ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  iftruei GIF version

Theorem iftruei 3608
Description: Inference associated with iftrue 3607. (Contributed by BJ, 7-Oct-2018.)
Hypothesis
Ref Expression
iftruei.1 𝜑
Assertion
Ref Expression
iftruei if(𝜑, 𝐴, 𝐵) = 𝐴

Proof of Theorem iftruei
StepHypRef Expression
1 iftruei.1 . 2 𝜑
2 iftrue 3607 . 2 (𝜑 → if(𝜑, 𝐴, 𝐵) = 𝐴)
31, 2ax-mp 5 1 if(𝜑, 𝐴, 𝐵) = 𝐴
Colors of variables: wff set class
Syntax hints:   = wceq 1395  ifcif 3602
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-11 1552  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-ext 2211
This theorem depends on definitions:  df-bi 117  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-if 3603
This theorem is referenced by:  ctmlemr  7271  xnegpnf  10020  xnegmnf  10021  xaddpnf1  10038  xaddpnf2  10039  xaddmnf1  10040  xaddmnf2  10041  pnfaddmnf  10042  mnfaddpnf  10043  iseqf1olemqk  10724  exp0  10760  swrd00g  11176  sumsnf  11915  prodsnf  12098  lcm0val  12582  ennnfonelemj0  12967  ennnfonelem0  12971  mulg0  13657  lgs0  15686  lgs2  15690  2lgs2  15775  peano3nninf  16332  dceqnconst  16387
  Copyright terms: Public domain W3C validator