| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > iftruei | GIF version | ||
| Description: Inference associated with iftrue 3607. (Contributed by BJ, 7-Oct-2018.) |
| Ref | Expression |
|---|---|
| iftruei.1 | ⊢ 𝜑 |
| Ref | Expression |
|---|---|
| iftruei | ⊢ if(𝜑, 𝐴, 𝐵) = 𝐴 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | iftruei.1 | . 2 ⊢ 𝜑 | |
| 2 | iftrue 3607 | . 2 ⊢ (𝜑 → if(𝜑, 𝐴, 𝐵) = 𝐴) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ if(𝜑, 𝐴, 𝐵) = 𝐴 |
| Colors of variables: wff set class |
| Syntax hints: = wceq 1395 ifcif 3602 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-11 1552 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 |
| This theorem depends on definitions: df-bi 117 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-if 3603 |
| This theorem is referenced by: ctmlemr 7271 xnegpnf 10020 xnegmnf 10021 xaddpnf1 10038 xaddpnf2 10039 xaddmnf1 10040 xaddmnf2 10041 pnfaddmnf 10042 mnfaddpnf 10043 iseqf1olemqk 10724 exp0 10760 swrd00g 11176 sumsnf 11915 prodsnf 12098 lcm0val 12582 ennnfonelemj0 12967 ennnfonelem0 12971 mulg0 13657 lgs0 15686 lgs2 15690 2lgs2 15775 peano3nninf 16332 dceqnconst 16387 |
| Copyright terms: Public domain | W3C validator |