ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  unisn GIF version

Theorem unisn 3821
Description: A set equals the union of its singleton. Theorem 8.2 of [Quine] p. 53. (Contributed by NM, 30-Aug-1993.)
Hypothesis
Ref Expression
unisn.1 𝐴 ∈ V
Assertion
Ref Expression
unisn {𝐴} = 𝐴

Proof of Theorem unisn
StepHypRef Expression
1 dfsn2 3603 . . 3 {𝐴} = {𝐴, 𝐴}
21unieqi 3815 . 2 {𝐴} = {𝐴, 𝐴}
3 unisn.1 . . 3 𝐴 ∈ V
43, 3unipr 3819 . 2 {𝐴, 𝐴} = (𝐴𝐴)
5 unidm 3276 . 2 (𝐴𝐴) = 𝐴
62, 4, 53eqtri 2200 1 {𝐴} = 𝐴
Colors of variables: wff set class
Syntax hints:   = wceq 1353  wcel 2146  Vcvv 2735  cun 3125  {csn 3589  {cpr 3590   cuni 3805
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1445  ax-7 1446  ax-gen 1447  ax-ie1 1491  ax-ie2 1492  ax-8 1502  ax-10 1503  ax-11 1504  ax-i12 1505  ax-bndl 1507  ax-4 1508  ax-17 1524  ax-i9 1528  ax-ial 1532  ax-i5r 1533  ax-ext 2157
This theorem depends on definitions:  df-bi 117  df-tru 1356  df-nf 1459  df-sb 1761  df-clab 2162  df-cleq 2168  df-clel 2171  df-nfc 2306  df-rex 2459  df-v 2737  df-un 3131  df-sn 3595  df-pr 3596  df-uni 3806
This theorem is referenced by:  unisng  3822  uniintsnr  3876  unisuc  4407  op1sta  5102  op2nda  5105  elxp4  5108  uniabio  5180  iotass  5187  en1bg  6790
  Copyright terms: Public domain W3C validator