| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > unisn | GIF version | ||
| Description: A set equals the union of its singleton. Theorem 8.2 of [Quine] p. 53. (Contributed by NM, 30-Aug-1993.) |
| Ref | Expression |
|---|---|
| unisn.1 | ⊢ 𝐴 ∈ V |
| Ref | Expression |
|---|---|
| unisn | ⊢ ∪ {𝐴} = 𝐴 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dfsn2 3680 | . . 3 ⊢ {𝐴} = {𝐴, 𝐴} | |
| 2 | 1 | unieqi 3897 | . 2 ⊢ ∪ {𝐴} = ∪ {𝐴, 𝐴} |
| 3 | unisn.1 | . . 3 ⊢ 𝐴 ∈ V | |
| 4 | 3, 3 | unipr 3901 | . 2 ⊢ ∪ {𝐴, 𝐴} = (𝐴 ∪ 𝐴) |
| 5 | unidm 3347 | . 2 ⊢ (𝐴 ∪ 𝐴) = 𝐴 | |
| 6 | 2, 4, 5 | 3eqtri 2254 | 1 ⊢ ∪ {𝐴} = 𝐴 |
| Colors of variables: wff set class |
| Syntax hints: = wceq 1395 ∈ wcel 2200 Vcvv 2799 ∪ cun 3195 {csn 3666 {cpr 3667 ∪ cuni 3887 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 |
| This theorem depends on definitions: df-bi 117 df-tru 1398 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-rex 2514 df-v 2801 df-un 3201 df-sn 3672 df-pr 3673 df-uni 3888 |
| This theorem is referenced by: unisng 3904 uniintsnr 3958 unisuc 4501 op1sta 5206 op2nda 5209 elxp4 5212 uniabio 5285 iotass 5292 en1bg 6942 zrhval2 14568 |
| Copyright terms: Public domain | W3C validator |