| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > eqtr4di | GIF version | ||
| Description: An equality transitivity deduction. (Contributed by NM, 5-Aug-1993.) |
| Ref | Expression |
|---|---|
| eqtr4di.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
| eqtr4di.2 | ⊢ 𝐶 = 𝐵 |
| Ref | Expression |
|---|---|
| eqtr4di | ⊢ (𝜑 → 𝐴 = 𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqtr4di.1 | . 2 ⊢ (𝜑 → 𝐴 = 𝐵) | |
| 2 | eqtr4di.2 | . . 3 ⊢ 𝐶 = 𝐵 | |
| 3 | 2 | eqcomi 2208 | . 2 ⊢ 𝐵 = 𝐶 |
| 4 | 1, 3 | eqtrdi 2253 | 1 ⊢ (𝜑 → 𝐴 = 𝐶) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1372 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1469 ax-gen 1471 ax-4 1532 ax-17 1548 ax-ext 2186 |
| This theorem depends on definitions: df-bi 117 df-cleq 2197 |
| This theorem is referenced by: 3eqtr4g 2262 rabxmdc 3491 relop 4827 csbcnvg 4861 dfiun3g 4934 dfiin3g 4935 resima2 4992 relcnvfld 5215 uniabio 5241 fntpg 5329 dffn5im 5623 dfimafn2 5627 fncnvima2 5700 fmptcof 5746 fcoconst 5750 fnasrng 5759 funopsn 5761 ffnov 6048 fnovim 6053 fnrnov 6091 foov 6092 funimassov 6095 ovelimab 6096 ofc12 6181 caofinvl 6183 dftpos3 6347 tfr0dm 6407 rdgisucinc 6470 oasuc 6549 ecinxp 6696 phplem1 6948 exmidpw 7004 exmidpweq 7005 unfiin 7022 fidcenumlemr 7056 0ct 7208 ctmlemr 7209 exmidaclem 7319 indpi 7454 nqnq0pi 7550 nq0m0r 7568 addnqpr1 7674 recexgt0sr 7885 suplocsrlempr 7919 recidpipr 7968 recidpirq 7970 axrnegex 7991 nntopi 8006 cnref1o 9771 fztp 10199 fseq1m1p1 10216 fz0to4untppr 10245 frecuzrdgrrn 10551 frecuzrdgsuc 10557 frecuzrdgsuctlem 10566 seq3val 10603 seqvalcd 10604 fser0const 10678 mulexpzap 10722 expaddzap 10726 bcp1m1 10908 hash2en 10986 iswrdiz 10999 cjexp 11146 rexuz3 11243 bdtri 11493 climconst 11543 sumfct 11627 zsumdc 11637 fsum3 11640 sum0 11641 fsumcnv 11690 mertenslem2 11789 zproddc 11832 fprodseq 11836 prod0 11838 prod1dc 11839 prodfct 11840 fprodcnv 11878 ef0lem 11913 efzval 11936 efival 11985 sinbnd 12005 cosbnd 12006 eucalgval 12318 eucalginv 12320 eucalglt 12321 eucalgcvga 12322 eucalg 12323 sqpweven 12439 2sqpwodd 12440 dfphi2 12484 phimullem 12489 prmdiv 12499 odzval 12506 pcval 12561 pczpre 12562 pcrec 12573 4sqlem17 12672 ennnfonelemhdmp1 12722 ennnfonelemkh 12725 ressinbasd 12848 restid2 13022 topnvalg 13025 prdsval 13047 prdsbas3 13061 pwsval 13065 pwsbas 13066 pwselbasb 13067 pwsplusgval 13069 pwsmulrval 13070 imasival 13080 imasplusg 13082 qusval 13097 xpsval 13126 ismgm 13131 plusffvalg 13136 grpidvalg 13147 igsumvalx 13163 issgrp 13177 ismnddef 13192 pws0g 13225 ismhm 13235 isgrp 13280 grpn0 13309 grpinvfvalg 13316 grpsubfvalg 13319 pwsinvg 13386 mulgfvalg 13399 mulgval 13400 mulgnn0p1 13411 issubg 13451 isnsg 13480 eqgfval 13500 quseccl0g 13509 isghm 13521 conjsubg 13555 conjsubgen 13556 iscmn 13571 mgpvalg 13627 isrng 13638 issrg 13669 isring 13704 iscrng 13707 opprvalg 13773 dfrhm2 13858 isnzr 13885 islring 13896 issubrg 13925 rrgval 13966 isdomn 13973 islmod 13995 scaffvalg 14010 lsssetm 14060 lspfval 14092 2idlval 14206 2idlvalg 14207 mulgrhm2 14314 zlmval 14331 znval 14340 znzrhfo 14352 znle2 14356 psrval 14370 mplvalcoe 14394 istps 14446 cldval 14513 ntrfval 14514 clsfval 14515 neifval 14554 restbasg 14582 tgrest 14583 txval 14669 upxp 14686 uptx 14688 txrest 14690 lmcn2 14694 cnmpt2t 14707 cnmpt2res 14711 imasnopn 14713 psmetxrge0 14746 xmetge0 14779 isxms 14865 isms 14867 bdxmet 14915 qtopbasss 14935 cnblcld 14949 mpomulcn 14980 negfcncf 15020 dvfvalap 15095 eldvap 15096 dvidlemap 15105 dvidrelem 15106 dvidsslem 15107 dvexp2 15126 dvrecap 15127 dveflem 15140 plyconst 15159 plycolemc 15172 sin0pilem1 15195 ptolemy 15238 coskpi 15262 logbrec 15374 mpodvdsmulf1o 15404 fsumdvdsmul 15405 lgslem1 15419 lgsval 15423 lgsval4 15439 lgsfcl3 15440 lgsdilem 15446 lgsdir2lem4 15450 lgsdir2lem5 15451 gausslemma2dlem5 15485 lgsquadlem2 15497 nninfsellemqall 15885 |
| Copyright terms: Public domain | W3C validator |