Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  blss2ps GIF version

Theorem blss2ps 12648
 Description: One ball is contained in another if the center-to-center distance is less than the difference of the radii. (Contributed by Mario Carneiro, 15-Jan-2014.) (Revised by Mario Carneiro, 23-Aug-2015.) (Revised by Thierry Arnoux, 11-Mar-2018.)
Assertion
Ref Expression
blss2ps (((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑃𝑋𝑄𝑋) ∧ (𝑅 ∈ ℝ ∧ 𝑆 ∈ ℝ ∧ (𝑃𝐷𝑄) ≤ (𝑆𝑅))) → (𝑃(ball‘𝐷)𝑅) ⊆ (𝑄(ball‘𝐷)𝑆))

Proof of Theorem blss2ps
StepHypRef Expression
1 simpl1 985 . 2 (((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑃𝑋𝑄𝑋) ∧ (𝑅 ∈ ℝ ∧ 𝑆 ∈ ℝ ∧ (𝑃𝐷𝑄) ≤ (𝑆𝑅))) → 𝐷 ∈ (PsMet‘𝑋))
2 simpl2 986 . 2 (((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑃𝑋𝑄𝑋) ∧ (𝑅 ∈ ℝ ∧ 𝑆 ∈ ℝ ∧ (𝑃𝐷𝑄) ≤ (𝑆𝑅))) → 𝑃𝑋)
3 simpl3 987 . 2 (((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑃𝑋𝑄𝑋) ∧ (𝑅 ∈ ℝ ∧ 𝑆 ∈ ℝ ∧ (𝑃𝐷𝑄) ≤ (𝑆𝑅))) → 𝑄𝑋)
4 simpr1 988 . . 3 (((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑃𝑋𝑄𝑋) ∧ (𝑅 ∈ ℝ ∧ 𝑆 ∈ ℝ ∧ (𝑃𝐷𝑄) ≤ (𝑆𝑅))) → 𝑅 ∈ ℝ)
54rexrd 7866 . 2 (((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑃𝑋𝑄𝑋) ∧ (𝑅 ∈ ℝ ∧ 𝑆 ∈ ℝ ∧ (𝑃𝐷𝑄) ≤ (𝑆𝑅))) → 𝑅 ∈ ℝ*)
6 simpr2 989 . . 3 (((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑃𝑋𝑄𝑋) ∧ (𝑅 ∈ ℝ ∧ 𝑆 ∈ ℝ ∧ (𝑃𝐷𝑄) ≤ (𝑆𝑅))) → 𝑆 ∈ ℝ)
76rexrd 7866 . 2 (((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑃𝑋𝑄𝑋) ∧ (𝑅 ∈ ℝ ∧ 𝑆 ∈ ℝ ∧ (𝑃𝐷𝑄) ≤ (𝑆𝑅))) → 𝑆 ∈ ℝ*)
86, 4resubcld 8194 . . 3 (((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑃𝑋𝑄𝑋) ∧ (𝑅 ∈ ℝ ∧ 𝑆 ∈ ℝ ∧ (𝑃𝐷𝑄) ≤ (𝑆𝑅))) → (𝑆𝑅) ∈ ℝ)
9 simpr3 990 . . 3 (((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑃𝑋𝑄𝑋) ∧ (𝑅 ∈ ℝ ∧ 𝑆 ∈ ℝ ∧ (𝑃𝐷𝑄) ≤ (𝑆𝑅))) → (𝑃𝐷𝑄) ≤ (𝑆𝑅))
10 psmetlecl 12576 . . 3 ((𝐷 ∈ (PsMet‘𝑋) ∧ (𝑃𝑋𝑄𝑋) ∧ ((𝑆𝑅) ∈ ℝ ∧ (𝑃𝐷𝑄) ≤ (𝑆𝑅))) → (𝑃𝐷𝑄) ∈ ℝ)
111, 2, 3, 8, 9, 10syl122anc 1226 . 2 (((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑃𝑋𝑄𝑋) ∧ (𝑅 ∈ ℝ ∧ 𝑆 ∈ ℝ ∧ (𝑃𝐷𝑄) ≤ (𝑆𝑅))) → (𝑃𝐷𝑄) ∈ ℝ)
12 rexsub 9693 . . . 4 ((𝑆 ∈ ℝ ∧ 𝑅 ∈ ℝ) → (𝑆 +𝑒 -𝑒𝑅) = (𝑆𝑅))
136, 4, 12syl2anc 409 . . 3 (((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑃𝑋𝑄𝑋) ∧ (𝑅 ∈ ℝ ∧ 𝑆 ∈ ℝ ∧ (𝑃𝐷𝑄) ≤ (𝑆𝑅))) → (𝑆 +𝑒 -𝑒𝑅) = (𝑆𝑅))
149, 13breqtrrd 3965 . 2 (((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑃𝑋𝑄𝑋) ∧ (𝑅 ∈ ℝ ∧ 𝑆 ∈ ℝ ∧ (𝑃𝐷𝑄) ≤ (𝑆𝑅))) → (𝑃𝐷𝑄) ≤ (𝑆 +𝑒 -𝑒𝑅))
151, 2, 3, 5, 7, 11, 14xblss2ps 12646 1 (((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑃𝑋𝑄𝑋) ∧ (𝑅 ∈ ℝ ∧ 𝑆 ∈ ℝ ∧ (𝑃𝐷𝑄) ≤ (𝑆𝑅))) → (𝑃(ball‘𝐷)𝑅) ⊆ (𝑄(ball‘𝐷)𝑆))
 Colors of variables: wff set class Syntax hints:   → wi 4   ∧ wa 103   ∧ w3a 963   = wceq 1332   ∈ wcel 1481   ⊆ wss 3077   class class class wbr 3938  ‘cfv 5134  (class class class)co 5785  ℝcr 7670   ≤ cle 7852   − cmin 7984  -𝑒cxne 9613   +𝑒 cxad 9614  PsMetcpsmet 12221  ballcbl 12224 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1483  ax-10 1484  ax-11 1485  ax-i12 1486  ax-bndl 1487  ax-4 1488  ax-13 1492  ax-14 1493  ax-17 1507  ax-i9 1511  ax-ial 1515  ax-i5r 1516  ax-ext 2122  ax-sep 4055  ax-pow 4107  ax-pr 4141  ax-un 4365  ax-setind 4462  ax-cnex 7762  ax-resscn 7763  ax-1cn 7764  ax-1re 7765  ax-icn 7766  ax-addcl 7767  ax-addrcl 7768  ax-mulcl 7769  ax-mulrcl 7770  ax-addcom 7771  ax-mulcom 7772  ax-addass 7773  ax-mulass 7774  ax-distr 7775  ax-i2m1 7776  ax-0lt1 7777  ax-1rid 7778  ax-0id 7779  ax-rnegex 7780  ax-precex 7781  ax-cnre 7782  ax-pre-ltirr 7783  ax-pre-ltwlin 7784  ax-pre-lttrn 7785  ax-pre-apti 7786  ax-pre-ltadd 7787  ax-pre-mulgt0 7788 This theorem depends on definitions:  df-bi 116  df-stab 817  df-dc 821  df-3or 964  df-3an 965  df-tru 1335  df-fal 1338  df-nf 1438  df-sb 1737  df-eu 2003  df-mo 2004  df-clab 2127  df-cleq 2133  df-clel 2136  df-nfc 2271  df-ne 2310  df-nel 2405  df-ral 2422  df-rex 2423  df-reu 2424  df-rab 2426  df-v 2692  df-sbc 2915  df-csb 3009  df-dif 3079  df-un 3081  df-in 3083  df-ss 3090  df-if 3481  df-pw 3518  df-sn 3539  df-pr 3540  df-op 3542  df-uni 3746  df-iun 3824  df-br 3939  df-opab 3999  df-mpt 4000  df-id 4225  df-po 4228  df-iso 4229  df-xp 4556  df-rel 4557  df-cnv 4558  df-co 4559  df-dm 4560  df-rn 4561  df-res 4562  df-ima 4563  df-iota 5099  df-fun 5136  df-fn 5137  df-f 5138  df-fv 5142  df-riota 5741  df-ov 5788  df-oprab 5789  df-mpo 5790  df-1st 6049  df-2nd 6050  df-map 6555  df-pnf 7853  df-mnf 7854  df-xr 7855  df-ltxr 7856  df-le 7857  df-sub 7986  df-neg 7987  df-2 8830  df-xneg 9616  df-xadd 9617  df-psmet 12229  df-bl 12232 This theorem is referenced by:  blssps  12669
 Copyright terms: Public domain W3C validator