ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  unisn GIF version

Theorem unisn 3851
Description: A set equals the union of its singleton. Theorem 8.2 of [Quine] p. 53. (Contributed by NM, 30-Aug-1993.)
Hypothesis
Ref Expression
unisn.1 𝐴 ∈ V
Assertion
Ref Expression
unisn {𝐴} = 𝐴

Proof of Theorem unisn
StepHypRef Expression
1 dfsn2 3632 . . 3 {𝐴} = {𝐴, 𝐴}
21unieqi 3845 . 2 {𝐴} = {𝐴, 𝐴}
3 unisn.1 . . 3 𝐴 ∈ V
43, 3unipr 3849 . 2 {𝐴, 𝐴} = (𝐴𝐴)
5 unidm 3302 . 2 (𝐴𝐴) = 𝐴
62, 4, 53eqtri 2218 1 {𝐴} = 𝐴
Colors of variables: wff set class
Syntax hints:   = wceq 1364  wcel 2164  Vcvv 2760  cun 3151  {csn 3618  {cpr 3619   cuni 3835
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-ext 2175
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1472  df-sb 1774  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-rex 2478  df-v 2762  df-un 3157  df-sn 3624  df-pr 3625  df-uni 3836
This theorem is referenced by:  unisng  3852  uniintsnr  3906  unisuc  4444  op1sta  5147  op2nda  5150  elxp4  5153  uniabio  5225  iotass  5232  en1bg  6854  zrhval2  14107
  Copyright terms: Public domain W3C validator