| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | simpl 482 | . . . . . . . 8
⊢ ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0)
→ 𝑁 ∈
ℤ) | 
| 2 |  | 2nn 12340 | . . . . . . . . . 10
⊢ 2 ∈
ℕ | 
| 3 | 2 | a1i 11 | . . . . . . . . 9
⊢ ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0)
→ 2 ∈ ℕ) | 
| 4 |  | simpr 484 | . . . . . . . . 9
⊢ ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0)
→ 𝑀 ∈
ℕ0) | 
| 5 | 3, 4 | nnexpcld 14285 | . . . . . . . 8
⊢ ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0)
→ (2↑𝑀) ∈
ℕ) | 
| 6 | 1, 5 | zmodcld 13933 | . . . . . . 7
⊢ ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0)
→ (𝑁 mod (2↑𝑀)) ∈
ℕ0) | 
| 7 | 6 | nn0zd 12641 | . . . . . 6
⊢ ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0)
→ (𝑁 mod (2↑𝑀)) ∈
ℤ) | 
| 8 | 7 | biantrurd 532 | . . . . 5
⊢ ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0)
→ ((𝑥 ∈
ℕ0 ∧ ¬ 2 ∥ (⌊‘((𝑁 mod (2↑𝑀)) / (2↑𝑥)))) ↔ ((𝑁 mod (2↑𝑀)) ∈ ℤ ∧ (𝑥 ∈ ℕ0 ∧ ¬ 2
∥ (⌊‘((𝑁
mod (2↑𝑀)) /
(2↑𝑥))))))) | 
| 9 | 1 | ad2antrr 726 | . . . . . . . . . . 11
⊢ ((((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0)
∧ 𝑥 ∈
ℕ0) ∧ 𝑥 < 𝑀) → 𝑁 ∈ ℤ) | 
| 10 |  | simplr 768 | . . . . . . . . . . 11
⊢ ((((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0)
∧ 𝑥 ∈
ℕ0) ∧ 𝑥 < 𝑀) → 𝑥 ∈ ℕ0) | 
| 11 |  | bitsval2 16463 | . . . . . . . . . . 11
⊢ ((𝑁 ∈ ℤ ∧ 𝑥 ∈ ℕ0)
→ (𝑥 ∈
(bits‘𝑁) ↔ ¬
2 ∥ (⌊‘(𝑁
/ (2↑𝑥))))) | 
| 12 | 9, 10, 11 | syl2anc 584 | . . . . . . . . . 10
⊢ ((((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0)
∧ 𝑥 ∈
ℕ0) ∧ 𝑥 < 𝑀) → (𝑥 ∈ (bits‘𝑁) ↔ ¬ 2 ∥
(⌊‘(𝑁 /
(2↑𝑥))))) | 
| 13 |  | simpr 484 | . . . . . . . . . . 11
⊢ ((((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0)
∧ 𝑥 ∈
ℕ0) ∧ 𝑥 < 𝑀) → 𝑥 < 𝑀) | 
| 14 | 13 | biantrud 531 | . . . . . . . . . 10
⊢ ((((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0)
∧ 𝑥 ∈
ℕ0) ∧ 𝑥 < 𝑀) → (𝑥 ∈ (bits‘𝑁) ↔ (𝑥 ∈ (bits‘𝑁) ∧ 𝑥 < 𝑀))) | 
| 15 |  | 2z 12651 | . . . . . . . . . . . . 13
⊢ 2 ∈
ℤ | 
| 16 | 15 | a1i 11 | . . . . . . . . . . . 12
⊢ ((((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0)
∧ 𝑥 ∈
ℕ0) ∧ 𝑥 < 𝑀) → 2 ∈ ℤ) | 
| 17 | 9 | zred 12724 | . . . . . . . . . . . . . 14
⊢ ((((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0)
∧ 𝑥 ∈
ℕ0) ∧ 𝑥 < 𝑀) → 𝑁 ∈ ℝ) | 
| 18 | 2 | a1i 11 | . . . . . . . . . . . . . . 15
⊢ ((((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0)
∧ 𝑥 ∈
ℕ0) ∧ 𝑥 < 𝑀) → 2 ∈ ℕ) | 
| 19 | 18, 10 | nnexpcld 14285 | . . . . . . . . . . . . . 14
⊢ ((((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0)
∧ 𝑥 ∈
ℕ0) ∧ 𝑥 < 𝑀) → (2↑𝑥) ∈ ℕ) | 
| 20 | 17, 19 | nndivred 12321 | . . . . . . . . . . . . 13
⊢ ((((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0)
∧ 𝑥 ∈
ℕ0) ∧ 𝑥 < 𝑀) → (𝑁 / (2↑𝑥)) ∈ ℝ) | 
| 21 | 20 | flcld 13839 | . . . . . . . . . . . 12
⊢ ((((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0)
∧ 𝑥 ∈
ℕ0) ∧ 𝑥 < 𝑀) → (⌊‘(𝑁 / (2↑𝑥))) ∈ ℤ) | 
| 22 | 7 | ad2antrr 726 | . . . . . . . . . . . . . . 15
⊢ ((((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0)
∧ 𝑥 ∈
ℕ0) ∧ 𝑥 < 𝑀) → (𝑁 mod (2↑𝑀)) ∈ ℤ) | 
| 23 | 22 | zred 12724 | . . . . . . . . . . . . . 14
⊢ ((((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0)
∧ 𝑥 ∈
ℕ0) ∧ 𝑥 < 𝑀) → (𝑁 mod (2↑𝑀)) ∈ ℝ) | 
| 24 | 23, 19 | nndivred 12321 | . . . . . . . . . . . . 13
⊢ ((((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0)
∧ 𝑥 ∈
ℕ0) ∧ 𝑥 < 𝑀) → ((𝑁 mod (2↑𝑀)) / (2↑𝑥)) ∈ ℝ) | 
| 25 | 24 | flcld 13839 | . . . . . . . . . . . 12
⊢ ((((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0)
∧ 𝑥 ∈
ℕ0) ∧ 𝑥 < 𝑀) → (⌊‘((𝑁 mod (2↑𝑀)) / (2↑𝑥))) ∈ ℤ) | 
| 26 | 19 | nnzd 12642 | . . . . . . . . . . . . . . . . 17
⊢ ((((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0)
∧ 𝑥 ∈
ℕ0) ∧ 𝑥 < 𝑀) → (2↑𝑥) ∈ ℤ) | 
| 27 | 26, 16 | zmulcld 12730 | . . . . . . . . . . . . . . . 16
⊢ ((((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0)
∧ 𝑥 ∈
ℕ0) ∧ 𝑥 < 𝑀) → ((2↑𝑥) · 2) ∈
ℤ) | 
| 28 | 5 | ad2antrr 726 | . . . . . . . . . . . . . . . . 17
⊢ ((((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0)
∧ 𝑥 ∈
ℕ0) ∧ 𝑥 < 𝑀) → (2↑𝑀) ∈ ℕ) | 
| 29 | 28 | nnzd 12642 | . . . . . . . . . . . . . . . 16
⊢ ((((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0)
∧ 𝑥 ∈
ℕ0) ∧ 𝑥 < 𝑀) → (2↑𝑀) ∈ ℤ) | 
| 30 | 9, 22 | zsubcld 12729 | . . . . . . . . . . . . . . . 16
⊢ ((((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0)
∧ 𝑥 ∈
ℕ0) ∧ 𝑥 < 𝑀) → (𝑁 − (𝑁 mod (2↑𝑀))) ∈ ℤ) | 
| 31 |  | 2cnd 12345 | . . . . . . . . . . . . . . . . . 18
⊢ ((((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0)
∧ 𝑥 ∈
ℕ0) ∧ 𝑥 < 𝑀) → 2 ∈ ℂ) | 
| 32 | 31, 10 | expp1d 14188 | . . . . . . . . . . . . . . . . 17
⊢ ((((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0)
∧ 𝑥 ∈
ℕ0) ∧ 𝑥 < 𝑀) → (2↑(𝑥 + 1)) = ((2↑𝑥) · 2)) | 
| 33 |  | 1nn0 12544 | . . . . . . . . . . . . . . . . . . . 20
⊢ 1 ∈
ℕ0 | 
| 34 | 33 | a1i 11 | . . . . . . . . . . . . . . . . . . 19
⊢ ((((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0)
∧ 𝑥 ∈
ℕ0) ∧ 𝑥 < 𝑀) → 1 ∈
ℕ0) | 
| 35 | 10, 34 | nn0addcld 12593 | . . . . . . . . . . . . . . . . . 18
⊢ ((((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0)
∧ 𝑥 ∈
ℕ0) ∧ 𝑥 < 𝑀) → (𝑥 + 1) ∈
ℕ0) | 
| 36 | 35 | nn0zd 12641 | . . . . . . . . . . . . . . . . . . 19
⊢ ((((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0)
∧ 𝑥 ∈
ℕ0) ∧ 𝑥 < 𝑀) → (𝑥 + 1) ∈ ℤ) | 
| 37 |  | simplr 768 | . . . . . . . . . . . . . . . . . . . . 21
⊢ (((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0)
∧ 𝑥 ∈
ℕ0) → 𝑀 ∈
ℕ0) | 
| 38 | 37 | adantr 480 | . . . . . . . . . . . . . . . . . . . 20
⊢ ((((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0)
∧ 𝑥 ∈
ℕ0) ∧ 𝑥 < 𝑀) → 𝑀 ∈
ℕ0) | 
| 39 | 38 | nn0zd 12641 | . . . . . . . . . . . . . . . . . . 19
⊢ ((((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0)
∧ 𝑥 ∈
ℕ0) ∧ 𝑥 < 𝑀) → 𝑀 ∈ ℤ) | 
| 40 |  | nn0ltp1le 12678 | . . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝑥 ∈ ℕ0
∧ 𝑀 ∈
ℕ0) → (𝑥 < 𝑀 ↔ (𝑥 + 1) ≤ 𝑀)) | 
| 41 | 10, 38, 40 | syl2anc 584 | . . . . . . . . . . . . . . . . . . . 20
⊢ ((((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0)
∧ 𝑥 ∈
ℕ0) ∧ 𝑥 < 𝑀) → (𝑥 < 𝑀 ↔ (𝑥 + 1) ≤ 𝑀)) | 
| 42 | 13, 41 | mpbid 232 | . . . . . . . . . . . . . . . . . . 19
⊢ ((((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0)
∧ 𝑥 ∈
ℕ0) ∧ 𝑥 < 𝑀) → (𝑥 + 1) ≤ 𝑀) | 
| 43 |  | eluz2 12885 | . . . . . . . . . . . . . . . . . . 19
⊢ (𝑀 ∈
(ℤ≥‘(𝑥 + 1)) ↔ ((𝑥 + 1) ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ (𝑥 + 1) ≤ 𝑀)) | 
| 44 | 36, 39, 42, 43 | syl3anbrc 1343 | . . . . . . . . . . . . . . . . . 18
⊢ ((((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0)
∧ 𝑥 ∈
ℕ0) ∧ 𝑥 < 𝑀) → 𝑀 ∈ (ℤ≥‘(𝑥 + 1))) | 
| 45 |  | dvdsexp 16366 | . . . . . . . . . . . . . . . . . 18
⊢ ((2
∈ ℤ ∧ (𝑥 +
1) ∈ ℕ0 ∧ 𝑀 ∈ (ℤ≥‘(𝑥 + 1))) → (2↑(𝑥 + 1)) ∥ (2↑𝑀)) | 
| 46 | 16, 35, 44, 45 | syl3anc 1372 | . . . . . . . . . . . . . . . . 17
⊢ ((((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0)
∧ 𝑥 ∈
ℕ0) ∧ 𝑥 < 𝑀) → (2↑(𝑥 + 1)) ∥ (2↑𝑀)) | 
| 47 | 32, 46 | eqbrtrrd 5166 | . . . . . . . . . . . . . . . 16
⊢ ((((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0)
∧ 𝑥 ∈
ℕ0) ∧ 𝑥 < 𝑀) → ((2↑𝑥) · 2) ∥ (2↑𝑀)) | 
| 48 | 28 | nnrpd 13076 | . . . . . . . . . . . . . . . . . 18
⊢ ((((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0)
∧ 𝑥 ∈
ℕ0) ∧ 𝑥 < 𝑀) → (2↑𝑀) ∈
ℝ+) | 
| 49 |  | moddifz 13924 | . . . . . . . . . . . . . . . . . 18
⊢ ((𝑁 ∈ ℝ ∧
(2↑𝑀) ∈
ℝ+) → ((𝑁 − (𝑁 mod (2↑𝑀))) / (2↑𝑀)) ∈ ℤ) | 
| 50 | 17, 48, 49 | syl2anc 584 | . . . . . . . . . . . . . . . . 17
⊢ ((((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0)
∧ 𝑥 ∈
ℕ0) ∧ 𝑥 < 𝑀) → ((𝑁 − (𝑁 mod (2↑𝑀))) / (2↑𝑀)) ∈ ℤ) | 
| 51 |  | 2ne0 12371 | . . . . . . . . . . . . . . . . . . . 20
⊢ 2 ≠
0 | 
| 52 | 51 | a1i 11 | . . . . . . . . . . . . . . . . . . 19
⊢ ((((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0)
∧ 𝑥 ∈
ℕ0) ∧ 𝑥 < 𝑀) → 2 ≠ 0) | 
| 53 | 31, 52, 39 | expne0d 14193 | . . . . . . . . . . . . . . . . . 18
⊢ ((((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0)
∧ 𝑥 ∈
ℕ0) ∧ 𝑥 < 𝑀) → (2↑𝑀) ≠ 0) | 
| 54 |  | dvdsval2 16294 | . . . . . . . . . . . . . . . . . 18
⊢
(((2↑𝑀) ∈
ℤ ∧ (2↑𝑀)
≠ 0 ∧ (𝑁 −
(𝑁 mod (2↑𝑀))) ∈ ℤ) →
((2↑𝑀) ∥ (𝑁 − (𝑁 mod (2↑𝑀))) ↔ ((𝑁 − (𝑁 mod (2↑𝑀))) / (2↑𝑀)) ∈ ℤ)) | 
| 55 | 29, 53, 30, 54 | syl3anc 1372 | . . . . . . . . . . . . . . . . 17
⊢ ((((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0)
∧ 𝑥 ∈
ℕ0) ∧ 𝑥 < 𝑀) → ((2↑𝑀) ∥ (𝑁 − (𝑁 mod (2↑𝑀))) ↔ ((𝑁 − (𝑁 mod (2↑𝑀))) / (2↑𝑀)) ∈ ℤ)) | 
| 56 | 50, 55 | mpbird 257 | . . . . . . . . . . . . . . . 16
⊢ ((((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0)
∧ 𝑥 ∈
ℕ0) ∧ 𝑥 < 𝑀) → (2↑𝑀) ∥ (𝑁 − (𝑁 mod (2↑𝑀)))) | 
| 57 | 27, 29, 30, 47, 56 | dvdstrd 16333 | . . . . . . . . . . . . . . 15
⊢ ((((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0)
∧ 𝑥 ∈
ℕ0) ∧ 𝑥 < 𝑀) → ((2↑𝑥) · 2) ∥ (𝑁 − (𝑁 mod (2↑𝑀)))) | 
| 58 | 30 | zcnd 12725 | . . . . . . . . . . . . . . . 16
⊢ ((((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0)
∧ 𝑥 ∈
ℕ0) ∧ 𝑥 < 𝑀) → (𝑁 − (𝑁 mod (2↑𝑀))) ∈ ℂ) | 
| 59 | 19 | nncnd 12283 | . . . . . . . . . . . . . . . 16
⊢ ((((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0)
∧ 𝑥 ∈
ℕ0) ∧ 𝑥 < 𝑀) → (2↑𝑥) ∈ ℂ) | 
| 60 | 10 | nn0zd 12641 | . . . . . . . . . . . . . . . . 17
⊢ ((((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0)
∧ 𝑥 ∈
ℕ0) ∧ 𝑥 < 𝑀) → 𝑥 ∈ ℤ) | 
| 61 | 31, 52, 60 | expne0d 14193 | . . . . . . . . . . . . . . . 16
⊢ ((((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0)
∧ 𝑥 ∈
ℕ0) ∧ 𝑥 < 𝑀) → (2↑𝑥) ≠ 0) | 
| 62 | 58, 59, 61 | divcan2d 12046 | . . . . . . . . . . . . . . 15
⊢ ((((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0)
∧ 𝑥 ∈
ℕ0) ∧ 𝑥 < 𝑀) → ((2↑𝑥) · ((𝑁 − (𝑁 mod (2↑𝑀))) / (2↑𝑥))) = (𝑁 − (𝑁 mod (2↑𝑀)))) | 
| 63 | 57, 62 | breqtrrd 5170 | . . . . . . . . . . . . . 14
⊢ ((((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0)
∧ 𝑥 ∈
ℕ0) ∧ 𝑥 < 𝑀) → ((2↑𝑥) · 2) ∥ ((2↑𝑥) · ((𝑁 − (𝑁 mod (2↑𝑀))) / (2↑𝑥)))) | 
| 64 | 10 | nn0red 12590 | . . . . . . . . . . . . . . . . . . . 20
⊢ ((((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0)
∧ 𝑥 ∈
ℕ0) ∧ 𝑥 < 𝑀) → 𝑥 ∈ ℝ) | 
| 65 | 38 | nn0red 12590 | . . . . . . . . . . . . . . . . . . . 20
⊢ ((((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0)
∧ 𝑥 ∈
ℕ0) ∧ 𝑥 < 𝑀) → 𝑀 ∈ ℝ) | 
| 66 | 64, 65, 13 | ltled 11410 | . . . . . . . . . . . . . . . . . . 19
⊢ ((((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0)
∧ 𝑥 ∈
ℕ0) ∧ 𝑥 < 𝑀) → 𝑥 ≤ 𝑀) | 
| 67 |  | eluz2 12885 | . . . . . . . . . . . . . . . . . . 19
⊢ (𝑀 ∈
(ℤ≥‘𝑥) ↔ (𝑥 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑥 ≤ 𝑀)) | 
| 68 | 60, 39, 66, 67 | syl3anbrc 1343 | . . . . . . . . . . . . . . . . . 18
⊢ ((((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0)
∧ 𝑥 ∈
ℕ0) ∧ 𝑥 < 𝑀) → 𝑀 ∈ (ℤ≥‘𝑥)) | 
| 69 |  | dvdsexp 16366 | . . . . . . . . . . . . . . . . . 18
⊢ ((2
∈ ℤ ∧ 𝑥
∈ ℕ0 ∧ 𝑀 ∈ (ℤ≥‘𝑥)) → (2↑𝑥) ∥ (2↑𝑀)) | 
| 70 | 16, 10, 68, 69 | syl3anc 1372 | . . . . . . . . . . . . . . . . 17
⊢ ((((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0)
∧ 𝑥 ∈
ℕ0) ∧ 𝑥 < 𝑀) → (2↑𝑥) ∥ (2↑𝑀)) | 
| 71 | 26, 29, 30, 70, 56 | dvdstrd 16333 | . . . . . . . . . . . . . . . 16
⊢ ((((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0)
∧ 𝑥 ∈
ℕ0) ∧ 𝑥 < 𝑀) → (2↑𝑥) ∥ (𝑁 − (𝑁 mod (2↑𝑀)))) | 
| 72 |  | dvdsval2 16294 | . . . . . . . . . . . . . . . . 17
⊢
(((2↑𝑥) ∈
ℤ ∧ (2↑𝑥)
≠ 0 ∧ (𝑁 −
(𝑁 mod (2↑𝑀))) ∈ ℤ) →
((2↑𝑥) ∥ (𝑁 − (𝑁 mod (2↑𝑀))) ↔ ((𝑁 − (𝑁 mod (2↑𝑀))) / (2↑𝑥)) ∈ ℤ)) | 
| 73 | 26, 61, 30, 72 | syl3anc 1372 | . . . . . . . . . . . . . . . 16
⊢ ((((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0)
∧ 𝑥 ∈
ℕ0) ∧ 𝑥 < 𝑀) → ((2↑𝑥) ∥ (𝑁 − (𝑁 mod (2↑𝑀))) ↔ ((𝑁 − (𝑁 mod (2↑𝑀))) / (2↑𝑥)) ∈ ℤ)) | 
| 74 | 71, 73 | mpbid 232 | . . . . . . . . . . . . . . 15
⊢ ((((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0)
∧ 𝑥 ∈
ℕ0) ∧ 𝑥 < 𝑀) → ((𝑁 − (𝑁 mod (2↑𝑀))) / (2↑𝑥)) ∈ ℤ) | 
| 75 |  | dvdscmulr 16323 | . . . . . . . . . . . . . . 15
⊢ ((2
∈ ℤ ∧ ((𝑁
− (𝑁 mod
(2↑𝑀))) /
(2↑𝑥)) ∈ ℤ
∧ ((2↑𝑥) ∈
ℤ ∧ (2↑𝑥)
≠ 0)) → (((2↑𝑥) · 2) ∥ ((2↑𝑥) · ((𝑁 − (𝑁 mod (2↑𝑀))) / (2↑𝑥))) ↔ 2 ∥ ((𝑁 − (𝑁 mod (2↑𝑀))) / (2↑𝑥)))) | 
| 76 | 16, 74, 26, 61, 75 | syl112anc 1375 | . . . . . . . . . . . . . 14
⊢ ((((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0)
∧ 𝑥 ∈
ℕ0) ∧ 𝑥 < 𝑀) → (((2↑𝑥) · 2) ∥ ((2↑𝑥) · ((𝑁 − (𝑁 mod (2↑𝑀))) / (2↑𝑥))) ↔ 2 ∥ ((𝑁 − (𝑁 mod (2↑𝑀))) / (2↑𝑥)))) | 
| 77 | 63, 76 | mpbid 232 | . . . . . . . . . . . . 13
⊢ ((((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0)
∧ 𝑥 ∈
ℕ0) ∧ 𝑥 < 𝑀) → 2 ∥ ((𝑁 − (𝑁 mod (2↑𝑀))) / (2↑𝑥))) | 
| 78 | 25 | zcnd 12725 | . . . . . . . . . . . . . 14
⊢ ((((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0)
∧ 𝑥 ∈
ℕ0) ∧ 𝑥 < 𝑀) → (⌊‘((𝑁 mod (2↑𝑀)) / (2↑𝑥))) ∈ ℂ) | 
| 79 | 74 | zcnd 12725 | . . . . . . . . . . . . . 14
⊢ ((((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0)
∧ 𝑥 ∈
ℕ0) ∧ 𝑥 < 𝑀) → ((𝑁 − (𝑁 mod (2↑𝑀))) / (2↑𝑥)) ∈ ℂ) | 
| 80 | 22 | zcnd 12725 | . . . . . . . . . . . . . . . . . . 19
⊢ ((((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0)
∧ 𝑥 ∈
ℕ0) ∧ 𝑥 < 𝑀) → (𝑁 mod (2↑𝑀)) ∈ ℂ) | 
| 81 | 9 | zcnd 12725 | . . . . . . . . . . . . . . . . . . 19
⊢ ((((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0)
∧ 𝑥 ∈
ℕ0) ∧ 𝑥 < 𝑀) → 𝑁 ∈ ℂ) | 
| 82 | 80, 81 | pncan3d 11624 | . . . . . . . . . . . . . . . . . 18
⊢ ((((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0)
∧ 𝑥 ∈
ℕ0) ∧ 𝑥 < 𝑀) → ((𝑁 mod (2↑𝑀)) + (𝑁 − (𝑁 mod (2↑𝑀)))) = 𝑁) | 
| 83 | 82 | oveq1d 7447 | . . . . . . . . . . . . . . . . 17
⊢ ((((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0)
∧ 𝑥 ∈
ℕ0) ∧ 𝑥 < 𝑀) → (((𝑁 mod (2↑𝑀)) + (𝑁 − (𝑁 mod (2↑𝑀)))) / (2↑𝑥)) = (𝑁 / (2↑𝑥))) | 
| 84 | 80, 58, 59, 61 | divdird 12082 | . . . . . . . . . . . . . . . . 17
⊢ ((((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0)
∧ 𝑥 ∈
ℕ0) ∧ 𝑥 < 𝑀) → (((𝑁 mod (2↑𝑀)) + (𝑁 − (𝑁 mod (2↑𝑀)))) / (2↑𝑥)) = (((𝑁 mod (2↑𝑀)) / (2↑𝑥)) + ((𝑁 − (𝑁 mod (2↑𝑀))) / (2↑𝑥)))) | 
| 85 | 83, 84 | eqtr3d 2778 | . . . . . . . . . . . . . . . 16
⊢ ((((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0)
∧ 𝑥 ∈
ℕ0) ∧ 𝑥 < 𝑀) → (𝑁 / (2↑𝑥)) = (((𝑁 mod (2↑𝑀)) / (2↑𝑥)) + ((𝑁 − (𝑁 mod (2↑𝑀))) / (2↑𝑥)))) | 
| 86 | 85 | fveq2d 6909 | . . . . . . . . . . . . . . 15
⊢ ((((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0)
∧ 𝑥 ∈
ℕ0) ∧ 𝑥 < 𝑀) → (⌊‘(𝑁 / (2↑𝑥))) = (⌊‘(((𝑁 mod (2↑𝑀)) / (2↑𝑥)) + ((𝑁 − (𝑁 mod (2↑𝑀))) / (2↑𝑥))))) | 
| 87 |  | fladdz 13866 | . . . . . . . . . . . . . . . 16
⊢ ((((𝑁 mod (2↑𝑀)) / (2↑𝑥)) ∈ ℝ ∧ ((𝑁 − (𝑁 mod (2↑𝑀))) / (2↑𝑥)) ∈ ℤ) →
(⌊‘(((𝑁 mod
(2↑𝑀)) / (2↑𝑥)) + ((𝑁 − (𝑁 mod (2↑𝑀))) / (2↑𝑥)))) = ((⌊‘((𝑁 mod (2↑𝑀)) / (2↑𝑥))) + ((𝑁 − (𝑁 mod (2↑𝑀))) / (2↑𝑥)))) | 
| 88 | 24, 74, 87 | syl2anc 584 | . . . . . . . . . . . . . . 15
⊢ ((((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0)
∧ 𝑥 ∈
ℕ0) ∧ 𝑥 < 𝑀) → (⌊‘(((𝑁 mod (2↑𝑀)) / (2↑𝑥)) + ((𝑁 − (𝑁 mod (2↑𝑀))) / (2↑𝑥)))) = ((⌊‘((𝑁 mod (2↑𝑀)) / (2↑𝑥))) + ((𝑁 − (𝑁 mod (2↑𝑀))) / (2↑𝑥)))) | 
| 89 | 86, 88 | eqtrd 2776 | . . . . . . . . . . . . . 14
⊢ ((((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0)
∧ 𝑥 ∈
ℕ0) ∧ 𝑥 < 𝑀) → (⌊‘(𝑁 / (2↑𝑥))) = ((⌊‘((𝑁 mod (2↑𝑀)) / (2↑𝑥))) + ((𝑁 − (𝑁 mod (2↑𝑀))) / (2↑𝑥)))) | 
| 90 | 78, 79, 89 | mvrladdd 11677 | . . . . . . . . . . . . 13
⊢ ((((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0)
∧ 𝑥 ∈
ℕ0) ∧ 𝑥 < 𝑀) → ((⌊‘(𝑁 / (2↑𝑥))) − (⌊‘((𝑁 mod (2↑𝑀)) / (2↑𝑥)))) = ((𝑁 − (𝑁 mod (2↑𝑀))) / (2↑𝑥))) | 
| 91 | 77, 90 | breqtrrd 5170 | . . . . . . . . . . . 12
⊢ ((((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0)
∧ 𝑥 ∈
ℕ0) ∧ 𝑥 < 𝑀) → 2 ∥ ((⌊‘(𝑁 / (2↑𝑥))) − (⌊‘((𝑁 mod (2↑𝑀)) / (2↑𝑥))))) | 
| 92 |  | dvdssub2 16339 | . . . . . . . . . . . 12
⊢ (((2
∈ ℤ ∧ (⌊‘(𝑁 / (2↑𝑥))) ∈ ℤ ∧
(⌊‘((𝑁 mod
(2↑𝑀)) / (2↑𝑥))) ∈ ℤ) ∧ 2
∥ ((⌊‘(𝑁
/ (2↑𝑥))) −
(⌊‘((𝑁 mod
(2↑𝑀)) / (2↑𝑥))))) → (2 ∥
(⌊‘(𝑁 /
(2↑𝑥))) ↔ 2
∥ (⌊‘((𝑁
mod (2↑𝑀)) /
(2↑𝑥))))) | 
| 93 | 16, 21, 25, 91, 92 | syl31anc 1374 | . . . . . . . . . . 11
⊢ ((((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0)
∧ 𝑥 ∈
ℕ0) ∧ 𝑥 < 𝑀) → (2 ∥ (⌊‘(𝑁 / (2↑𝑥))) ↔ 2 ∥ (⌊‘((𝑁 mod (2↑𝑀)) / (2↑𝑥))))) | 
| 94 | 93 | notbid 318 | . . . . . . . . . 10
⊢ ((((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0)
∧ 𝑥 ∈
ℕ0) ∧ 𝑥 < 𝑀) → (¬ 2 ∥
(⌊‘(𝑁 /
(2↑𝑥))) ↔ ¬ 2
∥ (⌊‘((𝑁
mod (2↑𝑀)) /
(2↑𝑥))))) | 
| 95 | 12, 14, 94 | 3bitr3d 309 | . . . . . . . . 9
⊢ ((((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0)
∧ 𝑥 ∈
ℕ0) ∧ 𝑥 < 𝑀) → ((𝑥 ∈ (bits‘𝑁) ∧ 𝑥 < 𝑀) ↔ ¬ 2 ∥
(⌊‘((𝑁 mod
(2↑𝑀)) / (2↑𝑥))))) | 
| 96 |  | z0even 16405 | . . . . . . . . . . . 12
⊢ 2 ∥
0 | 
| 97 | 1 | ad2antrr 726 | . . . . . . . . . . . . . . . 16
⊢ ((((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0)
∧ 𝑥 ∈
ℕ0) ∧ ¬ 𝑥 < 𝑀) → 𝑁 ∈ ℤ) | 
| 98 | 97 | zred 12724 | . . . . . . . . . . . . . . 15
⊢ ((((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0)
∧ 𝑥 ∈
ℕ0) ∧ ¬ 𝑥 < 𝑀) → 𝑁 ∈ ℝ) | 
| 99 |  | 2rp 13040 | . . . . . . . . . . . . . . . . 17
⊢ 2 ∈
ℝ+ | 
| 100 | 99 | a1i 11 | . . . . . . . . . . . . . . . 16
⊢ ((((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0)
∧ 𝑥 ∈
ℕ0) ∧ ¬ 𝑥 < 𝑀) → 2 ∈
ℝ+) | 
| 101 | 37 | nn0zd 12641 | . . . . . . . . . . . . . . . . 17
⊢ (((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0)
∧ 𝑥 ∈
ℕ0) → 𝑀 ∈ ℤ) | 
| 102 | 101 | adantr 480 | . . . . . . . . . . . . . . . 16
⊢ ((((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0)
∧ 𝑥 ∈
ℕ0) ∧ ¬ 𝑥 < 𝑀) → 𝑀 ∈ ℤ) | 
| 103 | 100, 102 | rpexpcld 14287 | . . . . . . . . . . . . . . 15
⊢ ((((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0)
∧ 𝑥 ∈
ℕ0) ∧ ¬ 𝑥 < 𝑀) → (2↑𝑀) ∈
ℝ+) | 
| 104 | 98, 103 | modcld 13916 | . . . . . . . . . . . . . 14
⊢ ((((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0)
∧ 𝑥 ∈
ℕ0) ∧ ¬ 𝑥 < 𝑀) → (𝑁 mod (2↑𝑀)) ∈ ℝ) | 
| 105 |  | simplr 768 | . . . . . . . . . . . . . . . 16
⊢ ((((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0)
∧ 𝑥 ∈
ℕ0) ∧ ¬ 𝑥 < 𝑀) → 𝑥 ∈ ℕ0) | 
| 106 | 105 | nn0zd 12641 | . . . . . . . . . . . . . . 15
⊢ ((((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0)
∧ 𝑥 ∈
ℕ0) ∧ ¬ 𝑥 < 𝑀) → 𝑥 ∈ ℤ) | 
| 107 | 100, 106 | rpexpcld 14287 | . . . . . . . . . . . . . 14
⊢ ((((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0)
∧ 𝑥 ∈
ℕ0) ∧ ¬ 𝑥 < 𝑀) → (2↑𝑥) ∈
ℝ+) | 
| 108 | 6 | ad2antrr 726 | . . . . . . . . . . . . . . 15
⊢ ((((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0)
∧ 𝑥 ∈
ℕ0) ∧ ¬ 𝑥 < 𝑀) → (𝑁 mod (2↑𝑀)) ∈
ℕ0) | 
| 109 | 108 | nn0ge0d 12592 | . . . . . . . . . . . . . 14
⊢ ((((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0)
∧ 𝑥 ∈
ℕ0) ∧ ¬ 𝑥 < 𝑀) → 0 ≤ (𝑁 mod (2↑𝑀))) | 
| 110 | 104, 107,
109 | divge0d 13118 | . . . . . . . . . . . . 13
⊢ ((((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0)
∧ 𝑥 ∈
ℕ0) ∧ ¬ 𝑥 < 𝑀) → 0 ≤ ((𝑁 mod (2↑𝑀)) / (2↑𝑥))) | 
| 111 | 103 | rpred 13078 | . . . . . . . . . . . . . . . . 17
⊢ ((((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0)
∧ 𝑥 ∈
ℕ0) ∧ ¬ 𝑥 < 𝑀) → (2↑𝑀) ∈ ℝ) | 
| 112 | 107 | rpred 13078 | . . . . . . . . . . . . . . . . 17
⊢ ((((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0)
∧ 𝑥 ∈
ℕ0) ∧ ¬ 𝑥 < 𝑀) → (2↑𝑥) ∈ ℝ) | 
| 113 |  | modlt 13921 | . . . . . . . . . . . . . . . . . 18
⊢ ((𝑁 ∈ ℝ ∧
(2↑𝑀) ∈
ℝ+) → (𝑁 mod (2↑𝑀)) < (2↑𝑀)) | 
| 114 | 98, 103, 113 | syl2anc 584 | . . . . . . . . . . . . . . . . 17
⊢ ((((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0)
∧ 𝑥 ∈
ℕ0) ∧ ¬ 𝑥 < 𝑀) → (𝑁 mod (2↑𝑀)) < (2↑𝑀)) | 
| 115 | 100 | rpred 13078 | . . . . . . . . . . . . . . . . . 18
⊢ ((((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0)
∧ 𝑥 ∈
ℕ0) ∧ ¬ 𝑥 < 𝑀) → 2 ∈ ℝ) | 
| 116 |  | 1le2 12476 | . . . . . . . . . . . . . . . . . . 19
⊢ 1 ≤
2 | 
| 117 | 116 | a1i 11 | . . . . . . . . . . . . . . . . . 18
⊢ ((((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0)
∧ 𝑥 ∈
ℕ0) ∧ ¬ 𝑥 < 𝑀) → 1 ≤ 2) | 
| 118 | 102 | zred 12724 | . . . . . . . . . . . . . . . . . . . 20
⊢ ((((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0)
∧ 𝑥 ∈
ℕ0) ∧ ¬ 𝑥 < 𝑀) → 𝑀 ∈ ℝ) | 
| 119 | 105 | nn0red 12590 | . . . . . . . . . . . . . . . . . . . 20
⊢ ((((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0)
∧ 𝑥 ∈
ℕ0) ∧ ¬ 𝑥 < 𝑀) → 𝑥 ∈ ℝ) | 
| 120 |  | simpr 484 | . . . . . . . . . . . . . . . . . . . 20
⊢ ((((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0)
∧ 𝑥 ∈
ℕ0) ∧ ¬ 𝑥 < 𝑀) → ¬ 𝑥 < 𝑀) | 
| 121 | 118, 119,
120 | nltled 11412 | . . . . . . . . . . . . . . . . . . 19
⊢ ((((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0)
∧ 𝑥 ∈
ℕ0) ∧ ¬ 𝑥 < 𝑀) → 𝑀 ≤ 𝑥) | 
| 122 |  | eluz2 12885 | . . . . . . . . . . . . . . . . . . 19
⊢ (𝑥 ∈
(ℤ≥‘𝑀) ↔ (𝑀 ∈ ℤ ∧ 𝑥 ∈ ℤ ∧ 𝑀 ≤ 𝑥)) | 
| 123 | 102, 106,
121, 122 | syl3anbrc 1343 | . . . . . . . . . . . . . . . . . 18
⊢ ((((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0)
∧ 𝑥 ∈
ℕ0) ∧ ¬ 𝑥 < 𝑀) → 𝑥 ∈ (ℤ≥‘𝑀)) | 
| 124 | 115, 117,
123 | leexp2ad 14294 | . . . . . . . . . . . . . . . . 17
⊢ ((((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0)
∧ 𝑥 ∈
ℕ0) ∧ ¬ 𝑥 < 𝑀) → (2↑𝑀) ≤ (2↑𝑥)) | 
| 125 | 104, 111,
112, 114, 124 | ltletrd 11422 | . . . . . . . . . . . . . . . 16
⊢ ((((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0)
∧ 𝑥 ∈
ℕ0) ∧ ¬ 𝑥 < 𝑀) → (𝑁 mod (2↑𝑀)) < (2↑𝑥)) | 
| 126 | 107 | rpcnd 13080 | . . . . . . . . . . . . . . . . 17
⊢ ((((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0)
∧ 𝑥 ∈
ℕ0) ∧ ¬ 𝑥 < 𝑀) → (2↑𝑥) ∈ ℂ) | 
| 127 | 126 | mulridd 11279 | . . . . . . . . . . . . . . . 16
⊢ ((((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0)
∧ 𝑥 ∈
ℕ0) ∧ ¬ 𝑥 < 𝑀) → ((2↑𝑥) · 1) = (2↑𝑥)) | 
| 128 | 125, 127 | breqtrrd 5170 | . . . . . . . . . . . . . . 15
⊢ ((((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0)
∧ 𝑥 ∈
ℕ0) ∧ ¬ 𝑥 < 𝑀) → (𝑁 mod (2↑𝑀)) < ((2↑𝑥) · 1)) | 
| 129 |  | 1red 11263 | . . . . . . . . . . . . . . . 16
⊢ ((((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0)
∧ 𝑥 ∈
ℕ0) ∧ ¬ 𝑥 < 𝑀) → 1 ∈ ℝ) | 
| 130 | 104, 129,
107 | ltdivmuld 13129 | . . . . . . . . . . . . . . 15
⊢ ((((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0)
∧ 𝑥 ∈
ℕ0) ∧ ¬ 𝑥 < 𝑀) → (((𝑁 mod (2↑𝑀)) / (2↑𝑥)) < 1 ↔ (𝑁 mod (2↑𝑀)) < ((2↑𝑥) · 1))) | 
| 131 | 128, 130 | mpbird 257 | . . . . . . . . . . . . . 14
⊢ ((((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0)
∧ 𝑥 ∈
ℕ0) ∧ ¬ 𝑥 < 𝑀) → ((𝑁 mod (2↑𝑀)) / (2↑𝑥)) < 1) | 
| 132 |  | 1e0p1 12777 | . . . . . . . . . . . . . 14
⊢ 1 = (0 +
1) | 
| 133 | 131, 132 | breqtrdi 5183 | . . . . . . . . . . . . 13
⊢ ((((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0)
∧ 𝑥 ∈
ℕ0) ∧ ¬ 𝑥 < 𝑀) → ((𝑁 mod (2↑𝑀)) / (2↑𝑥)) < (0 + 1)) | 
| 134 | 104, 107 | rerpdivcld 13109 | . . . . . . . . . . . . . 14
⊢ ((((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0)
∧ 𝑥 ∈
ℕ0) ∧ ¬ 𝑥 < 𝑀) → ((𝑁 mod (2↑𝑀)) / (2↑𝑥)) ∈ ℝ) | 
| 135 |  | 0z 12626 | . . . . . . . . . . . . . 14
⊢ 0 ∈
ℤ | 
| 136 |  | flbi 13857 | . . . . . . . . . . . . . 14
⊢ ((((𝑁 mod (2↑𝑀)) / (2↑𝑥)) ∈ ℝ ∧ 0 ∈ ℤ)
→ ((⌊‘((𝑁
mod (2↑𝑀)) /
(2↑𝑥))) = 0 ↔ (0
≤ ((𝑁 mod (2↑𝑀)) / (2↑𝑥)) ∧ ((𝑁 mod (2↑𝑀)) / (2↑𝑥)) < (0 + 1)))) | 
| 137 | 134, 135,
136 | sylancl 586 | . . . . . . . . . . . . 13
⊢ ((((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0)
∧ 𝑥 ∈
ℕ0) ∧ ¬ 𝑥 < 𝑀) → ((⌊‘((𝑁 mod (2↑𝑀)) / (2↑𝑥))) = 0 ↔ (0 ≤ ((𝑁 mod (2↑𝑀)) / (2↑𝑥)) ∧ ((𝑁 mod (2↑𝑀)) / (2↑𝑥)) < (0 + 1)))) | 
| 138 | 110, 133,
137 | mpbir2and 713 | . . . . . . . . . . . 12
⊢ ((((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0)
∧ 𝑥 ∈
ℕ0) ∧ ¬ 𝑥 < 𝑀) → (⌊‘((𝑁 mod (2↑𝑀)) / (2↑𝑥))) = 0) | 
| 139 | 96, 138 | breqtrrid 5180 | . . . . . . . . . . 11
⊢ ((((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0)
∧ 𝑥 ∈
ℕ0) ∧ ¬ 𝑥 < 𝑀) → 2 ∥ (⌊‘((𝑁 mod (2↑𝑀)) / (2↑𝑥)))) | 
| 140 | 120 | intnand 488 | . . . . . . . . . . 11
⊢ ((((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0)
∧ 𝑥 ∈
ℕ0) ∧ ¬ 𝑥 < 𝑀) → ¬ (𝑥 ∈ (bits‘𝑁) ∧ 𝑥 < 𝑀)) | 
| 141 | 139, 140 | 2thd 265 | . . . . . . . . . 10
⊢ ((((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0)
∧ 𝑥 ∈
ℕ0) ∧ ¬ 𝑥 < 𝑀) → (2 ∥ (⌊‘((𝑁 mod (2↑𝑀)) / (2↑𝑥))) ↔ ¬ (𝑥 ∈ (bits‘𝑁) ∧ 𝑥 < 𝑀))) | 
| 142 | 141 | con2bid 354 | . . . . . . . . 9
⊢ ((((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0)
∧ 𝑥 ∈
ℕ0) ∧ ¬ 𝑥 < 𝑀) → ((𝑥 ∈ (bits‘𝑁) ∧ 𝑥 < 𝑀) ↔ ¬ 2 ∥
(⌊‘((𝑁 mod
(2↑𝑀)) / (2↑𝑥))))) | 
| 143 | 95, 142 | pm2.61dan 812 | . . . . . . . 8
⊢ (((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0)
∧ 𝑥 ∈
ℕ0) → ((𝑥 ∈ (bits‘𝑁) ∧ 𝑥 < 𝑀) ↔ ¬ 2 ∥
(⌊‘((𝑁 mod
(2↑𝑀)) / (2↑𝑥))))) | 
| 144 | 101 | biantrurd 532 | . . . . . . . 8
⊢ (((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0)
∧ 𝑥 ∈
ℕ0) → ((𝑥 ∈ (bits‘𝑁) ∧ 𝑥 < 𝑀) ↔ (𝑀 ∈ ℤ ∧ (𝑥 ∈ (bits‘𝑁) ∧ 𝑥 < 𝑀)))) | 
| 145 | 143, 144 | bitr3d 281 | . . . . . . 7
⊢ (((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0)
∧ 𝑥 ∈
ℕ0) → (¬ 2 ∥ (⌊‘((𝑁 mod (2↑𝑀)) / (2↑𝑥))) ↔ (𝑀 ∈ ℤ ∧ (𝑥 ∈ (bits‘𝑁) ∧ 𝑥 < 𝑀)))) | 
| 146 |  | an12 645 | . . . . . . 7
⊢ ((𝑀 ∈ ℤ ∧ (𝑥 ∈ (bits‘𝑁) ∧ 𝑥 < 𝑀)) ↔ (𝑥 ∈ (bits‘𝑁) ∧ (𝑀 ∈ ℤ ∧ 𝑥 < 𝑀))) | 
| 147 | 145, 146 | bitrdi 287 | . . . . . 6
⊢ (((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0)
∧ 𝑥 ∈
ℕ0) → (¬ 2 ∥ (⌊‘((𝑁 mod (2↑𝑀)) / (2↑𝑥))) ↔ (𝑥 ∈ (bits‘𝑁) ∧ (𝑀 ∈ ℤ ∧ 𝑥 < 𝑀)))) | 
| 148 | 147 | pm5.32da 579 | . . . . 5
⊢ ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0)
→ ((𝑥 ∈
ℕ0 ∧ ¬ 2 ∥ (⌊‘((𝑁 mod (2↑𝑀)) / (2↑𝑥)))) ↔ (𝑥 ∈ ℕ0 ∧ (𝑥 ∈ (bits‘𝑁) ∧ (𝑀 ∈ ℤ ∧ 𝑥 < 𝑀))))) | 
| 149 | 8, 148 | bitr3d 281 | . . . 4
⊢ ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0)
→ (((𝑁 mod
(2↑𝑀)) ∈ ℤ
∧ (𝑥 ∈
ℕ0 ∧ ¬ 2 ∥ (⌊‘((𝑁 mod (2↑𝑀)) / (2↑𝑥))))) ↔ (𝑥 ∈ ℕ0 ∧ (𝑥 ∈ (bits‘𝑁) ∧ (𝑀 ∈ ℤ ∧ 𝑥 < 𝑀))))) | 
| 150 |  | 3anass 1094 | . . . 4
⊢ (((𝑁 mod (2↑𝑀)) ∈ ℤ ∧ 𝑥 ∈ ℕ0 ∧ ¬ 2
∥ (⌊‘((𝑁
mod (2↑𝑀)) /
(2↑𝑥)))) ↔
((𝑁 mod (2↑𝑀)) ∈ ℤ ∧ (𝑥 ∈ ℕ0
∧ ¬ 2 ∥ (⌊‘((𝑁 mod (2↑𝑀)) / (2↑𝑥)))))) | 
| 151 |  | elfzo2 13703 | . . . . . . 7
⊢ (𝑥 ∈ (0..^𝑀) ↔ (𝑥 ∈ (ℤ≥‘0)
∧ 𝑀 ∈ ℤ
∧ 𝑥 < 𝑀)) | 
| 152 |  | elnn0uz 12924 | . . . . . . . 8
⊢ (𝑥 ∈ ℕ0
↔ 𝑥 ∈
(ℤ≥‘0)) | 
| 153 | 152 | 3anbi1i 1157 | . . . . . . 7
⊢ ((𝑥 ∈ ℕ0
∧ 𝑀 ∈ ℤ
∧ 𝑥 < 𝑀) ↔ (𝑥 ∈ (ℤ≥‘0)
∧ 𝑀 ∈ ℤ
∧ 𝑥 < 𝑀)) | 
| 154 |  | 3anass 1094 | . . . . . . 7
⊢ ((𝑥 ∈ ℕ0
∧ 𝑀 ∈ ℤ
∧ 𝑥 < 𝑀) ↔ (𝑥 ∈ ℕ0 ∧ (𝑀 ∈ ℤ ∧ 𝑥 < 𝑀))) | 
| 155 | 151, 153,
154 | 3bitr2i 299 | . . . . . 6
⊢ (𝑥 ∈ (0..^𝑀) ↔ (𝑥 ∈ ℕ0 ∧ (𝑀 ∈ ℤ ∧ 𝑥 < 𝑀))) | 
| 156 | 155 | anbi2i 623 | . . . . 5
⊢ ((𝑥 ∈ (bits‘𝑁) ∧ 𝑥 ∈ (0..^𝑀)) ↔ (𝑥 ∈ (bits‘𝑁) ∧ (𝑥 ∈ ℕ0 ∧ (𝑀 ∈ ℤ ∧ 𝑥 < 𝑀)))) | 
| 157 |  | an12 645 | . . . . 5
⊢ ((𝑥 ∈ (bits‘𝑁) ∧ (𝑥 ∈ ℕ0 ∧ (𝑀 ∈ ℤ ∧ 𝑥 < 𝑀))) ↔ (𝑥 ∈ ℕ0 ∧ (𝑥 ∈ (bits‘𝑁) ∧ (𝑀 ∈ ℤ ∧ 𝑥 < 𝑀)))) | 
| 158 | 156, 157 | bitri 275 | . . . 4
⊢ ((𝑥 ∈ (bits‘𝑁) ∧ 𝑥 ∈ (0..^𝑀)) ↔ (𝑥 ∈ ℕ0 ∧ (𝑥 ∈ (bits‘𝑁) ∧ (𝑀 ∈ ℤ ∧ 𝑥 < 𝑀)))) | 
| 159 | 149, 150,
158 | 3bitr4g 314 | . . 3
⊢ ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0)
→ (((𝑁 mod
(2↑𝑀)) ∈ ℤ
∧ 𝑥 ∈
ℕ0 ∧ ¬ 2 ∥ (⌊‘((𝑁 mod (2↑𝑀)) / (2↑𝑥)))) ↔ (𝑥 ∈ (bits‘𝑁) ∧ 𝑥 ∈ (0..^𝑀)))) | 
| 160 |  | bitsval 16462 | . . 3
⊢ (𝑥 ∈ (bits‘(𝑁 mod (2↑𝑀))) ↔ ((𝑁 mod (2↑𝑀)) ∈ ℤ ∧ 𝑥 ∈ ℕ0 ∧ ¬ 2
∥ (⌊‘((𝑁
mod (2↑𝑀)) /
(2↑𝑥))))) | 
| 161 |  | elin 3966 | . . 3
⊢ (𝑥 ∈ ((bits‘𝑁) ∩ (0..^𝑀)) ↔ (𝑥 ∈ (bits‘𝑁) ∧ 𝑥 ∈ (0..^𝑀))) | 
| 162 | 159, 160,
161 | 3bitr4g 314 | . 2
⊢ ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0)
→ (𝑥 ∈
(bits‘(𝑁 mod
(2↑𝑀))) ↔ 𝑥 ∈ ((bits‘𝑁) ∩ (0..^𝑀)))) | 
| 163 | 162 | eqrdv 2734 | 1
⊢ ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0)
→ (bits‘(𝑁 mod
(2↑𝑀))) =
((bits‘𝑁) ∩
(0..^𝑀))) |