Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cnvssco Structured version   Visualization version   GIF version

Theorem cnvssco 43698
Description: A condition weaker than reflexivity. (Contributed by RP, 3-Aug-2020.)
Assertion
Ref Expression
cnvssco (𝐴(𝐵𝐶) ↔ ∀𝑥𝑦𝑧(𝑥𝐴𝑦 → (𝑥𝐶𝑧𝑧𝐵𝑦)))
Distinct variable groups:   𝑥,𝑦,𝑧,𝐴   𝑥,𝐵,𝑦,𝑧   𝑥,𝐶,𝑦,𝑧

Proof of Theorem cnvssco
StepHypRef Expression
1 alcom 2162 . 2 (∀𝑦𝑥(⟨𝑦, 𝑥⟩ ∈ 𝐴 → ⟨𝑦, 𝑥⟩ ∈ (𝐵𝐶)) ↔ ∀𝑥𝑦(⟨𝑦, 𝑥⟩ ∈ 𝐴 → ⟨𝑦, 𝑥⟩ ∈ (𝐵𝐶)))
2 relcnv 6052 . . 3 Rel 𝐴
3 ssrel 5722 . . 3 (Rel 𝐴 → (𝐴(𝐵𝐶) ↔ ∀𝑦𝑥(⟨𝑦, 𝑥⟩ ∈ 𝐴 → ⟨𝑦, 𝑥⟩ ∈ (𝐵𝐶))))
42, 3ax-mp 5 . 2 (𝐴(𝐵𝐶) ↔ ∀𝑦𝑥(⟨𝑦, 𝑥⟩ ∈ 𝐴 → ⟨𝑦, 𝑥⟩ ∈ (𝐵𝐶)))
5 19.37v 1998 . . . 4 (∃𝑧(𝑥𝐴𝑦 → (𝑥𝐶𝑧𝑧𝐵𝑦)) ↔ (𝑥𝐴𝑦 → ∃𝑧(𝑥𝐶𝑧𝑧𝐵𝑦)))
6 vex 3440 . . . . . . 7 𝑦 ∈ V
7 vex 3440 . . . . . . 7 𝑥 ∈ V
86, 7brcnv 5821 . . . . . 6 (𝑦𝐴𝑥𝑥𝐴𝑦)
9 df-br 5090 . . . . . 6 (𝑦𝐴𝑥 ↔ ⟨𝑦, 𝑥⟩ ∈ 𝐴)
108, 9bitr3i 277 . . . . 5 (𝑥𝐴𝑦 ↔ ⟨𝑦, 𝑥⟩ ∈ 𝐴)
117, 6brco 5809 . . . . . 6 (𝑥(𝐵𝐶)𝑦 ↔ ∃𝑧(𝑥𝐶𝑧𝑧𝐵𝑦))
126, 7brcnv 5821 . . . . . . 7 (𝑦(𝐵𝐶)𝑥𝑥(𝐵𝐶)𝑦)
13 df-br 5090 . . . . . . 7 (𝑦(𝐵𝐶)𝑥 ↔ ⟨𝑦, 𝑥⟩ ∈ (𝐵𝐶))
1412, 13bitr3i 277 . . . . . 6 (𝑥(𝐵𝐶)𝑦 ↔ ⟨𝑦, 𝑥⟩ ∈ (𝐵𝐶))
1511, 14bitr3i 277 . . . . 5 (∃𝑧(𝑥𝐶𝑧𝑧𝐵𝑦) ↔ ⟨𝑦, 𝑥⟩ ∈ (𝐵𝐶))
1610, 15imbi12i 350 . . . 4 ((𝑥𝐴𝑦 → ∃𝑧(𝑥𝐶𝑧𝑧𝐵𝑦)) ↔ (⟨𝑦, 𝑥⟩ ∈ 𝐴 → ⟨𝑦, 𝑥⟩ ∈ (𝐵𝐶)))
175, 16bitri 275 . . 3 (∃𝑧(𝑥𝐴𝑦 → (𝑥𝐶𝑧𝑧𝐵𝑦)) ↔ (⟨𝑦, 𝑥⟩ ∈ 𝐴 → ⟨𝑦, 𝑥⟩ ∈ (𝐵𝐶)))
18172albii 1821 . 2 (∀𝑥𝑦𝑧(𝑥𝐴𝑦 → (𝑥𝐶𝑧𝑧𝐵𝑦)) ↔ ∀𝑥𝑦(⟨𝑦, 𝑥⟩ ∈ 𝐴 → ⟨𝑦, 𝑥⟩ ∈ (𝐵𝐶)))
191, 4, 183bitr4i 303 1 (𝐴(𝐵𝐶) ↔ ∀𝑥𝑦𝑧(𝑥𝐴𝑦 → (𝑥𝐶𝑧𝑧𝐵𝑦)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wal 1539  wex 1780  wcel 2111  wss 3897  cop 4579   class class class wbr 5089  ccnv 5613  ccom 5618  Rel wrel 5619
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-11 2160  ax-ext 2703  ax-sep 5232  ax-nul 5242  ax-pr 5368
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-sb 2068  df-clab 2710  df-cleq 2723  df-clel 2806  df-rab 3396  df-v 3438  df-dif 3900  df-un 3902  df-ss 3914  df-nul 4281  df-if 4473  df-sn 4574  df-pr 4576  df-op 4580  df-br 5090  df-opab 5152  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623
This theorem is referenced by:  refimssco  43699
  Copyright terms: Public domain W3C validator