ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  iftruei GIF version

Theorem iftruei 3564
Description: Inference associated with iftrue 3563. (Contributed by BJ, 7-Oct-2018.)
Hypothesis
Ref Expression
iftruei.1 𝜑
Assertion
Ref Expression
iftruei if(𝜑, 𝐴, 𝐵) = 𝐴

Proof of Theorem iftruei
StepHypRef Expression
1 iftruei.1 . 2 𝜑
2 iftrue 3563 . 2 (𝜑 → if(𝜑, 𝐴, 𝐵) = 𝐴)
31, 2ax-mp 5 1 if(𝜑, 𝐴, 𝐵) = 𝐴
Colors of variables: wff set class
Syntax hints:   = wceq 1364  ifcif 3558
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-11 1517  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-ext 2175
This theorem depends on definitions:  df-bi 117  df-nf 1472  df-sb 1774  df-clab 2180  df-cleq 2186  df-clel 2189  df-if 3559
This theorem is referenced by:  ctmlemr  7169  xnegpnf  9897  xnegmnf  9898  xaddpnf1  9915  xaddpnf2  9916  xaddmnf1  9917  xaddmnf2  9918  pnfaddmnf  9919  mnfaddpnf  9920  iseqf1olemqk  10581  exp0  10617  sumsnf  11555  prodsnf  11738  lcm0val  12206  ennnfonelemj0  12561  ennnfonelem0  12565  mulg0  13198  lgs0  15170  lgs2  15174  2lgs2  15259  peano3nninf  15567  dceqnconst  15620
  Copyright terms: Public domain W3C validator