| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > iftruei | GIF version | ||
| Description: Inference associated with iftrue 3580. (Contributed by BJ, 7-Oct-2018.) |
| Ref | Expression |
|---|---|
| iftruei.1 | ⊢ 𝜑 |
| Ref | Expression |
|---|---|
| iftruei | ⊢ if(𝜑, 𝐴, 𝐵) = 𝐴 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | iftruei.1 | . 2 ⊢ 𝜑 | |
| 2 | iftrue 3580 | . 2 ⊢ (𝜑 → if(𝜑, 𝐴, 𝐵) = 𝐴) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ if(𝜑, 𝐴, 𝐵) = 𝐴 |
| Colors of variables: wff set class |
| Syntax hints: = wceq 1373 ifcif 3575 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-11 1530 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2188 |
| This theorem depends on definitions: df-bi 117 df-nf 1485 df-sb 1787 df-clab 2193 df-cleq 2199 df-clel 2202 df-if 3576 |
| This theorem is referenced by: ctmlemr 7231 xnegpnf 9980 xnegmnf 9981 xaddpnf1 9998 xaddpnf2 9999 xaddmnf1 10000 xaddmnf2 10001 pnfaddmnf 10002 mnfaddpnf 10003 iseqf1olemqk 10684 exp0 10720 swrd00g 11135 sumsnf 11805 prodsnf 11988 lcm0val 12472 ennnfonelemj0 12857 ennnfonelem0 12861 mulg0 13546 lgs0 15575 lgs2 15579 2lgs2 15664 peano3nninf 16116 dceqnconst 16171 |
| Copyright terms: Public domain | W3C validator |