Proof of Theorem pcqdiv
| Step | Hyp | Ref
| Expression |
| 1 | | simp2l 1025 |
. . . . . . 7
⊢ ((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℚ ∧ 𝐴 ≠ 0) ∧ (𝐵 ∈ ℚ ∧ 𝐵 ≠ 0)) → 𝐴 ∈
ℚ) |
| 2 | | qcn 9708 |
. . . . . . 7
⊢ (𝐴 ∈ ℚ → 𝐴 ∈
ℂ) |
| 3 | 1, 2 | syl 14 |
. . . . . 6
⊢ ((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℚ ∧ 𝐴 ≠ 0) ∧ (𝐵 ∈ ℚ ∧ 𝐵 ≠ 0)) → 𝐴 ∈
ℂ) |
| 4 | | simp3l 1027 |
. . . . . . 7
⊢ ((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℚ ∧ 𝐴 ≠ 0) ∧ (𝐵 ∈ ℚ ∧ 𝐵 ≠ 0)) → 𝐵 ∈
ℚ) |
| 5 | | qcn 9708 |
. . . . . . 7
⊢ (𝐵 ∈ ℚ → 𝐵 ∈
ℂ) |
| 6 | 4, 5 | syl 14 |
. . . . . 6
⊢ ((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℚ ∧ 𝐴 ≠ 0) ∧ (𝐵 ∈ ℚ ∧ 𝐵 ≠ 0)) → 𝐵 ∈
ℂ) |
| 7 | | simp3r 1028 |
. . . . . . 7
⊢ ((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℚ ∧ 𝐴 ≠ 0) ∧ (𝐵 ∈ ℚ ∧ 𝐵 ≠ 0)) → 𝐵 ≠ 0) |
| 8 | | 0z 9337 |
. . . . . . . . 9
⊢ 0 ∈
ℤ |
| 9 | | zq 9700 |
. . . . . . . . 9
⊢ (0 ∈
ℤ → 0 ∈ ℚ) |
| 10 | 8, 9 | ax-mp 5 |
. . . . . . . 8
⊢ 0 ∈
ℚ |
| 11 | | qapne 9713 |
. . . . . . . 8
⊢ ((𝐵 ∈ ℚ ∧ 0 ∈
ℚ) → (𝐵 # 0
↔ 𝐵 ≠
0)) |
| 12 | 4, 10, 11 | sylancl 413 |
. . . . . . 7
⊢ ((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℚ ∧ 𝐴 ≠ 0) ∧ (𝐵 ∈ ℚ ∧ 𝐵 ≠ 0)) → (𝐵 # 0 ↔ 𝐵 ≠ 0)) |
| 13 | 7, 12 | mpbird 167 |
. . . . . 6
⊢ ((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℚ ∧ 𝐴 ≠ 0) ∧ (𝐵 ∈ ℚ ∧ 𝐵 ≠ 0)) → 𝐵 # 0) |
| 14 | 3, 6, 13 | divcanap1d 8818 |
. . . . 5
⊢ ((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℚ ∧ 𝐴 ≠ 0) ∧ (𝐵 ∈ ℚ ∧ 𝐵 ≠ 0)) → ((𝐴 / 𝐵) · 𝐵) = 𝐴) |
| 15 | 14 | oveq2d 5938 |
. . . 4
⊢ ((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℚ ∧ 𝐴 ≠ 0) ∧ (𝐵 ∈ ℚ ∧ 𝐵 ≠ 0)) → (𝑃 pCnt ((𝐴 / 𝐵) · 𝐵)) = (𝑃 pCnt 𝐴)) |
| 16 | | simp1 999 |
. . . . 5
⊢ ((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℚ ∧ 𝐴 ≠ 0) ∧ (𝐵 ∈ ℚ ∧ 𝐵 ≠ 0)) → 𝑃 ∈
ℙ) |
| 17 | | qdivcl 9717 |
. . . . . 6
⊢ ((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ ∧ 𝐵 ≠ 0) → (𝐴 / 𝐵) ∈ ℚ) |
| 18 | 1, 4, 7, 17 | syl3anc 1249 |
. . . . 5
⊢ ((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℚ ∧ 𝐴 ≠ 0) ∧ (𝐵 ∈ ℚ ∧ 𝐵 ≠ 0)) → (𝐴 / 𝐵) ∈ ℚ) |
| 19 | | simp2r 1026 |
. . . . . . . 8
⊢ ((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℚ ∧ 𝐴 ≠ 0) ∧ (𝐵 ∈ ℚ ∧ 𝐵 ≠ 0)) → 𝐴 ≠ 0) |
| 20 | | qapne 9713 |
. . . . . . . . 9
⊢ ((𝐴 ∈ ℚ ∧ 0 ∈
ℚ) → (𝐴 # 0
↔ 𝐴 ≠
0)) |
| 21 | 1, 10, 20 | sylancl 413 |
. . . . . . . 8
⊢ ((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℚ ∧ 𝐴 ≠ 0) ∧ (𝐵 ∈ ℚ ∧ 𝐵 ≠ 0)) → (𝐴 # 0 ↔ 𝐴 ≠ 0)) |
| 22 | 19, 21 | mpbird 167 |
. . . . . . 7
⊢ ((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℚ ∧ 𝐴 ≠ 0) ∧ (𝐵 ∈ ℚ ∧ 𝐵 ≠ 0)) → 𝐴 # 0) |
| 23 | 3, 6, 22, 13 | divap0d 8833 |
. . . . . 6
⊢ ((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℚ ∧ 𝐴 ≠ 0) ∧ (𝐵 ∈ ℚ ∧ 𝐵 ≠ 0)) → (𝐴 / 𝐵) # 0) |
| 24 | | qapne 9713 |
. . . . . . 7
⊢ (((𝐴 / 𝐵) ∈ ℚ ∧ 0 ∈ ℚ)
→ ((𝐴 / 𝐵) # 0 ↔ (𝐴 / 𝐵) ≠ 0)) |
| 25 | 18, 10, 24 | sylancl 413 |
. . . . . 6
⊢ ((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℚ ∧ 𝐴 ≠ 0) ∧ (𝐵 ∈ ℚ ∧ 𝐵 ≠ 0)) → ((𝐴 / 𝐵) # 0 ↔ (𝐴 / 𝐵) ≠ 0)) |
| 26 | 23, 25 | mpbid 147 |
. . . . 5
⊢ ((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℚ ∧ 𝐴 ≠ 0) ∧ (𝐵 ∈ ℚ ∧ 𝐵 ≠ 0)) → (𝐴 / 𝐵) ≠ 0) |
| 27 | | pcqmul 12472 |
. . . . 5
⊢ ((𝑃 ∈ ℙ ∧ ((𝐴 / 𝐵) ∈ ℚ ∧ (𝐴 / 𝐵) ≠ 0) ∧ (𝐵 ∈ ℚ ∧ 𝐵 ≠ 0)) → (𝑃 pCnt ((𝐴 / 𝐵) · 𝐵)) = ((𝑃 pCnt (𝐴 / 𝐵)) + (𝑃 pCnt 𝐵))) |
| 28 | 16, 18, 26, 4, 7, 27 | syl122anc 1258 |
. . . 4
⊢ ((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℚ ∧ 𝐴 ≠ 0) ∧ (𝐵 ∈ ℚ ∧ 𝐵 ≠ 0)) → (𝑃 pCnt ((𝐴 / 𝐵) · 𝐵)) = ((𝑃 pCnt (𝐴 / 𝐵)) + (𝑃 pCnt 𝐵))) |
| 29 | 15, 28 | eqtr3d 2231 |
. . 3
⊢ ((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℚ ∧ 𝐴 ≠ 0) ∧ (𝐵 ∈ ℚ ∧ 𝐵 ≠ 0)) → (𝑃 pCnt 𝐴) = ((𝑃 pCnt (𝐴 / 𝐵)) + (𝑃 pCnt 𝐵))) |
| 30 | 29 | oveq1d 5937 |
. 2
⊢ ((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℚ ∧ 𝐴 ≠ 0) ∧ (𝐵 ∈ ℚ ∧ 𝐵 ≠ 0)) → ((𝑃 pCnt 𝐴) − (𝑃 pCnt 𝐵)) = (((𝑃 pCnt (𝐴 / 𝐵)) + (𝑃 pCnt 𝐵)) − (𝑃 pCnt 𝐵))) |
| 31 | | pcqcl 12475 |
. . . . 5
⊢ ((𝑃 ∈ ℙ ∧ ((𝐴 / 𝐵) ∈ ℚ ∧ (𝐴 / 𝐵) ≠ 0)) → (𝑃 pCnt (𝐴 / 𝐵)) ∈ ℤ) |
| 32 | 16, 18, 26, 31 | syl12anc 1247 |
. . . 4
⊢ ((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℚ ∧ 𝐴 ≠ 0) ∧ (𝐵 ∈ ℚ ∧ 𝐵 ≠ 0)) → (𝑃 pCnt (𝐴 / 𝐵)) ∈ ℤ) |
| 33 | 32 | zcnd 9449 |
. . 3
⊢ ((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℚ ∧ 𝐴 ≠ 0) ∧ (𝐵 ∈ ℚ ∧ 𝐵 ≠ 0)) → (𝑃 pCnt (𝐴 / 𝐵)) ∈ ℂ) |
| 34 | | pcqcl 12475 |
. . . . 5
⊢ ((𝑃 ∈ ℙ ∧ (𝐵 ∈ ℚ ∧ 𝐵 ≠ 0)) → (𝑃 pCnt 𝐵) ∈ ℤ) |
| 35 | 34 | 3adant2 1018 |
. . . 4
⊢ ((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℚ ∧ 𝐴 ≠ 0) ∧ (𝐵 ∈ ℚ ∧ 𝐵 ≠ 0)) → (𝑃 pCnt 𝐵) ∈ ℤ) |
| 36 | 35 | zcnd 9449 |
. . 3
⊢ ((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℚ ∧ 𝐴 ≠ 0) ∧ (𝐵 ∈ ℚ ∧ 𝐵 ≠ 0)) → (𝑃 pCnt 𝐵) ∈ ℂ) |
| 37 | 33, 36 | pncand 8338 |
. 2
⊢ ((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℚ ∧ 𝐴 ≠ 0) ∧ (𝐵 ∈ ℚ ∧ 𝐵 ≠ 0)) → (((𝑃 pCnt (𝐴 / 𝐵)) + (𝑃 pCnt 𝐵)) − (𝑃 pCnt 𝐵)) = (𝑃 pCnt (𝐴 / 𝐵))) |
| 38 | 30, 37 | eqtr2d 2230 |
1
⊢ ((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℚ ∧ 𝐴 ≠ 0) ∧ (𝐵 ∈ ℚ ∧ 𝐵 ≠ 0)) → (𝑃 pCnt (𝐴 / 𝐵)) = ((𝑃 pCnt 𝐴) − (𝑃 pCnt 𝐵))) |