MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  opreu2reu Structured version   Visualization version   GIF version

Theorem opreu2reu 6213
Description: If there is a unique ordered pair fulfilling a wff, then there is a double restricted unique existential qualification fulfilling a corresponding wff. (Contributed by AV, 25-Jun-2023.) (Revised by AV, 2-Jul-2023.)
Hypothesis
Ref Expression
opreu2reurex.a (𝑝 = ⟨𝑎, 𝑏⟩ → (𝜑𝜒))
Assertion
Ref Expression
opreu2reu (∃!𝑝 ∈ (𝐴 × 𝐵)𝜑 → ∃!𝑎𝐴 ∃!𝑏𝐵 𝜒)
Distinct variable groups:   𝐴,𝑎,𝑏,𝑝   𝐵,𝑎,𝑏,𝑝   𝜑,𝑎,𝑏   𝜒,𝑝
Allowed substitution hints:   𝜑(𝑝)   𝜒(𝑎,𝑏)

Proof of Theorem opreu2reu
StepHypRef Expression
1 opreu2reurex.a . . 3 (𝑝 = ⟨𝑎, 𝑏⟩ → (𝜑𝜒))
21opreu2reurex 6212 . 2 (∃!𝑝 ∈ (𝐴 × 𝐵)𝜑 ↔ (∃!𝑎𝐴𝑏𝐵 𝜒 ∧ ∃!𝑏𝐵𝑎𝐴 𝜒))
3 2rexreu 3702 . 2 ((∃!𝑎𝐴𝑏𝐵 𝜒 ∧ ∃!𝑏𝐵𝑎𝐴 𝜒) → ∃!𝑎𝐴 ∃!𝑏𝐵 𝜒)
42, 3sylbi 216 1 (∃!𝑝 ∈ (𝐴 × 𝐵)𝜑 → ∃!𝑎𝐴 ∃!𝑏𝐵 𝜒)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 397   = wceq 1539  wrex 3070  ∃!wreu 3328  cop 4571   × cxp 5598
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-8 2106  ax-9 2114  ax-10 2135  ax-11 2152  ax-12 2169  ax-ext 2707  ax-sep 5232  ax-nul 5239  ax-pr 5361
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 846  df-3an 1089  df-tru 1542  df-fal 1552  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2886  df-ne 2941  df-ral 3062  df-rex 3071  df-rmo 3331  df-reu 3332  df-rab 3333  df-v 3439  df-sbc 3722  df-csb 3838  df-dif 3895  df-un 3897  df-in 3899  df-ss 3909  df-nul 4263  df-if 4466  df-sn 4566  df-pr 4568  df-op 4572  df-iun 4933  df-opab 5144  df-xp 5606  df-rel 5607
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator