ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  xlesubadd GIF version

Theorem xlesubadd 9949
Description: Under certain conditions, the conclusion of lesubadd 8453 is true even in the extended reals. (Contributed by Mario Carneiro, 4-Sep-2015.)
Assertion
Ref Expression
xlesubadd (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (0 ≤ 𝐴𝐵 ≠ -∞ ∧ 0 ≤ 𝐶)) → ((𝐴 +𝑒 -𝑒𝐵) ≤ 𝐶𝐴 ≤ (𝐶 +𝑒 𝐵)))

Proof of Theorem xlesubadd
StepHypRef Expression
1 simpl1 1002 . . . . . 6 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (0 ≤ 𝐴𝐵 ≠ -∞ ∧ 0 ≤ 𝐶)) → 𝐴 ∈ ℝ*)
2 simpl2 1003 . . . . . . 7 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (0 ≤ 𝐴𝐵 ≠ -∞ ∧ 0 ≤ 𝐶)) → 𝐵 ∈ ℝ*)
32xnegcld 9921 . . . . . 6 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (0 ≤ 𝐴𝐵 ≠ -∞ ∧ 0 ≤ 𝐶)) → -𝑒𝐵 ∈ ℝ*)
4 xaddcl 9926 . . . . . 6 ((𝐴 ∈ ℝ* ∧ -𝑒𝐵 ∈ ℝ*) → (𝐴 +𝑒 -𝑒𝐵) ∈ ℝ*)
51, 3, 4syl2anc 411 . . . . 5 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (0 ≤ 𝐴𝐵 ≠ -∞ ∧ 0 ≤ 𝐶)) → (𝐴 +𝑒 -𝑒𝐵) ∈ ℝ*)
65adantr 276 . . . 4 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (0 ≤ 𝐴𝐵 ≠ -∞ ∧ 0 ≤ 𝐶)) ∧ 𝐵 ∈ ℝ) → (𝐴 +𝑒 -𝑒𝐵) ∈ ℝ*)
7 simpll3 1040 . . . 4 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (0 ≤ 𝐴𝐵 ≠ -∞ ∧ 0 ≤ 𝐶)) ∧ 𝐵 ∈ ℝ) → 𝐶 ∈ ℝ*)
8 simpr 110 . . . 4 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (0 ≤ 𝐴𝐵 ≠ -∞ ∧ 0 ≤ 𝐶)) ∧ 𝐵 ∈ ℝ) → 𝐵 ∈ ℝ)
9 xleadd1 9941 . . . 4 (((𝐴 +𝑒 -𝑒𝐵) ∈ ℝ*𝐶 ∈ ℝ*𝐵 ∈ ℝ) → ((𝐴 +𝑒 -𝑒𝐵) ≤ 𝐶 ↔ ((𝐴 +𝑒 -𝑒𝐵) +𝑒 𝐵) ≤ (𝐶 +𝑒 𝐵)))
106, 7, 8, 9syl3anc 1249 . . 3 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (0 ≤ 𝐴𝐵 ≠ -∞ ∧ 0 ≤ 𝐶)) ∧ 𝐵 ∈ ℝ) → ((𝐴 +𝑒 -𝑒𝐵) ≤ 𝐶 ↔ ((𝐴 +𝑒 -𝑒𝐵) +𝑒 𝐵) ≤ (𝐶 +𝑒 𝐵)))
11 xnpcan 9938 . . . . 5 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ) → ((𝐴 +𝑒 -𝑒𝐵) +𝑒 𝐵) = 𝐴)
121, 11sylan 283 . . . 4 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (0 ≤ 𝐴𝐵 ≠ -∞ ∧ 0 ≤ 𝐶)) ∧ 𝐵 ∈ ℝ) → ((𝐴 +𝑒 -𝑒𝐵) +𝑒 𝐵) = 𝐴)
1312breq1d 4039 . . 3 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (0 ≤ 𝐴𝐵 ≠ -∞ ∧ 0 ≤ 𝐶)) ∧ 𝐵 ∈ ℝ) → (((𝐴 +𝑒 -𝑒𝐵) +𝑒 𝐵) ≤ (𝐶 +𝑒 𝐵) ↔ 𝐴 ≤ (𝐶 +𝑒 𝐵)))
1410, 13bitrd 188 . 2 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (0 ≤ 𝐴𝐵 ≠ -∞ ∧ 0 ≤ 𝐶)) ∧ 𝐵 ∈ ℝ) → ((𝐴 +𝑒 -𝑒𝐵) ≤ 𝐶𝐴 ≤ (𝐶 +𝑒 𝐵)))
15 simpr3 1007 . . . . . . 7 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (0 ≤ 𝐴𝐵 ≠ -∞ ∧ 0 ≤ 𝐶)) → 0 ≤ 𝐶)
16 oveq1 5925 . . . . . . . . 9 (𝐴 = +∞ → (𝐴 +𝑒 -∞) = (+∞ +𝑒 -∞))
17 pnfaddmnf 9916 . . . . . . . . 9 (+∞ +𝑒 -∞) = 0
1816, 17eqtrdi 2242 . . . . . . . 8 (𝐴 = +∞ → (𝐴 +𝑒 -∞) = 0)
1918breq1d 4039 . . . . . . 7 (𝐴 = +∞ → ((𝐴 +𝑒 -∞) ≤ 𝐶 ↔ 0 ≤ 𝐶))
2015, 19syl5ibrcom 157 . . . . . 6 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (0 ≤ 𝐴𝐵 ≠ -∞ ∧ 0 ≤ 𝐶)) → (𝐴 = +∞ → (𝐴 +𝑒 -∞) ≤ 𝐶))
21 xaddmnf1 9914 . . . . . . . . 9 ((𝐴 ∈ ℝ*𝐴 ≠ +∞) → (𝐴 +𝑒 -∞) = -∞)
2221ex 115 . . . . . . . 8 (𝐴 ∈ ℝ* → (𝐴 ≠ +∞ → (𝐴 +𝑒 -∞) = -∞))
231, 22syl 14 . . . . . . 7 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (0 ≤ 𝐴𝐵 ≠ -∞ ∧ 0 ≤ 𝐶)) → (𝐴 ≠ +∞ → (𝐴 +𝑒 -∞) = -∞))
24 simpl3 1004 . . . . . . . . 9 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (0 ≤ 𝐴𝐵 ≠ -∞ ∧ 0 ≤ 𝐶)) → 𝐶 ∈ ℝ*)
25 mnfle 9858 . . . . . . . . 9 (𝐶 ∈ ℝ* → -∞ ≤ 𝐶)
2624, 25syl 14 . . . . . . . 8 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (0 ≤ 𝐴𝐵 ≠ -∞ ∧ 0 ≤ 𝐶)) → -∞ ≤ 𝐶)
27 breq1 4032 . . . . . . . 8 ((𝐴 +𝑒 -∞) = -∞ → ((𝐴 +𝑒 -∞) ≤ 𝐶 ↔ -∞ ≤ 𝐶))
2826, 27syl5ibrcom 157 . . . . . . 7 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (0 ≤ 𝐴𝐵 ≠ -∞ ∧ 0 ≤ 𝐶)) → ((𝐴 +𝑒 -∞) = -∞ → (𝐴 +𝑒 -∞) ≤ 𝐶))
2923, 28syld 45 . . . . . 6 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (0 ≤ 𝐴𝐵 ≠ -∞ ∧ 0 ≤ 𝐶)) → (𝐴 ≠ +∞ → (𝐴 +𝑒 -∞) ≤ 𝐶))
30 xrpnfdc 9908 . . . . . . . 8 (𝐴 ∈ ℝ*DECID 𝐴 = +∞)
31 dcne 2375 . . . . . . . 8 (DECID 𝐴 = +∞ ↔ (𝐴 = +∞ ∨ 𝐴 ≠ +∞))
3230, 31sylib 122 . . . . . . 7 (𝐴 ∈ ℝ* → (𝐴 = +∞ ∨ 𝐴 ≠ +∞))
331, 32syl 14 . . . . . 6 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (0 ≤ 𝐴𝐵 ≠ -∞ ∧ 0 ≤ 𝐶)) → (𝐴 = +∞ ∨ 𝐴 ≠ +∞))
3420, 29, 33mpjaod 719 . . . . 5 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (0 ≤ 𝐴𝐵 ≠ -∞ ∧ 0 ≤ 𝐶)) → (𝐴 +𝑒 -∞) ≤ 𝐶)
35 pnfge 9855 . . . . . . 7 (𝐴 ∈ ℝ*𝐴 ≤ +∞)
361, 35syl 14 . . . . . 6 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (0 ≤ 𝐴𝐵 ≠ -∞ ∧ 0 ≤ 𝐶)) → 𝐴 ≤ +∞)
37 ge0nemnf 9890 . . . . . . . 8 ((𝐶 ∈ ℝ* ∧ 0 ≤ 𝐶) → 𝐶 ≠ -∞)
3824, 15, 37syl2anc 411 . . . . . . 7 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (0 ≤ 𝐴𝐵 ≠ -∞ ∧ 0 ≤ 𝐶)) → 𝐶 ≠ -∞)
39 xaddpnf1 9912 . . . . . . 7 ((𝐶 ∈ ℝ*𝐶 ≠ -∞) → (𝐶 +𝑒 +∞) = +∞)
4024, 38, 39syl2anc 411 . . . . . 6 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (0 ≤ 𝐴𝐵 ≠ -∞ ∧ 0 ≤ 𝐶)) → (𝐶 +𝑒 +∞) = +∞)
4136, 40breqtrrd 4057 . . . . 5 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (0 ≤ 𝐴𝐵 ≠ -∞ ∧ 0 ≤ 𝐶)) → 𝐴 ≤ (𝐶 +𝑒 +∞))
4234, 412thd 175 . . . 4 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (0 ≤ 𝐴𝐵 ≠ -∞ ∧ 0 ≤ 𝐶)) → ((𝐴 +𝑒 -∞) ≤ 𝐶𝐴 ≤ (𝐶 +𝑒 +∞)))
43 xnegeq 9893 . . . . . . . 8 (𝐵 = +∞ → -𝑒𝐵 = -𝑒+∞)
44 xnegpnf 9894 . . . . . . . 8 -𝑒+∞ = -∞
4543, 44eqtrdi 2242 . . . . . . 7 (𝐵 = +∞ → -𝑒𝐵 = -∞)
4645oveq2d 5934 . . . . . 6 (𝐵 = +∞ → (𝐴 +𝑒 -𝑒𝐵) = (𝐴 +𝑒 -∞))
4746breq1d 4039 . . . . 5 (𝐵 = +∞ → ((𝐴 +𝑒 -𝑒𝐵) ≤ 𝐶 ↔ (𝐴 +𝑒 -∞) ≤ 𝐶))
48 oveq2 5926 . . . . . 6 (𝐵 = +∞ → (𝐶 +𝑒 𝐵) = (𝐶 +𝑒 +∞))
4948breq2d 4041 . . . . 5 (𝐵 = +∞ → (𝐴 ≤ (𝐶 +𝑒 𝐵) ↔ 𝐴 ≤ (𝐶 +𝑒 +∞)))
5047, 49bibi12d 235 . . . 4 (𝐵 = +∞ → (((𝐴 +𝑒 -𝑒𝐵) ≤ 𝐶𝐴 ≤ (𝐶 +𝑒 𝐵)) ↔ ((𝐴 +𝑒 -∞) ≤ 𝐶𝐴 ≤ (𝐶 +𝑒 +∞))))
5142, 50syl5ibrcom 157 . . 3 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (0 ≤ 𝐴𝐵 ≠ -∞ ∧ 0 ≤ 𝐶)) → (𝐵 = +∞ → ((𝐴 +𝑒 -𝑒𝐵) ≤ 𝐶𝐴 ≤ (𝐶 +𝑒 𝐵))))
5251imp 124 . 2 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (0 ≤ 𝐴𝐵 ≠ -∞ ∧ 0 ≤ 𝐶)) ∧ 𝐵 = +∞) → ((𝐴 +𝑒 -𝑒𝐵) ≤ 𝐶𝐴 ≤ (𝐶 +𝑒 𝐵)))
53 simpr2 1006 . . . 4 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (0 ≤ 𝐴𝐵 ≠ -∞ ∧ 0 ≤ 𝐶)) → 𝐵 ≠ -∞)
542, 53jca 306 . . 3 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (0 ≤ 𝐴𝐵 ≠ -∞ ∧ 0 ≤ 𝐶)) → (𝐵 ∈ ℝ*𝐵 ≠ -∞))
55 xrnemnf 9843 . . 3 ((𝐵 ∈ ℝ*𝐵 ≠ -∞) ↔ (𝐵 ∈ ℝ ∨ 𝐵 = +∞))
5654, 55sylib 122 . 2 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (0 ≤ 𝐴𝐵 ≠ -∞ ∧ 0 ≤ 𝐶)) → (𝐵 ∈ ℝ ∨ 𝐵 = +∞))
5714, 52, 56mpjaodan 799 1 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (0 ≤ 𝐴𝐵 ≠ -∞ ∧ 0 ≤ 𝐶)) → ((𝐴 +𝑒 -𝑒𝐵) ≤ 𝐶𝐴 ≤ (𝐶 +𝑒 𝐵)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  wo 709  DECID wdc 835  w3a 980   = wceq 1364  wcel 2164  wne 2364   class class class wbr 4029  (class class class)co 5918  cr 7871  0cc0 7872  +∞cpnf 8051  -∞cmnf 8052  *cxr 8053  cle 8055  -𝑒cxne 9835   +𝑒 cxad 9836
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-sep 4147  ax-pow 4203  ax-pr 4238  ax-un 4464  ax-setind 4569  ax-cnex 7963  ax-resscn 7964  ax-1cn 7965  ax-1re 7966  ax-icn 7967  ax-addcl 7968  ax-addrcl 7969  ax-mulcl 7970  ax-addcom 7972  ax-addass 7974  ax-distr 7976  ax-i2m1 7977  ax-0id 7980  ax-rnegex 7981  ax-cnre 7983  ax-pre-ltirr 7984  ax-pre-ltwlin 7985  ax-pre-lttrn 7986  ax-pre-apti 7987  ax-pre-ltadd 7988
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-nel 2460  df-ral 2477  df-rex 2478  df-reu 2479  df-rab 2481  df-v 2762  df-sbc 2986  df-csb 3081  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-if 3558  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-iun 3914  df-br 4030  df-opab 4091  df-mpt 4092  df-id 4324  df-po 4327  df-iso 4328  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-rn 4670  df-res 4671  df-ima 4672  df-iota 5215  df-fun 5256  df-fn 5257  df-f 5258  df-fv 5262  df-riota 5873  df-ov 5921  df-oprab 5922  df-mpo 5923  df-1st 6193  df-2nd 6194  df-pnf 8056  df-mnf 8057  df-xr 8058  df-ltxr 8059  df-le 8060  df-sub 8192  df-neg 8193  df-xneg 9838  df-xadd 9839
This theorem is referenced by:  xmetrtri  14544
  Copyright terms: Public domain W3C validator