![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > eqtr4di | GIF version |
Description: An equality transitivity deduction. (Contributed by NM, 5-Aug-1993.) |
Ref | Expression |
---|---|
eqtr4di.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
eqtr4di.2 | ⊢ 𝐶 = 𝐵 |
Ref | Expression |
---|---|
eqtr4di | ⊢ (𝜑 → 𝐴 = 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqtr4di.1 | . 2 ⊢ (𝜑 → 𝐴 = 𝐵) | |
2 | eqtr4di.2 | . . 3 ⊢ 𝐶 = 𝐵 | |
3 | 2 | eqcomi 2197 | . 2 ⊢ 𝐵 = 𝐶 |
4 | 1, 3 | eqtrdi 2242 | 1 ⊢ (𝜑 → 𝐴 = 𝐶) |
Colors of variables: wff set class |
Syntax hints: → wi 4 = wceq 1364 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1458 ax-gen 1460 ax-4 1521 ax-17 1537 ax-ext 2175 |
This theorem depends on definitions: df-bi 117 df-cleq 2186 |
This theorem is referenced by: 3eqtr4g 2251 rabxmdc 3479 relop 4813 csbcnvg 4847 dfiun3g 4920 dfiin3g 4921 resima2 4977 relcnvfld 5200 uniabio 5226 fntpg 5311 dffn5im 5603 dfimafn2 5607 fncnvima2 5680 fmptcof 5726 fcoconst 5730 fnasrng 5739 ffnov 6023 fnovim 6028 fnrnov 6066 foov 6067 funimassov 6070 ovelimab 6071 ofc12 6155 caofinvl 6157 dftpos3 6317 tfr0dm 6377 rdgisucinc 6440 oasuc 6519 ecinxp 6666 phplem1 6910 exmidpw 6966 exmidpweq 6967 unfiin 6984 fidcenumlemr 7016 0ct 7168 ctmlemr 7169 exmidaclem 7270 indpi 7404 nqnq0pi 7500 nq0m0r 7518 addnqpr1 7624 recexgt0sr 7835 suplocsrlempr 7869 recidpipr 7918 recidpirq 7920 axrnegex 7941 nntopi 7956 cnref1o 9719 fztp 10147 fseq1m1p1 10164 fz0to4untppr 10193 frecuzrdgrrn 10482 frecuzrdgsuc 10488 frecuzrdgsuctlem 10497 seq3val 10534 seqvalcd 10535 fser0const 10609 mulexpzap 10653 expaddzap 10657 bcp1m1 10839 iswrdiz 10924 cjexp 11040 rexuz3 11137 bdtri 11386 climconst 11436 sumfct 11520 zsumdc 11530 fsum3 11533 sum0 11534 fsumcnv 11583 mertenslem2 11682 zproddc 11725 fprodseq 11729 prod0 11731 prod1dc 11732 prodfct 11733 fprodcnv 11771 ef0lem 11806 efzval 11829 efival 11878 sinbnd 11898 cosbnd 11899 eucalgval 12195 eucalginv 12197 eucalglt 12198 eucalgcvga 12199 eucalg 12200 sqpweven 12316 2sqpwodd 12317 dfphi2 12361 phimullem 12366 prmdiv 12376 odzval 12382 pcval 12437 pczpre 12438 pcrec 12449 4sqlem17 12548 ennnfonelemhdmp1 12569 ennnfonelemkh 12572 ressinbasd 12695 restid2 12862 topnvalg 12865 imasival 12892 imasplusg 12894 qusval 12909 xpsval 12938 ismgm 12943 plusffvalg 12948 grpidvalg 12959 igsumvalx 12975 issgrp 12989 ismnddef 13002 ismhm 13036 isgrp 13081 grpn0 13110 grpinvfvalg 13117 grpsubfvalg 13120 mulgfvalg 13194 mulgval 13195 mulgnn0p1 13206 issubg 13246 isnsg 13275 eqgfval 13295 quseccl0g 13304 isghm 13316 conjsubg 13350 conjsubgen 13351 iscmn 13366 mgpvalg 13422 isrng 13433 issrg 13464 isring 13499 iscrng 13502 opprvalg 13568 dfrhm2 13653 isnzr 13680 islring 13691 issubrg 13720 rrgval 13761 isdomn 13768 islmod 13790 scaffvalg 13805 lsssetm 13855 lspfval 13887 2idlval 14001 2idlvalg 14002 mulgrhm2 14109 zlmval 14126 znval 14135 znzrhfo 14147 znle2 14151 psrval 14163 istps 14211 cldval 14278 ntrfval 14279 clsfval 14280 neifval 14319 restbasg 14347 tgrest 14348 txval 14434 upxp 14451 uptx 14453 txrest 14455 lmcn2 14459 cnmpt2t 14472 cnmpt2res 14476 imasnopn 14478 psmetxrge0 14511 xmetge0 14544 isxms 14630 isms 14632 bdxmet 14680 qtopbasss 14700 cnblcld 14714 mpomulcn 14745 negfcncf 14785 dvfvalap 14860 eldvap 14861 dvidlemap 14870 dvidrelem 14871 dvidsslem 14872 dvexp2 14891 dvrecap 14892 dveflem 14905 plyconst 14924 plycolemc 14936 sin0pilem1 14957 ptolemy 15000 coskpi 15024 logbrec 15133 lgslem1 15157 lgsval 15161 lgsval4 15177 lgsfcl3 15178 lgsdilem 15184 lgsdir2lem4 15188 lgsdir2lem5 15189 gausslemma2dlem5 15223 lgsquadlem2 15235 nninfsellemqall 15575 |
Copyright terms: Public domain | W3C validator |