MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  iinfi Structured version   Visualization version   GIF version

Theorem iinfi 9312
Description: An indexed intersection of elements of 𝐶 is an element of the finite intersections of 𝐶. (Contributed by Mario Carneiro, 30-Aug-2015.)
Assertion
Ref Expression
iinfi ((𝐶𝑉 ∧ (∀𝑥𝐴 𝐵𝐶𝐴 ≠ ∅ ∧ 𝐴 ∈ Fin)) → 𝑥𝐴 𝐵 ∈ (fi‘𝐶))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐶
Allowed substitution hints:   𝐵(𝑥)   𝑉(𝑥)

Proof of Theorem iinfi
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 simpr1 1195 . . . 4 ((𝐶𝑉 ∧ (∀𝑥𝐴 𝐵𝐶𝐴 ≠ ∅ ∧ 𝐴 ∈ Fin)) → ∀𝑥𝐴 𝐵𝐶)
2 dfiin2g 4983 . . . 4 (∀𝑥𝐴 𝐵𝐶 𝑥𝐴 𝐵 = {𝑦 ∣ ∃𝑥𝐴 𝑦 = 𝐵})
31, 2syl 17 . . 3 ((𝐶𝑉 ∧ (∀𝑥𝐴 𝐵𝐶𝐴 ≠ ∅ ∧ 𝐴 ∈ Fin)) → 𝑥𝐴 𝐵 = {𝑦 ∣ ∃𝑥𝐴 𝑦 = 𝐵})
4 eqid 2733 . . . . 5 (𝑥𝐴𝐵) = (𝑥𝐴𝐵)
54rnmpt 5903 . . . 4 ran (𝑥𝐴𝐵) = {𝑦 ∣ ∃𝑥𝐴 𝑦 = 𝐵}
65inteqi 4903 . . 3 ran (𝑥𝐴𝐵) = {𝑦 ∣ ∃𝑥𝐴 𝑦 = 𝐵}
73, 6eqtr4di 2786 . 2 ((𝐶𝑉 ∧ (∀𝑥𝐴 𝐵𝐶𝐴 ≠ ∅ ∧ 𝐴 ∈ Fin)) → 𝑥𝐴 𝐵 = ran (𝑥𝐴𝐵))
84fmpt 7052 . . . 4 (∀𝑥𝐴 𝐵𝐶 ↔ (𝑥𝐴𝐵):𝐴𝐶)
983anbi1i 1157 . . 3 ((∀𝑥𝐴 𝐵𝐶𝐴 ≠ ∅ ∧ 𝐴 ∈ Fin) ↔ ((𝑥𝐴𝐵):𝐴𝐶𝐴 ≠ ∅ ∧ 𝐴 ∈ Fin))
10 intrnfi 9311 . . 3 ((𝐶𝑉 ∧ ((𝑥𝐴𝐵):𝐴𝐶𝐴 ≠ ∅ ∧ 𝐴 ∈ Fin)) → ran (𝑥𝐴𝐵) ∈ (fi‘𝐶))
119, 10sylan2b 594 . 2 ((𝐶𝑉 ∧ (∀𝑥𝐴 𝐵𝐶𝐴 ≠ ∅ ∧ 𝐴 ∈ Fin)) → ran (𝑥𝐴𝐵) ∈ (fi‘𝐶))
127, 11eqeltrd 2833 1 ((𝐶𝑉 ∧ (∀𝑥𝐴 𝐵𝐶𝐴 ≠ ∅ ∧ 𝐴 ∈ Fin)) → 𝑥𝐴 𝐵 ∈ (fi‘𝐶))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1541  wcel 2113  {cab 2711  wne 2929  wral 3048  wrex 3057  c0 4282   cint 4899   ciin 4944  cmpt 5176  ran crn 5622  wf 6485  cfv 6489  Fincfn 8879  ficfi 9305
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7677
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-ral 3049  df-rex 3058  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-pss 3918  df-nul 4283  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4861  df-int 4900  df-iin 4946  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5516  df-eprel 5521  df-po 5529  df-so 5530  df-fr 5574  df-we 5576  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-rn 5632  df-res 5633  df-ima 5634  df-ord 6317  df-on 6318  df-lim 6319  df-suc 6320  df-iota 6445  df-fun 6491  df-fn 6492  df-f 6493  df-f1 6494  df-fo 6495  df-f1o 6496  df-fv 6497  df-om 7806  df-1o 8394  df-en 8880  df-dom 8881  df-fin 8883  df-fi 9306
This theorem is referenced by:  firest  17343  iscmet3  25240  sigapildsyslem  34246
  Copyright terms: Public domain W3C validator