ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  unisn GIF version

Theorem unisn 3869
Description: A set equals the union of its singleton. Theorem 8.2 of [Quine] p. 53. (Contributed by NM, 30-Aug-1993.)
Hypothesis
Ref Expression
unisn.1 𝐴 ∈ V
Assertion
Ref Expression
unisn {𝐴} = 𝐴

Proof of Theorem unisn
StepHypRef Expression
1 dfsn2 3649 . . 3 {𝐴} = {𝐴, 𝐴}
21unieqi 3863 . 2 {𝐴} = {𝐴, 𝐴}
3 unisn.1 . . 3 𝐴 ∈ V
43, 3unipr 3867 . 2 {𝐴, 𝐴} = (𝐴𝐴)
5 unidm 3318 . 2 (𝐴𝐴) = 𝐴
62, 4, 53eqtri 2231 1 {𝐴} = 𝐴
Colors of variables: wff set class
Syntax hints:   = wceq 1373  wcel 2177  Vcvv 2773  cun 3166  {csn 3635  {cpr 3636   cuni 3853
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-ext 2188
This theorem depends on definitions:  df-bi 117  df-tru 1376  df-nf 1485  df-sb 1787  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-rex 2491  df-v 2775  df-un 3172  df-sn 3641  df-pr 3642  df-uni 3854
This theorem is referenced by:  unisng  3870  uniintsnr  3924  unisuc  4465  op1sta  5170  op2nda  5173  elxp4  5176  uniabio  5248  iotass  5255  en1bg  6902  zrhval2  14431
  Copyright terms: Public domain W3C validator