Users' Mathboxes Mathbox for Jonathan Ben-Naim < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bnj865 Structured version   Visualization version   GIF version

Theorem bnj865 34937
Description: Technical lemma for bnj69 35024. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
Hypotheses
Ref Expression
bnj865.1 (𝜑 ↔ (𝑓‘∅) = pred(𝑋, 𝐴, 𝑅))
bnj865.2 (𝜓 ↔ ∀𝑖 ∈ ω (suc 𝑖𝑛 → (𝑓‘suc 𝑖) = 𝑦 ∈ (𝑓𝑖) pred(𝑦, 𝐴, 𝑅)))
bnj865.3 𝐷 = (ω ∖ {∅})
bnj865.5 (𝜒 ↔ (𝑅 FrSe 𝐴𝑋𝐴𝑛𝐷))
bnj865.6 (𝜃 ↔ (𝑓 Fn 𝑛𝜑𝜓))
Assertion
Ref Expression
bnj865 𝑤𝑛(𝜒 → ∃𝑓𝑤 𝜃)
Distinct variable groups:   𝐴,𝑓,𝑖,𝑛,𝑦   𝑤,𝐴,𝑓,𝑛   𝐷,𝑓,𝑖,𝑛   𝑤,𝐷   𝑅,𝑓,𝑖,𝑛,𝑦   𝑤,𝑅   𝑓,𝑋,𝑛,𝑤   𝜑,𝑤   𝜓,𝑤
Allowed substitution hints:   𝜑(𝑦,𝑓,𝑖,𝑛)   𝜓(𝑦,𝑓,𝑖,𝑛)   𝜒(𝑦,𝑤,𝑓,𝑖,𝑛)   𝜃(𝑦,𝑤,𝑓,𝑖,𝑛)   𝐷(𝑦)   𝑋(𝑦,𝑖)

Proof of Theorem bnj865
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 bnj865.1 . . . . . . 7 (𝜑 ↔ (𝑓‘∅) = pred(𝑋, 𝐴, 𝑅))
2 bnj865.2 . . . . . . 7 (𝜓 ↔ ∀𝑖 ∈ ω (suc 𝑖𝑛 → (𝑓‘suc 𝑖) = 𝑦 ∈ (𝑓𝑖) pred(𝑦, 𝐴, 𝑅)))
3 bnj865.3 . . . . . . 7 𝐷 = (ω ∖ {∅})
41, 2, 3bnj852 34935 . . . . . 6 ((𝑅 FrSe 𝐴𝑋𝐴) → ∀𝑛𝐷 ∃!𝑓(𝑓 Fn 𝑛𝜑𝜓))
5 omex 9683 . . . . . . . . 9 ω ∈ V
6 difexg 5329 . . . . . . . . 9 (ω ∈ V → (ω ∖ {∅}) ∈ V)
75, 6ax-mp 5 . . . . . . . 8 (ω ∖ {∅}) ∈ V
83, 7eqeltri 2837 . . . . . . 7 𝐷 ∈ V
9 raleq 3323 . . . . . . . 8 (𝑧 = 𝐷 → (∀𝑛𝑧 ∃!𝑓(𝑓 Fn 𝑛𝜑𝜓) ↔ ∀𝑛𝐷 ∃!𝑓(𝑓 Fn 𝑛𝜑𝜓)))
10 raleq 3323 . . . . . . . . 9 (𝑧 = 𝐷 → (∀𝑛𝑧𝑓𝑤 (𝑓 Fn 𝑛𝜑𝜓) ↔ ∀𝑛𝐷𝑓𝑤 (𝑓 Fn 𝑛𝜑𝜓)))
1110exbidv 1921 . . . . . . . 8 (𝑧 = 𝐷 → (∃𝑤𝑛𝑧𝑓𝑤 (𝑓 Fn 𝑛𝜑𝜓) ↔ ∃𝑤𝑛𝐷𝑓𝑤 (𝑓 Fn 𝑛𝜑𝜓)))
129, 11imbi12d 344 . . . . . . 7 (𝑧 = 𝐷 → ((∀𝑛𝑧 ∃!𝑓(𝑓 Fn 𝑛𝜑𝜓) → ∃𝑤𝑛𝑧𝑓𝑤 (𝑓 Fn 𝑛𝜑𝜓)) ↔ (∀𝑛𝐷 ∃!𝑓(𝑓 Fn 𝑛𝜑𝜓) → ∃𝑤𝑛𝐷𝑓𝑤 (𝑓 Fn 𝑛𝜑𝜓))))
13 zfrep6 7979 . . . . . . 7 (∀𝑛𝑧 ∃!𝑓(𝑓 Fn 𝑛𝜑𝜓) → ∃𝑤𝑛𝑧𝑓𝑤 (𝑓 Fn 𝑛𝜑𝜓))
148, 12, 13vtocl 3558 . . . . . 6 (∀𝑛𝐷 ∃!𝑓(𝑓 Fn 𝑛𝜑𝜓) → ∃𝑤𝑛𝐷𝑓𝑤 (𝑓 Fn 𝑛𝜑𝜓))
154, 14syl 17 . . . . 5 ((𝑅 FrSe 𝐴𝑋𝐴) → ∃𝑤𝑛𝐷𝑓𝑤 (𝑓 Fn 𝑛𝜑𝜓))
16 19.37v 1991 . . . . 5 (∃𝑤((𝑅 FrSe 𝐴𝑋𝐴) → ∀𝑛𝐷𝑓𝑤 (𝑓 Fn 𝑛𝜑𝜓)) ↔ ((𝑅 FrSe 𝐴𝑋𝐴) → ∃𝑤𝑛𝐷𝑓𝑤 (𝑓 Fn 𝑛𝜑𝜓)))
1715, 16mpbir 231 . . . 4 𝑤((𝑅 FrSe 𝐴𝑋𝐴) → ∀𝑛𝐷𝑓𝑤 (𝑓 Fn 𝑛𝜑𝜓))
18 df-ral 3062 . . . . . . . 8 (∀𝑛𝐷𝑓𝑤 (𝑓 Fn 𝑛𝜑𝜓) ↔ ∀𝑛(𝑛𝐷 → ∃𝑓𝑤 (𝑓 Fn 𝑛𝜑𝜓)))
1918imbi2i 336 . . . . . . 7 (((𝑅 FrSe 𝐴𝑋𝐴) → ∀𝑛𝐷𝑓𝑤 (𝑓 Fn 𝑛𝜑𝜓)) ↔ ((𝑅 FrSe 𝐴𝑋𝐴) → ∀𝑛(𝑛𝐷 → ∃𝑓𝑤 (𝑓 Fn 𝑛𝜑𝜓))))
20 19.21v 1939 . . . . . . 7 (∀𝑛((𝑅 FrSe 𝐴𝑋𝐴) → (𝑛𝐷 → ∃𝑓𝑤 (𝑓 Fn 𝑛𝜑𝜓))) ↔ ((𝑅 FrSe 𝐴𝑋𝐴) → ∀𝑛(𝑛𝐷 → ∃𝑓𝑤 (𝑓 Fn 𝑛𝜑𝜓))))
2119, 20bitr4i 278 . . . . . 6 (((𝑅 FrSe 𝐴𝑋𝐴) → ∀𝑛𝐷𝑓𝑤 (𝑓 Fn 𝑛𝜑𝜓)) ↔ ∀𝑛((𝑅 FrSe 𝐴𝑋𝐴) → (𝑛𝐷 → ∃𝑓𝑤 (𝑓 Fn 𝑛𝜑𝜓))))
2221exbii 1848 . . . . 5 (∃𝑤((𝑅 FrSe 𝐴𝑋𝐴) → ∀𝑛𝐷𝑓𝑤 (𝑓 Fn 𝑛𝜑𝜓)) ↔ ∃𝑤𝑛((𝑅 FrSe 𝐴𝑋𝐴) → (𝑛𝐷 → ∃𝑓𝑤 (𝑓 Fn 𝑛𝜑𝜓))))
23 impexp 450 . . . . . . . 8 ((((𝑅 FrSe 𝐴𝑋𝐴) ∧ 𝑛𝐷) → ∃𝑓𝑤 (𝑓 Fn 𝑛𝜑𝜓)) ↔ ((𝑅 FrSe 𝐴𝑋𝐴) → (𝑛𝐷 → ∃𝑓𝑤 (𝑓 Fn 𝑛𝜑𝜓))))
24 df-3an 1089 . . . . . . . . . 10 ((𝑅 FrSe 𝐴𝑋𝐴𝑛𝐷) ↔ ((𝑅 FrSe 𝐴𝑋𝐴) ∧ 𝑛𝐷))
2524bicomi 224 . . . . . . . . 9 (((𝑅 FrSe 𝐴𝑋𝐴) ∧ 𝑛𝐷) ↔ (𝑅 FrSe 𝐴𝑋𝐴𝑛𝐷))
2625imbi1i 349 . . . . . . . 8 ((((𝑅 FrSe 𝐴𝑋𝐴) ∧ 𝑛𝐷) → ∃𝑓𝑤 (𝑓 Fn 𝑛𝜑𝜓)) ↔ ((𝑅 FrSe 𝐴𝑋𝐴𝑛𝐷) → ∃𝑓𝑤 (𝑓 Fn 𝑛𝜑𝜓)))
2723, 26bitr3i 277 . . . . . . 7 (((𝑅 FrSe 𝐴𝑋𝐴) → (𝑛𝐷 → ∃𝑓𝑤 (𝑓 Fn 𝑛𝜑𝜓))) ↔ ((𝑅 FrSe 𝐴𝑋𝐴𝑛𝐷) → ∃𝑓𝑤 (𝑓 Fn 𝑛𝜑𝜓)))
2827albii 1819 . . . . . 6 (∀𝑛((𝑅 FrSe 𝐴𝑋𝐴) → (𝑛𝐷 → ∃𝑓𝑤 (𝑓 Fn 𝑛𝜑𝜓))) ↔ ∀𝑛((𝑅 FrSe 𝐴𝑋𝐴𝑛𝐷) → ∃𝑓𝑤 (𝑓 Fn 𝑛𝜑𝜓)))
2928exbii 1848 . . . . 5 (∃𝑤𝑛((𝑅 FrSe 𝐴𝑋𝐴) → (𝑛𝐷 → ∃𝑓𝑤 (𝑓 Fn 𝑛𝜑𝜓))) ↔ ∃𝑤𝑛((𝑅 FrSe 𝐴𝑋𝐴𝑛𝐷) → ∃𝑓𝑤 (𝑓 Fn 𝑛𝜑𝜓)))
3022, 29bitri 275 . . . 4 (∃𝑤((𝑅 FrSe 𝐴𝑋𝐴) → ∀𝑛𝐷𝑓𝑤 (𝑓 Fn 𝑛𝜑𝜓)) ↔ ∃𝑤𝑛((𝑅 FrSe 𝐴𝑋𝐴𝑛𝐷) → ∃𝑓𝑤 (𝑓 Fn 𝑛𝜑𝜓)))
3117, 30mpbi 230 . . 3 𝑤𝑛((𝑅 FrSe 𝐴𝑋𝐴𝑛𝐷) → ∃𝑓𝑤 (𝑓 Fn 𝑛𝜑𝜓))
32 bnj865.5 . . . . . . 7 (𝜒 ↔ (𝑅 FrSe 𝐴𝑋𝐴𝑛𝐷))
3332bicomi 224 . . . . . 6 ((𝑅 FrSe 𝐴𝑋𝐴𝑛𝐷) ↔ 𝜒)
3433imbi1i 349 . . . . 5 (((𝑅 FrSe 𝐴𝑋𝐴𝑛𝐷) → ∃𝑓𝑤 (𝑓 Fn 𝑛𝜑𝜓)) ↔ (𝜒 → ∃𝑓𝑤 (𝑓 Fn 𝑛𝜑𝜓)))
3534albii 1819 . . . 4 (∀𝑛((𝑅 FrSe 𝐴𝑋𝐴𝑛𝐷) → ∃𝑓𝑤 (𝑓 Fn 𝑛𝜑𝜓)) ↔ ∀𝑛(𝜒 → ∃𝑓𝑤 (𝑓 Fn 𝑛𝜑𝜓)))
3635exbii 1848 . . 3 (∃𝑤𝑛((𝑅 FrSe 𝐴𝑋𝐴𝑛𝐷) → ∃𝑓𝑤 (𝑓 Fn 𝑛𝜑𝜓)) ↔ ∃𝑤𝑛(𝜒 → ∃𝑓𝑤 (𝑓 Fn 𝑛𝜑𝜓)))
3731, 36mpbi 230 . 2 𝑤𝑛(𝜒 → ∃𝑓𝑤 (𝑓 Fn 𝑛𝜑𝜓))
38 bnj865.6 . . . . . 6 (𝜃 ↔ (𝑓 Fn 𝑛𝜑𝜓))
3938rexbii 3094 . . . . 5 (∃𝑓𝑤 𝜃 ↔ ∃𝑓𝑤 (𝑓 Fn 𝑛𝜑𝜓))
4039imbi2i 336 . . . 4 ((𝜒 → ∃𝑓𝑤 𝜃) ↔ (𝜒 → ∃𝑓𝑤 (𝑓 Fn 𝑛𝜑𝜓)))
4140albii 1819 . . 3 (∀𝑛(𝜒 → ∃𝑓𝑤 𝜃) ↔ ∀𝑛(𝜒 → ∃𝑓𝑤 (𝑓 Fn 𝑛𝜑𝜓)))
4241exbii 1848 . 2 (∃𝑤𝑛(𝜒 → ∃𝑓𝑤 𝜃) ↔ ∃𝑤𝑛(𝜒 → ∃𝑓𝑤 (𝑓 Fn 𝑛𝜑𝜓)))
4337, 42mpbir 231 1 𝑤𝑛(𝜒 → ∃𝑓𝑤 𝜃)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1087  wal 1538   = wceq 1540  wex 1779  wcel 2108  ∃!weu 2568  wral 3061  wrex 3070  Vcvv 3480  cdif 3948  c0 4333  {csn 4626   ciun 4991  suc csuc 6386   Fn wfn 6556  cfv 6561  ωcom 7887   predc-bnj14 34702   FrSe w-bnj15 34706
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-rep 5279  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-reg 9632  ax-inf2 9681
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-ral 3062  df-rex 3071  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-ord 6387  df-on 6388  df-lim 6389  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-om 7888  df-1o 8506  df-bnj17 34701  df-bnj14 34703  df-bnj13 34705  df-bnj15 34707
This theorem is referenced by:  bnj849  34939
  Copyright terms: Public domain W3C validator