Users' Mathboxes Mathbox for Jonathan Ben-Naim < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bnj865 Structured version   Visualization version   GIF version

Theorem bnj865 32903
Description: Technical lemma for bnj69 32990. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
Hypotheses
Ref Expression
bnj865.1 (𝜑 ↔ (𝑓‘∅) = pred(𝑋, 𝐴, 𝑅))
bnj865.2 (𝜓 ↔ ∀𝑖 ∈ ω (suc 𝑖𝑛 → (𝑓‘suc 𝑖) = 𝑦 ∈ (𝑓𝑖) pred(𝑦, 𝐴, 𝑅)))
bnj865.3 𝐷 = (ω ∖ {∅})
bnj865.5 (𝜒 ↔ (𝑅 FrSe 𝐴𝑋𝐴𝑛𝐷))
bnj865.6 (𝜃 ↔ (𝑓 Fn 𝑛𝜑𝜓))
Assertion
Ref Expression
bnj865 𝑤𝑛(𝜒 → ∃𝑓𝑤 𝜃)
Distinct variable groups:   𝐴,𝑓,𝑖,𝑛,𝑦   𝑤,𝐴,𝑓,𝑛   𝐷,𝑓,𝑖,𝑛   𝑤,𝐷   𝑅,𝑓,𝑖,𝑛,𝑦   𝑤,𝑅   𝑓,𝑋,𝑛,𝑤   𝜑,𝑤   𝜓,𝑤
Allowed substitution hints:   𝜑(𝑦,𝑓,𝑖,𝑛)   𝜓(𝑦,𝑓,𝑖,𝑛)   𝜒(𝑦,𝑤,𝑓,𝑖,𝑛)   𝜃(𝑦,𝑤,𝑓,𝑖,𝑛)   𝐷(𝑦)   𝑋(𝑦,𝑖)

Proof of Theorem bnj865
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 bnj865.1 . . . . . . 7 (𝜑 ↔ (𝑓‘∅) = pred(𝑋, 𝐴, 𝑅))
2 bnj865.2 . . . . . . 7 (𝜓 ↔ ∀𝑖 ∈ ω (suc 𝑖𝑛 → (𝑓‘suc 𝑖) = 𝑦 ∈ (𝑓𝑖) pred(𝑦, 𝐴, 𝑅)))
3 bnj865.3 . . . . . . 7 𝐷 = (ω ∖ {∅})
41, 2, 3bnj852 32901 . . . . . 6 ((𝑅 FrSe 𝐴𝑋𝐴) → ∀𝑛𝐷 ∃!𝑓(𝑓 Fn 𝑛𝜑𝜓))
5 omex 9401 . . . . . . . . 9 ω ∈ V
6 difexg 5251 . . . . . . . . 9 (ω ∈ V → (ω ∖ {∅}) ∈ V)
75, 6ax-mp 5 . . . . . . . 8 (ω ∖ {∅}) ∈ V
83, 7eqeltri 2835 . . . . . . 7 𝐷 ∈ V
9 raleq 3342 . . . . . . . 8 (𝑧 = 𝐷 → (∀𝑛𝑧 ∃!𝑓(𝑓 Fn 𝑛𝜑𝜓) ↔ ∀𝑛𝐷 ∃!𝑓(𝑓 Fn 𝑛𝜑𝜓)))
10 raleq 3342 . . . . . . . . 9 (𝑧 = 𝐷 → (∀𝑛𝑧𝑓𝑤 (𝑓 Fn 𝑛𝜑𝜓) ↔ ∀𝑛𝐷𝑓𝑤 (𝑓 Fn 𝑛𝜑𝜓)))
1110exbidv 1924 . . . . . . . 8 (𝑧 = 𝐷 → (∃𝑤𝑛𝑧𝑓𝑤 (𝑓 Fn 𝑛𝜑𝜓) ↔ ∃𝑤𝑛𝐷𝑓𝑤 (𝑓 Fn 𝑛𝜑𝜓)))
129, 11imbi12d 345 . . . . . . 7 (𝑧 = 𝐷 → ((∀𝑛𝑧 ∃!𝑓(𝑓 Fn 𝑛𝜑𝜓) → ∃𝑤𝑛𝑧𝑓𝑤 (𝑓 Fn 𝑛𝜑𝜓)) ↔ (∀𝑛𝐷 ∃!𝑓(𝑓 Fn 𝑛𝜑𝜓) → ∃𝑤𝑛𝐷𝑓𝑤 (𝑓 Fn 𝑛𝜑𝜓))))
13 zfrep6 7797 . . . . . . 7 (∀𝑛𝑧 ∃!𝑓(𝑓 Fn 𝑛𝜑𝜓) → ∃𝑤𝑛𝑧𝑓𝑤 (𝑓 Fn 𝑛𝜑𝜓))
148, 12, 13vtocl 3498 . . . . . 6 (∀𝑛𝐷 ∃!𝑓(𝑓 Fn 𝑛𝜑𝜓) → ∃𝑤𝑛𝐷𝑓𝑤 (𝑓 Fn 𝑛𝜑𝜓))
154, 14syl 17 . . . . 5 ((𝑅 FrSe 𝐴𝑋𝐴) → ∃𝑤𝑛𝐷𝑓𝑤 (𝑓 Fn 𝑛𝜑𝜓))
16 19.37v 1995 . . . . 5 (∃𝑤((𝑅 FrSe 𝐴𝑋𝐴) → ∀𝑛𝐷𝑓𝑤 (𝑓 Fn 𝑛𝜑𝜓)) ↔ ((𝑅 FrSe 𝐴𝑋𝐴) → ∃𝑤𝑛𝐷𝑓𝑤 (𝑓 Fn 𝑛𝜑𝜓)))
1715, 16mpbir 230 . . . 4 𝑤((𝑅 FrSe 𝐴𝑋𝐴) → ∀𝑛𝐷𝑓𝑤 (𝑓 Fn 𝑛𝜑𝜓))
18 df-ral 3069 . . . . . . . 8 (∀𝑛𝐷𝑓𝑤 (𝑓 Fn 𝑛𝜑𝜓) ↔ ∀𝑛(𝑛𝐷 → ∃𝑓𝑤 (𝑓 Fn 𝑛𝜑𝜓)))
1918imbi2i 336 . . . . . . 7 (((𝑅 FrSe 𝐴𝑋𝐴) → ∀𝑛𝐷𝑓𝑤 (𝑓 Fn 𝑛𝜑𝜓)) ↔ ((𝑅 FrSe 𝐴𝑋𝐴) → ∀𝑛(𝑛𝐷 → ∃𝑓𝑤 (𝑓 Fn 𝑛𝜑𝜓))))
20 19.21v 1942 . . . . . . 7 (∀𝑛((𝑅 FrSe 𝐴𝑋𝐴) → (𝑛𝐷 → ∃𝑓𝑤 (𝑓 Fn 𝑛𝜑𝜓))) ↔ ((𝑅 FrSe 𝐴𝑋𝐴) → ∀𝑛(𝑛𝐷 → ∃𝑓𝑤 (𝑓 Fn 𝑛𝜑𝜓))))
2119, 20bitr4i 277 . . . . . 6 (((𝑅 FrSe 𝐴𝑋𝐴) → ∀𝑛𝐷𝑓𝑤 (𝑓 Fn 𝑛𝜑𝜓)) ↔ ∀𝑛((𝑅 FrSe 𝐴𝑋𝐴) → (𝑛𝐷 → ∃𝑓𝑤 (𝑓 Fn 𝑛𝜑𝜓))))
2221exbii 1850 . . . . 5 (∃𝑤((𝑅 FrSe 𝐴𝑋𝐴) → ∀𝑛𝐷𝑓𝑤 (𝑓 Fn 𝑛𝜑𝜓)) ↔ ∃𝑤𝑛((𝑅 FrSe 𝐴𝑋𝐴) → (𝑛𝐷 → ∃𝑓𝑤 (𝑓 Fn 𝑛𝜑𝜓))))
23 impexp 451 . . . . . . . 8 ((((𝑅 FrSe 𝐴𝑋𝐴) ∧ 𝑛𝐷) → ∃𝑓𝑤 (𝑓 Fn 𝑛𝜑𝜓)) ↔ ((𝑅 FrSe 𝐴𝑋𝐴) → (𝑛𝐷 → ∃𝑓𝑤 (𝑓 Fn 𝑛𝜑𝜓))))
24 df-3an 1088 . . . . . . . . . 10 ((𝑅 FrSe 𝐴𝑋𝐴𝑛𝐷) ↔ ((𝑅 FrSe 𝐴𝑋𝐴) ∧ 𝑛𝐷))
2524bicomi 223 . . . . . . . . 9 (((𝑅 FrSe 𝐴𝑋𝐴) ∧ 𝑛𝐷) ↔ (𝑅 FrSe 𝐴𝑋𝐴𝑛𝐷))
2625imbi1i 350 . . . . . . . 8 ((((𝑅 FrSe 𝐴𝑋𝐴) ∧ 𝑛𝐷) → ∃𝑓𝑤 (𝑓 Fn 𝑛𝜑𝜓)) ↔ ((𝑅 FrSe 𝐴𝑋𝐴𝑛𝐷) → ∃𝑓𝑤 (𝑓 Fn 𝑛𝜑𝜓)))
2723, 26bitr3i 276 . . . . . . 7 (((𝑅 FrSe 𝐴𝑋𝐴) → (𝑛𝐷 → ∃𝑓𝑤 (𝑓 Fn 𝑛𝜑𝜓))) ↔ ((𝑅 FrSe 𝐴𝑋𝐴𝑛𝐷) → ∃𝑓𝑤 (𝑓 Fn 𝑛𝜑𝜓)))
2827albii 1822 . . . . . 6 (∀𝑛((𝑅 FrSe 𝐴𝑋𝐴) → (𝑛𝐷 → ∃𝑓𝑤 (𝑓 Fn 𝑛𝜑𝜓))) ↔ ∀𝑛((𝑅 FrSe 𝐴𝑋𝐴𝑛𝐷) → ∃𝑓𝑤 (𝑓 Fn 𝑛𝜑𝜓)))
2928exbii 1850 . . . . 5 (∃𝑤𝑛((𝑅 FrSe 𝐴𝑋𝐴) → (𝑛𝐷 → ∃𝑓𝑤 (𝑓 Fn 𝑛𝜑𝜓))) ↔ ∃𝑤𝑛((𝑅 FrSe 𝐴𝑋𝐴𝑛𝐷) → ∃𝑓𝑤 (𝑓 Fn 𝑛𝜑𝜓)))
3022, 29bitri 274 . . . 4 (∃𝑤((𝑅 FrSe 𝐴𝑋𝐴) → ∀𝑛𝐷𝑓𝑤 (𝑓 Fn 𝑛𝜑𝜓)) ↔ ∃𝑤𝑛((𝑅 FrSe 𝐴𝑋𝐴𝑛𝐷) → ∃𝑓𝑤 (𝑓 Fn 𝑛𝜑𝜓)))
3117, 30mpbi 229 . . 3 𝑤𝑛((𝑅 FrSe 𝐴𝑋𝐴𝑛𝐷) → ∃𝑓𝑤 (𝑓 Fn 𝑛𝜑𝜓))
32 bnj865.5 . . . . . . 7 (𝜒 ↔ (𝑅 FrSe 𝐴𝑋𝐴𝑛𝐷))
3332bicomi 223 . . . . . 6 ((𝑅 FrSe 𝐴𝑋𝐴𝑛𝐷) ↔ 𝜒)
3433imbi1i 350 . . . . 5 (((𝑅 FrSe 𝐴𝑋𝐴𝑛𝐷) → ∃𝑓𝑤 (𝑓 Fn 𝑛𝜑𝜓)) ↔ (𝜒 → ∃𝑓𝑤 (𝑓 Fn 𝑛𝜑𝜓)))
3534albii 1822 . . . 4 (∀𝑛((𝑅 FrSe 𝐴𝑋𝐴𝑛𝐷) → ∃𝑓𝑤 (𝑓 Fn 𝑛𝜑𝜓)) ↔ ∀𝑛(𝜒 → ∃𝑓𝑤 (𝑓 Fn 𝑛𝜑𝜓)))
3635exbii 1850 . . 3 (∃𝑤𝑛((𝑅 FrSe 𝐴𝑋𝐴𝑛𝐷) → ∃𝑓𝑤 (𝑓 Fn 𝑛𝜑𝜓)) ↔ ∃𝑤𝑛(𝜒 → ∃𝑓𝑤 (𝑓 Fn 𝑛𝜑𝜓)))
3731, 36mpbi 229 . 2 𝑤𝑛(𝜒 → ∃𝑓𝑤 (𝑓 Fn 𝑛𝜑𝜓))
38 bnj865.6 . . . . . 6 (𝜃 ↔ (𝑓 Fn 𝑛𝜑𝜓))
3938rexbii 3181 . . . . 5 (∃𝑓𝑤 𝜃 ↔ ∃𝑓𝑤 (𝑓 Fn 𝑛𝜑𝜓))
4039imbi2i 336 . . . 4 ((𝜒 → ∃𝑓𝑤 𝜃) ↔ (𝜒 → ∃𝑓𝑤 (𝑓 Fn 𝑛𝜑𝜓)))
4140albii 1822 . . 3 (∀𝑛(𝜒 → ∃𝑓𝑤 𝜃) ↔ ∀𝑛(𝜒 → ∃𝑓𝑤 (𝑓 Fn 𝑛𝜑𝜓)))
4241exbii 1850 . 2 (∃𝑤𝑛(𝜒 → ∃𝑓𝑤 𝜃) ↔ ∃𝑤𝑛(𝜒 → ∃𝑓𝑤 (𝑓 Fn 𝑛𝜑𝜓)))
4337, 42mpbir 230 1 𝑤𝑛(𝜒 → ∃𝑓𝑤 𝜃)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  w3a 1086  wal 1537   = wceq 1539  wex 1782  wcel 2106  ∃!weu 2568  wral 3064  wrex 3065  Vcvv 3432  cdif 3884  c0 4256  {csn 4561   ciun 4924  suc csuc 6268   Fn wfn 6428  cfv 6433  ωcom 7712   predc-bnj14 32667   FrSe w-bnj15 32671
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-reg 9351  ax-inf2 9399
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-ral 3069  df-rex 3070  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-om 7713  df-1o 8297  df-bnj17 32666  df-bnj14 32668  df-bnj13 32670  df-bnj15 32672
This theorem is referenced by:  bnj849  32905
  Copyright terms: Public domain W3C validator