MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  trfil2 Structured version   Visualization version   GIF version

Theorem trfil2 22199
Description: Conditions for the trace of a filter 𝐿 to be a filter. (Contributed by FL, 2-Sep-2013.) (Revised by Stefan O'Rear, 2-Aug-2015.)
Assertion
Ref Expression
trfil2 ((𝐿 ∈ (Fil‘𝑌) ∧ 𝐴𝑌) → ((𝐿t 𝐴) ∈ (Fil‘𝐴) ↔ ∀𝑣𝐿 (𝑣𝐴) ≠ ∅))
Distinct variable groups:   𝑣,𝐴   𝑣,𝐿   𝑣,𝑌

Proof of Theorem trfil2
Dummy variables 𝑢 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpr 477 . . . . 5 ((𝐿 ∈ (Fil‘𝑌) ∧ 𝐴𝑌) → 𝐴𝑌)
2 sseqin2 4080 . . . . 5 (𝐴𝑌 ↔ (𝑌𝐴) = 𝐴)
31, 2sylib 210 . . . 4 ((𝐿 ∈ (Fil‘𝑌) ∧ 𝐴𝑌) → (𝑌𝐴) = 𝐴)
4 simpl 475 . . . . 5 ((𝐿 ∈ (Fil‘𝑌) ∧ 𝐴𝑌) → 𝐿 ∈ (Fil‘𝑌))
5 id 22 . . . . . 6 (𝐴𝑌𝐴𝑌)
6 filtop 22167 . . . . . 6 (𝐿 ∈ (Fil‘𝑌) → 𝑌𝐿)
7 ssexg 5083 . . . . . 6 ((𝐴𝑌𝑌𝐿) → 𝐴 ∈ V)
85, 6, 7syl2anr 587 . . . . 5 ((𝐿 ∈ (Fil‘𝑌) ∧ 𝐴𝑌) → 𝐴 ∈ V)
96adantr 473 . . . . 5 ((𝐿 ∈ (Fil‘𝑌) ∧ 𝐴𝑌) → 𝑌𝐿)
10 elrestr 16558 . . . . 5 ((𝐿 ∈ (Fil‘𝑌) ∧ 𝐴 ∈ V ∧ 𝑌𝐿) → (𝑌𝐴) ∈ (𝐿t 𝐴))
114, 8, 9, 10syl3anc 1351 . . . 4 ((𝐿 ∈ (Fil‘𝑌) ∧ 𝐴𝑌) → (𝑌𝐴) ∈ (𝐿t 𝐴))
123, 11eqeltrrd 2868 . . 3 ((𝐿 ∈ (Fil‘𝑌) ∧ 𝐴𝑌) → 𝐴 ∈ (𝐿t 𝐴))
13 elpwi 4432 . . . . 5 (𝑥 ∈ 𝒫 𝐴𝑥𝐴)
14 vex 3419 . . . . . . . . . 10 𝑢 ∈ V
1514inex1 5078 . . . . . . . . 9 (𝑢𝐴) ∈ V
1615a1i 11 . . . . . . . 8 ((((𝐿 ∈ (Fil‘𝑌) ∧ 𝐴𝑌) ∧ 𝑥𝐴) ∧ 𝑢𝐿) → (𝑢𝐴) ∈ V)
17 elrest 16557 . . . . . . . . . 10 ((𝐿 ∈ (Fil‘𝑌) ∧ 𝐴 ∈ V) → (𝑦 ∈ (𝐿t 𝐴) ↔ ∃𝑢𝐿 𝑦 = (𝑢𝐴)))
188, 17syldan 582 . . . . . . . . 9 ((𝐿 ∈ (Fil‘𝑌) ∧ 𝐴𝑌) → (𝑦 ∈ (𝐿t 𝐴) ↔ ∃𝑢𝐿 𝑦 = (𝑢𝐴)))
1918adantr 473 . . . . . . . 8 (((𝐿 ∈ (Fil‘𝑌) ∧ 𝐴𝑌) ∧ 𝑥𝐴) → (𝑦 ∈ (𝐿t 𝐴) ↔ ∃𝑢𝐿 𝑦 = (𝑢𝐴)))
20 simpr 477 . . . . . . . . 9 ((((𝐿 ∈ (Fil‘𝑌) ∧ 𝐴𝑌) ∧ 𝑥𝐴) ∧ 𝑦 = (𝑢𝐴)) → 𝑦 = (𝑢𝐴))
2120sseq1d 3889 . . . . . . . 8 ((((𝐿 ∈ (Fil‘𝑌) ∧ 𝐴𝑌) ∧ 𝑥𝐴) ∧ 𝑦 = (𝑢𝐴)) → (𝑦𝑥 ↔ (𝑢𝐴) ⊆ 𝑥))
2216, 19, 21rexxfr2d 5165 . . . . . . 7 (((𝐿 ∈ (Fil‘𝑌) ∧ 𝐴𝑌) ∧ 𝑥𝐴) → (∃𝑦 ∈ (𝐿t 𝐴)𝑦𝑥 ↔ ∃𝑢𝐿 (𝑢𝐴) ⊆ 𝑥))
23 indir 4140 . . . . . . . . . 10 ((𝑢𝑥) ∩ 𝐴) = ((𝑢𝐴) ∪ (𝑥𝐴))
24 simplr 756 . . . . . . . . . . . . 13 ((((𝐿 ∈ (Fil‘𝑌) ∧ 𝐴𝑌) ∧ 𝑥𝐴) ∧ (𝑢𝐿 ∧ (𝑢𝐴) ⊆ 𝑥)) → 𝑥𝐴)
25 df-ss 3844 . . . . . . . . . . . . 13 (𝑥𝐴 ↔ (𝑥𝐴) = 𝑥)
2624, 25sylib 210 . . . . . . . . . . . 12 ((((𝐿 ∈ (Fil‘𝑌) ∧ 𝐴𝑌) ∧ 𝑥𝐴) ∧ (𝑢𝐿 ∧ (𝑢𝐴) ⊆ 𝑥)) → (𝑥𝐴) = 𝑥)
2726uneq2d 4029 . . . . . . . . . . 11 ((((𝐿 ∈ (Fil‘𝑌) ∧ 𝐴𝑌) ∧ 𝑥𝐴) ∧ (𝑢𝐿 ∧ (𝑢𝐴) ⊆ 𝑥)) → ((𝑢𝐴) ∪ (𝑥𝐴)) = ((𝑢𝐴) ∪ 𝑥))
28 simprr 760 . . . . . . . . . . . 12 ((((𝐿 ∈ (Fil‘𝑌) ∧ 𝐴𝑌) ∧ 𝑥𝐴) ∧ (𝑢𝐿 ∧ (𝑢𝐴) ⊆ 𝑥)) → (𝑢𝐴) ⊆ 𝑥)
29 ssequn1 4045 . . . . . . . . . . . 12 ((𝑢𝐴) ⊆ 𝑥 ↔ ((𝑢𝐴) ∪ 𝑥) = 𝑥)
3028, 29sylib 210 . . . . . . . . . . 11 ((((𝐿 ∈ (Fil‘𝑌) ∧ 𝐴𝑌) ∧ 𝑥𝐴) ∧ (𝑢𝐿 ∧ (𝑢𝐴) ⊆ 𝑥)) → ((𝑢𝐴) ∪ 𝑥) = 𝑥)
3127, 30eqtrd 2815 . . . . . . . . . 10 ((((𝐿 ∈ (Fil‘𝑌) ∧ 𝐴𝑌) ∧ 𝑥𝐴) ∧ (𝑢𝐿 ∧ (𝑢𝐴) ⊆ 𝑥)) → ((𝑢𝐴) ∪ (𝑥𝐴)) = 𝑥)
3223, 31syl5eq 2827 . . . . . . . . 9 ((((𝐿 ∈ (Fil‘𝑌) ∧ 𝐴𝑌) ∧ 𝑥𝐴) ∧ (𝑢𝐿 ∧ (𝑢𝐴) ⊆ 𝑥)) → ((𝑢𝑥) ∩ 𝐴) = 𝑥)
33 simplll 762 . . . . . . . . . 10 ((((𝐿 ∈ (Fil‘𝑌) ∧ 𝐴𝑌) ∧ 𝑥𝐴) ∧ (𝑢𝐿 ∧ (𝑢𝐴) ⊆ 𝑥)) → 𝐿 ∈ (Fil‘𝑌))
34 simpllr 763 . . . . . . . . . . 11 ((((𝐿 ∈ (Fil‘𝑌) ∧ 𝐴𝑌) ∧ 𝑥𝐴) ∧ (𝑢𝐿 ∧ (𝑢𝐴) ⊆ 𝑥)) → 𝐴𝑌)
3533, 34, 8syl2anc 576 . . . . . . . . . 10 ((((𝐿 ∈ (Fil‘𝑌) ∧ 𝐴𝑌) ∧ 𝑥𝐴) ∧ (𝑢𝐿 ∧ (𝑢𝐴) ⊆ 𝑥)) → 𝐴 ∈ V)
36 simprl 758 . . . . . . . . . . 11 ((((𝐿 ∈ (Fil‘𝑌) ∧ 𝐴𝑌) ∧ 𝑥𝐴) ∧ (𝑢𝐿 ∧ (𝑢𝐴) ⊆ 𝑥)) → 𝑢𝐿)
37 filelss 22164 . . . . . . . . . . . . 13 ((𝐿 ∈ (Fil‘𝑌) ∧ 𝑢𝐿) → 𝑢𝑌)
3833, 36, 37syl2anc 576 . . . . . . . . . . . 12 ((((𝐿 ∈ (Fil‘𝑌) ∧ 𝐴𝑌) ∧ 𝑥𝐴) ∧ (𝑢𝐿 ∧ (𝑢𝐴) ⊆ 𝑥)) → 𝑢𝑌)
3924, 34sstrd 3869 . . . . . . . . . . . 12 ((((𝐿 ∈ (Fil‘𝑌) ∧ 𝐴𝑌) ∧ 𝑥𝐴) ∧ (𝑢𝐿 ∧ (𝑢𝐴) ⊆ 𝑥)) → 𝑥𝑌)
4038, 39unssd 4051 . . . . . . . . . . 11 ((((𝐿 ∈ (Fil‘𝑌) ∧ 𝐴𝑌) ∧ 𝑥𝐴) ∧ (𝑢𝐿 ∧ (𝑢𝐴) ⊆ 𝑥)) → (𝑢𝑥) ⊆ 𝑌)
41 ssun1 4038 . . . . . . . . . . . 12 𝑢 ⊆ (𝑢𝑥)
4241a1i 11 . . . . . . . . . . 11 ((((𝐿 ∈ (Fil‘𝑌) ∧ 𝐴𝑌) ∧ 𝑥𝐴) ∧ (𝑢𝐿 ∧ (𝑢𝐴) ⊆ 𝑥)) → 𝑢 ⊆ (𝑢𝑥))
43 filss 22165 . . . . . . . . . . 11 ((𝐿 ∈ (Fil‘𝑌) ∧ (𝑢𝐿 ∧ (𝑢𝑥) ⊆ 𝑌𝑢 ⊆ (𝑢𝑥))) → (𝑢𝑥) ∈ 𝐿)
4433, 36, 40, 42, 43syl13anc 1352 . . . . . . . . . 10 ((((𝐿 ∈ (Fil‘𝑌) ∧ 𝐴𝑌) ∧ 𝑥𝐴) ∧ (𝑢𝐿 ∧ (𝑢𝐴) ⊆ 𝑥)) → (𝑢𝑥) ∈ 𝐿)
45 elrestr 16558 . . . . . . . . . 10 ((𝐿 ∈ (Fil‘𝑌) ∧ 𝐴 ∈ V ∧ (𝑢𝑥) ∈ 𝐿) → ((𝑢𝑥) ∩ 𝐴) ∈ (𝐿t 𝐴))
4633, 35, 44, 45syl3anc 1351 . . . . . . . . 9 ((((𝐿 ∈ (Fil‘𝑌) ∧ 𝐴𝑌) ∧ 𝑥𝐴) ∧ (𝑢𝐿 ∧ (𝑢𝐴) ⊆ 𝑥)) → ((𝑢𝑥) ∩ 𝐴) ∈ (𝐿t 𝐴))
4732, 46eqeltrrd 2868 . . . . . . . 8 ((((𝐿 ∈ (Fil‘𝑌) ∧ 𝐴𝑌) ∧ 𝑥𝐴) ∧ (𝑢𝐿 ∧ (𝑢𝐴) ⊆ 𝑥)) → 𝑥 ∈ (𝐿t 𝐴))
4847rexlimdvaa 3231 . . . . . . 7 (((𝐿 ∈ (Fil‘𝑌) ∧ 𝐴𝑌) ∧ 𝑥𝐴) → (∃𝑢𝐿 (𝑢𝐴) ⊆ 𝑥𝑥 ∈ (𝐿t 𝐴)))
4922, 48sylbid 232 . . . . . 6 (((𝐿 ∈ (Fil‘𝑌) ∧ 𝐴𝑌) ∧ 𝑥𝐴) → (∃𝑦 ∈ (𝐿t 𝐴)𝑦𝑥𝑥 ∈ (𝐿t 𝐴)))
5049ex 405 . . . . 5 ((𝐿 ∈ (Fil‘𝑌) ∧ 𝐴𝑌) → (𝑥𝐴 → (∃𝑦 ∈ (𝐿t 𝐴)𝑦𝑥𝑥 ∈ (𝐿t 𝐴))))
5113, 50syl5 34 . . . 4 ((𝐿 ∈ (Fil‘𝑌) ∧ 𝐴𝑌) → (𝑥 ∈ 𝒫 𝐴 → (∃𝑦 ∈ (𝐿t 𝐴)𝑦𝑥𝑥 ∈ (𝐿t 𝐴))))
5251ralrimiv 3132 . . 3 ((𝐿 ∈ (Fil‘𝑌) ∧ 𝐴𝑌) → ∀𝑥 ∈ 𝒫 𝐴(∃𝑦 ∈ (𝐿t 𝐴)𝑦𝑥𝑥 ∈ (𝐿t 𝐴)))
53 simpll 754 . . . . . 6 (((𝐿 ∈ (Fil‘𝑌) ∧ 𝐴𝑌) ∧ (𝑧𝐿𝑢𝐿)) → 𝐿 ∈ (Fil‘𝑌))
548adantr 473 . . . . . 6 (((𝐿 ∈ (Fil‘𝑌) ∧ 𝐴𝑌) ∧ (𝑧𝐿𝑢𝐿)) → 𝐴 ∈ V)
55 filin 22166 . . . . . . . 8 ((𝐿 ∈ (Fil‘𝑌) ∧ 𝑧𝐿𝑢𝐿) → (𝑧𝑢) ∈ 𝐿)
56553expb 1100 . . . . . . 7 ((𝐿 ∈ (Fil‘𝑌) ∧ (𝑧𝐿𝑢𝐿)) → (𝑧𝑢) ∈ 𝐿)
5756adantlr 702 . . . . . 6 (((𝐿 ∈ (Fil‘𝑌) ∧ 𝐴𝑌) ∧ (𝑧𝐿𝑢𝐿)) → (𝑧𝑢) ∈ 𝐿)
58 elrestr 16558 . . . . . 6 ((𝐿 ∈ (Fil‘𝑌) ∧ 𝐴 ∈ V ∧ (𝑧𝑢) ∈ 𝐿) → ((𝑧𝑢) ∩ 𝐴) ∈ (𝐿t 𝐴))
5953, 54, 57, 58syl3anc 1351 . . . . 5 (((𝐿 ∈ (Fil‘𝑌) ∧ 𝐴𝑌) ∧ (𝑧𝐿𝑢𝐿)) → ((𝑧𝑢) ∩ 𝐴) ∈ (𝐿t 𝐴))
6059ralrimivva 3142 . . . 4 ((𝐿 ∈ (Fil‘𝑌) ∧ 𝐴𝑌) → ∀𝑧𝐿𝑢𝐿 ((𝑧𝑢) ∩ 𝐴) ∈ (𝐿t 𝐴))
61 vex 3419 . . . . . . 7 𝑧 ∈ V
6261inex1 5078 . . . . . 6 (𝑧𝐴) ∈ V
6362a1i 11 . . . . 5 (((𝐿 ∈ (Fil‘𝑌) ∧ 𝐴𝑌) ∧ 𝑧𝐿) → (𝑧𝐴) ∈ V)
64 elrest 16557 . . . . . 6 ((𝐿 ∈ (Fil‘𝑌) ∧ 𝐴 ∈ V) → (𝑥 ∈ (𝐿t 𝐴) ↔ ∃𝑧𝐿 𝑥 = (𝑧𝐴)))
658, 64syldan 582 . . . . 5 ((𝐿 ∈ (Fil‘𝑌) ∧ 𝐴𝑌) → (𝑥 ∈ (𝐿t 𝐴) ↔ ∃𝑧𝐿 𝑥 = (𝑧𝐴)))
6615a1i 11 . . . . . 6 ((((𝐿 ∈ (Fil‘𝑌) ∧ 𝐴𝑌) ∧ 𝑥 = (𝑧𝐴)) ∧ 𝑢𝐿) → (𝑢𝐴) ∈ V)
6718adantr 473 . . . . . 6 (((𝐿 ∈ (Fil‘𝑌) ∧ 𝐴𝑌) ∧ 𝑥 = (𝑧𝐴)) → (𝑦 ∈ (𝐿t 𝐴) ↔ ∃𝑢𝐿 𝑦 = (𝑢𝐴)))
68 ineq12 4072 . . . . . . . . 9 ((𝑥 = (𝑧𝐴) ∧ 𝑦 = (𝑢𝐴)) → (𝑥𝑦) = ((𝑧𝐴) ∩ (𝑢𝐴)))
69 inindir 4092 . . . . . . . . 9 ((𝑧𝑢) ∩ 𝐴) = ((𝑧𝐴) ∩ (𝑢𝐴))
7068, 69syl6eqr 2833 . . . . . . . 8 ((𝑥 = (𝑧𝐴) ∧ 𝑦 = (𝑢𝐴)) → (𝑥𝑦) = ((𝑧𝑢) ∩ 𝐴))
7170adantll 701 . . . . . . 7 ((((𝐿 ∈ (Fil‘𝑌) ∧ 𝐴𝑌) ∧ 𝑥 = (𝑧𝐴)) ∧ 𝑦 = (𝑢𝐴)) → (𝑥𝑦) = ((𝑧𝑢) ∩ 𝐴))
7271eleq1d 2851 . . . . . 6 ((((𝐿 ∈ (Fil‘𝑌) ∧ 𝐴𝑌) ∧ 𝑥 = (𝑧𝐴)) ∧ 𝑦 = (𝑢𝐴)) → ((𝑥𝑦) ∈ (𝐿t 𝐴) ↔ ((𝑧𝑢) ∩ 𝐴) ∈ (𝐿t 𝐴)))
7366, 67, 72ralxfr2d 5164 . . . . 5 (((𝐿 ∈ (Fil‘𝑌) ∧ 𝐴𝑌) ∧ 𝑥 = (𝑧𝐴)) → (∀𝑦 ∈ (𝐿t 𝐴)(𝑥𝑦) ∈ (𝐿t 𝐴) ↔ ∀𝑢𝐿 ((𝑧𝑢) ∩ 𝐴) ∈ (𝐿t 𝐴)))
7463, 65, 73ralxfr2d 5164 . . . 4 ((𝐿 ∈ (Fil‘𝑌) ∧ 𝐴𝑌) → (∀𝑥 ∈ (𝐿t 𝐴)∀𝑦 ∈ (𝐿t 𝐴)(𝑥𝑦) ∈ (𝐿t 𝐴) ↔ ∀𝑧𝐿𝑢𝐿 ((𝑧𝑢) ∩ 𝐴) ∈ (𝐿t 𝐴)))
7560, 74mpbird 249 . . 3 ((𝐿 ∈ (Fil‘𝑌) ∧ 𝐴𝑌) → ∀𝑥 ∈ (𝐿t 𝐴)∀𝑦 ∈ (𝐿t 𝐴)(𝑥𝑦) ∈ (𝐿t 𝐴))
76 isfil2 22168 . . . . . 6 ((𝐿t 𝐴) ∈ (Fil‘𝐴) ↔ (((𝐿t 𝐴) ⊆ 𝒫 𝐴 ∧ ¬ ∅ ∈ (𝐿t 𝐴) ∧ 𝐴 ∈ (𝐿t 𝐴)) ∧ ∀𝑥 ∈ 𝒫 𝐴(∃𝑦 ∈ (𝐿t 𝐴)𝑦𝑥𝑥 ∈ (𝐿t 𝐴)) ∧ ∀𝑥 ∈ (𝐿t 𝐴)∀𝑦 ∈ (𝐿t 𝐴)(𝑥𝑦) ∈ (𝐿t 𝐴)))
77 restsspw 16561 . . . . . . . 8 (𝐿t 𝐴) ⊆ 𝒫 𝐴
78 3anass 1076 . . . . . . . 8 (((𝐿t 𝐴) ⊆ 𝒫 𝐴 ∧ ¬ ∅ ∈ (𝐿t 𝐴) ∧ 𝐴 ∈ (𝐿t 𝐴)) ↔ ((𝐿t 𝐴) ⊆ 𝒫 𝐴 ∧ (¬ ∅ ∈ (𝐿t 𝐴) ∧ 𝐴 ∈ (𝐿t 𝐴))))
7977, 78mpbiran 696 . . . . . . 7 (((𝐿t 𝐴) ⊆ 𝒫 𝐴 ∧ ¬ ∅ ∈ (𝐿t 𝐴) ∧ 𝐴 ∈ (𝐿t 𝐴)) ↔ (¬ ∅ ∈ (𝐿t 𝐴) ∧ 𝐴 ∈ (𝐿t 𝐴)))
80793anbi1i 1137 . . . . . 6 ((((𝐿t 𝐴) ⊆ 𝒫 𝐴 ∧ ¬ ∅ ∈ (𝐿t 𝐴) ∧ 𝐴 ∈ (𝐿t 𝐴)) ∧ ∀𝑥 ∈ 𝒫 𝐴(∃𝑦 ∈ (𝐿t 𝐴)𝑦𝑥𝑥 ∈ (𝐿t 𝐴)) ∧ ∀𝑥 ∈ (𝐿t 𝐴)∀𝑦 ∈ (𝐿t 𝐴)(𝑥𝑦) ∈ (𝐿t 𝐴)) ↔ ((¬ ∅ ∈ (𝐿t 𝐴) ∧ 𝐴 ∈ (𝐿t 𝐴)) ∧ ∀𝑥 ∈ 𝒫 𝐴(∃𝑦 ∈ (𝐿t 𝐴)𝑦𝑥𝑥 ∈ (𝐿t 𝐴)) ∧ ∀𝑥 ∈ (𝐿t 𝐴)∀𝑦 ∈ (𝐿t 𝐴)(𝑥𝑦) ∈ (𝐿t 𝐴)))
81 3anass 1076 . . . . . 6 (((¬ ∅ ∈ (𝐿t 𝐴) ∧ 𝐴 ∈ (𝐿t 𝐴)) ∧ ∀𝑥 ∈ 𝒫 𝐴(∃𝑦 ∈ (𝐿t 𝐴)𝑦𝑥𝑥 ∈ (𝐿t 𝐴)) ∧ ∀𝑥 ∈ (𝐿t 𝐴)∀𝑦 ∈ (𝐿t 𝐴)(𝑥𝑦) ∈ (𝐿t 𝐴)) ↔ ((¬ ∅ ∈ (𝐿t 𝐴) ∧ 𝐴 ∈ (𝐿t 𝐴)) ∧ (∀𝑥 ∈ 𝒫 𝐴(∃𝑦 ∈ (𝐿t 𝐴)𝑦𝑥𝑥 ∈ (𝐿t 𝐴)) ∧ ∀𝑥 ∈ (𝐿t 𝐴)∀𝑦 ∈ (𝐿t 𝐴)(𝑥𝑦) ∈ (𝐿t 𝐴))))
8276, 80, 813bitri 289 . . . . 5 ((𝐿t 𝐴) ∈ (Fil‘𝐴) ↔ ((¬ ∅ ∈ (𝐿t 𝐴) ∧ 𝐴 ∈ (𝐿t 𝐴)) ∧ (∀𝑥 ∈ 𝒫 𝐴(∃𝑦 ∈ (𝐿t 𝐴)𝑦𝑥𝑥 ∈ (𝐿t 𝐴)) ∧ ∀𝑥 ∈ (𝐿t 𝐴)∀𝑦 ∈ (𝐿t 𝐴)(𝑥𝑦) ∈ (𝐿t 𝐴))))
83 anass 461 . . . . 5 (((¬ ∅ ∈ (𝐿t 𝐴) ∧ 𝐴 ∈ (𝐿t 𝐴)) ∧ (∀𝑥 ∈ 𝒫 𝐴(∃𝑦 ∈ (𝐿t 𝐴)𝑦𝑥𝑥 ∈ (𝐿t 𝐴)) ∧ ∀𝑥 ∈ (𝐿t 𝐴)∀𝑦 ∈ (𝐿t 𝐴)(𝑥𝑦) ∈ (𝐿t 𝐴))) ↔ (¬ ∅ ∈ (𝐿t 𝐴) ∧ (𝐴 ∈ (𝐿t 𝐴) ∧ (∀𝑥 ∈ 𝒫 𝐴(∃𝑦 ∈ (𝐿t 𝐴)𝑦𝑥𝑥 ∈ (𝐿t 𝐴)) ∧ ∀𝑥 ∈ (𝐿t 𝐴)∀𝑦 ∈ (𝐿t 𝐴)(𝑥𝑦) ∈ (𝐿t 𝐴)))))
84 ancom 453 . . . . 5 ((¬ ∅ ∈ (𝐿t 𝐴) ∧ (𝐴 ∈ (𝐿t 𝐴) ∧ (∀𝑥 ∈ 𝒫 𝐴(∃𝑦 ∈ (𝐿t 𝐴)𝑦𝑥𝑥 ∈ (𝐿t 𝐴)) ∧ ∀𝑥 ∈ (𝐿t 𝐴)∀𝑦 ∈ (𝐿t 𝐴)(𝑥𝑦) ∈ (𝐿t 𝐴)))) ↔ ((𝐴 ∈ (𝐿t 𝐴) ∧ (∀𝑥 ∈ 𝒫 𝐴(∃𝑦 ∈ (𝐿t 𝐴)𝑦𝑥𝑥 ∈ (𝐿t 𝐴)) ∧ ∀𝑥 ∈ (𝐿t 𝐴)∀𝑦 ∈ (𝐿t 𝐴)(𝑥𝑦) ∈ (𝐿t 𝐴))) ∧ ¬ ∅ ∈ (𝐿t 𝐴)))
8582, 83, 843bitri 289 . . . 4 ((𝐿t 𝐴) ∈ (Fil‘𝐴) ↔ ((𝐴 ∈ (𝐿t 𝐴) ∧ (∀𝑥 ∈ 𝒫 𝐴(∃𝑦 ∈ (𝐿t 𝐴)𝑦𝑥𝑥 ∈ (𝐿t 𝐴)) ∧ ∀𝑥 ∈ (𝐿t 𝐴)∀𝑦 ∈ (𝐿t 𝐴)(𝑥𝑦) ∈ (𝐿t 𝐴))) ∧ ¬ ∅ ∈ (𝐿t 𝐴)))
8685baib 528 . . 3 ((𝐴 ∈ (𝐿t 𝐴) ∧ (∀𝑥 ∈ 𝒫 𝐴(∃𝑦 ∈ (𝐿t 𝐴)𝑦𝑥𝑥 ∈ (𝐿t 𝐴)) ∧ ∀𝑥 ∈ (𝐿t 𝐴)∀𝑦 ∈ (𝐿t 𝐴)(𝑥𝑦) ∈ (𝐿t 𝐴))) → ((𝐿t 𝐴) ∈ (Fil‘𝐴) ↔ ¬ ∅ ∈ (𝐿t 𝐴)))
8712, 52, 75, 86syl12anc 824 . 2 ((𝐿 ∈ (Fil‘𝑌) ∧ 𝐴𝑌) → ((𝐿t 𝐴) ∈ (Fil‘𝐴) ↔ ¬ ∅ ∈ (𝐿t 𝐴)))
88 nesym 3024 . . . 4 ((𝑣𝐴) ≠ ∅ ↔ ¬ ∅ = (𝑣𝐴))
8988ralbii 3116 . . 3 (∀𝑣𝐿 (𝑣𝐴) ≠ ∅ ↔ ∀𝑣𝐿 ¬ ∅ = (𝑣𝐴))
90 elrest 16557 . . . . . 6 ((𝐿 ∈ (Fil‘𝑌) ∧ 𝐴 ∈ V) → (∅ ∈ (𝐿t 𝐴) ↔ ∃𝑣𝐿 ∅ = (𝑣𝐴)))
918, 90syldan 582 . . . . 5 ((𝐿 ∈ (Fil‘𝑌) ∧ 𝐴𝑌) → (∅ ∈ (𝐿t 𝐴) ↔ ∃𝑣𝐿 ∅ = (𝑣𝐴)))
92 dfrex2 3187 . . . . 5 (∃𝑣𝐿 ∅ = (𝑣𝐴) ↔ ¬ ∀𝑣𝐿 ¬ ∅ = (𝑣𝐴))
9391, 92syl6bb 279 . . . 4 ((𝐿 ∈ (Fil‘𝑌) ∧ 𝐴𝑌) → (∅ ∈ (𝐿t 𝐴) ↔ ¬ ∀𝑣𝐿 ¬ ∅ = (𝑣𝐴)))
9493con2bid 347 . . 3 ((𝐿 ∈ (Fil‘𝑌) ∧ 𝐴𝑌) → (∀𝑣𝐿 ¬ ∅ = (𝑣𝐴) ↔ ¬ ∅ ∈ (𝐿t 𝐴)))
9589, 94syl5bb 275 . 2 ((𝐿 ∈ (Fil‘𝑌) ∧ 𝐴𝑌) → (∀𝑣𝐿 (𝑣𝐴) ≠ ∅ ↔ ¬ ∅ ∈ (𝐿t 𝐴)))
9687, 95bitr4d 274 1 ((𝐿 ∈ (Fil‘𝑌) ∧ 𝐴𝑌) → ((𝐿t 𝐴) ∈ (Fil‘𝐴) ↔ ∀𝑣𝐿 (𝑣𝐴) ≠ ∅))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 198  wa 387  w3a 1068   = wceq 1507  wcel 2050  wne 2968  wral 3089  wrex 3090  Vcvv 3416  cun 3828  cin 3829  wss 3830  c0 4179  𝒫 cpw 4422  cfv 6188  (class class class)co 6976  t crest 16550  Filcfil 22157
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1758  ax-4 1772  ax-5 1869  ax-6 1928  ax-7 1965  ax-8 2052  ax-9 2059  ax-10 2079  ax-11 2093  ax-12 2106  ax-13 2301  ax-ext 2751  ax-rep 5049  ax-sep 5060  ax-nul 5067  ax-pow 5119  ax-pr 5186  ax-un 7279
This theorem depends on definitions:  df-bi 199  df-an 388  df-or 834  df-3an 1070  df-tru 1510  df-ex 1743  df-nf 1747  df-sb 2016  df-mo 2547  df-eu 2584  df-clab 2760  df-cleq 2772  df-clel 2847  df-nfc 2919  df-ne 2969  df-nel 3075  df-ral 3094  df-rex 3095  df-reu 3096  df-rab 3098  df-v 3418  df-sbc 3683  df-csb 3788  df-dif 3833  df-un 3835  df-in 3837  df-ss 3844  df-nul 4180  df-if 4351  df-pw 4424  df-sn 4442  df-pr 4444  df-op 4448  df-uni 4713  df-iun 4794  df-br 4930  df-opab 4992  df-mpt 5009  df-id 5312  df-xp 5413  df-rel 5414  df-cnv 5415  df-co 5416  df-dm 5417  df-rn 5418  df-res 5419  df-ima 5420  df-iota 6152  df-fun 6190  df-fn 6191  df-f 6192  df-f1 6193  df-fo 6194  df-f1o 6195  df-fv 6196  df-ov 6979  df-oprab 6980  df-mpo 6981  df-1st 7501  df-2nd 7502  df-rest 16552  df-fbas 20244  df-fil 22158
This theorem is referenced by:  trfil3  22200  trnei  22204
  Copyright terms: Public domain W3C validator