Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > eqtr4di | GIF version |
Description: An equality transitivity deduction. (Contributed by NM, 5-Aug-1993.) |
Ref | Expression |
---|---|
eqtr4di.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
eqtr4di.2 | ⊢ 𝐶 = 𝐵 |
Ref | Expression |
---|---|
eqtr4di | ⊢ (𝜑 → 𝐴 = 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqtr4di.1 | . 2 ⊢ (𝜑 → 𝐴 = 𝐵) | |
2 | eqtr4di.2 | . . 3 ⊢ 𝐶 = 𝐵 | |
3 | 2 | eqcomi 2169 | . 2 ⊢ 𝐵 = 𝐶 |
4 | 1, 3 | eqtrdi 2215 | 1 ⊢ (𝜑 → 𝐴 = 𝐶) |
Colors of variables: wff set class |
Syntax hints: → wi 4 = wceq 1343 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1435 ax-gen 1437 ax-4 1498 ax-17 1514 ax-ext 2147 |
This theorem depends on definitions: df-bi 116 df-cleq 2158 |
This theorem is referenced by: 3eqtr4g 2224 rabxmdc 3440 relop 4754 csbcnvg 4788 dfiun3g 4861 dfiin3g 4862 resima2 4918 relcnvfld 5137 uniabio 5163 fntpg 5244 dffn5im 5532 dfimafn2 5536 fncnvima2 5606 fmptcof 5652 fcoconst 5656 fnasrng 5665 ffnov 5946 fnovim 5950 fnrnov 5987 foov 5988 funimassov 5991 ovelimab 5992 ofc12 6070 caofinvl 6072 dftpos3 6230 tfr0dm 6290 rdgisucinc 6353 oasuc 6432 ecinxp 6576 phplem1 6818 exmidpw 6874 exmidpweq 6875 unfiin 6891 fidcenumlemr 6920 0ct 7072 ctmlemr 7073 exmidaclem 7164 indpi 7283 nqnq0pi 7379 nq0m0r 7397 addnqpr1 7503 recexgt0sr 7714 suplocsrlempr 7748 recidpipr 7797 recidpirq 7799 axrnegex 7820 nntopi 7835 cnref1o 9588 fztp 10013 fseq1m1p1 10030 fz0to4untppr 10059 frecuzrdgrrn 10343 frecuzrdgsuc 10349 frecuzrdgsuctlem 10358 seq3val 10393 seqvalcd 10394 fser0const 10451 mulexpzap 10495 expaddzap 10499 bcp1m1 10678 cjexp 10835 rexuz3 10932 bdtri 11181 climconst 11231 sumfct 11315 zsumdc 11325 fsum3 11328 sum0 11329 fsumcnv 11378 mertenslem2 11477 zproddc 11520 fprodseq 11524 prod0 11526 prod1dc 11527 prodfct 11528 fprodcnv 11566 ef0lem 11601 efzval 11624 efival 11673 sinbnd 11693 cosbnd 11694 eucalgval 11986 eucalginv 11988 eucalglt 11989 eucalgcvga 11990 eucalg 11991 sqpweven 12107 2sqpwodd 12108 dfphi2 12152 phimullem 12157 prmdiv 12167 odzval 12173 pcval 12228 pczpre 12229 pcrec 12240 ennnfonelemhdmp1 12342 ennnfonelemkh 12345 ressid2 12454 ressval2 12455 topnvalg 12568 ismgm 12588 plusffvalg 12593 grpidvalg 12604 issgrp 12621 istps 12680 cldval 12749 ntrfval 12750 clsfval 12751 neifval 12790 restbasg 12818 tgrest 12819 txval 12905 upxp 12922 uptx 12924 txrest 12926 lmcn2 12930 cnmpt2t 12943 cnmpt2res 12947 imasnopn 12949 psmetxrge0 12982 xmetge0 13015 isxms 13101 isms 13103 bdxmet 13151 qtopbasss 13171 cnblcld 13185 negfcncf 13239 dvfvalap 13300 eldvap 13301 dvidlemap 13310 dvexp2 13326 dvrecap 13327 dveflem 13337 sin0pilem1 13352 ptolemy 13395 coskpi 13419 logbrec 13528 lgslem1 13551 lgsval 13555 lgsval4 13571 lgsfcl3 13572 lgsdilem 13578 lgsdir2lem4 13582 lgsdir2lem5 13583 nninfsellemqall 13905 |
Copyright terms: Public domain | W3C validator |