| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > eqtr4di | GIF version | ||
| Description: An equality transitivity deduction. (Contributed by NM, 5-Aug-1993.) |
| Ref | Expression |
|---|---|
| eqtr4di.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
| eqtr4di.2 | ⊢ 𝐶 = 𝐵 |
| Ref | Expression |
|---|---|
| eqtr4di | ⊢ (𝜑 → 𝐴 = 𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqtr4di.1 | . 2 ⊢ (𝜑 → 𝐴 = 𝐵) | |
| 2 | eqtr4di.2 | . . 3 ⊢ 𝐶 = 𝐵 | |
| 3 | 2 | eqcomi 2210 | . 2 ⊢ 𝐵 = 𝐶 |
| 4 | 1, 3 | eqtrdi 2255 | 1 ⊢ (𝜑 → 𝐴 = 𝐶) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1373 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1471 ax-gen 1473 ax-4 1534 ax-17 1550 ax-ext 2188 |
| This theorem depends on definitions: df-bi 117 df-cleq 2199 |
| This theorem is referenced by: 3eqtr4g 2264 rabxmdc 3496 relop 4836 csbcnvg 4870 dfiun3g 4944 dfiin3g 4945 resima2 5002 relcnvfld 5225 uniabio 5251 fntpg 5339 dffn5im 5637 dfimafn2 5641 fncnvima2 5714 fmptcof 5760 fcoconst 5764 fnasrng 5773 funopsn 5775 ffnov 6062 fnovim 6067 fnrnov 6105 foov 6106 funimassov 6109 ovelimab 6110 ofc12 6195 caofinvl 6197 dftpos3 6361 tfr0dm 6421 rdgisucinc 6484 oasuc 6563 ecinxp 6710 phplem1 6964 exmidpw 7020 exmidpweq 7021 unfiin 7038 fidcenumlemr 7072 0ct 7224 ctmlemr 7225 exmidaclem 7336 pw1m 7355 indpi 7475 nqnq0pi 7571 nq0m0r 7589 addnqpr1 7695 recexgt0sr 7906 suplocsrlempr 7940 recidpipr 7989 recidpirq 7991 axrnegex 8012 nntopi 8027 cnref1o 9792 fztp 10220 fseq1m1p1 10237 fz0to4untppr 10266 frecuzrdgrrn 10575 frecuzrdgsuc 10581 frecuzrdgsuctlem 10590 seq3val 10627 seqvalcd 10628 fser0const 10702 mulexpzap 10746 expaddzap 10750 bcp1m1 10932 hash2en 11010 iswrdiz 11023 cjexp 11279 rexuz3 11376 bdtri 11626 climconst 11676 sumfct 11760 zsumdc 11770 fsum3 11773 sum0 11774 fsumcnv 11823 mertenslem2 11922 zproddc 11965 fprodseq 11969 prod0 11971 prod1dc 11972 prodfct 11973 fprodcnv 12011 ef0lem 12046 efzval 12069 efival 12118 sinbnd 12138 cosbnd 12139 eucalgval 12451 eucalginv 12453 eucalglt 12454 eucalgcvga 12455 eucalg 12456 sqpweven 12572 2sqpwodd 12573 dfphi2 12617 phimullem 12622 prmdiv 12632 odzval 12639 pcval 12694 pczpre 12695 pcrec 12706 4sqlem17 12805 ennnfonelemhdmp1 12855 ennnfonelemkh 12858 ressinbasd 12981 restid2 13155 topnvalg 13158 prdsval 13180 prdsbas3 13194 pwsval 13198 pwsbas 13199 pwselbasb 13200 pwsplusgval 13202 pwsmulrval 13203 imasival 13213 imasplusg 13215 qusval 13230 xpsval 13259 ismgm 13264 plusffvalg 13269 grpidvalg 13280 igsumvalx 13296 issgrp 13310 ismnddef 13325 pws0g 13358 ismhm 13368 isgrp 13413 grpn0 13442 grpinvfvalg 13449 grpsubfvalg 13452 pwsinvg 13519 mulgfvalg 13532 mulgval 13533 mulgnn0p1 13544 issubg 13584 isnsg 13613 eqgfval 13633 quseccl0g 13642 isghm 13654 conjsubg 13688 conjsubgen 13689 iscmn 13704 mgpvalg 13760 isrng 13771 issrg 13802 isring 13837 iscrng 13840 opprvalg 13906 dfrhm2 13991 isnzr 14018 islring 14029 issubrg 14058 rrgval 14099 isdomn 14106 islmod 14128 scaffvalg 14143 lsssetm 14193 lspfval 14225 2idlval 14339 2idlvalg 14340 mulgrhm2 14447 zlmval 14464 znval 14473 znzrhfo 14485 znle2 14489 psrval 14503 mplvalcoe 14527 istps 14579 cldval 14646 ntrfval 14647 clsfval 14648 neifval 14687 restbasg 14715 tgrest 14716 txval 14802 upxp 14819 uptx 14821 txrest 14823 lmcn2 14827 cnmpt2t 14840 cnmpt2res 14844 imasnopn 14846 psmetxrge0 14879 xmetge0 14912 isxms 14998 isms 15000 bdxmet 15048 qtopbasss 15068 cnblcld 15082 mpomulcn 15113 negfcncf 15153 dvfvalap 15228 eldvap 15229 dvidlemap 15238 dvidrelem 15239 dvidsslem 15240 dvexp2 15259 dvrecap 15260 dveflem 15273 plyconst 15292 plycolemc 15305 sin0pilem1 15328 ptolemy 15371 coskpi 15395 logbrec 15507 mpodvdsmulf1o 15537 fsumdvdsmul 15538 lgslem1 15552 lgsval 15556 lgsval4 15572 lgsfcl3 15573 lgsdilem 15579 lgsdir2lem4 15583 lgsdir2lem5 15584 gausslemma2dlem5 15618 lgsquadlem2 15630 iedgedgg 15732 isuhgrm 15742 isushgrm 15743 isupgren 15766 isumgren 15776 nninfsellemqall 16093 |
| Copyright terms: Public domain | W3C validator |