ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  unisn GIF version

Theorem unisn 3827
Description: A set equals the union of its singleton. Theorem 8.2 of [Quine] p. 53. (Contributed by NM, 30-Aug-1993.)
Hypothesis
Ref Expression
unisn.1 𝐴 ∈ V
Assertion
Ref Expression
unisn {𝐴} = 𝐴

Proof of Theorem unisn
StepHypRef Expression
1 dfsn2 3608 . . 3 {𝐴} = {𝐴, 𝐴}
21unieqi 3821 . 2 {𝐴} = {𝐴, 𝐴}
3 unisn.1 . . 3 𝐴 ∈ V
43, 3unipr 3825 . 2 {𝐴, 𝐴} = (𝐴𝐴)
5 unidm 3280 . 2 (𝐴𝐴) = 𝐴
62, 4, 53eqtri 2202 1 {𝐴} = 𝐴
Colors of variables: wff set class
Syntax hints:   = wceq 1353  wcel 2148  Vcvv 2739  cun 3129  {csn 3594  {cpr 3595   cuni 3811
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-ext 2159
This theorem depends on definitions:  df-bi 117  df-tru 1356  df-nf 1461  df-sb 1763  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-rex 2461  df-v 2741  df-un 3135  df-sn 3600  df-pr 3601  df-uni 3812
This theorem is referenced by:  unisng  3828  uniintsnr  3882  unisuc  4415  op1sta  5112  op2nda  5115  elxp4  5118  uniabio  5190  iotass  5197  en1bg  6802
  Copyright terms: Public domain W3C validator