| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > unisn | GIF version | ||
| Description: A set equals the union of its singleton. Theorem 8.2 of [Quine] p. 53. (Contributed by NM, 30-Aug-1993.) |
| Ref | Expression |
|---|---|
| unisn.1 | ⊢ 𝐴 ∈ V |
| Ref | Expression |
|---|---|
| unisn | ⊢ ∪ {𝐴} = 𝐴 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dfsn2 3649 | . . 3 ⊢ {𝐴} = {𝐴, 𝐴} | |
| 2 | 1 | unieqi 3863 | . 2 ⊢ ∪ {𝐴} = ∪ {𝐴, 𝐴} |
| 3 | unisn.1 | . . 3 ⊢ 𝐴 ∈ V | |
| 4 | 3, 3 | unipr 3867 | . 2 ⊢ ∪ {𝐴, 𝐴} = (𝐴 ∪ 𝐴) |
| 5 | unidm 3318 | . 2 ⊢ (𝐴 ∪ 𝐴) = 𝐴 | |
| 6 | 2, 4, 5 | 3eqtri 2231 | 1 ⊢ ∪ {𝐴} = 𝐴 |
| Colors of variables: wff set class |
| Syntax hints: = wceq 1373 ∈ wcel 2177 Vcvv 2773 ∪ cun 3166 {csn 3635 {cpr 3636 ∪ cuni 3853 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2188 |
| This theorem depends on definitions: df-bi 117 df-tru 1376 df-nf 1485 df-sb 1787 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-rex 2491 df-v 2775 df-un 3172 df-sn 3641 df-pr 3642 df-uni 3854 |
| This theorem is referenced by: unisng 3870 uniintsnr 3924 unisuc 4465 op1sta 5170 op2nda 5173 elxp4 5176 uniabio 5248 iotass 5255 en1bg 6902 zrhval2 14431 |
| Copyright terms: Public domain | W3C validator |