| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > iftruei | GIF version | ||
| Description: Inference associated with iftrue 3575. (Contributed by BJ, 7-Oct-2018.) |
| Ref | Expression |
|---|---|
| iftruei.1 | ⊢ 𝜑 |
| Ref | Expression |
|---|---|
| iftruei | ⊢ if(𝜑, 𝐴, 𝐵) = 𝐴 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | iftruei.1 | . 2 ⊢ 𝜑 | |
| 2 | iftrue 3575 | . 2 ⊢ (𝜑 → if(𝜑, 𝐴, 𝐵) = 𝐴) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ if(𝜑, 𝐴, 𝐵) = 𝐴 |
| Colors of variables: wff set class |
| Syntax hints: = wceq 1372 ifcif 3570 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in2 616 ax-io 710 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-11 1528 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-ext 2186 |
| This theorem depends on definitions: df-bi 117 df-nf 1483 df-sb 1785 df-clab 2191 df-cleq 2197 df-clel 2200 df-if 3571 |
| This theorem is referenced by: ctmlemr 7209 xnegpnf 9949 xnegmnf 9950 xaddpnf1 9967 xaddpnf2 9968 xaddmnf1 9969 xaddmnf2 9970 pnfaddmnf 9971 mnfaddpnf 9972 iseqf1olemqk 10650 exp0 10686 sumsnf 11662 prodsnf 11845 lcm0val 12329 ennnfonelemj0 12714 ennnfonelem0 12718 mulg0 13403 lgs0 15432 lgs2 15436 2lgs2 15521 peano3nninf 15877 dceqnconst 15932 |
| Copyright terms: Public domain | W3C validator |