Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > unisn | GIF version |
Description: A set equals the union of its singleton. Theorem 8.2 of [Quine] p. 53. (Contributed by NM, 30-Aug-1993.) |
Ref | Expression |
---|---|
unisn.1 | ⊢ 𝐴 ∈ V |
Ref | Expression |
---|---|
unisn | ⊢ ∪ {𝐴} = 𝐴 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfsn2 3603 | . . 3 ⊢ {𝐴} = {𝐴, 𝐴} | |
2 | 1 | unieqi 3815 | . 2 ⊢ ∪ {𝐴} = ∪ {𝐴, 𝐴} |
3 | unisn.1 | . . 3 ⊢ 𝐴 ∈ V | |
4 | 3, 3 | unipr 3819 | . 2 ⊢ ∪ {𝐴, 𝐴} = (𝐴 ∪ 𝐴) |
5 | unidm 3276 | . 2 ⊢ (𝐴 ∪ 𝐴) = 𝐴 | |
6 | 2, 4, 5 | 3eqtri 2200 | 1 ⊢ ∪ {𝐴} = 𝐴 |
Colors of variables: wff set class |
Syntax hints: = wceq 1353 ∈ wcel 2146 Vcvv 2735 ∪ cun 3125 {csn 3589 {cpr 3590 ∪ cuni 3805 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 709 ax-5 1445 ax-7 1446 ax-gen 1447 ax-ie1 1491 ax-ie2 1492 ax-8 1502 ax-10 1503 ax-11 1504 ax-i12 1505 ax-bndl 1507 ax-4 1508 ax-17 1524 ax-i9 1528 ax-ial 1532 ax-i5r 1533 ax-ext 2157 |
This theorem depends on definitions: df-bi 117 df-tru 1356 df-nf 1459 df-sb 1761 df-clab 2162 df-cleq 2168 df-clel 2171 df-nfc 2306 df-rex 2459 df-v 2737 df-un 3131 df-sn 3595 df-pr 3596 df-uni 3806 |
This theorem is referenced by: unisng 3822 uniintsnr 3876 unisuc 4407 op1sta 5102 op2nda 5105 elxp4 5108 uniabio 5180 iotass 5187 en1bg 6790 |
Copyright terms: Public domain | W3C validator |