Proof of Theorem abladdsub4
Step | Hyp | Ref
| Expression |
1 | | ablgrp 12889 |
. . . 4
⊢ (𝐺 ∈ Abel → 𝐺 ∈ Grp) |
2 | 1 | 3ad2ant1 1018 |
. . 3
⊢ ((𝐺 ∈ Abel ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ (𝑍 ∈ 𝐵 ∧ 𝑊 ∈ 𝐵)) → 𝐺 ∈ Grp) |
3 | | simp2l 1023 |
. . . 4
⊢ ((𝐺 ∈ Abel ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ (𝑍 ∈ 𝐵 ∧ 𝑊 ∈ 𝐵)) → 𝑋 ∈ 𝐵) |
4 | | simp2r 1024 |
. . . 4
⊢ ((𝐺 ∈ Abel ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ (𝑍 ∈ 𝐵 ∧ 𝑊 ∈ 𝐵)) → 𝑌 ∈ 𝐵) |
5 | | ablsubadd.b |
. . . . 5
⊢ 𝐵 = (Base‘𝐺) |
6 | | ablsubadd.p |
. . . . 5
⊢ + =
(+g‘𝐺) |
7 | 5, 6 | grpcl 12746 |
. . . 4
⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 + 𝑌) ∈ 𝐵) |
8 | 2, 3, 4, 7 | syl3anc 1238 |
. . 3
⊢ ((𝐺 ∈ Abel ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ (𝑍 ∈ 𝐵 ∧ 𝑊 ∈ 𝐵)) → (𝑋 + 𝑌) ∈ 𝐵) |
9 | | simp3l 1025 |
. . . 4
⊢ ((𝐺 ∈ Abel ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ (𝑍 ∈ 𝐵 ∧ 𝑊 ∈ 𝐵)) → 𝑍 ∈ 𝐵) |
10 | | simp3r 1026 |
. . . 4
⊢ ((𝐺 ∈ Abel ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ (𝑍 ∈ 𝐵 ∧ 𝑊 ∈ 𝐵)) → 𝑊 ∈ 𝐵) |
11 | 5, 6 | grpcl 12746 |
. . . 4
⊢ ((𝐺 ∈ Grp ∧ 𝑍 ∈ 𝐵 ∧ 𝑊 ∈ 𝐵) → (𝑍 + 𝑊) ∈ 𝐵) |
12 | 2, 9, 10, 11 | syl3anc 1238 |
. . 3
⊢ ((𝐺 ∈ Abel ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ (𝑍 ∈ 𝐵 ∧ 𝑊 ∈ 𝐵)) → (𝑍 + 𝑊) ∈ 𝐵) |
13 | 5, 6 | grpcl 12746 |
. . . 4
⊢ ((𝐺 ∈ Grp ∧ 𝑍 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑍 + 𝑌) ∈ 𝐵) |
14 | 2, 9, 4, 13 | syl3anc 1238 |
. . 3
⊢ ((𝐺 ∈ Abel ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ (𝑍 ∈ 𝐵 ∧ 𝑊 ∈ 𝐵)) → (𝑍 + 𝑌) ∈ 𝐵) |
15 | | ablsubadd.m |
. . . 4
⊢ − =
(-g‘𝐺) |
16 | 5, 15 | grpsubrcan 12810 |
. . 3
⊢ ((𝐺 ∈ Grp ∧ ((𝑋 + 𝑌) ∈ 𝐵 ∧ (𝑍 + 𝑊) ∈ 𝐵 ∧ (𝑍 + 𝑌) ∈ 𝐵)) → (((𝑋 + 𝑌) − (𝑍 + 𝑌)) = ((𝑍 + 𝑊) − (𝑍 + 𝑌)) ↔ (𝑋 + 𝑌) = (𝑍 + 𝑊))) |
17 | 2, 8, 12, 14, 16 | syl13anc 1240 |
. 2
⊢ ((𝐺 ∈ Abel ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ (𝑍 ∈ 𝐵 ∧ 𝑊 ∈ 𝐵)) → (((𝑋 + 𝑌) − (𝑍 + 𝑌)) = ((𝑍 + 𝑊) − (𝑍 + 𝑌)) ↔ (𝑋 + 𝑌) = (𝑍 + 𝑊))) |
18 | | simp1 997 |
. . . . 5
⊢ ((𝐺 ∈ Abel ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ (𝑍 ∈ 𝐵 ∧ 𝑊 ∈ 𝐵)) → 𝐺 ∈ Abel) |
19 | 5, 6, 15 | ablsub4 12912 |
. . . . 5
⊢ ((𝐺 ∈ Abel ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ (𝑍 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) → ((𝑋 + 𝑌) − (𝑍 + 𝑌)) = ((𝑋 − 𝑍) + (𝑌 − 𝑌))) |
20 | 18, 3, 4, 9, 4, 19 | syl122anc 1247 |
. . . 4
⊢ ((𝐺 ∈ Abel ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ (𝑍 ∈ 𝐵 ∧ 𝑊 ∈ 𝐵)) → ((𝑋 + 𝑌) − (𝑍 + 𝑌)) = ((𝑋 − 𝑍) + (𝑌 − 𝑌))) |
21 | | eqid 2175 |
. . . . . . 7
⊢
(0g‘𝐺) = (0g‘𝐺) |
22 | 5, 21, 15 | grpsubid 12813 |
. . . . . 6
⊢ ((𝐺 ∈ Grp ∧ 𝑌 ∈ 𝐵) → (𝑌 − 𝑌) = (0g‘𝐺)) |
23 | 2, 4, 22 | syl2anc 411 |
. . . . 5
⊢ ((𝐺 ∈ Abel ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ (𝑍 ∈ 𝐵 ∧ 𝑊 ∈ 𝐵)) → (𝑌 − 𝑌) = (0g‘𝐺)) |
24 | 23 | oveq2d 5881 |
. . . 4
⊢ ((𝐺 ∈ Abel ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ (𝑍 ∈ 𝐵 ∧ 𝑊 ∈ 𝐵)) → ((𝑋 − 𝑍) + (𝑌 − 𝑌)) = ((𝑋 − 𝑍) + (0g‘𝐺))) |
25 | 5, 15 | grpsubcl 12809 |
. . . . . 6
⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵) → (𝑋 − 𝑍) ∈ 𝐵) |
26 | 2, 3, 9, 25 | syl3anc 1238 |
. . . . 5
⊢ ((𝐺 ∈ Abel ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ (𝑍 ∈ 𝐵 ∧ 𝑊 ∈ 𝐵)) → (𝑋 − 𝑍) ∈ 𝐵) |
27 | 5, 6, 21 | grprid 12767 |
. . . . 5
⊢ ((𝐺 ∈ Grp ∧ (𝑋 − 𝑍) ∈ 𝐵) → ((𝑋 − 𝑍) + (0g‘𝐺)) = (𝑋 − 𝑍)) |
28 | 2, 26, 27 | syl2anc 411 |
. . . 4
⊢ ((𝐺 ∈ Abel ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ (𝑍 ∈ 𝐵 ∧ 𝑊 ∈ 𝐵)) → ((𝑋 − 𝑍) + (0g‘𝐺)) = (𝑋 − 𝑍)) |
29 | 20, 24, 28 | 3eqtrd 2212 |
. . 3
⊢ ((𝐺 ∈ Abel ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ (𝑍 ∈ 𝐵 ∧ 𝑊 ∈ 𝐵)) → ((𝑋 + 𝑌) − (𝑍 + 𝑌)) = (𝑋 − 𝑍)) |
30 | 5, 6, 15 | ablsub4 12912 |
. . . . 5
⊢ ((𝐺 ∈ Abel ∧ (𝑍 ∈ 𝐵 ∧ 𝑊 ∈ 𝐵) ∧ (𝑍 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) → ((𝑍 + 𝑊) − (𝑍 + 𝑌)) = ((𝑍 − 𝑍) + (𝑊 − 𝑌))) |
31 | 18, 9, 10, 9, 4, 30 | syl122anc 1247 |
. . . 4
⊢ ((𝐺 ∈ Abel ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ (𝑍 ∈ 𝐵 ∧ 𝑊 ∈ 𝐵)) → ((𝑍 + 𝑊) − (𝑍 + 𝑌)) = ((𝑍 − 𝑍) + (𝑊 − 𝑌))) |
32 | 5, 21, 15 | grpsubid 12813 |
. . . . . 6
⊢ ((𝐺 ∈ Grp ∧ 𝑍 ∈ 𝐵) → (𝑍 − 𝑍) = (0g‘𝐺)) |
33 | 2, 9, 32 | syl2anc 411 |
. . . . 5
⊢ ((𝐺 ∈ Abel ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ (𝑍 ∈ 𝐵 ∧ 𝑊 ∈ 𝐵)) → (𝑍 − 𝑍) = (0g‘𝐺)) |
34 | 33 | oveq1d 5880 |
. . . 4
⊢ ((𝐺 ∈ Abel ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ (𝑍 ∈ 𝐵 ∧ 𝑊 ∈ 𝐵)) → ((𝑍 − 𝑍) + (𝑊 − 𝑌)) = ((0g‘𝐺) + (𝑊 − 𝑌))) |
35 | 5, 15 | grpsubcl 12809 |
. . . . . 6
⊢ ((𝐺 ∈ Grp ∧ 𝑊 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑊 − 𝑌) ∈ 𝐵) |
36 | 2, 10, 4, 35 | syl3anc 1238 |
. . . . 5
⊢ ((𝐺 ∈ Abel ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ (𝑍 ∈ 𝐵 ∧ 𝑊 ∈ 𝐵)) → (𝑊 − 𝑌) ∈ 𝐵) |
37 | 5, 6, 21 | grplid 12766 |
. . . . 5
⊢ ((𝐺 ∈ Grp ∧ (𝑊 − 𝑌) ∈ 𝐵) → ((0g‘𝐺) + (𝑊 − 𝑌)) = (𝑊 − 𝑌)) |
38 | 2, 36, 37 | syl2anc 411 |
. . . 4
⊢ ((𝐺 ∈ Abel ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ (𝑍 ∈ 𝐵 ∧ 𝑊 ∈ 𝐵)) → ((0g‘𝐺) + (𝑊 − 𝑌)) = (𝑊 − 𝑌)) |
39 | 31, 34, 38 | 3eqtrd 2212 |
. . 3
⊢ ((𝐺 ∈ Abel ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ (𝑍 ∈ 𝐵 ∧ 𝑊 ∈ 𝐵)) → ((𝑍 + 𝑊) − (𝑍 + 𝑌)) = (𝑊 − 𝑌)) |
40 | 29, 39 | eqeq12d 2190 |
. 2
⊢ ((𝐺 ∈ Abel ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ (𝑍 ∈ 𝐵 ∧ 𝑊 ∈ 𝐵)) → (((𝑋 + 𝑌) − (𝑍 + 𝑌)) = ((𝑍 + 𝑊) − (𝑍 + 𝑌)) ↔ (𝑋 − 𝑍) = (𝑊 − 𝑌))) |
41 | 17, 40 | bitr3d 190 |
1
⊢ ((𝐺 ∈ Abel ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ (𝑍 ∈ 𝐵 ∧ 𝑊 ∈ 𝐵)) → ((𝑋 + 𝑌) = (𝑍 + 𝑊) ↔ (𝑋 − 𝑍) = (𝑊 − 𝑌))) |