| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > iftruei | GIF version | ||
| Description: Inference associated with iftrue 3567. (Contributed by BJ, 7-Oct-2018.) |
| Ref | Expression |
|---|---|
| iftruei.1 | ⊢ 𝜑 |
| Ref | Expression |
|---|---|
| iftruei | ⊢ if(𝜑, 𝐴, 𝐵) = 𝐴 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | iftruei.1 | . 2 ⊢ 𝜑 | |
| 2 | iftrue 3567 | . 2 ⊢ (𝜑 → if(𝜑, 𝐴, 𝐵) = 𝐴) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ if(𝜑, 𝐴, 𝐵) = 𝐴 |
| Colors of variables: wff set class |
| Syntax hints: = wceq 1364 ifcif 3562 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-11 1520 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-if 3563 |
| This theorem is referenced by: ctmlemr 7183 xnegpnf 9922 xnegmnf 9923 xaddpnf1 9940 xaddpnf2 9941 xaddmnf1 9942 xaddmnf2 9943 pnfaddmnf 9944 mnfaddpnf 9945 iseqf1olemqk 10618 exp0 10654 sumsnf 11593 prodsnf 11776 lcm0val 12260 ennnfonelemj0 12645 ennnfonelem0 12649 mulg0 13333 lgs0 15362 lgs2 15366 2lgs2 15451 peano3nninf 15762 dceqnconst 15817 |
| Copyright terms: Public domain | W3C validator |