MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  iinfi Structured version   Visualization version   GIF version

Theorem iinfi 9374
Description: An indexed intersection of elements of 𝐶 is an element of the finite intersections of 𝐶. (Contributed by Mario Carneiro, 30-Aug-2015.)
Assertion
Ref Expression
iinfi ((𝐶𝑉 ∧ (∀𝑥𝐴 𝐵𝐶𝐴 ≠ ∅ ∧ 𝐴 ∈ Fin)) → 𝑥𝐴 𝐵 ∈ (fi‘𝐶))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐶
Allowed substitution hints:   𝐵(𝑥)   𝑉(𝑥)

Proof of Theorem iinfi
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 simpr1 1195 . . . 4 ((𝐶𝑉 ∧ (∀𝑥𝐴 𝐵𝐶𝐴 ≠ ∅ ∧ 𝐴 ∈ Fin)) → ∀𝑥𝐴 𝐵𝐶)
2 dfiin2g 4998 . . . 4 (∀𝑥𝐴 𝐵𝐶 𝑥𝐴 𝐵 = {𝑦 ∣ ∃𝑥𝐴 𝑦 = 𝐵})
31, 2syl 17 . . 3 ((𝐶𝑉 ∧ (∀𝑥𝐴 𝐵𝐶𝐴 ≠ ∅ ∧ 𝐴 ∈ Fin)) → 𝑥𝐴 𝐵 = {𝑦 ∣ ∃𝑥𝐴 𝑦 = 𝐵})
4 eqid 2730 . . . . 5 (𝑥𝐴𝐵) = (𝑥𝐴𝐵)
54rnmpt 5923 . . . 4 ran (𝑥𝐴𝐵) = {𝑦 ∣ ∃𝑥𝐴 𝑦 = 𝐵}
65inteqi 4916 . . 3 ran (𝑥𝐴𝐵) = {𝑦 ∣ ∃𝑥𝐴 𝑦 = 𝐵}
73, 6eqtr4di 2783 . 2 ((𝐶𝑉 ∧ (∀𝑥𝐴 𝐵𝐶𝐴 ≠ ∅ ∧ 𝐴 ∈ Fin)) → 𝑥𝐴 𝐵 = ran (𝑥𝐴𝐵))
84fmpt 7084 . . . 4 (∀𝑥𝐴 𝐵𝐶 ↔ (𝑥𝐴𝐵):𝐴𝐶)
983anbi1i 1157 . . 3 ((∀𝑥𝐴 𝐵𝐶𝐴 ≠ ∅ ∧ 𝐴 ∈ Fin) ↔ ((𝑥𝐴𝐵):𝐴𝐶𝐴 ≠ ∅ ∧ 𝐴 ∈ Fin))
10 intrnfi 9373 . . 3 ((𝐶𝑉 ∧ ((𝑥𝐴𝐵):𝐴𝐶𝐴 ≠ ∅ ∧ 𝐴 ∈ Fin)) → ran (𝑥𝐴𝐵) ∈ (fi‘𝐶))
119, 10sylan2b 594 . 2 ((𝐶𝑉 ∧ (∀𝑥𝐴 𝐵𝐶𝐴 ≠ ∅ ∧ 𝐴 ∈ Fin)) → ran (𝑥𝐴𝐵) ∈ (fi‘𝐶))
127, 11eqeltrd 2829 1 ((𝐶𝑉 ∧ (∀𝑥𝐴 𝐵𝐶𝐴 ≠ ∅ ∧ 𝐴 ∈ Fin)) → 𝑥𝐴 𝐵 ∈ (fi‘𝐶))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2109  {cab 2708  wne 2926  wral 3045  wrex 3054  c0 4298   cint 4912   ciin 4958  cmpt 5190  ran crn 5641  wf 6509  cfv 6513  Fincfn 8920  ficfi 9367
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5253  ax-nul 5263  ax-pow 5322  ax-pr 5389  ax-un 7713
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3756  df-dif 3919  df-un 3921  df-in 3923  df-ss 3933  df-pss 3936  df-nul 4299  df-if 4491  df-pw 4567  df-sn 4592  df-pr 4594  df-op 4598  df-uni 4874  df-int 4913  df-iin 4960  df-br 5110  df-opab 5172  df-mpt 5191  df-tr 5217  df-id 5535  df-eprel 5540  df-po 5548  df-so 5549  df-fr 5593  df-we 5595  df-xp 5646  df-rel 5647  df-cnv 5648  df-co 5649  df-dm 5650  df-rn 5651  df-res 5652  df-ima 5653  df-ord 6337  df-on 6338  df-lim 6339  df-suc 6340  df-iota 6466  df-fun 6515  df-fn 6516  df-f 6517  df-f1 6518  df-fo 6519  df-f1o 6520  df-fv 6521  df-om 7845  df-1o 8436  df-en 8921  df-dom 8922  df-fin 8924  df-fi 9368
This theorem is referenced by:  firest  17401  iscmet3  25199  sigapildsyslem  34157
  Copyright terms: Public domain W3C validator