Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cnvssco Structured version   Visualization version   GIF version

Theorem cnvssco 42822
Description: A condition weaker than reflexivity. (Contributed by RP, 3-Aug-2020.)
Assertion
Ref Expression
cnvssco (𝐴(𝐵𝐶) ↔ ∀𝑥𝑦𝑧(𝑥𝐴𝑦 → (𝑥𝐶𝑧𝑧𝐵𝑦)))
Distinct variable groups:   𝑥,𝑦,𝑧,𝐴   𝑥,𝐵,𝑦,𝑧   𝑥,𝐶,𝑦,𝑧

Proof of Theorem cnvssco
StepHypRef Expression
1 alcom 2155 . 2 (∀𝑦𝑥(⟨𝑦, 𝑥⟩ ∈ 𝐴 → ⟨𝑦, 𝑥⟩ ∈ (𝐵𝐶)) ↔ ∀𝑥𝑦(⟨𝑦, 𝑥⟩ ∈ 𝐴 → ⟨𝑦, 𝑥⟩ ∈ (𝐵𝐶)))
2 relcnv 6103 . . 3 Rel 𝐴
3 ssrel 5782 . . 3 (Rel 𝐴 → (𝐴(𝐵𝐶) ↔ ∀𝑦𝑥(⟨𝑦, 𝑥⟩ ∈ 𝐴 → ⟨𝑦, 𝑥⟩ ∈ (𝐵𝐶))))
42, 3ax-mp 5 . 2 (𝐴(𝐵𝐶) ↔ ∀𝑦𝑥(⟨𝑦, 𝑥⟩ ∈ 𝐴 → ⟨𝑦, 𝑥⟩ ∈ (𝐵𝐶)))
5 19.37v 1994 . . . 4 (∃𝑧(𝑥𝐴𝑦 → (𝑥𝐶𝑧𝑧𝐵𝑦)) ↔ (𝑥𝐴𝑦 → ∃𝑧(𝑥𝐶𝑧𝑧𝐵𝑦)))
6 vex 3477 . . . . . . 7 𝑦 ∈ V
7 vex 3477 . . . . . . 7 𝑥 ∈ V
86, 7brcnv 5882 . . . . . 6 (𝑦𝐴𝑥𝑥𝐴𝑦)
9 df-br 5149 . . . . . 6 (𝑦𝐴𝑥 ↔ ⟨𝑦, 𝑥⟩ ∈ 𝐴)
108, 9bitr3i 277 . . . . 5 (𝑥𝐴𝑦 ↔ ⟨𝑦, 𝑥⟩ ∈ 𝐴)
117, 6brco 5870 . . . . . 6 (𝑥(𝐵𝐶)𝑦 ↔ ∃𝑧(𝑥𝐶𝑧𝑧𝐵𝑦))
126, 7brcnv 5882 . . . . . . 7 (𝑦(𝐵𝐶)𝑥𝑥(𝐵𝐶)𝑦)
13 df-br 5149 . . . . . . 7 (𝑦(𝐵𝐶)𝑥 ↔ ⟨𝑦, 𝑥⟩ ∈ (𝐵𝐶))
1412, 13bitr3i 277 . . . . . 6 (𝑥(𝐵𝐶)𝑦 ↔ ⟨𝑦, 𝑥⟩ ∈ (𝐵𝐶))
1511, 14bitr3i 277 . . . . 5 (∃𝑧(𝑥𝐶𝑧𝑧𝐵𝑦) ↔ ⟨𝑦, 𝑥⟩ ∈ (𝐵𝐶))
1610, 15imbi12i 350 . . . 4 ((𝑥𝐴𝑦 → ∃𝑧(𝑥𝐶𝑧𝑧𝐵𝑦)) ↔ (⟨𝑦, 𝑥⟩ ∈ 𝐴 → ⟨𝑦, 𝑥⟩ ∈ (𝐵𝐶)))
175, 16bitri 275 . . 3 (∃𝑧(𝑥𝐴𝑦 → (𝑥𝐶𝑧𝑧𝐵𝑦)) ↔ (⟨𝑦, 𝑥⟩ ∈ 𝐴 → ⟨𝑦, 𝑥⟩ ∈ (𝐵𝐶)))
18172albii 1821 . 2 (∀𝑥𝑦𝑧(𝑥𝐴𝑦 → (𝑥𝐶𝑧𝑧𝐵𝑦)) ↔ ∀𝑥𝑦(⟨𝑦, 𝑥⟩ ∈ 𝐴 → ⟨𝑦, 𝑥⟩ ∈ (𝐵𝐶)))
191, 4, 183bitr4i 303 1 (𝐴(𝐵𝐶) ↔ ∀𝑥𝑦𝑧(𝑥𝐴𝑦 → (𝑥𝐶𝑧𝑧𝐵𝑦)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395  wal 1538  wex 1780  wcel 2105  wss 3948  cop 4634   class class class wbr 5148  ccnv 5675  ccom 5680  Rel wrel 5681
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-11 2153  ax-ext 2702  ax-sep 5299  ax-nul 5306  ax-pr 5427
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-sb 2067  df-clab 2709  df-cleq 2723  df-clel 2809  df-rab 3432  df-v 3475  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-sn 4629  df-pr 4631  df-op 4635  df-br 5149  df-opab 5211  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685
This theorem is referenced by:  refimssco  42823
  Copyright terms: Public domain W3C validator