Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cnvssco Structured version   Visualization version   GIF version

Theorem cnvssco 43602
Description: A condition weaker than reflexivity. (Contributed by RP, 3-Aug-2020.)
Assertion
Ref Expression
cnvssco (𝐴(𝐵𝐶) ↔ ∀𝑥𝑦𝑧(𝑥𝐴𝑦 → (𝑥𝐶𝑧𝑧𝐵𝑦)))
Distinct variable groups:   𝑥,𝑦,𝑧,𝐴   𝑥,𝐵,𝑦,𝑧   𝑥,𝐶,𝑦,𝑧

Proof of Theorem cnvssco
StepHypRef Expression
1 alcom 2160 . 2 (∀𝑦𝑥(⟨𝑦, 𝑥⟩ ∈ 𝐴 → ⟨𝑦, 𝑥⟩ ∈ (𝐵𝐶)) ↔ ∀𝑥𝑦(⟨𝑦, 𝑥⟩ ∈ 𝐴 → ⟨𝑦, 𝑥⟩ ∈ (𝐵𝐶)))
2 relcnv 6078 . . 3 Rel 𝐴
3 ssrel 5748 . . 3 (Rel 𝐴 → (𝐴(𝐵𝐶) ↔ ∀𝑦𝑥(⟨𝑦, 𝑥⟩ ∈ 𝐴 → ⟨𝑦, 𝑥⟩ ∈ (𝐵𝐶))))
42, 3ax-mp 5 . 2 (𝐴(𝐵𝐶) ↔ ∀𝑦𝑥(⟨𝑦, 𝑥⟩ ∈ 𝐴 → ⟨𝑦, 𝑥⟩ ∈ (𝐵𝐶)))
5 19.37v 1997 . . . 4 (∃𝑧(𝑥𝐴𝑦 → (𝑥𝐶𝑧𝑧𝐵𝑦)) ↔ (𝑥𝐴𝑦 → ∃𝑧(𝑥𝐶𝑧𝑧𝐵𝑦)))
6 vex 3454 . . . . . . 7 𝑦 ∈ V
7 vex 3454 . . . . . . 7 𝑥 ∈ V
86, 7brcnv 5849 . . . . . 6 (𝑦𝐴𝑥𝑥𝐴𝑦)
9 df-br 5111 . . . . . 6 (𝑦𝐴𝑥 ↔ ⟨𝑦, 𝑥⟩ ∈ 𝐴)
108, 9bitr3i 277 . . . . 5 (𝑥𝐴𝑦 ↔ ⟨𝑦, 𝑥⟩ ∈ 𝐴)
117, 6brco 5837 . . . . . 6 (𝑥(𝐵𝐶)𝑦 ↔ ∃𝑧(𝑥𝐶𝑧𝑧𝐵𝑦))
126, 7brcnv 5849 . . . . . . 7 (𝑦(𝐵𝐶)𝑥𝑥(𝐵𝐶)𝑦)
13 df-br 5111 . . . . . . 7 (𝑦(𝐵𝐶)𝑥 ↔ ⟨𝑦, 𝑥⟩ ∈ (𝐵𝐶))
1412, 13bitr3i 277 . . . . . 6 (𝑥(𝐵𝐶)𝑦 ↔ ⟨𝑦, 𝑥⟩ ∈ (𝐵𝐶))
1511, 14bitr3i 277 . . . . 5 (∃𝑧(𝑥𝐶𝑧𝑧𝐵𝑦) ↔ ⟨𝑦, 𝑥⟩ ∈ (𝐵𝐶))
1610, 15imbi12i 350 . . . 4 ((𝑥𝐴𝑦 → ∃𝑧(𝑥𝐶𝑧𝑧𝐵𝑦)) ↔ (⟨𝑦, 𝑥⟩ ∈ 𝐴 → ⟨𝑦, 𝑥⟩ ∈ (𝐵𝐶)))
175, 16bitri 275 . . 3 (∃𝑧(𝑥𝐴𝑦 → (𝑥𝐶𝑧𝑧𝐵𝑦)) ↔ (⟨𝑦, 𝑥⟩ ∈ 𝐴 → ⟨𝑦, 𝑥⟩ ∈ (𝐵𝐶)))
18172albii 1820 . 2 (∀𝑥𝑦𝑧(𝑥𝐴𝑦 → (𝑥𝐶𝑧𝑧𝐵𝑦)) ↔ ∀𝑥𝑦(⟨𝑦, 𝑥⟩ ∈ 𝐴 → ⟨𝑦, 𝑥⟩ ∈ (𝐵𝐶)))
191, 4, 183bitr4i 303 1 (𝐴(𝐵𝐶) ↔ ∀𝑥𝑦𝑧(𝑥𝐴𝑦 → (𝑥𝐶𝑧𝑧𝐵𝑦)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wal 1538  wex 1779  wcel 2109  wss 3917  cop 4598   class class class wbr 5110  ccnv 5640  ccom 5645  Rel wrel 5646
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-11 2158  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pr 5390
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2709  df-cleq 2722  df-clel 2804  df-rab 3409  df-v 3452  df-dif 3920  df-un 3922  df-ss 3934  df-nul 4300  df-if 4492  df-sn 4593  df-pr 4595  df-op 4599  df-br 5111  df-opab 5173  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650
This theorem is referenced by:  refimssco  43603
  Copyright terms: Public domain W3C validator