝐴𝑦) · 𝐴)))
35 simpll 527 . . . . . . . 8 (((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℚ ∧ 𝐴 ≠ 0)) ∧ 𝑦 ∈ ℕ0) → 𝑃 ∈ ℙ)
36 simplrl 535 . . . . . . . . 9 (((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℚ ∧ 𝐴 ≠ 0)) ∧ 𝑦 ∈ ℕ0) → 𝐴 ∈ ℚ)
37 simplrr 536 . . . . . . . . 9 (((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℚ ∧ 𝐴 ≠ 0)) ∧ 𝑦 ∈ ℕ0) → 𝐴 ≠ 0)
38 nn0z 9304 . . . . . . . . . 10 (𝑦 ∈ ℕ0𝑦 ∈ ℤ)
3938adantl 277 . . . . . . . . 9 (((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℚ ∧ 𝐴 ≠ 0)) ∧ 𝑦 ∈ ℕ0) → 𝑦 ∈ ℤ)
40 qexpclz 10575 . . . . . . . . 9 ((𝐴 ∈ ℚ ∧ 𝐴 ≠ 0 ∧ 𝑦 ∈ ℤ) → (𝐴𝑦) ∈ ℚ)
4136, 37, 39, 40syl3anc 1249 . . . . . . . 8 (((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℚ ∧ 𝐴 ≠ 0)) ∧ 𝑦 ∈ ℕ0) → (𝐴𝑦) ∈ ℚ)
4224adantr 276 . . . . . . . . . 10 (((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℚ ∧ 𝐴 ≠ 0)) ∧ 𝑦 ∈ ℕ0) → 𝐴 ∈ ℂ)
43 0z 9295 . . . . . . . . . . . . 13 0 ∈ ℤ
44 zq 9658 . . . . . . . . . . . . 13 (0 ∈ ℤ → 0 ∈ ℚ)
4543, 44ax-mp 5 . . . . . . . . . . . 12 0 ∈ ℚ
46 qapne 9671 . . . . . . . . . . . 12 ((𝐴 ∈ ℚ ∧ 0 ∈ ℚ) → (𝐴 # 0 ↔ 𝐴 ≠ 0))
4736, 45, 46sylancl 413 . . . . . . . . . . 11 (((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℚ ∧ 𝐴 ≠ 0)) ∧ 𝑦 ∈ ℕ0) → (𝐴 # 0 ↔ 𝐴 ≠ 0))
4837, 47mpbird 167 . . . . . . . . . 10 (((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℚ ∧ 𝐴 ≠ 0)) ∧ 𝑦 ∈ ℕ0) → 𝐴 # 0)
4942, 48, 39expap0d 10694 . . . . . . . . 9 (((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℚ ∧ 𝐴 ≠ 0)) ∧ 𝑦 ∈ ℕ0) → (𝐴𝑦) # 0)
50 qapne 9671 . . . . . . . . . 10 (((𝐴𝑦) ∈ ℚ ∧ 0 ∈ ℚ) → ((𝐴𝑦) # 0 ↔ (𝐴𝑦) ≠ 0))
5141, 45, 50sylancl 413 . . . . . . . . 9 (((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℚ ∧ 𝐴 ≠ 0)) ∧ 𝑦 ∈ ℕ0) → ((𝐴𝑦) # 0 ↔ (𝐴𝑦) ≠ 0))
5249, 51mpbid 147 . . . . . . . 8 (((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℚ ∧ 𝐴 ≠ 0)) ∧ 𝑦 ∈ ℕ0) → (𝐴𝑦) ≠ 0)
53 pcqmul 12338 . . . . . . . 8 ((𝑃 ∈ ℙ ∧ ((𝐴𝑦) ∈ ℚ ∧ (𝐴𝑦) ≠ 0) ∧ (𝐴 ∈ ℚ ∧ 𝐴 ≠ 0)) → (𝑃 pCnt ((𝐴𝑦) · 𝐴)) = ((𝑃 pCnt (𝐴𝑦)) + (𝑃 pCnt 𝐴)))
5435, 41, 52, 36, 37, 53syl122anc 1258 . . . . . . 7 (((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℚ ∧ 𝐴 ≠ 0)) ∧ 𝑦 ∈ ℕ0) → (𝑃 pCnt ((𝐴𝑦) · 𝐴)) = ((𝑃 pCnt (𝐴𝑦)) + (𝑃 pCnt 𝐴)))
5534, 54eqtrd 2222 . . . . . 6 (((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℚ ∧ 𝐴 ≠ 0)) ∧ 𝑦 ∈ ℕ0) → (𝑃 pCnt (𝐴↑(𝑦 + 1))) = ((𝑃 pCnt (𝐴𝑦)) + (𝑃 pCnt 𝐴)))
56 nn0cn 9217 . . . . . . . 8 (𝑦 ∈ ℕ0𝑦 ∈ ℂ)
5756adantl 277 . . . . . . 7 (((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℚ ∧ 𝐴 ≠ 0)) ∧ 𝑦 ∈ ℕ0) → 𝑦 ∈ ℂ)
5828adantr 276 . . . . . . 7 (((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℚ ∧ 𝐴 ≠ 0)) ∧ 𝑦 ∈ ℕ0) → (𝑃 pCnt 𝐴) ∈ ℂ)
5957, 58adddirp1d 8015 . . . . . 6 (((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℚ ∧ 𝐴 ≠ 0)) ∧ 𝑦 ∈ ℕ0) → ((𝑦 + 1) · (𝑃 pCnt 𝐴)) = ((𝑦 · (𝑃 pCnt 𝐴)) + (𝑃 pCnt 𝐴)))
6055, 59eqeq12d 2204 . . . . 5 (((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℚ ∧ 𝐴 ≠ 0)) ∧ 𝑦 ∈ ℕ0) → ((𝑃 pCnt (𝐴↑(𝑦 + 1))) = ((𝑦 + 1) · (𝑃 pCnt 𝐴)) ↔ ((𝑃 pCnt (𝐴𝑦)) + (𝑃 pCnt 𝐴)) = ((𝑦 · (𝑃 pCnt 𝐴)) + (𝑃 pCnt 𝐴))))
6131, 60imbitrrid 156 . . . 4 (((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℚ ∧ 𝐴 ≠ 0)) ∧ 𝑦 ∈ ℕ0) → ((𝑃 pCnt (𝐴𝑦)) = (𝑦 · (𝑃 pCnt 𝐴)) → (𝑃 pCnt (𝐴↑(𝑦 + 1))) = ((𝑦 + 1) · (𝑃 pCnt 𝐴))))
6261ex 115 . . 3 ((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℚ ∧ 𝐴 ≠ 0)) → (𝑦 ∈ ℕ0 → ((𝑃 pCnt (𝐴𝑦)) = (𝑦 · (𝑃 pCnt 𝐴)) → (𝑃 pCnt (𝐴↑(𝑦 + 1))) = ((𝑦 + 1) · (𝑃 pCnt 𝐴)))))
63 negeq 8181 . . . . 5 ((𝑃 pCnt (𝐴𝑦)) = (𝑦 · (𝑃 pCnt 𝐴)) → -(𝑃 pCnt (𝐴𝑦)) = -(𝑦 · (𝑃 pCnt 𝐴)))
6424adantr 276 . . . . . . . . 9 (((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℚ ∧ 𝐴 ≠ 0)) ∧ 𝑦 ∈ ℕ) → 𝐴 ∈ ℂ)
65 nnnn0 9214 . . . . . . . . . 10 (𝑦 ∈ ℕ → 𝑦 ∈ ℕ0)
6665, 48sylan2 286 . . . . . . . . 9 (((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℚ ∧ 𝐴 ≠ 0)) ∧ 𝑦 ∈ ℕ) → 𝐴 # 0)
6765adantl 277 . . . . . . . . 9 (((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℚ ∧ 𝐴 ≠ 0)) ∧ 𝑦 ∈ ℕ) → 𝑦 ∈ ℕ0)
68 expnegap0 10562 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ 𝐴 # 0 ∧ 𝑦 ∈ ℕ0) → (𝐴↑-𝑦) = (1 / (𝐴𝑦)))
6964, 66, 67, 68syl3anc 1249 . . . . . . . 8 (((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℚ ∧ 𝐴 ≠ 0)) ∧ 𝑦 ∈ ℕ) → (𝐴↑-𝑦) = (1 / (𝐴𝑦)))
7069oveq2d 5913 . . . . . . 7 (((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℚ ∧ 𝐴 ≠ 0)) ∧ 𝑦 ∈ ℕ) → (𝑃 pCnt (𝐴↑-𝑦)) = (𝑃 pCnt (1 / (𝐴𝑦))))
71 simpll 527 . . . . . . . 8 (((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℚ ∧ 𝐴 ≠ 0)) ∧ 𝑦 ∈ ℕ) → 𝑃 ∈ ℙ)
7265, 41sylan2 286 . . . . . . . 8 (((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℚ ∧ 𝐴 ≠ 0)) ∧ 𝑦 ∈ ℕ) → (𝐴𝑦) ∈ ℚ)
7365, 52sylan2 286 . . . . . . . 8 (((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℚ ∧ 𝐴 ≠ 0)) ∧ 𝑦 ∈ ℕ) → (𝐴𝑦) ≠ 0)
74 pcrec 12343 . . . . . . . 8 ((𝑃 ∈ ℙ ∧ ((𝐴𝑦) ∈ ℚ ∧ (𝐴𝑦) ≠ 0)) → (𝑃 pCnt (1 / (𝐴𝑦))) = -(𝑃 pCnt (𝐴𝑦)))
7571, 72, 73, 74syl12anc 1247 . . . . . . 7 (((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℚ ∧ 𝐴 ≠ 0)) ∧ 𝑦 ∈ ℕ) → (𝑃 pCnt (1 / (𝐴𝑦))) = -(𝑃 pCnt (𝐴𝑦)))
7670, 75eqtrd 2222 . . . . . 6 (((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℚ ∧ 𝐴 ≠ 0)) ∧ 𝑦 ∈ ℕ) → (𝑃 pCnt (𝐴↑-𝑦)) = -(𝑃 pCnt (𝐴𝑦)))
77 nncn 8958 . . . . . . 7 (𝑦 ∈ ℕ → 𝑦 ∈ ℂ)
78 mulneg1 8383 . . . . . . 7 ((𝑦 ∈ ℂ ∧ (𝑃 pCnt 𝐴) ∈ ℂ) → (-𝑦 · (𝑃 pCnt 𝐴)) = -(𝑦 · (𝑃 pCnt 𝐴)))
7977, 28, 78syl2anr 290 . . . . . 6 (((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℚ ∧ 𝐴 ≠ 0)) ∧ 𝑦 ∈ ℕ) → (-𝑦 · (𝑃 pCnt 𝐴)) = -(𝑦 · (𝑃 pCnt 𝐴)))
8076, 79eqeq12d 2204 . . . . 5 (((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℚ ∧ 𝐴 ≠ 0)) ∧ 𝑦 ∈ ℕ) → ((𝑃 pCnt (𝐴↑-𝑦)) = (-𝑦 · (𝑃 pCnt 𝐴)) ↔ -(𝑃 pCnt (𝐴𝑦)) = -(𝑦 · (𝑃 pCnt 𝐴))))
8163, 80imbitrrid 156 . . . 4 (((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℚ ∧ 𝐴 ≠ 0)) ∧ 𝑦 ∈ ℕ) → ((𝑃 pCnt (𝐴𝑦)) = (𝑦 · (𝑃 pCnt 𝐴)) → (𝑃 pCnt (𝐴↑-𝑦)) = (-𝑦 · (𝑃 pCnt 𝐴))))
8281ex 115 . . 3 ((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℚ ∧ 𝐴 ≠ 0)) → (𝑦 ∈ ℕ → ((𝑃 pCnt (𝐴𝑦)) = (𝑦 · (𝑃 pCnt 𝐴)) → (𝑃 pCnt (𝐴↑-𝑦)) = (-𝑦 · (𝑃 pCnt 𝐴)))))
834, 8, 12, 16, 20, 30, 62, 82zindd 9402 . 2 ((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℚ ∧ 𝐴 ≠ 0)) → (𝑁 ∈ ℤ → (𝑃 pCnt (𝐴𝑁)) = (𝑁 · (𝑃 pCnt 𝐴))))
84833impia 1202 1 ((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℚ ∧ 𝐴 ≠ 0) ∧ 𝑁 ∈ ℤ) → (𝑃 pCnt (𝐴𝑁)) = (𝑁 · (𝑃 pCnt 𝐴)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  w3a 980   = wceq 1364  wcel 2160  wne 2360   class class class wbr 4018  (class class class)co 5897  cc 7840  0cc0 7842  1c1 7843   + caddc 7845   · cmul 7847  -cneg 8160   # cap 8569   / cdiv 8660  cn 8950  0cn0 9207  cz 9284  cq 9651  cexp 10553  cprime 12142   pCnt cpc 12319
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2162  ax-14 2163  ax-ext 2171  ax-coll 4133  ax-sep 4136  ax-nul 4144  ax-pow 4192  ax-pr 4227  ax-un 4451  ax-setind 4554  ax-iinf 4605  ax-cnex 7933  ax-resscn 7934  ax-1cn 7935  ax-1re 7936  ax-icn 7937  ax-addcl 7938  ax-addrcl 7939  ax-mulcl 7940  ax-mulrcl 7941  ax-addcom 7942  ax-mulcom 7943  ax-addass 7944  ax-mulass 7945  ax-distr 7946  ax-i2m1 7947  ax-0lt1 7948  ax-1rid 7949  ax-0id 7950  ax-rnegex 7951  ax-precex 7952  ax-cnre 7953  ax-pre-ltirr 7954  ax-pre-ltwlin 7955  ax-pre-lttrn 7956  ax-pre-apti 7957  ax-pre-ltadd 7958  ax-pre-mulgt0 7959  ax-pre-mulext 7960  ax-arch 7961  ax-caucvg 7962
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2041  df-mo 2042  df-clab 2176  df-cleq 2182  df-clel 2185  df-nfc 2321  df-ne 2361  df-nel 2456  df-ral 2473  df-rex 2474  df-reu 2475  df-rmo 2476  df-rab 2477  df-v 2754  df-sbc 2978  df-csb 3073  df-dif 3146  df-un 3148  df-in 3150  df-ss 3157  df-nul 3438  df-if 3550  df-pw 3592  df-sn 3613  df-pr 3614  df-op 3616  df-uni 3825  df-int 3860  df-iun 3903  df-br 4019  df-opab 4080  df-mpt 4081  df-tr 4117  df-id 4311  df-po 4314  df-iso 4315  df-iord 4384  df-on 4386  df-ilim 4387  df-suc 4389  df-iom 4608  df-xp 4650  df-rel 4651  df-cnv 4652  df-co 4653  df-dm 4654  df-rn 4655  df-res 4656  df-ima 4657  df-iota 5196  df-fun 5237  df-fn 5238  df-f 5239  df-f1 5240  df-fo 5241  df-f1o 5242  df-fv 5243  df-isom 5244  df-riota 5852  df-ov 5900  df-oprab 5901  df-mpo 5902  df-1st 6166  df-2nd 6167  df-recs 6331  df-frec 6417  df-1o 6442  df-2o 6443  df-er 6560  df-en 6768  df-sup 7014  df-inf 7015  df-pnf 8025  df-mnf 8026  df-xr 8027  df-ltxr 8028  df-le 8029  df-sub 8161  df-neg 8162  df-reap 8563  df-ap 8570  df-div 8661  df-inn 8951  df-2 9009  df-3 9010  df-4 9011  df-n0 9208  df-z 9285  df-uz 9560  df-q 9652  df-rp 9686  df-fz 10041  df-fzo 10175  df-fl 10303  df-mod 10356  df-seqfrec 10479  df-exp 10554  df-cj 10886  df-re 10887  df-im 10888  df-rsqrt 11042  df-abs 11043  df-dvds 11830  df-gcd 11979  df-prm 12143  df-pc 12320
This theorem is referenced by:  qexpz  12387  expnprm  12388
  Copyright terms: Public domain W3C validator