Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > iinfi | Structured version Visualization version GIF version |
Description: An indexed intersection of elements of 𝐶 is an element of the finite intersections of 𝐶. (Contributed by Mario Carneiro, 30-Aug-2015.) |
Ref | Expression |
---|---|
iinfi | ⊢ ((𝐶 ∈ 𝑉 ∧ (∀𝑥 ∈ 𝐴 𝐵 ∈ 𝐶 ∧ 𝐴 ≠ ∅ ∧ 𝐴 ∈ Fin)) → ∩ 𝑥 ∈ 𝐴 𝐵 ∈ (fi‘𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpr1 1192 | . . . 4 ⊢ ((𝐶 ∈ 𝑉 ∧ (∀𝑥 ∈ 𝐴 𝐵 ∈ 𝐶 ∧ 𝐴 ≠ ∅ ∧ 𝐴 ∈ Fin)) → ∀𝑥 ∈ 𝐴 𝐵 ∈ 𝐶) | |
2 | dfiin2g 4958 | . . . 4 ⊢ (∀𝑥 ∈ 𝐴 𝐵 ∈ 𝐶 → ∩ 𝑥 ∈ 𝐴 𝐵 = ∩ {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 = 𝐵}) | |
3 | 1, 2 | syl 17 | . . 3 ⊢ ((𝐶 ∈ 𝑉 ∧ (∀𝑥 ∈ 𝐴 𝐵 ∈ 𝐶 ∧ 𝐴 ≠ ∅ ∧ 𝐴 ∈ Fin)) → ∩ 𝑥 ∈ 𝐴 𝐵 = ∩ {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 = 𝐵}) |
4 | eqid 2738 | . . . . 5 ⊢ (𝑥 ∈ 𝐴 ↦ 𝐵) = (𝑥 ∈ 𝐴 ↦ 𝐵) | |
5 | 4 | rnmpt 5853 | . . . 4 ⊢ ran (𝑥 ∈ 𝐴 ↦ 𝐵) = {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 = 𝐵} |
6 | 5 | inteqi 4880 | . . 3 ⊢ ∩ ran (𝑥 ∈ 𝐴 ↦ 𝐵) = ∩ {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 = 𝐵} |
7 | 3, 6 | eqtr4di 2797 | . 2 ⊢ ((𝐶 ∈ 𝑉 ∧ (∀𝑥 ∈ 𝐴 𝐵 ∈ 𝐶 ∧ 𝐴 ≠ ∅ ∧ 𝐴 ∈ Fin)) → ∩ 𝑥 ∈ 𝐴 𝐵 = ∩ ran (𝑥 ∈ 𝐴 ↦ 𝐵)) |
8 | 4 | fmpt 6966 | . . . 4 ⊢ (∀𝑥 ∈ 𝐴 𝐵 ∈ 𝐶 ↔ (𝑥 ∈ 𝐴 ↦ 𝐵):𝐴⟶𝐶) |
9 | 8 | 3anbi1i 1155 | . . 3 ⊢ ((∀𝑥 ∈ 𝐴 𝐵 ∈ 𝐶 ∧ 𝐴 ≠ ∅ ∧ 𝐴 ∈ Fin) ↔ ((𝑥 ∈ 𝐴 ↦ 𝐵):𝐴⟶𝐶 ∧ 𝐴 ≠ ∅ ∧ 𝐴 ∈ Fin)) |
10 | intrnfi 9105 | . . 3 ⊢ ((𝐶 ∈ 𝑉 ∧ ((𝑥 ∈ 𝐴 ↦ 𝐵):𝐴⟶𝐶 ∧ 𝐴 ≠ ∅ ∧ 𝐴 ∈ Fin)) → ∩ ran (𝑥 ∈ 𝐴 ↦ 𝐵) ∈ (fi‘𝐶)) | |
11 | 9, 10 | sylan2b 593 | . 2 ⊢ ((𝐶 ∈ 𝑉 ∧ (∀𝑥 ∈ 𝐴 𝐵 ∈ 𝐶 ∧ 𝐴 ≠ ∅ ∧ 𝐴 ∈ Fin)) → ∩ ran (𝑥 ∈ 𝐴 ↦ 𝐵) ∈ (fi‘𝐶)) |
12 | 7, 11 | eqeltrd 2839 | 1 ⊢ ((𝐶 ∈ 𝑉 ∧ (∀𝑥 ∈ 𝐴 𝐵 ∈ 𝐶 ∧ 𝐴 ≠ ∅ ∧ 𝐴 ∈ Fin)) → ∩ 𝑥 ∈ 𝐴 𝐵 ∈ (fi‘𝐶)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1085 = wceq 1539 ∈ wcel 2108 {cab 2715 ≠ wne 2942 ∀wral 3063 ∃wrex 3064 ∅c0 4253 ∩ cint 4876 ∩ ciin 4922 ↦ cmpt 5153 ran crn 5581 ⟶wf 6414 ‘cfv 6418 Fincfn 8691 ficfi 9099 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-ral 3068 df-rex 3069 df-reu 3070 df-rab 3072 df-v 3424 df-sbc 3712 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-int 4877 df-iin 4924 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-om 7688 df-1o 8267 df-er 8456 df-en 8692 df-dom 8693 df-fin 8695 df-fi 9100 |
This theorem is referenced by: firest 17060 iscmet3 24362 sigapildsyslem 32029 |
Copyright terms: Public domain | W3C validator |