MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  opreu2reu Structured version   Visualization version   GIF version

Theorem opreu2reu 6294
Description: If there is a unique ordered pair fulfilling a wff, then there is a double restricted unique existential qualification fulfilling a corresponding wff. (Contributed by AV, 25-Jun-2023.) (Revised by AV, 2-Jul-2023.)
Hypothesis
Ref Expression
opreu2reurex.a (𝑝 = ⟨𝑎, 𝑏⟩ → (𝜑𝜒))
Assertion
Ref Expression
opreu2reu (∃!𝑝 ∈ (𝐴 × 𝐵)𝜑 → ∃!𝑎𝐴 ∃!𝑏𝐵 𝜒)
Distinct variable groups:   𝐴,𝑎,𝑏,𝑝   𝐵,𝑎,𝑏,𝑝   𝜑,𝑎,𝑏   𝜒,𝑝
Allowed substitution hints:   𝜑(𝑝)   𝜒(𝑎,𝑏)

Proof of Theorem opreu2reu
StepHypRef Expression
1 opreu2reurex.a . . 3 (𝑝 = ⟨𝑎, 𝑏⟩ → (𝜑𝜒))
21opreu2reurex 6293 . 2 (∃!𝑝 ∈ (𝐴 × 𝐵)𝜑 ↔ (∃!𝑎𝐴𝑏𝐵 𝜒 ∧ ∃!𝑏𝐵𝑎𝐴 𝜒))
3 2rexreu 3758 . 2 ((∃!𝑎𝐴𝑏𝐵 𝜒 ∧ ∃!𝑏𝐵𝑎𝐴 𝜒) → ∃!𝑎𝐴 ∃!𝑏𝐵 𝜒)
42, 3sylbi 216 1 (∃!𝑝 ∈ (𝐴 × 𝐵)𝜑 → ∃!𝑎𝐴 ∃!𝑏𝐵 𝜒)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395   = wceq 1540  wrex 3069  ∃!wreu 3373  cop 4634   × cxp 5674
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2702  ax-sep 5299  ax-nul 5306  ax-pr 5427
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2533  df-eu 2562  df-clab 2709  df-cleq 2723  df-clel 2809  df-nfc 2884  df-ne 2940  df-ral 3061  df-rex 3070  df-rmo 3375  df-reu 3376  df-rab 3432  df-v 3475  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-sn 4629  df-pr 4631  df-op 4635  df-iun 4999  df-opab 5211  df-xp 5682  df-rel 5683
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator