| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > iftruei | GIF version | ||
| Description: Inference associated with iftrue 3575. (Contributed by BJ, 7-Oct-2018.) |
| Ref | Expression |
|---|---|
| iftruei.1 | ⊢ 𝜑 |
| Ref | Expression |
|---|---|
| iftruei | ⊢ if(𝜑, 𝐴, 𝐵) = 𝐴 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | iftruei.1 | . 2 ⊢ 𝜑 | |
| 2 | iftrue 3575 | . 2 ⊢ (𝜑 → if(𝜑, 𝐴, 𝐵) = 𝐴) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ if(𝜑, 𝐴, 𝐵) = 𝐴 |
| Colors of variables: wff set class |
| Syntax hints: = wceq 1372 ifcif 3570 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in2 616 ax-io 710 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-11 1528 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-ext 2186 |
| This theorem depends on definitions: df-bi 117 df-nf 1483 df-sb 1785 df-clab 2191 df-cleq 2197 df-clel 2200 df-if 3571 |
| This theorem is referenced by: ctmlemr 7192 xnegpnf 9932 xnegmnf 9933 xaddpnf1 9950 xaddpnf2 9951 xaddmnf1 9952 xaddmnf2 9953 pnfaddmnf 9954 mnfaddpnf 9955 iseqf1olemqk 10633 exp0 10669 sumsnf 11639 prodsnf 11822 lcm0val 12306 ennnfonelemj0 12691 ennnfonelem0 12695 mulg0 13379 lgs0 15408 lgs2 15412 2lgs2 15497 peano3nninf 15808 dceqnconst 15863 |
| Copyright terms: Public domain | W3C validator |