| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > ablpnpcan | GIF version | ||
| Description: Cancellation law for mixed addition and subtraction. (pnpcan 8265 analog.) (Contributed by NM, 29-May-2015.) | 
| Ref | Expression | 
|---|---|
| ablsubadd.b | ⊢ 𝐵 = (Base‘𝐺) | 
| ablsubadd.p | ⊢ + = (+g‘𝐺) | 
| ablsubadd.m | ⊢ − = (-g‘𝐺) | 
| ablsubsub.g | ⊢ (𝜑 → 𝐺 ∈ Abel) | 
| ablsubsub.x | ⊢ (𝜑 → 𝑋 ∈ 𝐵) | 
| ablsubsub.y | ⊢ (𝜑 → 𝑌 ∈ 𝐵) | 
| ablsubsub.z | ⊢ (𝜑 → 𝑍 ∈ 𝐵) | 
| ablpnpcan.g | ⊢ (𝜑 → 𝐺 ∈ Abel) | 
| ablpnpcan.x | ⊢ (𝜑 → 𝑋 ∈ 𝐵) | 
| ablpnpcan.y | ⊢ (𝜑 → 𝑌 ∈ 𝐵) | 
| ablpnpcan.z | ⊢ (𝜑 → 𝑍 ∈ 𝐵) | 
| Ref | Expression | 
|---|---|
| ablpnpcan | ⊢ (𝜑 → ((𝑋 + 𝑌) − (𝑋 + 𝑍)) = (𝑌 − 𝑍)) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | ablsubsub.g | . . 3 ⊢ (𝜑 → 𝐺 ∈ Abel) | |
| 2 | ablsubsub.x | . . 3 ⊢ (𝜑 → 𝑋 ∈ 𝐵) | |
| 3 | ablsubsub.y | . . 3 ⊢ (𝜑 → 𝑌 ∈ 𝐵) | |
| 4 | ablsubsub.z | . . 3 ⊢ (𝜑 → 𝑍 ∈ 𝐵) | |
| 5 | ablsubadd.b | . . . 4 ⊢ 𝐵 = (Base‘𝐺) | |
| 6 | ablsubadd.p | . . . 4 ⊢ + = (+g‘𝐺) | |
| 7 | ablsubadd.m | . . . 4 ⊢ − = (-g‘𝐺) | |
| 8 | 5, 6, 7 | ablsub4 13443 | . . 3 ⊢ ((𝐺 ∈ Abel ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ (𝑋 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → ((𝑋 + 𝑌) − (𝑋 + 𝑍)) = ((𝑋 − 𝑋) + (𝑌 − 𝑍))) | 
| 9 | 1, 2, 3, 2, 4, 8 | syl122anc 1258 | . 2 ⊢ (𝜑 → ((𝑋 + 𝑌) − (𝑋 + 𝑍)) = ((𝑋 − 𝑋) + (𝑌 − 𝑍))) | 
| 10 | ablgrp 13419 | . . . . 5 ⊢ (𝐺 ∈ Abel → 𝐺 ∈ Grp) | |
| 11 | 1, 10 | syl 14 | . . . 4 ⊢ (𝜑 → 𝐺 ∈ Grp) | 
| 12 | eqid 2196 | . . . . 5 ⊢ (0g‘𝐺) = (0g‘𝐺) | |
| 13 | 5, 12, 7 | grpsubid 13216 | . . . 4 ⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵) → (𝑋 − 𝑋) = (0g‘𝐺)) | 
| 14 | 11, 2, 13 | syl2anc 411 | . . 3 ⊢ (𝜑 → (𝑋 − 𝑋) = (0g‘𝐺)) | 
| 15 | 14 | oveq1d 5937 | . 2 ⊢ (𝜑 → ((𝑋 − 𝑋) + (𝑌 − 𝑍)) = ((0g‘𝐺) + (𝑌 − 𝑍))) | 
| 16 | 5, 7 | grpsubcl 13212 | . . . 4 ⊢ ((𝐺 ∈ Grp ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵) → (𝑌 − 𝑍) ∈ 𝐵) | 
| 17 | 11, 3, 4, 16 | syl3anc 1249 | . . 3 ⊢ (𝜑 → (𝑌 − 𝑍) ∈ 𝐵) | 
| 18 | 5, 6, 12 | grplid 13163 | . . 3 ⊢ ((𝐺 ∈ Grp ∧ (𝑌 − 𝑍) ∈ 𝐵) → ((0g‘𝐺) + (𝑌 − 𝑍)) = (𝑌 − 𝑍)) | 
| 19 | 11, 17, 18 | syl2anc 411 | . 2 ⊢ (𝜑 → ((0g‘𝐺) + (𝑌 − 𝑍)) = (𝑌 − 𝑍)) | 
| 20 | 9, 15, 19 | 3eqtrd 2233 | 1 ⊢ (𝜑 → ((𝑋 + 𝑌) − (𝑋 + 𝑍)) = (𝑌 − 𝑍)) | 
| Colors of variables: wff set class | 
| Syntax hints: → wi 4 = wceq 1364 ∈ wcel 2167 ‘cfv 5258 (class class class)co 5922 Basecbs 12678 +gcplusg 12755 0gc0g 12927 Grpcgrp 13132 -gcsg 13134 Abelcabl 13415 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-coll 4148 ax-sep 4151 ax-pow 4207 ax-pr 4242 ax-un 4468 ax-setind 4573 ax-cnex 7970 ax-resscn 7971 ax-1re 7973 ax-addrcl 7976 | 
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-ral 2480 df-rex 2481 df-reu 2482 df-rmo 2483 df-rab 2484 df-v 2765 df-sbc 2990 df-csb 3085 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-pw 3607 df-sn 3628 df-pr 3629 df-op 3631 df-uni 3840 df-int 3875 df-iun 3918 df-br 4034 df-opab 4095 df-mpt 4096 df-id 4328 df-xp 4669 df-rel 4670 df-cnv 4671 df-co 4672 df-dm 4673 df-rn 4674 df-res 4675 df-ima 4676 df-iota 5219 df-fun 5260 df-fn 5261 df-f 5262 df-f1 5263 df-fo 5264 df-f1o 5265 df-fv 5266 df-riota 5877 df-ov 5925 df-oprab 5926 df-mpo 5927 df-1st 6198 df-2nd 6199 df-inn 8991 df-2 9049 df-ndx 12681 df-slot 12682 df-base 12684 df-plusg 12768 df-0g 12929 df-mgm 12999 df-sgrp 13045 df-mnd 13058 df-grp 13135 df-minusg 13136 df-sbg 13137 df-cmn 13416 df-abl 13417 | 
| This theorem is referenced by: (None) | 
| Copyright terms: Public domain | W3C validator |