Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cnvssco Structured version   Visualization version   GIF version

Theorem cnvssco 41103
Description: A condition weaker than reflexivity. (Contributed by RP, 3-Aug-2020.)
Assertion
Ref Expression
cnvssco (𝐴(𝐵𝐶) ↔ ∀𝑥𝑦𝑧(𝑥𝐴𝑦 → (𝑥𝐶𝑧𝑧𝐵𝑦)))
Distinct variable groups:   𝑥,𝑦,𝑧,𝐴   𝑥,𝐵,𝑦,𝑧   𝑥,𝐶,𝑦,𝑧

Proof of Theorem cnvssco
StepHypRef Expression
1 alcom 2158 . 2 (∀𝑦𝑥(⟨𝑦, 𝑥⟩ ∈ 𝐴 → ⟨𝑦, 𝑥⟩ ∈ (𝐵𝐶)) ↔ ∀𝑥𝑦(⟨𝑦, 𝑥⟩ ∈ 𝐴 → ⟨𝑦, 𝑥⟩ ∈ (𝐵𝐶)))
2 relcnv 6001 . . 3 Rel 𝐴
3 ssrel 5683 . . 3 (Rel 𝐴 → (𝐴(𝐵𝐶) ↔ ∀𝑦𝑥(⟨𝑦, 𝑥⟩ ∈ 𝐴 → ⟨𝑦, 𝑥⟩ ∈ (𝐵𝐶))))
42, 3ax-mp 5 . 2 (𝐴(𝐵𝐶) ↔ ∀𝑦𝑥(⟨𝑦, 𝑥⟩ ∈ 𝐴 → ⟨𝑦, 𝑥⟩ ∈ (𝐵𝐶)))
5 19.37v 1996 . . . 4 (∃𝑧(𝑥𝐴𝑦 → (𝑥𝐶𝑧𝑧𝐵𝑦)) ↔ (𝑥𝐴𝑦 → ∃𝑧(𝑥𝐶𝑧𝑧𝐵𝑦)))
6 vex 3426 . . . . . . 7 𝑦 ∈ V
7 vex 3426 . . . . . . 7 𝑥 ∈ V
86, 7brcnv 5780 . . . . . 6 (𝑦𝐴𝑥𝑥𝐴𝑦)
9 df-br 5071 . . . . . 6 (𝑦𝐴𝑥 ↔ ⟨𝑦, 𝑥⟩ ∈ 𝐴)
108, 9bitr3i 276 . . . . 5 (𝑥𝐴𝑦 ↔ ⟨𝑦, 𝑥⟩ ∈ 𝐴)
117, 6brco 5768 . . . . . 6 (𝑥(𝐵𝐶)𝑦 ↔ ∃𝑧(𝑥𝐶𝑧𝑧𝐵𝑦))
126, 7brcnv 5780 . . . . . . 7 (𝑦(𝐵𝐶)𝑥𝑥(𝐵𝐶)𝑦)
13 df-br 5071 . . . . . . 7 (𝑦(𝐵𝐶)𝑥 ↔ ⟨𝑦, 𝑥⟩ ∈ (𝐵𝐶))
1412, 13bitr3i 276 . . . . . 6 (𝑥(𝐵𝐶)𝑦 ↔ ⟨𝑦, 𝑥⟩ ∈ (𝐵𝐶))
1511, 14bitr3i 276 . . . . 5 (∃𝑧(𝑥𝐶𝑧𝑧𝐵𝑦) ↔ ⟨𝑦, 𝑥⟩ ∈ (𝐵𝐶))
1610, 15imbi12i 350 . . . 4 ((𝑥𝐴𝑦 → ∃𝑧(𝑥𝐶𝑧𝑧𝐵𝑦)) ↔ (⟨𝑦, 𝑥⟩ ∈ 𝐴 → ⟨𝑦, 𝑥⟩ ∈ (𝐵𝐶)))
175, 16bitri 274 . . 3 (∃𝑧(𝑥𝐴𝑦 → (𝑥𝐶𝑧𝑧𝐵𝑦)) ↔ (⟨𝑦, 𝑥⟩ ∈ 𝐴 → ⟨𝑦, 𝑥⟩ ∈ (𝐵𝐶)))
18172albii 1824 . 2 (∀𝑥𝑦𝑧(𝑥𝐴𝑦 → (𝑥𝐶𝑧𝑧𝐵𝑦)) ↔ ∀𝑥𝑦(⟨𝑦, 𝑥⟩ ∈ 𝐴 → ⟨𝑦, 𝑥⟩ ∈ (𝐵𝐶)))
191, 4, 183bitr4i 302 1 (𝐴(𝐵𝐶) ↔ ∀𝑥𝑦𝑧(𝑥𝐴𝑦 → (𝑥𝐶𝑧𝑧𝐵𝑦)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395  wal 1537  wex 1783  wcel 2108  wss 3883  cop 4564   class class class wbr 5070  ccnv 5579  ccom 5584  Rel wrel 5585
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pr 5347
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-sb 2069  df-clab 2716  df-cleq 2730  df-clel 2817  df-rab 3072  df-v 3424  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-sn 4559  df-pr 4561  df-op 4565  df-br 5071  df-opab 5133  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589
This theorem is referenced by:  refimssco  41104
  Copyright terms: Public domain W3C validator