![]() |
Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > cnvssco | Structured version Visualization version GIF version |
Description: A condition weaker than reflexivity. (Contributed by RP, 3-Aug-2020.) |
Ref | Expression |
---|---|
cnvssco | ⊢ (◡𝐴 ⊆ ◡(𝐵 ∘ 𝐶) ↔ ∀𝑥∀𝑦∃𝑧(𝑥𝐴𝑦 → (𝑥𝐶𝑧 ∧ 𝑧𝐵𝑦))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | alcom 2155 | . 2 ⊢ (∀𝑦∀𝑥(⟨𝑦, 𝑥⟩ ∈ ◡𝐴 → ⟨𝑦, 𝑥⟩ ∈ ◡(𝐵 ∘ 𝐶)) ↔ ∀𝑥∀𝑦(⟨𝑦, 𝑥⟩ ∈ ◡𝐴 → ⟨𝑦, 𝑥⟩ ∈ ◡(𝐵 ∘ 𝐶))) | |
2 | relcnv 6103 | . . 3 ⊢ Rel ◡𝐴 | |
3 | ssrel 5782 | . . 3 ⊢ (Rel ◡𝐴 → (◡𝐴 ⊆ ◡(𝐵 ∘ 𝐶) ↔ ∀𝑦∀𝑥(⟨𝑦, 𝑥⟩ ∈ ◡𝐴 → ⟨𝑦, 𝑥⟩ ∈ ◡(𝐵 ∘ 𝐶)))) | |
4 | 2, 3 | ax-mp 5 | . 2 ⊢ (◡𝐴 ⊆ ◡(𝐵 ∘ 𝐶) ↔ ∀𝑦∀𝑥(⟨𝑦, 𝑥⟩ ∈ ◡𝐴 → ⟨𝑦, 𝑥⟩ ∈ ◡(𝐵 ∘ 𝐶))) |
5 | 19.37v 1994 | . . . 4 ⊢ (∃𝑧(𝑥𝐴𝑦 → (𝑥𝐶𝑧 ∧ 𝑧𝐵𝑦)) ↔ (𝑥𝐴𝑦 → ∃𝑧(𝑥𝐶𝑧 ∧ 𝑧𝐵𝑦))) | |
6 | vex 3477 | . . . . . . 7 ⊢ 𝑦 ∈ V | |
7 | vex 3477 | . . . . . . 7 ⊢ 𝑥 ∈ V | |
8 | 6, 7 | brcnv 5882 | . . . . . 6 ⊢ (𝑦◡𝐴𝑥 ↔ 𝑥𝐴𝑦) |
9 | df-br 5149 | . . . . . 6 ⊢ (𝑦◡𝐴𝑥 ↔ ⟨𝑦, 𝑥⟩ ∈ ◡𝐴) | |
10 | 8, 9 | bitr3i 277 | . . . . 5 ⊢ (𝑥𝐴𝑦 ↔ ⟨𝑦, 𝑥⟩ ∈ ◡𝐴) |
11 | 7, 6 | brco 5870 | . . . . . 6 ⊢ (𝑥(𝐵 ∘ 𝐶)𝑦 ↔ ∃𝑧(𝑥𝐶𝑧 ∧ 𝑧𝐵𝑦)) |
12 | 6, 7 | brcnv 5882 | . . . . . . 7 ⊢ (𝑦◡(𝐵 ∘ 𝐶)𝑥 ↔ 𝑥(𝐵 ∘ 𝐶)𝑦) |
13 | df-br 5149 | . . . . . . 7 ⊢ (𝑦◡(𝐵 ∘ 𝐶)𝑥 ↔ ⟨𝑦, 𝑥⟩ ∈ ◡(𝐵 ∘ 𝐶)) | |
14 | 12, 13 | bitr3i 277 | . . . . . 6 ⊢ (𝑥(𝐵 ∘ 𝐶)𝑦 ↔ ⟨𝑦, 𝑥⟩ ∈ ◡(𝐵 ∘ 𝐶)) |
15 | 11, 14 | bitr3i 277 | . . . . 5 ⊢ (∃𝑧(𝑥𝐶𝑧 ∧ 𝑧𝐵𝑦) ↔ ⟨𝑦, 𝑥⟩ ∈ ◡(𝐵 ∘ 𝐶)) |
16 | 10, 15 | imbi12i 350 | . . . 4 ⊢ ((𝑥𝐴𝑦 → ∃𝑧(𝑥𝐶𝑧 ∧ 𝑧𝐵𝑦)) ↔ (⟨𝑦, 𝑥⟩ ∈ ◡𝐴 → ⟨𝑦, 𝑥⟩ ∈ ◡(𝐵 ∘ 𝐶))) |
17 | 5, 16 | bitri 275 | . . 3 ⊢ (∃𝑧(𝑥𝐴𝑦 → (𝑥𝐶𝑧 ∧ 𝑧𝐵𝑦)) ↔ (⟨𝑦, 𝑥⟩ ∈ ◡𝐴 → ⟨𝑦, 𝑥⟩ ∈ ◡(𝐵 ∘ 𝐶))) |
18 | 17 | 2albii 1821 | . 2 ⊢ (∀𝑥∀𝑦∃𝑧(𝑥𝐴𝑦 → (𝑥𝐶𝑧 ∧ 𝑧𝐵𝑦)) ↔ ∀𝑥∀𝑦(⟨𝑦, 𝑥⟩ ∈ ◡𝐴 → ⟨𝑦, 𝑥⟩ ∈ ◡(𝐵 ∘ 𝐶))) |
19 | 1, 4, 18 | 3bitr4i 303 | 1 ⊢ (◡𝐴 ⊆ ◡(𝐵 ∘ 𝐶) ↔ ∀𝑥∀𝑦∃𝑧(𝑥𝐴𝑦 → (𝑥𝐶𝑧 ∧ 𝑧𝐵𝑦))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 ∀wal 1538 ∃wex 1780 ∈ wcel 2105 ⊆ wss 3948 ⟨cop 4634 class class class wbr 5148 ◡ccnv 5675 ∘ ccom 5680 Rel wrel 5681 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-11 2153 ax-ext 2702 ax-sep 5299 ax-nul 5306 ax-pr 5427 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-sb 2067 df-clab 2709 df-cleq 2723 df-clel 2809 df-rab 3432 df-v 3475 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-sn 4629 df-pr 4631 df-op 4635 df-br 5149 df-opab 5211 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 |
This theorem is referenced by: refimssco 42823 |
Copyright terms: Public domain | W3C validator |