Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > iftruei | GIF version |
Description: Inference associated with iftrue 3531. (Contributed by BJ, 7-Oct-2018.) |
Ref | Expression |
---|---|
iftruei.1 | ⊢ 𝜑 |
Ref | Expression |
---|---|
iftruei | ⊢ if(𝜑, 𝐴, 𝐵) = 𝐴 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | iftruei.1 | . 2 ⊢ 𝜑 | |
2 | iftrue 3531 | . 2 ⊢ (𝜑 → if(𝜑, 𝐴, 𝐵) = 𝐴) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ if(𝜑, 𝐴, 𝐵) = 𝐴 |
Colors of variables: wff set class |
Syntax hints: = wceq 1348 ifcif 3526 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in2 610 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-11 1499 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-ext 2152 |
This theorem depends on definitions: df-bi 116 df-nf 1454 df-sb 1756 df-clab 2157 df-cleq 2163 df-clel 2166 df-if 3527 |
This theorem is referenced by: ctmlemr 7085 xnegpnf 9785 xnegmnf 9786 xaddpnf1 9803 xaddpnf2 9804 xaddmnf1 9805 xaddmnf2 9806 pnfaddmnf 9807 mnfaddpnf 9808 iseqf1olemqk 10450 exp0 10480 sumsnf 11372 prodsnf 11555 lcm0val 12019 ennnfonelemj0 12356 ennnfonelem0 12360 lgs0 13708 lgs2 13712 peano3nninf 14040 dceqnconst 14091 |
Copyright terms: Public domain | W3C validator |