| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > eqtr4di | GIF version | ||
| Description: An equality transitivity deduction. (Contributed by NM, 5-Aug-1993.) | 
| Ref | Expression | 
|---|---|
| eqtr4di.1 | ⊢ (𝜑 → 𝐴 = 𝐵) | 
| eqtr4di.2 | ⊢ 𝐶 = 𝐵 | 
| Ref | Expression | 
|---|---|
| eqtr4di | ⊢ (𝜑 → 𝐴 = 𝐶) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | eqtr4di.1 | . 2 ⊢ (𝜑 → 𝐴 = 𝐵) | |
| 2 | eqtr4di.2 | . . 3 ⊢ 𝐶 = 𝐵 | |
| 3 | 2 | eqcomi 2200 | . 2 ⊢ 𝐵 = 𝐶 | 
| 4 | 1, 3 | eqtrdi 2245 | 1 ⊢ (𝜑 → 𝐴 = 𝐶) | 
| Colors of variables: wff set class | 
| Syntax hints: → wi 4 = wceq 1364 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1461 ax-gen 1463 ax-4 1524 ax-17 1540 ax-ext 2178 | 
| This theorem depends on definitions: df-bi 117 df-cleq 2189 | 
| This theorem is referenced by: 3eqtr4g 2254 rabxmdc 3482 relop 4816 csbcnvg 4850 dfiun3g 4923 dfiin3g 4924 resima2 4980 relcnvfld 5203 uniabio 5229 fntpg 5314 dffn5im 5606 dfimafn2 5610 fncnvima2 5683 fmptcof 5729 fcoconst 5733 fnasrng 5742 ffnov 6026 fnovim 6031 fnrnov 6069 foov 6070 funimassov 6073 ovelimab 6074 ofc12 6158 caofinvl 6160 dftpos3 6320 tfr0dm 6380 rdgisucinc 6443 oasuc 6522 ecinxp 6669 phplem1 6913 exmidpw 6969 exmidpweq 6970 unfiin 6987 fidcenumlemr 7021 0ct 7173 ctmlemr 7174 exmidaclem 7275 indpi 7409 nqnq0pi 7505 nq0m0r 7523 addnqpr1 7629 recexgt0sr 7840 suplocsrlempr 7874 recidpipr 7923 recidpirq 7925 axrnegex 7946 nntopi 7961 cnref1o 9725 fztp 10153 fseq1m1p1 10170 fz0to4untppr 10199 frecuzrdgrrn 10500 frecuzrdgsuc 10506 frecuzrdgsuctlem 10515 seq3val 10552 seqvalcd 10553 fser0const 10627 mulexpzap 10671 expaddzap 10675 bcp1m1 10857 iswrdiz 10942 cjexp 11058 rexuz3 11155 bdtri 11405 climconst 11455 sumfct 11539 zsumdc 11549 fsum3 11552 sum0 11553 fsumcnv 11602 mertenslem2 11701 zproddc 11744 fprodseq 11748 prod0 11750 prod1dc 11751 prodfct 11752 fprodcnv 11790 ef0lem 11825 efzval 11848 efival 11897 sinbnd 11917 cosbnd 11918 eucalgval 12222 eucalginv 12224 eucalglt 12225 eucalgcvga 12226 eucalg 12227 sqpweven 12343 2sqpwodd 12344 dfphi2 12388 phimullem 12393 prmdiv 12403 odzval 12410 pcval 12465 pczpre 12466 pcrec 12477 4sqlem17 12576 ennnfonelemhdmp1 12626 ennnfonelemkh 12629 ressinbasd 12752 restid2 12919 topnvalg 12922 imasival 12949 imasplusg 12951 qusval 12966 xpsval 12995 ismgm 13000 plusffvalg 13005 grpidvalg 13016 igsumvalx 13032 issgrp 13046 ismnddef 13059 ismhm 13093 isgrp 13138 grpn0 13167 grpinvfvalg 13174 grpsubfvalg 13177 mulgfvalg 13251 mulgval 13252 mulgnn0p1 13263 issubg 13303 isnsg 13332 eqgfval 13352 quseccl0g 13361 isghm 13373 conjsubg 13407 conjsubgen 13408 iscmn 13423 mgpvalg 13479 isrng 13490 issrg 13521 isring 13556 iscrng 13559 opprvalg 13625 dfrhm2 13710 isnzr 13737 islring 13748 issubrg 13777 rrgval 13818 isdomn 13825 islmod 13847 scaffvalg 13862 lsssetm 13912 lspfval 13944 2idlval 14058 2idlvalg 14059 mulgrhm2 14166 zlmval 14183 znval 14192 znzrhfo 14204 znle2 14208 psrval 14220 istps 14268 cldval 14335 ntrfval 14336 clsfval 14337 neifval 14376 restbasg 14404 tgrest 14405 txval 14491 upxp 14508 uptx 14510 txrest 14512 lmcn2 14516 cnmpt2t 14529 cnmpt2res 14533 imasnopn 14535 psmetxrge0 14568 xmetge0 14601 isxms 14687 isms 14689 bdxmet 14737 qtopbasss 14757 cnblcld 14771 mpomulcn 14802 negfcncf 14842 dvfvalap 14917 eldvap 14918 dvidlemap 14927 dvidrelem 14928 dvidsslem 14929 dvexp2 14948 dvrecap 14949 dveflem 14962 plyconst 14981 plycolemc 14994 sin0pilem1 15017 ptolemy 15060 coskpi 15084 logbrec 15196 mpodvdsmulf1o 15226 fsumdvdsmul 15227 lgslem1 15241 lgsval 15245 lgsval4 15261 lgsfcl3 15262 lgsdilem 15268 lgsdir2lem4 15272 lgsdir2lem5 15273 gausslemma2dlem5 15307 lgsquadlem2 15319 nninfsellemqall 15659 | 
| Copyright terms: Public domain | W3C validator |