ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  iftruei GIF version

Theorem iftruei 3568
Description: Inference associated with iftrue 3567. (Contributed by BJ, 7-Oct-2018.)
Hypothesis
Ref Expression
iftruei.1 𝜑
Assertion
Ref Expression
iftruei if(𝜑, 𝐴, 𝐵) = 𝐴

Proof of Theorem iftruei
StepHypRef Expression
1 iftruei.1 . 2 𝜑
2 iftrue 3567 . 2 (𝜑 → if(𝜑, 𝐴, 𝐵) = 𝐴)
31, 2ax-mp 5 1 if(𝜑, 𝐴, 𝐵) = 𝐴
Colors of variables: wff set class
Syntax hints:   = wceq 1364  ifcif 3562
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-11 1520  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-ext 2178
This theorem depends on definitions:  df-bi 117  df-nf 1475  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192  df-if 3563
This theorem is referenced by:  ctmlemr  7183  xnegpnf  9920  xnegmnf  9921  xaddpnf1  9938  xaddpnf2  9939  xaddmnf1  9940  xaddmnf2  9941  pnfaddmnf  9942  mnfaddpnf  9943  iseqf1olemqk  10616  exp0  10652  sumsnf  11591  prodsnf  11774  lcm0val  12258  ennnfonelemj0  12643  ennnfonelem0  12647  mulg0  13331  lgs0  15338  lgs2  15342  2lgs2  15427  peano3nninf  15738  dceqnconst  15791
  Copyright terms: Public domain W3C validator