![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > iinfi | Structured version Visualization version GIF version |
Description: An indexed intersection of elements of 𝐶 is an element of the finite intersections of 𝐶. (Contributed by Mario Carneiro, 30-Aug-2015.) |
Ref | Expression |
---|---|
iinfi | ⊢ ((𝐶 ∈ 𝑉 ∧ (∀𝑥 ∈ 𝐴 𝐵 ∈ 𝐶 ∧ 𝐴 ≠ ∅ ∧ 𝐴 ∈ Fin)) → ∩ 𝑥 ∈ 𝐴 𝐵 ∈ (fi‘𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpr1 1194 | . . . 4 ⊢ ((𝐶 ∈ 𝑉 ∧ (∀𝑥 ∈ 𝐴 𝐵 ∈ 𝐶 ∧ 𝐴 ≠ ∅ ∧ 𝐴 ∈ Fin)) → ∀𝑥 ∈ 𝐴 𝐵 ∈ 𝐶) | |
2 | dfiin2g 5035 | . . . 4 ⊢ (∀𝑥 ∈ 𝐴 𝐵 ∈ 𝐶 → ∩ 𝑥 ∈ 𝐴 𝐵 = ∩ {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 = 𝐵}) | |
3 | 1, 2 | syl 17 | . . 3 ⊢ ((𝐶 ∈ 𝑉 ∧ (∀𝑥 ∈ 𝐴 𝐵 ∈ 𝐶 ∧ 𝐴 ≠ ∅ ∧ 𝐴 ∈ Fin)) → ∩ 𝑥 ∈ 𝐴 𝐵 = ∩ {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 = 𝐵}) |
4 | eqid 2732 | . . . . 5 ⊢ (𝑥 ∈ 𝐴 ↦ 𝐵) = (𝑥 ∈ 𝐴 ↦ 𝐵) | |
5 | 4 | rnmpt 5954 | . . . 4 ⊢ ran (𝑥 ∈ 𝐴 ↦ 𝐵) = {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 = 𝐵} |
6 | 5 | inteqi 4954 | . . 3 ⊢ ∩ ran (𝑥 ∈ 𝐴 ↦ 𝐵) = ∩ {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 = 𝐵} |
7 | 3, 6 | eqtr4di 2790 | . 2 ⊢ ((𝐶 ∈ 𝑉 ∧ (∀𝑥 ∈ 𝐴 𝐵 ∈ 𝐶 ∧ 𝐴 ≠ ∅ ∧ 𝐴 ∈ Fin)) → ∩ 𝑥 ∈ 𝐴 𝐵 = ∩ ran (𝑥 ∈ 𝐴 ↦ 𝐵)) |
8 | 4 | fmpt 7111 | . . . 4 ⊢ (∀𝑥 ∈ 𝐴 𝐵 ∈ 𝐶 ↔ (𝑥 ∈ 𝐴 ↦ 𝐵):𝐴⟶𝐶) |
9 | 8 | 3anbi1i 1157 | . . 3 ⊢ ((∀𝑥 ∈ 𝐴 𝐵 ∈ 𝐶 ∧ 𝐴 ≠ ∅ ∧ 𝐴 ∈ Fin) ↔ ((𝑥 ∈ 𝐴 ↦ 𝐵):𝐴⟶𝐶 ∧ 𝐴 ≠ ∅ ∧ 𝐴 ∈ Fin)) |
10 | intrnfi 9413 | . . 3 ⊢ ((𝐶 ∈ 𝑉 ∧ ((𝑥 ∈ 𝐴 ↦ 𝐵):𝐴⟶𝐶 ∧ 𝐴 ≠ ∅ ∧ 𝐴 ∈ Fin)) → ∩ ran (𝑥 ∈ 𝐴 ↦ 𝐵) ∈ (fi‘𝐶)) | |
11 | 9, 10 | sylan2b 594 | . 2 ⊢ ((𝐶 ∈ 𝑉 ∧ (∀𝑥 ∈ 𝐴 𝐵 ∈ 𝐶 ∧ 𝐴 ≠ ∅ ∧ 𝐴 ∈ Fin)) → ∩ ran (𝑥 ∈ 𝐴 ↦ 𝐵) ∈ (fi‘𝐶)) |
12 | 7, 11 | eqeltrd 2833 | 1 ⊢ ((𝐶 ∈ 𝑉 ∧ (∀𝑥 ∈ 𝐴 𝐵 ∈ 𝐶 ∧ 𝐴 ≠ ∅ ∧ 𝐴 ∈ Fin)) → ∩ 𝑥 ∈ 𝐴 𝐵 ∈ (fi‘𝐶)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 ∧ w3a 1087 = wceq 1541 ∈ wcel 2106 {cab 2709 ≠ wne 2940 ∀wral 3061 ∃wrex 3070 ∅c0 4322 ∩ cint 4950 ∩ ciin 4998 ↦ cmpt 5231 ran crn 5677 ⟶wf 6539 ‘cfv 6543 Fincfn 8941 ficfi 9407 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7727 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-ral 3062 df-rex 3071 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3778 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-pss 3967 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-int 4951 df-iin 5000 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5574 df-eprel 5580 df-po 5588 df-so 5589 df-fr 5631 df-we 5633 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-ord 6367 df-on 6368 df-lim 6369 df-suc 6370 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-om 7858 df-1o 8468 df-er 8705 df-en 8942 df-dom 8943 df-fin 8945 df-fi 9408 |
This theorem is referenced by: firest 17382 iscmet3 25034 sigapildsyslem 33445 |
Copyright terms: Public domain | W3C validator |