| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > eqtr4di | GIF version | ||
| Description: An equality transitivity deduction. (Contributed by NM, 5-Aug-1993.) |
| Ref | Expression |
|---|---|
| eqtr4di.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
| eqtr4di.2 | ⊢ 𝐶 = 𝐵 |
| Ref | Expression |
|---|---|
| eqtr4di | ⊢ (𝜑 → 𝐴 = 𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqtr4di.1 | . 2 ⊢ (𝜑 → 𝐴 = 𝐵) | |
| 2 | eqtr4di.2 | . . 3 ⊢ 𝐶 = 𝐵 | |
| 3 | 2 | eqcomi 2200 | . 2 ⊢ 𝐵 = 𝐶 |
| 4 | 1, 3 | eqtrdi 2245 | 1 ⊢ (𝜑 → 𝐴 = 𝐶) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1364 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1461 ax-gen 1463 ax-4 1524 ax-17 1540 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-cleq 2189 |
| This theorem is referenced by: 3eqtr4g 2254 rabxmdc 3483 relop 4817 csbcnvg 4851 dfiun3g 4924 dfiin3g 4925 resima2 4981 relcnvfld 5204 uniabio 5230 fntpg 5315 dffn5im 5609 dfimafn2 5613 fncnvima2 5686 fmptcof 5732 fcoconst 5736 fnasrng 5745 ffnov 6030 fnovim 6035 fnrnov 6073 foov 6074 funimassov 6077 ovelimab 6078 ofc12 6163 caofinvl 6165 dftpos3 6329 tfr0dm 6389 rdgisucinc 6452 oasuc 6531 ecinxp 6678 phplem1 6922 exmidpw 6978 exmidpweq 6979 unfiin 6996 fidcenumlemr 7030 0ct 7182 ctmlemr 7183 exmidaclem 7293 indpi 7428 nqnq0pi 7524 nq0m0r 7542 addnqpr1 7648 recexgt0sr 7859 suplocsrlempr 7893 recidpipr 7942 recidpirq 7944 axrnegex 7965 nntopi 7980 cnref1o 9744 fztp 10172 fseq1m1p1 10189 fz0to4untppr 10218 frecuzrdgrrn 10519 frecuzrdgsuc 10525 frecuzrdgsuctlem 10534 seq3val 10571 seqvalcd 10572 fser0const 10646 mulexpzap 10690 expaddzap 10694 bcp1m1 10876 iswrdiz 10961 cjexp 11077 rexuz3 11174 bdtri 11424 climconst 11474 sumfct 11558 zsumdc 11568 fsum3 11571 sum0 11572 fsumcnv 11621 mertenslem2 11720 zproddc 11763 fprodseq 11767 prod0 11769 prod1dc 11770 prodfct 11771 fprodcnv 11809 ef0lem 11844 efzval 11867 efival 11916 sinbnd 11936 cosbnd 11937 eucalgval 12249 eucalginv 12251 eucalglt 12252 eucalgcvga 12253 eucalg 12254 sqpweven 12370 2sqpwodd 12371 dfphi2 12415 phimullem 12420 prmdiv 12430 odzval 12437 pcval 12492 pczpre 12493 pcrec 12504 4sqlem17 12603 ennnfonelemhdmp1 12653 ennnfonelemkh 12656 ressinbasd 12779 restid2 12952 topnvalg 12955 prdsval 12977 prdsbas3 12991 pwsval 12995 pwsbas 12996 pwselbasb 12997 pwsplusgval 12999 pwsmulrval 13000 imasival 13010 imasplusg 13012 qusval 13027 xpsval 13056 ismgm 13061 plusffvalg 13066 grpidvalg 13077 igsumvalx 13093 issgrp 13107 ismnddef 13122 pws0g 13155 ismhm 13165 isgrp 13210 grpn0 13239 grpinvfvalg 13246 grpsubfvalg 13249 pwsinvg 13316 mulgfvalg 13329 mulgval 13330 mulgnn0p1 13341 issubg 13381 isnsg 13410 eqgfval 13430 quseccl0g 13439 isghm 13451 conjsubg 13485 conjsubgen 13486 iscmn 13501 mgpvalg 13557 isrng 13568 issrg 13599 isring 13634 iscrng 13637 opprvalg 13703 dfrhm2 13788 isnzr 13815 islring 13826 issubrg 13855 rrgval 13896 isdomn 13903 islmod 13925 scaffvalg 13940 lsssetm 13990 lspfval 14022 2idlval 14136 2idlvalg 14137 mulgrhm2 14244 zlmval 14261 znval 14270 znzrhfo 14282 znle2 14286 psrval 14300 mplvalcoe 14324 istps 14376 cldval 14443 ntrfval 14444 clsfval 14445 neifval 14484 restbasg 14512 tgrest 14513 txval 14599 upxp 14616 uptx 14618 txrest 14620 lmcn2 14624 cnmpt2t 14637 cnmpt2res 14641 imasnopn 14643 psmetxrge0 14676 xmetge0 14709 isxms 14795 isms 14797 bdxmet 14845 qtopbasss 14865 cnblcld 14879 mpomulcn 14910 negfcncf 14950 dvfvalap 15025 eldvap 15026 dvidlemap 15035 dvidrelem 15036 dvidsslem 15037 dvexp2 15056 dvrecap 15057 dveflem 15070 plyconst 15089 plycolemc 15102 sin0pilem1 15125 ptolemy 15168 coskpi 15192 logbrec 15304 mpodvdsmulf1o 15334 fsumdvdsmul 15335 lgslem1 15349 lgsval 15353 lgsval4 15369 lgsfcl3 15370 lgsdilem 15376 lgsdir2lem4 15380 lgsdir2lem5 15381 gausslemma2dlem5 15415 lgsquadlem2 15427 nninfsellemqall 15770 |
| Copyright terms: Public domain | W3C validator |