ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  iftruei GIF version

Theorem iftruei 3581
Description: Inference associated with iftrue 3580. (Contributed by BJ, 7-Oct-2018.)
Hypothesis
Ref Expression
iftruei.1 𝜑
Assertion
Ref Expression
iftruei if(𝜑, 𝐴, 𝐵) = 𝐴

Proof of Theorem iftruei
StepHypRef Expression
1 iftruei.1 . 2 𝜑
2 iftrue 3580 . 2 (𝜑 → if(𝜑, 𝐴, 𝐵) = 𝐴)
31, 2ax-mp 5 1 if(𝜑, 𝐴, 𝐵) = 𝐴
Colors of variables: wff set class
Syntax hints:   = wceq 1373  ifcif 3575
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-11 1530  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-ext 2188
This theorem depends on definitions:  df-bi 117  df-nf 1485  df-sb 1787  df-clab 2193  df-cleq 2199  df-clel 2202  df-if 3576
This theorem is referenced by:  ctmlemr  7231  xnegpnf  9980  xnegmnf  9981  xaddpnf1  9998  xaddpnf2  9999  xaddmnf1  10000  xaddmnf2  10001  pnfaddmnf  10002  mnfaddpnf  10003  iseqf1olemqk  10684  exp0  10720  swrd00g  11135  sumsnf  11805  prodsnf  11988  lcm0val  12472  ennnfonelemj0  12857  ennnfonelem0  12861  mulg0  13546  lgs0  15575  lgs2  15579  2lgs2  15664  peano3nninf  16116  dceqnconst  16171
  Copyright terms: Public domain W3C validator