ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  iftruei GIF version

Theorem iftruei 3568
Description: Inference associated with iftrue 3567. (Contributed by BJ, 7-Oct-2018.)
Hypothesis
Ref Expression
iftruei.1 𝜑
Assertion
Ref Expression
iftruei if(𝜑, 𝐴, 𝐵) = 𝐴

Proof of Theorem iftruei
StepHypRef Expression
1 iftruei.1 . 2 𝜑
2 iftrue 3567 . 2 (𝜑 → if(𝜑, 𝐴, 𝐵) = 𝐴)
31, 2ax-mp 5 1 if(𝜑, 𝐴, 𝐵) = 𝐴
Colors of variables: wff set class
Syntax hints:   = wceq 1364  ifcif 3562
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-11 1520  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-ext 2178
This theorem depends on definitions:  df-bi 117  df-nf 1475  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192  df-if 3563
This theorem is referenced by:  ctmlemr  7183  xnegpnf  9922  xnegmnf  9923  xaddpnf1  9940  xaddpnf2  9941  xaddmnf1  9942  xaddmnf2  9943  pnfaddmnf  9944  mnfaddpnf  9945  iseqf1olemqk  10618  exp0  10654  sumsnf  11593  prodsnf  11776  lcm0val  12260  ennnfonelemj0  12645  ennnfonelem0  12649  mulg0  13333  lgs0  15362  lgs2  15366  2lgs2  15451  peano3nninf  15762  dceqnconst  15817
  Copyright terms: Public domain W3C validator