ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  xlesubadd GIF version

Theorem xlesubadd 9958
Description: Under certain conditions, the conclusion of lesubadd 8461 is true even in the extended reals. (Contributed by Mario Carneiro, 4-Sep-2015.)
Assertion
Ref Expression
xlesubadd (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (0 ≤ 𝐴𝐵 ≠ -∞ ∧ 0 ≤ 𝐶)) → ((𝐴 +𝑒 -𝑒𝐵) ≤ 𝐶𝐴 ≤ (𝐶 +𝑒 𝐵)))

Proof of Theorem xlesubadd
StepHypRef Expression
1 simpl1 1002 . . . . . 6 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (0 ≤ 𝐴𝐵 ≠ -∞ ∧ 0 ≤ 𝐶)) → 𝐴 ∈ ℝ*)
2 simpl2 1003 . . . . . . 7 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (0 ≤ 𝐴𝐵 ≠ -∞ ∧ 0 ≤ 𝐶)) → 𝐵 ∈ ℝ*)
32xnegcld 9930 . . . . . 6 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (0 ≤ 𝐴𝐵 ≠ -∞ ∧ 0 ≤ 𝐶)) → -𝑒𝐵 ∈ ℝ*)
4 xaddcl 9935 . . . . . 6 ((𝐴 ∈ ℝ* ∧ -𝑒𝐵 ∈ ℝ*) → (𝐴 +𝑒 -𝑒𝐵) ∈ ℝ*)
51, 3, 4syl2anc 411 . . . . 5 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (0 ≤ 𝐴𝐵 ≠ -∞ ∧ 0 ≤ 𝐶)) → (𝐴 +𝑒 -𝑒𝐵) ∈ ℝ*)
65adantr 276 . . . 4 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (0 ≤ 𝐴𝐵 ≠ -∞ ∧ 0 ≤ 𝐶)) ∧ 𝐵 ∈ ℝ) → (𝐴 +𝑒 -𝑒𝐵) ∈ ℝ*)
7 simpll3 1040 . . . 4 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (0 ≤ 𝐴𝐵 ≠ -∞ ∧ 0 ≤ 𝐶)) ∧ 𝐵 ∈ ℝ) → 𝐶 ∈ ℝ*)
8 simpr 110 . . . 4 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (0 ≤ 𝐴𝐵 ≠ -∞ ∧ 0 ≤ 𝐶)) ∧ 𝐵 ∈ ℝ) → 𝐵 ∈ ℝ)
9 xleadd1 9950 . . . 4 (((𝐴 +𝑒 -𝑒𝐵) ∈ ℝ*𝐶 ∈ ℝ*𝐵 ∈ ℝ) → ((𝐴 +𝑒 -𝑒𝐵) ≤ 𝐶 ↔ ((𝐴 +𝑒 -𝑒𝐵) +𝑒 𝐵) ≤ (𝐶 +𝑒 𝐵)))
106, 7, 8, 9syl3anc 1249 . . 3 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (0 ≤ 𝐴𝐵 ≠ -∞ ∧ 0 ≤ 𝐶)) ∧ 𝐵 ∈ ℝ) → ((𝐴 +𝑒 -𝑒𝐵) ≤ 𝐶 ↔ ((𝐴 +𝑒 -𝑒𝐵) +𝑒 𝐵) ≤ (𝐶 +𝑒 𝐵)))
11 xnpcan 9947 . . . . 5 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ) → ((𝐴 +𝑒 -𝑒𝐵) +𝑒 𝐵) = 𝐴)
121, 11sylan 283 . . . 4 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (0 ≤ 𝐴𝐵 ≠ -∞ ∧ 0 ≤ 𝐶)) ∧ 𝐵 ∈ ℝ) → ((𝐴 +𝑒 -𝑒𝐵) +𝑒 𝐵) = 𝐴)
1312breq1d 4043 . . 3 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (0 ≤ 𝐴𝐵 ≠ -∞ ∧ 0 ≤ 𝐶)) ∧ 𝐵 ∈ ℝ) → (((𝐴 +𝑒 -𝑒𝐵) +𝑒 𝐵) ≤ (𝐶 +𝑒 𝐵) ↔ 𝐴 ≤ (𝐶 +𝑒 𝐵)))
1410, 13bitrd 188 . 2 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (0 ≤ 𝐴𝐵 ≠ -∞ ∧ 0 ≤ 𝐶)) ∧ 𝐵 ∈ ℝ) → ((𝐴 +𝑒 -𝑒𝐵) ≤ 𝐶𝐴 ≤ (𝐶 +𝑒 𝐵)))
15 simpr3 1007 . . . . . . 7 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (0 ≤ 𝐴𝐵 ≠ -∞ ∧ 0 ≤ 𝐶)) → 0 ≤ 𝐶)
16 oveq1 5929 . . . . . . . . 9 (𝐴 = +∞ → (𝐴 +𝑒 -∞) = (+∞ +𝑒 -∞))
17 pnfaddmnf 9925 . . . . . . . . 9 (+∞ +𝑒 -∞) = 0
1816, 17eqtrdi 2245 . . . . . . . 8 (𝐴 = +∞ → (𝐴 +𝑒 -∞) = 0)
1918breq1d 4043 . . . . . . 7 (𝐴 = +∞ → ((𝐴 +𝑒 -∞) ≤ 𝐶 ↔ 0 ≤ 𝐶))
2015, 19syl5ibrcom 157 . . . . . 6 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (0 ≤ 𝐴𝐵 ≠ -∞ ∧ 0 ≤ 𝐶)) → (𝐴 = +∞ → (𝐴 +𝑒 -∞) ≤ 𝐶))
21 xaddmnf1 9923 . . . . . . . . 9 ((𝐴 ∈ ℝ*𝐴 ≠ +∞) → (𝐴 +𝑒 -∞) = -∞)
2221ex 115 . . . . . . . 8 (𝐴 ∈ ℝ* → (𝐴 ≠ +∞ → (𝐴 +𝑒 -∞) = -∞))
231, 22syl 14 . . . . . . 7 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (0 ≤ 𝐴𝐵 ≠ -∞ ∧ 0 ≤ 𝐶)) → (𝐴 ≠ +∞ → (𝐴 +𝑒 -∞) = -∞))
24 simpl3 1004 . . . . . . . . 9 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (0 ≤ 𝐴𝐵 ≠ -∞ ∧ 0 ≤ 𝐶)) → 𝐶 ∈ ℝ*)
25 mnfle 9867 . . . . . . . . 9 (𝐶 ∈ ℝ* → -∞ ≤ 𝐶)
2624, 25syl 14 . . . . . . . 8 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (0 ≤ 𝐴𝐵 ≠ -∞ ∧ 0 ≤ 𝐶)) → -∞ ≤ 𝐶)
27 breq1 4036 . . . . . . . 8 ((𝐴 +𝑒 -∞) = -∞ → ((𝐴 +𝑒 -∞) ≤ 𝐶 ↔ -∞ ≤ 𝐶))
2826, 27syl5ibrcom 157 . . . . . . 7 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (0 ≤ 𝐴𝐵 ≠ -∞ ∧ 0 ≤ 𝐶)) → ((𝐴 +𝑒 -∞) = -∞ → (𝐴 +𝑒 -∞) ≤ 𝐶))
2923, 28syld 45 . . . . . 6 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (0 ≤ 𝐴𝐵 ≠ -∞ ∧ 0 ≤ 𝐶)) → (𝐴 ≠ +∞ → (𝐴 +𝑒 -∞) ≤ 𝐶))
30 xrpnfdc 9917 . . . . . . . 8 (𝐴 ∈ ℝ*DECID 𝐴 = +∞)
31 dcne 2378 . . . . . . . 8 (DECID 𝐴 = +∞ ↔ (𝐴 = +∞ ∨ 𝐴 ≠ +∞))
3230, 31sylib 122 . . . . . . 7 (𝐴 ∈ ℝ* → (𝐴 = +∞ ∨ 𝐴 ≠ +∞))
331, 32syl 14 . . . . . 6 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (0 ≤ 𝐴𝐵 ≠ -∞ ∧ 0 ≤ 𝐶)) → (𝐴 = +∞ ∨ 𝐴 ≠ +∞))
3420, 29, 33mpjaod 719 . . . . 5 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (0 ≤ 𝐴𝐵 ≠ -∞ ∧ 0 ≤ 𝐶)) → (𝐴 +𝑒 -∞) ≤ 𝐶)
35 pnfge 9864 . . . . . . 7 (𝐴 ∈ ℝ*𝐴 ≤ +∞)
361, 35syl 14 . . . . . 6 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (0 ≤ 𝐴𝐵 ≠ -∞ ∧ 0 ≤ 𝐶)) → 𝐴 ≤ +∞)
37 ge0nemnf 9899 . . . . . . . 8 ((𝐶 ∈ ℝ* ∧ 0 ≤ 𝐶) → 𝐶 ≠ -∞)
3824, 15, 37syl2anc 411 . . . . . . 7 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (0 ≤ 𝐴𝐵 ≠ -∞ ∧ 0 ≤ 𝐶)) → 𝐶 ≠ -∞)
39 xaddpnf1 9921 . . . . . . 7 ((𝐶 ∈ ℝ*𝐶 ≠ -∞) → (𝐶 +𝑒 +∞) = +∞)
4024, 38, 39syl2anc 411 . . . . . 6 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (0 ≤ 𝐴𝐵 ≠ -∞ ∧ 0 ≤ 𝐶)) → (𝐶 +𝑒 +∞) = +∞)
4136, 40breqtrrd 4061 . . . . 5 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (0 ≤ 𝐴𝐵 ≠ -∞ ∧ 0 ≤ 𝐶)) → 𝐴 ≤ (𝐶 +𝑒 +∞))
4234, 412thd 175 . . . 4 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (0 ≤ 𝐴𝐵 ≠ -∞ ∧ 0 ≤ 𝐶)) → ((𝐴 +𝑒 -∞) ≤ 𝐶𝐴 ≤ (𝐶 +𝑒 +∞)))
43 xnegeq 9902 . . . . . . . 8 (𝐵 = +∞ → -𝑒𝐵 = -𝑒+∞)
44 xnegpnf 9903 . . . . . . . 8 -𝑒+∞ = -∞
4543, 44eqtrdi 2245 . . . . . . 7 (𝐵 = +∞ → -𝑒𝐵 = -∞)
4645oveq2d 5938 . . . . . 6 (𝐵 = +∞ → (𝐴 +𝑒 -𝑒𝐵) = (𝐴 +𝑒 -∞))
4746breq1d 4043 . . . . 5 (𝐵 = +∞ → ((𝐴 +𝑒 -𝑒𝐵) ≤ 𝐶 ↔ (𝐴 +𝑒 -∞) ≤ 𝐶))
48 oveq2 5930 . . . . . 6 (𝐵 = +∞ → (𝐶 +𝑒 𝐵) = (𝐶 +𝑒 +∞))
4948breq2d 4045 . . . . 5 (𝐵 = +∞ → (𝐴 ≤ (𝐶 +𝑒 𝐵) ↔ 𝐴 ≤ (𝐶 +𝑒 +∞)))
5047, 49bibi12d 235 . . . 4 (𝐵 = +∞ → (((𝐴 +𝑒 -𝑒𝐵) ≤ 𝐶𝐴 ≤ (𝐶 +𝑒 𝐵)) ↔ ((𝐴 +𝑒 -∞) ≤ 𝐶𝐴 ≤ (𝐶 +𝑒 +∞))))
5142, 50syl5ibrcom 157 . . 3 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (0 ≤ 𝐴𝐵 ≠ -∞ ∧ 0 ≤ 𝐶)) → (𝐵 = +∞ → ((𝐴 +𝑒 -𝑒𝐵) ≤ 𝐶𝐴 ≤ (𝐶 +𝑒 𝐵))))
5251imp 124 . 2 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (0 ≤ 𝐴𝐵 ≠ -∞ ∧ 0 ≤ 𝐶)) ∧ 𝐵 = +∞) → ((𝐴 +𝑒 -𝑒𝐵) ≤ 𝐶𝐴 ≤ (𝐶 +𝑒 𝐵)))
53 simpr2 1006 . . . 4 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (0 ≤ 𝐴𝐵 ≠ -∞ ∧ 0 ≤ 𝐶)) → 𝐵 ≠ -∞)
542, 53jca 306 . . 3 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (0 ≤ 𝐴𝐵 ≠ -∞ ∧ 0 ≤ 𝐶)) → (𝐵 ∈ ℝ*𝐵 ≠ -∞))
55 xrnemnf 9852 . . 3 ((𝐵 ∈ ℝ*𝐵 ≠ -∞) ↔ (𝐵 ∈ ℝ ∨ 𝐵 = +∞))
5654, 55sylib 122 . 2 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (0 ≤ 𝐴𝐵 ≠ -∞ ∧ 0 ≤ 𝐶)) → (𝐵 ∈ ℝ ∨ 𝐵 = +∞))
5714, 52, 56mpjaodan 799 1 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (0 ≤ 𝐴𝐵 ≠ -∞ ∧ 0 ≤ 𝐶)) → ((𝐴 +𝑒 -𝑒𝐵) ≤ 𝐶𝐴 ≤ (𝐶 +𝑒 𝐵)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  wo 709  DECID wdc 835  w3a 980   = wceq 1364  wcel 2167  wne 2367   class class class wbr 4033  (class class class)co 5922  cr 7878  0cc0 7879  +∞cpnf 8058  -∞cmnf 8059  *cxr 8060  cle 8062  -𝑒cxne 9844   +𝑒 cxad 9845
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-sep 4151  ax-pow 4207  ax-pr 4242  ax-un 4468  ax-setind 4573  ax-cnex 7970  ax-resscn 7971  ax-1cn 7972  ax-1re 7973  ax-icn 7974  ax-addcl 7975  ax-addrcl 7976  ax-mulcl 7977  ax-addcom 7979  ax-addass 7981  ax-distr 7983  ax-i2m1 7984  ax-0id 7987  ax-rnegex 7988  ax-cnre 7990  ax-pre-ltirr 7991  ax-pre-ltwlin 7992  ax-pre-lttrn 7993  ax-pre-apti 7994  ax-pre-ltadd 7995
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-if 3562  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-iun 3918  df-br 4034  df-opab 4095  df-mpt 4096  df-id 4328  df-po 4331  df-iso 4332  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-rn 4674  df-res 4675  df-ima 4676  df-iota 5219  df-fun 5260  df-fn 5261  df-f 5262  df-fv 5266  df-riota 5877  df-ov 5925  df-oprab 5926  df-mpo 5927  df-1st 6198  df-2nd 6199  df-pnf 8063  df-mnf 8064  df-xr 8065  df-ltxr 8066  df-le 8067  df-sub 8199  df-neg 8200  df-xneg 9847  df-xadd 9848
This theorem is referenced by:  xmetrtri  14612
  Copyright terms: Public domain W3C validator