ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  unisn GIF version

Theorem unisn 3855
Description: A set equals the union of its singleton. Theorem 8.2 of [Quine] p. 53. (Contributed by NM, 30-Aug-1993.)
Hypothesis
Ref Expression
unisn.1 𝐴 ∈ V
Assertion
Ref Expression
unisn {𝐴} = 𝐴

Proof of Theorem unisn
StepHypRef Expression
1 dfsn2 3636 . . 3 {𝐴} = {𝐴, 𝐴}
21unieqi 3849 . 2 {𝐴} = {𝐴, 𝐴}
3 unisn.1 . . 3 𝐴 ∈ V
43, 3unipr 3853 . 2 {𝐴, 𝐴} = (𝐴𝐴)
5 unidm 3306 . 2 (𝐴𝐴) = 𝐴
62, 4, 53eqtri 2221 1 {𝐴} = 𝐴
Colors of variables: wff set class
Syntax hints:   = wceq 1364  wcel 2167  Vcvv 2763  cun 3155  {csn 3622  {cpr 3623   cuni 3839
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-ext 2178
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1475  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-rex 2481  df-v 2765  df-un 3161  df-sn 3628  df-pr 3629  df-uni 3840
This theorem is referenced by:  unisng  3856  uniintsnr  3910  unisuc  4448  op1sta  5151  op2nda  5154  elxp4  5157  uniabio  5229  iotass  5236  en1bg  6859  zrhval2  14175
  Copyright terms: Public domain W3C validator