| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > opreu2reu | Structured version Visualization version GIF version | ||
| Description: If there is a unique ordered pair fulfilling a wff, then there is a double restricted unique existential qualification fulfilling a corresponding wff. (Contributed by AV, 25-Jun-2023.) (Revised by AV, 2-Jul-2023.) |
| Ref | Expression |
|---|---|
| opreu2reurex.a | ⊢ (𝑝 = 〈𝑎, 𝑏〉 → (𝜑 ↔ 𝜒)) |
| Ref | Expression |
|---|---|
| opreu2reu | ⊢ (∃!𝑝 ∈ (𝐴 × 𝐵)𝜑 → ∃!𝑎 ∈ 𝐴 ∃!𝑏 ∈ 𝐵 𝜒) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | opreu2reurex.a | . . 3 ⊢ (𝑝 = 〈𝑎, 𝑏〉 → (𝜑 ↔ 𝜒)) | |
| 2 | 1 | opreu2reurex 6267 | . 2 ⊢ (∃!𝑝 ∈ (𝐴 × 𝐵)𝜑 ↔ (∃!𝑎 ∈ 𝐴 ∃𝑏 ∈ 𝐵 𝜒 ∧ ∃!𝑏 ∈ 𝐵 ∃𝑎 ∈ 𝐴 𝜒)) |
| 3 | 2rexreu 3733 | . 2 ⊢ ((∃!𝑎 ∈ 𝐴 ∃𝑏 ∈ 𝐵 𝜒 ∧ ∃!𝑏 ∈ 𝐵 ∃𝑎 ∈ 𝐴 𝜒) → ∃!𝑎 ∈ 𝐴 ∃!𝑏 ∈ 𝐵 𝜒) | |
| 4 | 2, 3 | sylbi 217 | 1 ⊢ (∃!𝑝 ∈ (𝐴 × 𝐵)𝜑 → ∃!𝑎 ∈ 𝐴 ∃!𝑏 ∈ 𝐵 𝜒) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∃wrex 3053 ∃!wreu 3352 〈cop 4595 × cxp 5636 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pr 5387 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rmo 3354 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-ss 3931 df-nul 4297 df-if 4489 df-sn 4590 df-pr 4592 df-op 4596 df-iun 4957 df-opab 5170 df-xp 5644 df-rel 5645 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |