MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  bitsmod Structured version   Visualization version   GIF version

Theorem bitsmod 15775
Description: Truncating the bit sequence after some 𝑀 is equivalent to reducing the argument mod 2↑𝑀. (Contributed by Mario Carneiro, 6-Sep-2016.)
Assertion
Ref Expression
bitsmod ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) → (bits‘(𝑁 mod (2↑𝑀))) = ((bits‘𝑁) ∩ (0..^𝑀)))

Proof of Theorem bitsmod
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 simpl 486 . . . . . . . 8 ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) → 𝑁 ∈ ℤ)
2 2nn 11698 . . . . . . . . . 10 2 ∈ ℕ
32a1i 11 . . . . . . . . 9 ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) → 2 ∈ ℕ)
4 simpr 488 . . . . . . . . 9 ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) → 𝑀 ∈ ℕ0)
53, 4nnexpcld 13602 . . . . . . . 8 ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) → (2↑𝑀) ∈ ℕ)
61, 5zmodcld 13255 . . . . . . 7 ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) → (𝑁 mod (2↑𝑀)) ∈ ℕ0)
76nn0zd 12073 . . . . . 6 ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) → (𝑁 mod (2↑𝑀)) ∈ ℤ)
87biantrurd 536 . . . . 5 ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) → ((𝑥 ∈ ℕ0 ∧ ¬ 2 ∥ (⌊‘((𝑁 mod (2↑𝑀)) / (2↑𝑥)))) ↔ ((𝑁 mod (2↑𝑀)) ∈ ℤ ∧ (𝑥 ∈ ℕ0 ∧ ¬ 2 ∥ (⌊‘((𝑁 mod (2↑𝑀)) / (2↑𝑥)))))))
91ad2antrr 725 . . . . . . . . . . 11 ((((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) ∧ 𝑥 ∈ ℕ0) ∧ 𝑥 < 𝑀) → 𝑁 ∈ ℤ)
10 simplr 768 . . . . . . . . . . 11 ((((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) ∧ 𝑥 ∈ ℕ0) ∧ 𝑥 < 𝑀) → 𝑥 ∈ ℕ0)
11 bitsval2 15764 . . . . . . . . . . 11 ((𝑁 ∈ ℤ ∧ 𝑥 ∈ ℕ0) → (𝑥 ∈ (bits‘𝑁) ↔ ¬ 2 ∥ (⌊‘(𝑁 / (2↑𝑥)))))
129, 10, 11syl2anc 587 . . . . . . . . . 10 ((((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) ∧ 𝑥 ∈ ℕ0) ∧ 𝑥 < 𝑀) → (𝑥 ∈ (bits‘𝑁) ↔ ¬ 2 ∥ (⌊‘(𝑁 / (2↑𝑥)))))
13 simpr 488 . . . . . . . . . . 11 ((((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) ∧ 𝑥 ∈ ℕ0) ∧ 𝑥 < 𝑀) → 𝑥 < 𝑀)
1413biantrud 535 . . . . . . . . . 10 ((((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) ∧ 𝑥 ∈ ℕ0) ∧ 𝑥 < 𝑀) → (𝑥 ∈ (bits‘𝑁) ↔ (𝑥 ∈ (bits‘𝑁) ∧ 𝑥 < 𝑀)))
15 2z 12002 . . . . . . . . . . . . 13 2 ∈ ℤ
1615a1i 11 . . . . . . . . . . . 12 ((((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) ∧ 𝑥 ∈ ℕ0) ∧ 𝑥 < 𝑀) → 2 ∈ ℤ)
179zred 12075 . . . . . . . . . . . . . 14 ((((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) ∧ 𝑥 ∈ ℕ0) ∧ 𝑥 < 𝑀) → 𝑁 ∈ ℝ)
182a1i 11 . . . . . . . . . . . . . . 15 ((((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) ∧ 𝑥 ∈ ℕ0) ∧ 𝑥 < 𝑀) → 2 ∈ ℕ)
1918, 10nnexpcld 13602 . . . . . . . . . . . . . 14 ((((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) ∧ 𝑥 ∈ ℕ0) ∧ 𝑥 < 𝑀) → (2↑𝑥) ∈ ℕ)
2017, 19nndivred 11679 . . . . . . . . . . . . 13 ((((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) ∧ 𝑥 ∈ ℕ0) ∧ 𝑥 < 𝑀) → (𝑁 / (2↑𝑥)) ∈ ℝ)
2120flcld 13163 . . . . . . . . . . . 12 ((((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) ∧ 𝑥 ∈ ℕ0) ∧ 𝑥 < 𝑀) → (⌊‘(𝑁 / (2↑𝑥))) ∈ ℤ)
227ad2antrr 725 . . . . . . . . . . . . . . 15 ((((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) ∧ 𝑥 ∈ ℕ0) ∧ 𝑥 < 𝑀) → (𝑁 mod (2↑𝑀)) ∈ ℤ)
2322zred 12075 . . . . . . . . . . . . . 14 ((((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) ∧ 𝑥 ∈ ℕ0) ∧ 𝑥 < 𝑀) → (𝑁 mod (2↑𝑀)) ∈ ℝ)
2423, 19nndivred 11679 . . . . . . . . . . . . 13 ((((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) ∧ 𝑥 ∈ ℕ0) ∧ 𝑥 < 𝑀) → ((𝑁 mod (2↑𝑀)) / (2↑𝑥)) ∈ ℝ)
2524flcld 13163 . . . . . . . . . . . 12 ((((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) ∧ 𝑥 ∈ ℕ0) ∧ 𝑥 < 𝑀) → (⌊‘((𝑁 mod (2↑𝑀)) / (2↑𝑥))) ∈ ℤ)
26 2cnd 11703 . . . . . . . . . . . . . . . . . 18 ((((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) ∧ 𝑥 ∈ ℕ0) ∧ 𝑥 < 𝑀) → 2 ∈ ℂ)
2726, 10expp1d 13507 . . . . . . . . . . . . . . . . 17 ((((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) ∧ 𝑥 ∈ ℕ0) ∧ 𝑥 < 𝑀) → (2↑(𝑥 + 1)) = ((2↑𝑥) · 2))
28 1nn0 11901 . . . . . . . . . . . . . . . . . . . 20 1 ∈ ℕ0
2928a1i 11 . . . . . . . . . . . . . . . . . . 19 ((((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) ∧ 𝑥 ∈ ℕ0) ∧ 𝑥 < 𝑀) → 1 ∈ ℕ0)
3010, 29nn0addcld 11947 . . . . . . . . . . . . . . . . . 18 ((((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) ∧ 𝑥 ∈ ℕ0) ∧ 𝑥 < 𝑀) → (𝑥 + 1) ∈ ℕ0)
3130nn0zd 12073 . . . . . . . . . . . . . . . . . . 19 ((((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) ∧ 𝑥 ∈ ℕ0) ∧ 𝑥 < 𝑀) → (𝑥 + 1) ∈ ℤ)
32 simplr 768 . . . . . . . . . . . . . . . . . . . . 21 (((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) ∧ 𝑥 ∈ ℕ0) → 𝑀 ∈ ℕ0)
3332adantr 484 . . . . . . . . . . . . . . . . . . . 20 ((((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) ∧ 𝑥 ∈ ℕ0) ∧ 𝑥 < 𝑀) → 𝑀 ∈ ℕ0)
3433nn0zd 12073 . . . . . . . . . . . . . . . . . . 19 ((((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) ∧ 𝑥 ∈ ℕ0) ∧ 𝑥 < 𝑀) → 𝑀 ∈ ℤ)
35 nn0ltp1le 12028 . . . . . . . . . . . . . . . . . . . . 21 ((𝑥 ∈ ℕ0𝑀 ∈ ℕ0) → (𝑥 < 𝑀 ↔ (𝑥 + 1) ≤ 𝑀))
3610, 33, 35syl2anc 587 . . . . . . . . . . . . . . . . . . . 20 ((((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) ∧ 𝑥 ∈ ℕ0) ∧ 𝑥 < 𝑀) → (𝑥 < 𝑀 ↔ (𝑥 + 1) ≤ 𝑀))
3713, 36mpbid 235 . . . . . . . . . . . . . . . . . . 19 ((((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) ∧ 𝑥 ∈ ℕ0) ∧ 𝑥 < 𝑀) → (𝑥 + 1) ≤ 𝑀)
38 eluz2 12237 . . . . . . . . . . . . . . . . . . 19 (𝑀 ∈ (ℤ‘(𝑥 + 1)) ↔ ((𝑥 + 1) ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ (𝑥 + 1) ≤ 𝑀))
3931, 34, 37, 38syl3anbrc 1340 . . . . . . . . . . . . . . . . . 18 ((((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) ∧ 𝑥 ∈ ℕ0) ∧ 𝑥 < 𝑀) → 𝑀 ∈ (ℤ‘(𝑥 + 1)))
40 dvdsexp 15669 . . . . . . . . . . . . . . . . . 18 ((2 ∈ ℤ ∧ (𝑥 + 1) ∈ ℕ0𝑀 ∈ (ℤ‘(𝑥 + 1))) → (2↑(𝑥 + 1)) ∥ (2↑𝑀))
4116, 30, 39, 40syl3anc 1368 . . . . . . . . . . . . . . . . 17 ((((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) ∧ 𝑥 ∈ ℕ0) ∧ 𝑥 < 𝑀) → (2↑(𝑥 + 1)) ∥ (2↑𝑀))
4227, 41eqbrtrrd 5054 . . . . . . . . . . . . . . . 16 ((((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) ∧ 𝑥 ∈ ℕ0) ∧ 𝑥 < 𝑀) → ((2↑𝑥) · 2) ∥ (2↑𝑀))
435ad2antrr 725 . . . . . . . . . . . . . . . . . . 19 ((((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) ∧ 𝑥 ∈ ℕ0) ∧ 𝑥 < 𝑀) → (2↑𝑀) ∈ ℕ)
4443nnrpd 12417 . . . . . . . . . . . . . . . . . 18 ((((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) ∧ 𝑥 ∈ ℕ0) ∧ 𝑥 < 𝑀) → (2↑𝑀) ∈ ℝ+)
45 moddifz 13246 . . . . . . . . . . . . . . . . . 18 ((𝑁 ∈ ℝ ∧ (2↑𝑀) ∈ ℝ+) → ((𝑁 − (𝑁 mod (2↑𝑀))) / (2↑𝑀)) ∈ ℤ)
4617, 44, 45syl2anc 587 . . . . . . . . . . . . . . . . 17 ((((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) ∧ 𝑥 ∈ ℕ0) ∧ 𝑥 < 𝑀) → ((𝑁 − (𝑁 mod (2↑𝑀))) / (2↑𝑀)) ∈ ℤ)
4743nnzd 12074 . . . . . . . . . . . . . . . . . 18 ((((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) ∧ 𝑥 ∈ ℕ0) ∧ 𝑥 < 𝑀) → (2↑𝑀) ∈ ℤ)
48 2ne0 11729 . . . . . . . . . . . . . . . . . . . 20 2 ≠ 0
4948a1i 11 . . . . . . . . . . . . . . . . . . 19 ((((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) ∧ 𝑥 ∈ ℕ0) ∧ 𝑥 < 𝑀) → 2 ≠ 0)
5026, 49, 34expne0d 13512 . . . . . . . . . . . . . . . . . 18 ((((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) ∧ 𝑥 ∈ ℕ0) ∧ 𝑥 < 𝑀) → (2↑𝑀) ≠ 0)
519, 22zsubcld 12080 . . . . . . . . . . . . . . . . . 18 ((((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) ∧ 𝑥 ∈ ℕ0) ∧ 𝑥 < 𝑀) → (𝑁 − (𝑁 mod (2↑𝑀))) ∈ ℤ)
52 dvdsval2 15602 . . . . . . . . . . . . . . . . . 18 (((2↑𝑀) ∈ ℤ ∧ (2↑𝑀) ≠ 0 ∧ (𝑁 − (𝑁 mod (2↑𝑀))) ∈ ℤ) → ((2↑𝑀) ∥ (𝑁 − (𝑁 mod (2↑𝑀))) ↔ ((𝑁 − (𝑁 mod (2↑𝑀))) / (2↑𝑀)) ∈ ℤ))
5347, 50, 51, 52syl3anc 1368 . . . . . . . . . . . . . . . . 17 ((((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) ∧ 𝑥 ∈ ℕ0) ∧ 𝑥 < 𝑀) → ((2↑𝑀) ∥ (𝑁 − (𝑁 mod (2↑𝑀))) ↔ ((𝑁 − (𝑁 mod (2↑𝑀))) / (2↑𝑀)) ∈ ℤ))
5446, 53mpbird 260 . . . . . . . . . . . . . . . 16 ((((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) ∧ 𝑥 ∈ ℕ0) ∧ 𝑥 < 𝑀) → (2↑𝑀) ∥ (𝑁 − (𝑁 mod (2↑𝑀))))
5519nnzd 12074 . . . . . . . . . . . . . . . . . 18 ((((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) ∧ 𝑥 ∈ ℕ0) ∧ 𝑥 < 𝑀) → (2↑𝑥) ∈ ℤ)
5655, 16zmulcld 12081 . . . . . . . . . . . . . . . . 17 ((((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) ∧ 𝑥 ∈ ℕ0) ∧ 𝑥 < 𝑀) → ((2↑𝑥) · 2) ∈ ℤ)
57 dvdstr 15638 . . . . . . . . . . . . . . . . 17 ((((2↑𝑥) · 2) ∈ ℤ ∧ (2↑𝑀) ∈ ℤ ∧ (𝑁 − (𝑁 mod (2↑𝑀))) ∈ ℤ) → ((((2↑𝑥) · 2) ∥ (2↑𝑀) ∧ (2↑𝑀) ∥ (𝑁 − (𝑁 mod (2↑𝑀)))) → ((2↑𝑥) · 2) ∥ (𝑁 − (𝑁 mod (2↑𝑀)))))
5856, 47, 51, 57syl3anc 1368 . . . . . . . . . . . . . . . 16 ((((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) ∧ 𝑥 ∈ ℕ0) ∧ 𝑥 < 𝑀) → ((((2↑𝑥) · 2) ∥ (2↑𝑀) ∧ (2↑𝑀) ∥ (𝑁 − (𝑁 mod (2↑𝑀)))) → ((2↑𝑥) · 2) ∥ (𝑁 − (𝑁 mod (2↑𝑀)))))
5942, 54, 58mp2and 698 . . . . . . . . . . . . . . 15 ((((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) ∧ 𝑥 ∈ ℕ0) ∧ 𝑥 < 𝑀) → ((2↑𝑥) · 2) ∥ (𝑁 − (𝑁 mod (2↑𝑀))))
6051zcnd 12076 . . . . . . . . . . . . . . . 16 ((((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) ∧ 𝑥 ∈ ℕ0) ∧ 𝑥 < 𝑀) → (𝑁 − (𝑁 mod (2↑𝑀))) ∈ ℂ)
6119nncnd 11641 . . . . . . . . . . . . . . . 16 ((((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) ∧ 𝑥 ∈ ℕ0) ∧ 𝑥 < 𝑀) → (2↑𝑥) ∈ ℂ)
6210nn0zd 12073 . . . . . . . . . . . . . . . . 17 ((((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) ∧ 𝑥 ∈ ℕ0) ∧ 𝑥 < 𝑀) → 𝑥 ∈ ℤ)
6326, 49, 62expne0d 13512 . . . . . . . . . . . . . . . 16 ((((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) ∧ 𝑥 ∈ ℕ0) ∧ 𝑥 < 𝑀) → (2↑𝑥) ≠ 0)
6460, 61, 63divcan2d 11407 . . . . . . . . . . . . . . 15 ((((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) ∧ 𝑥 ∈ ℕ0) ∧ 𝑥 < 𝑀) → ((2↑𝑥) · ((𝑁 − (𝑁 mod (2↑𝑀))) / (2↑𝑥))) = (𝑁 − (𝑁 mod (2↑𝑀))))
6559, 64breqtrrd 5058 . . . . . . . . . . . . . 14 ((((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) ∧ 𝑥 ∈ ℕ0) ∧ 𝑥 < 𝑀) → ((2↑𝑥) · 2) ∥ ((2↑𝑥) · ((𝑁 − (𝑁 mod (2↑𝑀))) / (2↑𝑥))))
6610nn0red 11944 . . . . . . . . . . . . . . . . . . . 20 ((((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) ∧ 𝑥 ∈ ℕ0) ∧ 𝑥 < 𝑀) → 𝑥 ∈ ℝ)
6733nn0red 11944 . . . . . . . . . . . . . . . . . . . 20 ((((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) ∧ 𝑥 ∈ ℕ0) ∧ 𝑥 < 𝑀) → 𝑀 ∈ ℝ)
6866, 67, 13ltled 10777 . . . . . . . . . . . . . . . . . . 19 ((((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) ∧ 𝑥 ∈ ℕ0) ∧ 𝑥 < 𝑀) → 𝑥𝑀)
69 eluz2 12237 . . . . . . . . . . . . . . . . . . 19 (𝑀 ∈ (ℤ𝑥) ↔ (𝑥 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑥𝑀))
7062, 34, 68, 69syl3anbrc 1340 . . . . . . . . . . . . . . . . . 18 ((((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) ∧ 𝑥 ∈ ℕ0) ∧ 𝑥 < 𝑀) → 𝑀 ∈ (ℤ𝑥))
71 dvdsexp 15669 . . . . . . . . . . . . . . . . . 18 ((2 ∈ ℤ ∧ 𝑥 ∈ ℕ0𝑀 ∈ (ℤ𝑥)) → (2↑𝑥) ∥ (2↑𝑀))
7216, 10, 70, 71syl3anc 1368 . . . . . . . . . . . . . . . . 17 ((((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) ∧ 𝑥 ∈ ℕ0) ∧ 𝑥 < 𝑀) → (2↑𝑥) ∥ (2↑𝑀))
73 dvdstr 15638 . . . . . . . . . . . . . . . . . 18 (((2↑𝑥) ∈ ℤ ∧ (2↑𝑀) ∈ ℤ ∧ (𝑁 − (𝑁 mod (2↑𝑀))) ∈ ℤ) → (((2↑𝑥) ∥ (2↑𝑀) ∧ (2↑𝑀) ∥ (𝑁 − (𝑁 mod (2↑𝑀)))) → (2↑𝑥) ∥ (𝑁 − (𝑁 mod (2↑𝑀)))))
7455, 47, 51, 73syl3anc 1368 . . . . . . . . . . . . . . . . 17 ((((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) ∧ 𝑥 ∈ ℕ0) ∧ 𝑥 < 𝑀) → (((2↑𝑥) ∥ (2↑𝑀) ∧ (2↑𝑀) ∥ (𝑁 − (𝑁 mod (2↑𝑀)))) → (2↑𝑥) ∥ (𝑁 − (𝑁 mod (2↑𝑀)))))
7572, 54, 74mp2and 698 . . . . . . . . . . . . . . . 16 ((((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) ∧ 𝑥 ∈ ℕ0) ∧ 𝑥 < 𝑀) → (2↑𝑥) ∥ (𝑁 − (𝑁 mod (2↑𝑀))))
76 dvdsval2 15602 . . . . . . . . . . . . . . . . 17 (((2↑𝑥) ∈ ℤ ∧ (2↑𝑥) ≠ 0 ∧ (𝑁 − (𝑁 mod (2↑𝑀))) ∈ ℤ) → ((2↑𝑥) ∥ (𝑁 − (𝑁 mod (2↑𝑀))) ↔ ((𝑁 − (𝑁 mod (2↑𝑀))) / (2↑𝑥)) ∈ ℤ))
7755, 63, 51, 76syl3anc 1368 . . . . . . . . . . . . . . . 16 ((((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) ∧ 𝑥 ∈ ℕ0) ∧ 𝑥 < 𝑀) → ((2↑𝑥) ∥ (𝑁 − (𝑁 mod (2↑𝑀))) ↔ ((𝑁 − (𝑁 mod (2↑𝑀))) / (2↑𝑥)) ∈ ℤ))
7875, 77mpbid 235 . . . . . . . . . . . . . . 15 ((((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) ∧ 𝑥 ∈ ℕ0) ∧ 𝑥 < 𝑀) → ((𝑁 − (𝑁 mod (2↑𝑀))) / (2↑𝑥)) ∈ ℤ)
79 dvdscmulr 15630 . . . . . . . . . . . . . . 15 ((2 ∈ ℤ ∧ ((𝑁 − (𝑁 mod (2↑𝑀))) / (2↑𝑥)) ∈ ℤ ∧ ((2↑𝑥) ∈ ℤ ∧ (2↑𝑥) ≠ 0)) → (((2↑𝑥) · 2) ∥ ((2↑𝑥) · ((𝑁 − (𝑁 mod (2↑𝑀))) / (2↑𝑥))) ↔ 2 ∥ ((𝑁 − (𝑁 mod (2↑𝑀))) / (2↑𝑥))))
8016, 78, 55, 63, 79syl112anc 1371 . . . . . . . . . . . . . 14 ((((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) ∧ 𝑥 ∈ ℕ0) ∧ 𝑥 < 𝑀) → (((2↑𝑥) · 2) ∥ ((2↑𝑥) · ((𝑁 − (𝑁 mod (2↑𝑀))) / (2↑𝑥))) ↔ 2 ∥ ((𝑁 − (𝑁 mod (2↑𝑀))) / (2↑𝑥))))
8165, 80mpbid 235 . . . . . . . . . . . . 13 ((((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) ∧ 𝑥 ∈ ℕ0) ∧ 𝑥 < 𝑀) → 2 ∥ ((𝑁 − (𝑁 mod (2↑𝑀))) / (2↑𝑥)))
8225zcnd 12076 . . . . . . . . . . . . . 14 ((((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) ∧ 𝑥 ∈ ℕ0) ∧ 𝑥 < 𝑀) → (⌊‘((𝑁 mod (2↑𝑀)) / (2↑𝑥))) ∈ ℂ)
8378zcnd 12076 . . . . . . . . . . . . . 14 ((((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) ∧ 𝑥 ∈ ℕ0) ∧ 𝑥 < 𝑀) → ((𝑁 − (𝑁 mod (2↑𝑀))) / (2↑𝑥)) ∈ ℂ)
8422zcnd 12076 . . . . . . . . . . . . . . . . . . 19 ((((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) ∧ 𝑥 ∈ ℕ0) ∧ 𝑥 < 𝑀) → (𝑁 mod (2↑𝑀)) ∈ ℂ)
859zcnd 12076 . . . . . . . . . . . . . . . . . . 19 ((((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) ∧ 𝑥 ∈ ℕ0) ∧ 𝑥 < 𝑀) → 𝑁 ∈ ℂ)
8684, 85pncan3d 10989 . . . . . . . . . . . . . . . . . 18 ((((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) ∧ 𝑥 ∈ ℕ0) ∧ 𝑥 < 𝑀) → ((𝑁 mod (2↑𝑀)) + (𝑁 − (𝑁 mod (2↑𝑀)))) = 𝑁)
8786oveq1d 7150 . . . . . . . . . . . . . . . . 17 ((((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) ∧ 𝑥 ∈ ℕ0) ∧ 𝑥 < 𝑀) → (((𝑁 mod (2↑𝑀)) + (𝑁 − (𝑁 mod (2↑𝑀)))) / (2↑𝑥)) = (𝑁 / (2↑𝑥)))
8884, 60, 61, 63divdird 11443 . . . . . . . . . . . . . . . . 17 ((((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) ∧ 𝑥 ∈ ℕ0) ∧ 𝑥 < 𝑀) → (((𝑁 mod (2↑𝑀)) + (𝑁 − (𝑁 mod (2↑𝑀)))) / (2↑𝑥)) = (((𝑁 mod (2↑𝑀)) / (2↑𝑥)) + ((𝑁 − (𝑁 mod (2↑𝑀))) / (2↑𝑥))))
8987, 88eqtr3d 2835 . . . . . . . . . . . . . . . 16 ((((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) ∧ 𝑥 ∈ ℕ0) ∧ 𝑥 < 𝑀) → (𝑁 / (2↑𝑥)) = (((𝑁 mod (2↑𝑀)) / (2↑𝑥)) + ((𝑁 − (𝑁 mod (2↑𝑀))) / (2↑𝑥))))
9089fveq2d 6649 . . . . . . . . . . . . . . 15 ((((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) ∧ 𝑥 ∈ ℕ0) ∧ 𝑥 < 𝑀) → (⌊‘(𝑁 / (2↑𝑥))) = (⌊‘(((𝑁 mod (2↑𝑀)) / (2↑𝑥)) + ((𝑁 − (𝑁 mod (2↑𝑀))) / (2↑𝑥)))))
91 fladdz 13190 . . . . . . . . . . . . . . . 16 ((((𝑁 mod (2↑𝑀)) / (2↑𝑥)) ∈ ℝ ∧ ((𝑁 − (𝑁 mod (2↑𝑀))) / (2↑𝑥)) ∈ ℤ) → (⌊‘(((𝑁 mod (2↑𝑀)) / (2↑𝑥)) + ((𝑁 − (𝑁 mod (2↑𝑀))) / (2↑𝑥)))) = ((⌊‘((𝑁 mod (2↑𝑀)) / (2↑𝑥))) + ((𝑁 − (𝑁 mod (2↑𝑀))) / (2↑𝑥))))
9224, 78, 91syl2anc 587 . . . . . . . . . . . . . . 15 ((((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) ∧ 𝑥 ∈ ℕ0) ∧ 𝑥 < 𝑀) → (⌊‘(((𝑁 mod (2↑𝑀)) / (2↑𝑥)) + ((𝑁 − (𝑁 mod (2↑𝑀))) / (2↑𝑥)))) = ((⌊‘((𝑁 mod (2↑𝑀)) / (2↑𝑥))) + ((𝑁 − (𝑁 mod (2↑𝑀))) / (2↑𝑥))))
9390, 92eqtrd 2833 . . . . . . . . . . . . . 14 ((((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) ∧ 𝑥 ∈ ℕ0) ∧ 𝑥 < 𝑀) → (⌊‘(𝑁 / (2↑𝑥))) = ((⌊‘((𝑁 mod (2↑𝑀)) / (2↑𝑥))) + ((𝑁 − (𝑁 mod (2↑𝑀))) / (2↑𝑥))))
9482, 83, 93mvrladdd 11042 . . . . . . . . . . . . 13 ((((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) ∧ 𝑥 ∈ ℕ0) ∧ 𝑥 < 𝑀) → ((⌊‘(𝑁 / (2↑𝑥))) − (⌊‘((𝑁 mod (2↑𝑀)) / (2↑𝑥)))) = ((𝑁 − (𝑁 mod (2↑𝑀))) / (2↑𝑥)))
9581, 94breqtrrd 5058 . . . . . . . . . . . 12 ((((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) ∧ 𝑥 ∈ ℕ0) ∧ 𝑥 < 𝑀) → 2 ∥ ((⌊‘(𝑁 / (2↑𝑥))) − (⌊‘((𝑁 mod (2↑𝑀)) / (2↑𝑥)))))
96 dvdssub2 15643 . . . . . . . . . . . 12 (((2 ∈ ℤ ∧ (⌊‘(𝑁 / (2↑𝑥))) ∈ ℤ ∧ (⌊‘((𝑁 mod (2↑𝑀)) / (2↑𝑥))) ∈ ℤ) ∧ 2 ∥ ((⌊‘(𝑁 / (2↑𝑥))) − (⌊‘((𝑁 mod (2↑𝑀)) / (2↑𝑥))))) → (2 ∥ (⌊‘(𝑁 / (2↑𝑥))) ↔ 2 ∥ (⌊‘((𝑁 mod (2↑𝑀)) / (2↑𝑥)))))
9716, 21, 25, 95, 96syl31anc 1370 . . . . . . . . . . 11 ((((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) ∧ 𝑥 ∈ ℕ0) ∧ 𝑥 < 𝑀) → (2 ∥ (⌊‘(𝑁 / (2↑𝑥))) ↔ 2 ∥ (⌊‘((𝑁 mod (2↑𝑀)) / (2↑𝑥)))))
9897notbid 321 . . . . . . . . . 10 ((((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) ∧ 𝑥 ∈ ℕ0) ∧ 𝑥 < 𝑀) → (¬ 2 ∥ (⌊‘(𝑁 / (2↑𝑥))) ↔ ¬ 2 ∥ (⌊‘((𝑁 mod (2↑𝑀)) / (2↑𝑥)))))
9912, 14, 983bitr3d 312 . . . . . . . . 9 ((((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) ∧ 𝑥 ∈ ℕ0) ∧ 𝑥 < 𝑀) → ((𝑥 ∈ (bits‘𝑁) ∧ 𝑥 < 𝑀) ↔ ¬ 2 ∥ (⌊‘((𝑁 mod (2↑𝑀)) / (2↑𝑥)))))
100 z0even 15708 . . . . . . . . . . . 12 2 ∥ 0
1011ad2antrr 725 . . . . . . . . . . . . . . . 16 ((((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) ∧ 𝑥 ∈ ℕ0) ∧ ¬ 𝑥 < 𝑀) → 𝑁 ∈ ℤ)
102101zred 12075 . . . . . . . . . . . . . . 15 ((((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) ∧ 𝑥 ∈ ℕ0) ∧ ¬ 𝑥 < 𝑀) → 𝑁 ∈ ℝ)
103 2rp 12382 . . . . . . . . . . . . . . . . 17 2 ∈ ℝ+
104103a1i 11 . . . . . . . . . . . . . . . 16 ((((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) ∧ 𝑥 ∈ ℕ0) ∧ ¬ 𝑥 < 𝑀) → 2 ∈ ℝ+)
10532nn0zd 12073 . . . . . . . . . . . . . . . . 17 (((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) ∧ 𝑥 ∈ ℕ0) → 𝑀 ∈ ℤ)
106105adantr 484 . . . . . . . . . . . . . . . 16 ((((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) ∧ 𝑥 ∈ ℕ0) ∧ ¬ 𝑥 < 𝑀) → 𝑀 ∈ ℤ)
107104, 106rpexpcld 13604 . . . . . . . . . . . . . . 15 ((((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) ∧ 𝑥 ∈ ℕ0) ∧ ¬ 𝑥 < 𝑀) → (2↑𝑀) ∈ ℝ+)
108102, 107modcld 13238 . . . . . . . . . . . . . 14 ((((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) ∧ 𝑥 ∈ ℕ0) ∧ ¬ 𝑥 < 𝑀) → (𝑁 mod (2↑𝑀)) ∈ ℝ)
109 simplr 768 . . . . . . . . . . . . . . . 16 ((((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) ∧ 𝑥 ∈ ℕ0) ∧ ¬ 𝑥 < 𝑀) → 𝑥 ∈ ℕ0)
110109nn0zd 12073 . . . . . . . . . . . . . . 15 ((((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) ∧ 𝑥 ∈ ℕ0) ∧ ¬ 𝑥 < 𝑀) → 𝑥 ∈ ℤ)
111104, 110rpexpcld 13604 . . . . . . . . . . . . . 14 ((((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) ∧ 𝑥 ∈ ℕ0) ∧ ¬ 𝑥 < 𝑀) → (2↑𝑥) ∈ ℝ+)
1126ad2antrr 725 . . . . . . . . . . . . . . 15 ((((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) ∧ 𝑥 ∈ ℕ0) ∧ ¬ 𝑥 < 𝑀) → (𝑁 mod (2↑𝑀)) ∈ ℕ0)
113112nn0ge0d 11946 . . . . . . . . . . . . . 14 ((((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) ∧ 𝑥 ∈ ℕ0) ∧ ¬ 𝑥 < 𝑀) → 0 ≤ (𝑁 mod (2↑𝑀)))
114108, 111, 113divge0d 12459 . . . . . . . . . . . . 13 ((((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) ∧ 𝑥 ∈ ℕ0) ∧ ¬ 𝑥 < 𝑀) → 0 ≤ ((𝑁 mod (2↑𝑀)) / (2↑𝑥)))
115107rpred 12419 . . . . . . . . . . . . . . . . 17 ((((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) ∧ 𝑥 ∈ ℕ0) ∧ ¬ 𝑥 < 𝑀) → (2↑𝑀) ∈ ℝ)
116111rpred 12419 . . . . . . . . . . . . . . . . 17 ((((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) ∧ 𝑥 ∈ ℕ0) ∧ ¬ 𝑥 < 𝑀) → (2↑𝑥) ∈ ℝ)
117 modlt 13243 . . . . . . . . . . . . . . . . . 18 ((𝑁 ∈ ℝ ∧ (2↑𝑀) ∈ ℝ+) → (𝑁 mod (2↑𝑀)) < (2↑𝑀))
118102, 107, 117syl2anc 587 . . . . . . . . . . . . . . . . 17 ((((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) ∧ 𝑥 ∈ ℕ0) ∧ ¬ 𝑥 < 𝑀) → (𝑁 mod (2↑𝑀)) < (2↑𝑀))
119104rpred 12419 . . . . . . . . . . . . . . . . . 18 ((((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) ∧ 𝑥 ∈ ℕ0) ∧ ¬ 𝑥 < 𝑀) → 2 ∈ ℝ)
120 1le2 11834 . . . . . . . . . . . . . . . . . . 19 1 ≤ 2
121120a1i 11 . . . . . . . . . . . . . . . . . 18 ((((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) ∧ 𝑥 ∈ ℕ0) ∧ ¬ 𝑥 < 𝑀) → 1 ≤ 2)
122106zred 12075 . . . . . . . . . . . . . . . . . . . 20 ((((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) ∧ 𝑥 ∈ ℕ0) ∧ ¬ 𝑥 < 𝑀) → 𝑀 ∈ ℝ)
123109nn0red 11944 . . . . . . . . . . . . . . . . . . . 20 ((((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) ∧ 𝑥 ∈ ℕ0) ∧ ¬ 𝑥 < 𝑀) → 𝑥 ∈ ℝ)
124 simpr 488 . . . . . . . . . . . . . . . . . . . 20 ((((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) ∧ 𝑥 ∈ ℕ0) ∧ ¬ 𝑥 < 𝑀) → ¬ 𝑥 < 𝑀)
125122, 123, 124nltled 10779 . . . . . . . . . . . . . . . . . . 19 ((((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) ∧ 𝑥 ∈ ℕ0) ∧ ¬ 𝑥 < 𝑀) → 𝑀𝑥)
126 eluz2 12237 . . . . . . . . . . . . . . . . . . 19 (𝑥 ∈ (ℤ𝑀) ↔ (𝑀 ∈ ℤ ∧ 𝑥 ∈ ℤ ∧ 𝑀𝑥))
127106, 110, 125, 126syl3anbrc 1340 . . . . . . . . . . . . . . . . . 18 ((((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) ∧ 𝑥 ∈ ℕ0) ∧ ¬ 𝑥 < 𝑀) → 𝑥 ∈ (ℤ𝑀))
128119, 121, 127leexp2ad 13613 . . . . . . . . . . . . . . . . 17 ((((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) ∧ 𝑥 ∈ ℕ0) ∧ ¬ 𝑥 < 𝑀) → (2↑𝑀) ≤ (2↑𝑥))
129108, 115, 116, 118, 128ltletrd 10789 . . . . . . . . . . . . . . . 16 ((((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) ∧ 𝑥 ∈ ℕ0) ∧ ¬ 𝑥 < 𝑀) → (𝑁 mod (2↑𝑀)) < (2↑𝑥))
130111rpcnd 12421 . . . . . . . . . . . . . . . . 17 ((((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) ∧ 𝑥 ∈ ℕ0) ∧ ¬ 𝑥 < 𝑀) → (2↑𝑥) ∈ ℂ)
131130mulid1d 10647 . . . . . . . . . . . . . . . 16 ((((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) ∧ 𝑥 ∈ ℕ0) ∧ ¬ 𝑥 < 𝑀) → ((2↑𝑥) · 1) = (2↑𝑥))
132129, 131breqtrrd 5058 . . . . . . . . . . . . . . 15 ((((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) ∧ 𝑥 ∈ ℕ0) ∧ ¬ 𝑥 < 𝑀) → (𝑁 mod (2↑𝑀)) < ((2↑𝑥) · 1))
133 1red 10631 . . . . . . . . . . . . . . . 16 ((((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) ∧ 𝑥 ∈ ℕ0) ∧ ¬ 𝑥 < 𝑀) → 1 ∈ ℝ)
134108, 133, 111ltdivmuld 12470 . . . . . . . . . . . . . . 15 ((((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) ∧ 𝑥 ∈ ℕ0) ∧ ¬ 𝑥 < 𝑀) → (((𝑁 mod (2↑𝑀)) / (2↑𝑥)) < 1 ↔ (𝑁 mod (2↑𝑀)) < ((2↑𝑥) · 1)))
135132, 134mpbird 260 . . . . . . . . . . . . . 14 ((((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) ∧ 𝑥 ∈ ℕ0) ∧ ¬ 𝑥 < 𝑀) → ((𝑁 mod (2↑𝑀)) / (2↑𝑥)) < 1)
136 1e0p1 12128 . . . . . . . . . . . . . 14 1 = (0 + 1)
137135, 136breqtrdi 5071 . . . . . . . . . . . . 13 ((((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) ∧ 𝑥 ∈ ℕ0) ∧ ¬ 𝑥 < 𝑀) → ((𝑁 mod (2↑𝑀)) / (2↑𝑥)) < (0 + 1))
138108, 111rerpdivcld 12450 . . . . . . . . . . . . . 14 ((((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) ∧ 𝑥 ∈ ℕ0) ∧ ¬ 𝑥 < 𝑀) → ((𝑁 mod (2↑𝑀)) / (2↑𝑥)) ∈ ℝ)
139 0z 11980 . . . . . . . . . . . . . 14 0 ∈ ℤ
140 flbi 13181 . . . . . . . . . . . . . 14 ((((𝑁 mod (2↑𝑀)) / (2↑𝑥)) ∈ ℝ ∧ 0 ∈ ℤ) → ((⌊‘((𝑁 mod (2↑𝑀)) / (2↑𝑥))) = 0 ↔ (0 ≤ ((𝑁 mod (2↑𝑀)) / (2↑𝑥)) ∧ ((𝑁 mod (2↑𝑀)) / (2↑𝑥)) < (0 + 1))))
141138, 139, 140sylancl 589 . . . . . . . . . . . . 13 ((((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) ∧ 𝑥 ∈ ℕ0) ∧ ¬ 𝑥 < 𝑀) → ((⌊‘((𝑁 mod (2↑𝑀)) / (2↑𝑥))) = 0 ↔ (0 ≤ ((𝑁 mod (2↑𝑀)) / (2↑𝑥)) ∧ ((𝑁 mod (2↑𝑀)) / (2↑𝑥)) < (0 + 1))))
142114, 137, 141mpbir2and 712 . . . . . . . . . . . 12 ((((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) ∧ 𝑥 ∈ ℕ0) ∧ ¬ 𝑥 < 𝑀) → (⌊‘((𝑁 mod (2↑𝑀)) / (2↑𝑥))) = 0)
143100, 142breqtrrid 5068 . . . . . . . . . . 11 ((((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) ∧ 𝑥 ∈ ℕ0) ∧ ¬ 𝑥 < 𝑀) → 2 ∥ (⌊‘((𝑁 mod (2↑𝑀)) / (2↑𝑥))))
144124intnand 492 . . . . . . . . . . 11 ((((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) ∧ 𝑥 ∈ ℕ0) ∧ ¬ 𝑥 < 𝑀) → ¬ (𝑥 ∈ (bits‘𝑁) ∧ 𝑥 < 𝑀))
145143, 1442thd 268 . . . . . . . . . 10 ((((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) ∧ 𝑥 ∈ ℕ0) ∧ ¬ 𝑥 < 𝑀) → (2 ∥ (⌊‘((𝑁 mod (2↑𝑀)) / (2↑𝑥))) ↔ ¬ (𝑥 ∈ (bits‘𝑁) ∧ 𝑥 < 𝑀)))
146145con2bid 358 . . . . . . . . 9 ((((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) ∧ 𝑥 ∈ ℕ0) ∧ ¬ 𝑥 < 𝑀) → ((𝑥 ∈ (bits‘𝑁) ∧ 𝑥 < 𝑀) ↔ ¬ 2 ∥ (⌊‘((𝑁 mod (2↑𝑀)) / (2↑𝑥)))))
14799, 146pm2.61dan 812 . . . . . . . 8 (((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) ∧ 𝑥 ∈ ℕ0) → ((𝑥 ∈ (bits‘𝑁) ∧ 𝑥 < 𝑀) ↔ ¬ 2 ∥ (⌊‘((𝑁 mod (2↑𝑀)) / (2↑𝑥)))))
148105biantrurd 536 . . . . . . . 8 (((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) ∧ 𝑥 ∈ ℕ0) → ((𝑥 ∈ (bits‘𝑁) ∧ 𝑥 < 𝑀) ↔ (𝑀 ∈ ℤ ∧ (𝑥 ∈ (bits‘𝑁) ∧ 𝑥 < 𝑀))))
149147, 148bitr3d 284 . . . . . . 7 (((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) ∧ 𝑥 ∈ ℕ0) → (¬ 2 ∥ (⌊‘((𝑁 mod (2↑𝑀)) / (2↑𝑥))) ↔ (𝑀 ∈ ℤ ∧ (𝑥 ∈ (bits‘𝑁) ∧ 𝑥 < 𝑀))))
150 an12 644 . . . . . . 7 ((𝑀 ∈ ℤ ∧ (𝑥 ∈ (bits‘𝑁) ∧ 𝑥 < 𝑀)) ↔ (𝑥 ∈ (bits‘𝑁) ∧ (𝑀 ∈ ℤ ∧ 𝑥 < 𝑀)))
151149, 150syl6bb 290 . . . . . 6 (((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) ∧ 𝑥 ∈ ℕ0) → (¬ 2 ∥ (⌊‘((𝑁 mod (2↑𝑀)) / (2↑𝑥))) ↔ (𝑥 ∈ (bits‘𝑁) ∧ (𝑀 ∈ ℤ ∧ 𝑥 < 𝑀))))
152151pm5.32da 582 . . . . 5 ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) → ((𝑥 ∈ ℕ0 ∧ ¬ 2 ∥ (⌊‘((𝑁 mod (2↑𝑀)) / (2↑𝑥)))) ↔ (𝑥 ∈ ℕ0 ∧ (𝑥 ∈ (bits‘𝑁) ∧ (𝑀 ∈ ℤ ∧ 𝑥 < 𝑀)))))
1538, 152bitr3d 284 . . . 4 ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) → (((𝑁 mod (2↑𝑀)) ∈ ℤ ∧ (𝑥 ∈ ℕ0 ∧ ¬ 2 ∥ (⌊‘((𝑁 mod (2↑𝑀)) / (2↑𝑥))))) ↔ (𝑥 ∈ ℕ0 ∧ (𝑥 ∈ (bits‘𝑁) ∧ (𝑀 ∈ ℤ ∧ 𝑥 < 𝑀)))))
154 3anass 1092 . . . 4 (((𝑁 mod (2↑𝑀)) ∈ ℤ ∧ 𝑥 ∈ ℕ0 ∧ ¬ 2 ∥ (⌊‘((𝑁 mod (2↑𝑀)) / (2↑𝑥)))) ↔ ((𝑁 mod (2↑𝑀)) ∈ ℤ ∧ (𝑥 ∈ ℕ0 ∧ ¬ 2 ∥ (⌊‘((𝑁 mod (2↑𝑀)) / (2↑𝑥))))))
155 elfzo2 13036 . . . . . . 7 (𝑥 ∈ (0..^𝑀) ↔ (𝑥 ∈ (ℤ‘0) ∧ 𝑀 ∈ ℤ ∧ 𝑥 < 𝑀))
156 elnn0uz 12271 . . . . . . . 8 (𝑥 ∈ ℕ0𝑥 ∈ (ℤ‘0))
1571563anbi1i 1154 . . . . . . 7 ((𝑥 ∈ ℕ0𝑀 ∈ ℤ ∧ 𝑥 < 𝑀) ↔ (𝑥 ∈ (ℤ‘0) ∧ 𝑀 ∈ ℤ ∧ 𝑥 < 𝑀))
158 3anass 1092 . . . . . . 7 ((𝑥 ∈ ℕ0𝑀 ∈ ℤ ∧ 𝑥 < 𝑀) ↔ (𝑥 ∈ ℕ0 ∧ (𝑀 ∈ ℤ ∧ 𝑥 < 𝑀)))
159155, 157, 1583bitr2i 302 . . . . . 6 (𝑥 ∈ (0..^𝑀) ↔ (𝑥 ∈ ℕ0 ∧ (𝑀 ∈ ℤ ∧ 𝑥 < 𝑀)))
160159anbi2i 625 . . . . 5 ((𝑥 ∈ (bits‘𝑁) ∧ 𝑥 ∈ (0..^𝑀)) ↔ (𝑥 ∈ (bits‘𝑁) ∧ (𝑥 ∈ ℕ0 ∧ (𝑀 ∈ ℤ ∧ 𝑥 < 𝑀))))
161 an12 644 . . . . 5 ((𝑥 ∈ (bits‘𝑁) ∧ (𝑥 ∈ ℕ0 ∧ (𝑀 ∈ ℤ ∧ 𝑥 < 𝑀))) ↔ (𝑥 ∈ ℕ0 ∧ (𝑥 ∈ (bits‘𝑁) ∧ (𝑀 ∈ ℤ ∧ 𝑥 < 𝑀))))
162160, 161bitri 278 . . . 4 ((𝑥 ∈ (bits‘𝑁) ∧ 𝑥 ∈ (0..^𝑀)) ↔ (𝑥 ∈ ℕ0 ∧ (𝑥 ∈ (bits‘𝑁) ∧ (𝑀 ∈ ℤ ∧ 𝑥 < 𝑀))))
163153, 154, 1623bitr4g 317 . . 3 ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) → (((𝑁 mod (2↑𝑀)) ∈ ℤ ∧ 𝑥 ∈ ℕ0 ∧ ¬ 2 ∥ (⌊‘((𝑁 mod (2↑𝑀)) / (2↑𝑥)))) ↔ (𝑥 ∈ (bits‘𝑁) ∧ 𝑥 ∈ (0..^𝑀))))
164 bitsval 15763 . . 3 (𝑥 ∈ (bits‘(𝑁 mod (2↑𝑀))) ↔ ((𝑁 mod (2↑𝑀)) ∈ ℤ ∧ 𝑥 ∈ ℕ0 ∧ ¬ 2 ∥ (⌊‘((𝑁 mod (2↑𝑀)) / (2↑𝑥)))))
165 elin 3897 . . 3 (𝑥 ∈ ((bits‘𝑁) ∩ (0..^𝑀)) ↔ (𝑥 ∈ (bits‘𝑁) ∧ 𝑥 ∈ (0..^𝑀)))
166163, 164, 1653bitr4g 317 . 2 ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) → (𝑥 ∈ (bits‘(𝑁 mod (2↑𝑀))) ↔ 𝑥 ∈ ((bits‘𝑁) ∩ (0..^𝑀))))
167166eqrdv 2796 1 ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) → (bits‘(𝑁 mod (2↑𝑀))) = ((bits‘𝑁) ∩ (0..^𝑀)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 209  wa 399  w3a 1084   = wceq 1538  wcel 2111  wne 2987  cin 3880   class class class wbr 5030  cfv 6324  (class class class)co 7135  cr 10525  0cc0 10526  1c1 10527   + caddc 10529   · cmul 10531   < clt 10664  cle 10665  cmin 10859   / cdiv 11286  cn 11625  2c2 11680  0cn0 11885  cz 11969  cuz 12231  +crp 12377  ..^cfzo 13028  cfl 13155   mod cmo 13232  cexp 13425  cdvds 15599  bitscbits 15758
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603  ax-pre-sup 10604
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rmo 3114  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4801  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-pred 6116  df-ord 6162  df-on 6163  df-lim 6164  df-suc 6165  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-riota 7093  df-ov 7138  df-oprab 7139  df-mpo 7140  df-om 7561  df-1st 7671  df-2nd 7672  df-wrecs 7930  df-recs 7991  df-rdg 8029  df-er 8272  df-en 8493  df-dom 8494  df-sdom 8495  df-sup 8890  df-inf 8891  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-div 11287  df-nn 11626  df-2 11688  df-n0 11886  df-z 11970  df-uz 12232  df-rp 12378  df-fz 12886  df-fzo 13029  df-fl 13157  df-mod 13233  df-seq 13365  df-exp 13426  df-dvds 15600  df-bits 15761
This theorem is referenced by:  sadaddlem  15805  sadadd  15806  bitsres  15812  smumul  15832
  Copyright terms: Public domain W3C validator