| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > eqtr4di | GIF version | ||
| Description: An equality transitivity deduction. (Contributed by NM, 5-Aug-1993.) |
| Ref | Expression |
|---|---|
| eqtr4di.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
| eqtr4di.2 | ⊢ 𝐶 = 𝐵 |
| Ref | Expression |
|---|---|
| eqtr4di | ⊢ (𝜑 → 𝐴 = 𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqtr4di.1 | . 2 ⊢ (𝜑 → 𝐴 = 𝐵) | |
| 2 | eqtr4di.2 | . . 3 ⊢ 𝐶 = 𝐵 | |
| 3 | 2 | eqcomi 2208 | . 2 ⊢ 𝐵 = 𝐶 |
| 4 | 1, 3 | eqtrdi 2253 | 1 ⊢ (𝜑 → 𝐴 = 𝐶) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1372 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1469 ax-gen 1471 ax-4 1532 ax-17 1548 ax-ext 2186 |
| This theorem depends on definitions: df-bi 117 df-cleq 2197 |
| This theorem is referenced by: 3eqtr4g 2262 rabxmdc 3491 relop 4826 csbcnvg 4860 dfiun3g 4933 dfiin3g 4934 resima2 4990 relcnvfld 5213 uniabio 5239 fntpg 5324 dffn5im 5618 dfimafn2 5622 fncnvima2 5695 fmptcof 5741 fcoconst 5745 fnasrng 5754 ffnov 6039 fnovim 6044 fnrnov 6082 foov 6083 funimassov 6086 ovelimab 6087 ofc12 6172 caofinvl 6174 dftpos3 6338 tfr0dm 6398 rdgisucinc 6461 oasuc 6540 ecinxp 6687 phplem1 6931 exmidpw 6987 exmidpweq 6988 unfiin 7005 fidcenumlemr 7039 0ct 7191 ctmlemr 7192 exmidaclem 7302 indpi 7437 nqnq0pi 7533 nq0m0r 7551 addnqpr1 7657 recexgt0sr 7868 suplocsrlempr 7902 recidpipr 7951 recidpirq 7953 axrnegex 7974 nntopi 7989 cnref1o 9754 fztp 10182 fseq1m1p1 10199 fz0to4untppr 10228 frecuzrdgrrn 10534 frecuzrdgsuc 10540 frecuzrdgsuctlem 10549 seq3val 10586 seqvalcd 10587 fser0const 10661 mulexpzap 10705 expaddzap 10709 bcp1m1 10891 iswrdiz 10976 cjexp 11123 rexuz3 11220 bdtri 11470 climconst 11520 sumfct 11604 zsumdc 11614 fsum3 11617 sum0 11618 fsumcnv 11667 mertenslem2 11766 zproddc 11809 fprodseq 11813 prod0 11815 prod1dc 11816 prodfct 11817 fprodcnv 11855 ef0lem 11890 efzval 11913 efival 11962 sinbnd 11982 cosbnd 11983 eucalgval 12295 eucalginv 12297 eucalglt 12298 eucalgcvga 12299 eucalg 12300 sqpweven 12416 2sqpwodd 12417 dfphi2 12461 phimullem 12466 prmdiv 12476 odzval 12483 pcval 12538 pczpre 12539 pcrec 12550 4sqlem17 12649 ennnfonelemhdmp1 12699 ennnfonelemkh 12702 ressinbasd 12825 restid2 12998 topnvalg 13001 prdsval 13023 prdsbas3 13037 pwsval 13041 pwsbas 13042 pwselbasb 13043 pwsplusgval 13045 pwsmulrval 13046 imasival 13056 imasplusg 13058 qusval 13073 xpsval 13102 ismgm 13107 plusffvalg 13112 grpidvalg 13123 igsumvalx 13139 issgrp 13153 ismnddef 13168 pws0g 13201 ismhm 13211 isgrp 13256 grpn0 13285 grpinvfvalg 13292 grpsubfvalg 13295 pwsinvg 13362 mulgfvalg 13375 mulgval 13376 mulgnn0p1 13387 issubg 13427 isnsg 13456 eqgfval 13476 quseccl0g 13485 isghm 13497 conjsubg 13531 conjsubgen 13532 iscmn 13547 mgpvalg 13603 isrng 13614 issrg 13645 isring 13680 iscrng 13683 opprvalg 13749 dfrhm2 13834 isnzr 13861 islring 13872 issubrg 13901 rrgval 13942 isdomn 13949 islmod 13971 scaffvalg 13986 lsssetm 14036 lspfval 14068 2idlval 14182 2idlvalg 14183 mulgrhm2 14290 zlmval 14307 znval 14316 znzrhfo 14328 znle2 14332 psrval 14346 mplvalcoe 14370 istps 14422 cldval 14489 ntrfval 14490 clsfval 14491 neifval 14530 restbasg 14558 tgrest 14559 txval 14645 upxp 14662 uptx 14664 txrest 14666 lmcn2 14670 cnmpt2t 14683 cnmpt2res 14687 imasnopn 14689 psmetxrge0 14722 xmetge0 14755 isxms 14841 isms 14843 bdxmet 14891 qtopbasss 14911 cnblcld 14925 mpomulcn 14956 negfcncf 14996 dvfvalap 15071 eldvap 15072 dvidlemap 15081 dvidrelem 15082 dvidsslem 15083 dvexp2 15102 dvrecap 15103 dveflem 15116 plyconst 15135 plycolemc 15148 sin0pilem1 15171 ptolemy 15214 coskpi 15238 logbrec 15350 mpodvdsmulf1o 15380 fsumdvdsmul 15381 lgslem1 15395 lgsval 15399 lgsval4 15415 lgsfcl3 15416 lgsdilem 15422 lgsdir2lem4 15426 lgsdir2lem5 15427 gausslemma2dlem5 15461 lgsquadlem2 15473 nninfsellemqall 15816 |
| Copyright terms: Public domain | W3C validator |