MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  opreu2reu Structured version   Visualization version   GIF version

Theorem opreu2reu 6323
Description: If there is a unique ordered pair fulfilling a wff, then there is a double restricted unique existential qualification fulfilling a corresponding wff. (Contributed by AV, 25-Jun-2023.) (Revised by AV, 2-Jul-2023.)
Hypothesis
Ref Expression
opreu2reurex.a (𝑝 = ⟨𝑎, 𝑏⟩ → (𝜑𝜒))
Assertion
Ref Expression
opreu2reu (∃!𝑝 ∈ (𝐴 × 𝐵)𝜑 → ∃!𝑎𝐴 ∃!𝑏𝐵 𝜒)
Distinct variable groups:   𝐴,𝑎,𝑏,𝑝   𝐵,𝑎,𝑏,𝑝   𝜑,𝑎,𝑏   𝜒,𝑝
Allowed substitution hints:   𝜑(𝑝)   𝜒(𝑎,𝑏)

Proof of Theorem opreu2reu
StepHypRef Expression
1 opreu2reurex.a . . 3 (𝑝 = ⟨𝑎, 𝑏⟩ → (𝜑𝜒))
21opreu2reurex 6322 . 2 (∃!𝑝 ∈ (𝐴 × 𝐵)𝜑 ↔ (∃!𝑎𝐴𝑏𝐵 𝜒 ∧ ∃!𝑏𝐵𝑎𝐴 𝜒))
3 2rexreu 3774 . 2 ((∃!𝑎𝐴𝑏𝐵 𝜒 ∧ ∃!𝑏𝐵𝑎𝐴 𝜒) → ∃!𝑎𝐴 ∃!𝑏𝐵 𝜒)
42, 3sylbi 217 1 (∃!𝑝 ∈ (𝐴 × 𝐵)𝜑 → ∃!𝑎𝐴 ∃!𝑏𝐵 𝜒)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1539  wrex 3070  ∃!wreu 3378  cop 4640   × cxp 5691
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-sep 5305  ax-nul 5315  ax-pr 5441
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3an 1089  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-ral 3062  df-rex 3071  df-rmo 3380  df-reu 3381  df-rab 3437  df-v 3483  df-sbc 3795  df-csb 3912  df-dif 3969  df-un 3971  df-ss 3983  df-nul 4343  df-if 4535  df-sn 4635  df-pr 4637  df-op 4641  df-iun 5001  df-opab 5214  df-xp 5699  df-rel 5700
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator