Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > eqtr4di | GIF version |
Description: An equality transitivity deduction. (Contributed by NM, 5-Aug-1993.) |
Ref | Expression |
---|---|
eqtr4di.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
eqtr4di.2 | ⊢ 𝐶 = 𝐵 |
Ref | Expression |
---|---|
eqtr4di | ⊢ (𝜑 → 𝐴 = 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqtr4di.1 | . 2 ⊢ (𝜑 → 𝐴 = 𝐵) | |
2 | eqtr4di.2 | . . 3 ⊢ 𝐶 = 𝐵 | |
3 | 2 | eqcomi 2174 | . 2 ⊢ 𝐵 = 𝐶 |
4 | 1, 3 | eqtrdi 2219 | 1 ⊢ (𝜑 → 𝐴 = 𝐶) |
Colors of variables: wff set class |
Syntax hints: → wi 4 = wceq 1348 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1440 ax-gen 1442 ax-4 1503 ax-17 1519 ax-ext 2152 |
This theorem depends on definitions: df-bi 116 df-cleq 2163 |
This theorem is referenced by: 3eqtr4g 2228 rabxmdc 3446 relop 4761 csbcnvg 4795 dfiun3g 4868 dfiin3g 4869 resima2 4925 relcnvfld 5144 uniabio 5170 fntpg 5254 dffn5im 5542 dfimafn2 5546 fncnvima2 5617 fmptcof 5663 fcoconst 5667 fnasrng 5676 ffnov 5957 fnovim 5961 fnrnov 5998 foov 5999 funimassov 6002 ovelimab 6003 ofc12 6081 caofinvl 6083 dftpos3 6241 tfr0dm 6301 rdgisucinc 6364 oasuc 6443 ecinxp 6588 phplem1 6830 exmidpw 6886 exmidpweq 6887 unfiin 6903 fidcenumlemr 6932 0ct 7084 ctmlemr 7085 exmidaclem 7185 indpi 7304 nqnq0pi 7400 nq0m0r 7418 addnqpr1 7524 recexgt0sr 7735 suplocsrlempr 7769 recidpipr 7818 recidpirq 7820 axrnegex 7841 nntopi 7856 cnref1o 9609 fztp 10034 fseq1m1p1 10051 fz0to4untppr 10080 frecuzrdgrrn 10364 frecuzrdgsuc 10370 frecuzrdgsuctlem 10379 seq3val 10414 seqvalcd 10415 fser0const 10472 mulexpzap 10516 expaddzap 10520 bcp1m1 10699 cjexp 10857 rexuz3 10954 bdtri 11203 climconst 11253 sumfct 11337 zsumdc 11347 fsum3 11350 sum0 11351 fsumcnv 11400 mertenslem2 11499 zproddc 11542 fprodseq 11546 prod0 11548 prod1dc 11549 prodfct 11550 fprodcnv 11588 ef0lem 11623 efzval 11646 efival 11695 sinbnd 11715 cosbnd 11716 eucalgval 12008 eucalginv 12010 eucalglt 12011 eucalgcvga 12012 eucalg 12013 sqpweven 12129 2sqpwodd 12130 dfphi2 12174 phimullem 12179 prmdiv 12189 odzval 12195 pcval 12250 pczpre 12251 pcrec 12262 ennnfonelemhdmp1 12364 ennnfonelemkh 12367 ressid2 12477 ressval2 12478 topnvalg 12591 ismgm 12611 plusffvalg 12616 grpidvalg 12627 issgrp 12644 ismnddef 12654 ismhm 12685 isgrp 12714 grpn0 12738 grpinvfvalg 12745 grpsubfvalg 12748 istps 12824 cldval 12893 ntrfval 12894 clsfval 12895 neifval 12934 restbasg 12962 tgrest 12963 txval 13049 upxp 13066 uptx 13068 txrest 13070 lmcn2 13074 cnmpt2t 13087 cnmpt2res 13091 imasnopn 13093 psmetxrge0 13126 xmetge0 13159 isxms 13245 isms 13247 bdxmet 13295 qtopbasss 13315 cnblcld 13329 negfcncf 13383 dvfvalap 13444 eldvap 13445 dvidlemap 13454 dvexp2 13470 dvrecap 13471 dveflem 13481 sin0pilem1 13496 ptolemy 13539 coskpi 13563 logbrec 13672 lgslem1 13695 lgsval 13699 lgsval4 13715 lgsfcl3 13716 lgsdilem 13722 lgsdir2lem4 13726 lgsdir2lem5 13727 nninfsellemqall 14048 |
Copyright terms: Public domain | W3C validator |