| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > unisn | GIF version | ||
| Description: A set equals the union of its singleton. Theorem 8.2 of [Quine] p. 53. (Contributed by NM, 30-Aug-1993.) | 
| Ref | Expression | 
|---|---|
| unisn.1 | ⊢ 𝐴 ∈ V | 
| Ref | Expression | 
|---|---|
| unisn | ⊢ ∪ {𝐴} = 𝐴 | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | dfsn2 3636 | . . 3 ⊢ {𝐴} = {𝐴, 𝐴} | |
| 2 | 1 | unieqi 3849 | . 2 ⊢ ∪ {𝐴} = ∪ {𝐴, 𝐴} | 
| 3 | unisn.1 | . . 3 ⊢ 𝐴 ∈ V | |
| 4 | 3, 3 | unipr 3853 | . 2 ⊢ ∪ {𝐴, 𝐴} = (𝐴 ∪ 𝐴) | 
| 5 | unidm 3306 | . 2 ⊢ (𝐴 ∪ 𝐴) = 𝐴 | |
| 6 | 2, 4, 5 | 3eqtri 2221 | 1 ⊢ ∪ {𝐴} = 𝐴 | 
| Colors of variables: wff set class | 
| Syntax hints: = wceq 1364 ∈ wcel 2167 Vcvv 2763 ∪ cun 3155 {csn 3622 {cpr 3623 ∪ cuni 3839 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 | 
| This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-rex 2481 df-v 2765 df-un 3161 df-sn 3628 df-pr 3629 df-uni 3840 | 
| This theorem is referenced by: unisng 3856 uniintsnr 3910 unisuc 4448 op1sta 5151 op2nda 5154 elxp4 5157 uniabio 5229 iotass 5236 en1bg 6859 zrhval2 14175 | 
| Copyright terms: Public domain | W3C validator |