Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > iftruei | GIF version |
Description: Inference associated with iftrue 3525. (Contributed by BJ, 7-Oct-2018.) |
Ref | Expression |
---|---|
iftruei.1 | ⊢ 𝜑 |
Ref | Expression |
---|---|
iftruei | ⊢ if(𝜑, 𝐴, 𝐵) = 𝐴 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | iftruei.1 | . 2 ⊢ 𝜑 | |
2 | iftrue 3525 | . 2 ⊢ (𝜑 → if(𝜑, 𝐴, 𝐵) = 𝐴) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ if(𝜑, 𝐴, 𝐵) = 𝐴 |
Colors of variables: wff set class |
Syntax hints: = wceq 1343 ifcif 3520 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-11 1494 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-ext 2147 |
This theorem depends on definitions: df-bi 116 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-if 3521 |
This theorem is referenced by: ctmlemr 7073 xnegpnf 9764 xnegmnf 9765 xaddpnf1 9782 xaddpnf2 9783 xaddmnf1 9784 xaddmnf2 9785 pnfaddmnf 9786 mnfaddpnf 9787 iseqf1olemqk 10429 exp0 10459 sumsnf 11350 prodsnf 11533 lcm0val 11997 ennnfonelemj0 12334 ennnfonelem0 12338 lgs0 13554 lgs2 13558 peano3nninf 13887 dceqnconst 13938 |
Copyright terms: Public domain | W3C validator |