MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  opreu2reu Structured version   Visualization version   GIF version

Theorem opreu2reu 6247
Description: If there is a unique ordered pair fulfilling a wff, then there is a double restricted unique existential qualification fulfilling a corresponding wff. (Contributed by AV, 25-Jun-2023.) (Revised by AV, 2-Jul-2023.)
Hypothesis
Ref Expression
opreu2reurex.a (𝑝 = ⟨𝑎, 𝑏⟩ → (𝜑𝜒))
Assertion
Ref Expression
opreu2reu (∃!𝑝 ∈ (𝐴 × 𝐵)𝜑 → ∃!𝑎𝐴 ∃!𝑏𝐵 𝜒)
Distinct variable groups:   𝐴,𝑎,𝑏,𝑝   𝐵,𝑎,𝑏,𝑝   𝜑,𝑎,𝑏   𝜒,𝑝
Allowed substitution hints:   𝜑(𝑝)   𝜒(𝑎,𝑏)

Proof of Theorem opreu2reu
StepHypRef Expression
1 opreu2reurex.a . . 3 (𝑝 = ⟨𝑎, 𝑏⟩ → (𝜑𝜒))
21opreu2reurex 6246 . 2 (∃!𝑝 ∈ (𝐴 × 𝐵)𝜑 ↔ (∃!𝑎𝐴𝑏𝐵 𝜒 ∧ ∃!𝑏𝐵𝑎𝐴 𝜒))
3 2rexreu 3717 . 2 ((∃!𝑎𝐴𝑏𝐵 𝜒 ∧ ∃!𝑏𝐵𝑎𝐴 𝜒) → ∃!𝑎𝐴 ∃!𝑏𝐵 𝜒)
42, 3sylbi 217 1 (∃!𝑝 ∈ (𝐴 × 𝐵)𝜑 → ∃!𝑎𝐴 ∃!𝑏𝐵 𝜒)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1541  wrex 3057  ∃!wreu 3345  cop 4581   × cxp 5617
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-sep 5236  ax-nul 5246  ax-pr 5372
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-ral 3049  df-rex 3058  df-rmo 3347  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-ss 3915  df-nul 4283  df-if 4475  df-sn 4576  df-pr 4578  df-op 4582  df-iun 4943  df-opab 5156  df-xp 5625  df-rel 5626
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator