MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  brfi1uzind Structured version   Visualization version   GIF version

Theorem brfi1uzind 13707
Description: Properties of a binary relation with a finite first component with at least L elements, proven by finite induction on the size of the first component. This theorem can be applied for graphs (as binary relation between the set of vertices and an edge function) with a finite number of vertices, usually with 𝐿 = 0 (see brfi1ind 13708) or 𝐿 = 1. (Contributed by Alexander van der Vekens, 7-Jan-2018.) (Proof shortened by AV, 23-Oct-2020.) (Revised by AV, 28-Mar-2021.)
Hypotheses
Ref Expression
brfi1uzind.r Rel 𝐺
brfi1uzind.f 𝐹 ∈ V
brfi1uzind.l 𝐿 ∈ ℕ0
brfi1uzind.1 ((𝑣 = 𝑉𝑒 = 𝐸) → (𝜓𝜑))
brfi1uzind.2 ((𝑣 = 𝑤𝑒 = 𝑓) → (𝜓𝜃))
brfi1uzind.3 ((𝑣𝐺𝑒𝑛𝑣) → (𝑣 ∖ {𝑛})𝐺𝐹)
brfi1uzind.4 ((𝑤 = (𝑣 ∖ {𝑛}) ∧ 𝑓 = 𝐹) → (𝜃𝜒))
brfi1uzind.base ((𝑣𝐺𝑒 ∧ (♯‘𝑣) = 𝐿) → 𝜓)
brfi1uzind.step ((((𝑦 + 1) ∈ ℕ0 ∧ (𝑣𝐺𝑒 ∧ (♯‘𝑣) = (𝑦 + 1) ∧ 𝑛𝑣)) ∧ 𝜒) → 𝜓)
Assertion
Ref Expression
brfi1uzind ((𝑉𝐺𝐸𝑉 ∈ Fin ∧ 𝐿 ≤ (♯‘𝑉)) → 𝜑)
Distinct variable groups:   𝑒,𝐸,𝑛,𝑣   𝑓,𝐹,𝑤   𝑒,𝐺,𝑓,𝑛,𝑣,𝑤,𝑦   𝑒,𝐿,𝑛,𝑣,𝑦   𝑒,𝑉,𝑛,𝑣   𝜓,𝑓,𝑛,𝑤,𝑦   𝜃,𝑒,𝑛,𝑣   𝜒,𝑓,𝑤   𝜑,𝑒,𝑛,𝑣
Allowed substitution hints:   𝜑(𝑦,𝑤,𝑓)   𝜓(𝑣,𝑒)   𝜒(𝑦,𝑣,𝑒,𝑛)   𝜃(𝑦,𝑤,𝑓)   𝐸(𝑦,𝑤,𝑓)   𝐹(𝑦,𝑣,𝑒,𝑛)   𝐿(𝑤,𝑓)   𝑉(𝑦,𝑤,𝑓)

Proof of Theorem brfi1uzind
Dummy variables 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 brfi1uzind.r . . . 4 Rel 𝐺
21brrelex12i 5498 . . 3 (𝑉𝐺𝐸 → (𝑉 ∈ V ∧ 𝐸 ∈ V))
3 simpl 483 . . . . 5 ((𝑉 ∈ V ∧ 𝐸 ∈ V) → 𝑉 ∈ V)
4 simplr 765 . . . . . 6 (((𝑉 ∈ V ∧ 𝐸 ∈ V) ∧ 𝑎 = 𝑉) → 𝐸 ∈ V)
5 breq12 4971 . . . . . . 7 ((𝑎 = 𝑉𝑏 = 𝐸) → (𝑎𝐺𝑏𝑉𝐺𝐸))
65adantll 710 . . . . . 6 ((((𝑉 ∈ V ∧ 𝐸 ∈ V) ∧ 𝑎 = 𝑉) ∧ 𝑏 = 𝐸) → (𝑎𝐺𝑏𝑉𝐺𝐸))
74, 6sbcied 3746 . . . . 5 (((𝑉 ∈ V ∧ 𝐸 ∈ V) ∧ 𝑎 = 𝑉) → ([𝐸 / 𝑏]𝑎𝐺𝑏𝑉𝐺𝐸))
83, 7sbcied 3746 . . . 4 ((𝑉 ∈ V ∧ 𝐸 ∈ V) → ([𝑉 / 𝑎][𝐸 / 𝑏]𝑎𝐺𝑏𝑉𝐺𝐸))
98biimprcd 251 . . 3 (𝑉𝐺𝐸 → ((𝑉 ∈ V ∧ 𝐸 ∈ V) → [𝑉 / 𝑎][𝐸 / 𝑏]𝑎𝐺𝑏))
102, 9mpd 15 . 2 (𝑉𝐺𝐸[𝑉 / 𝑎][𝐸 / 𝑏]𝑎𝐺𝑏)
11 brfi1uzind.f . . 3 𝐹 ∈ V
12 brfi1uzind.l . . 3 𝐿 ∈ ℕ0
13 brfi1uzind.1 . . 3 ((𝑣 = 𝑉𝑒 = 𝐸) → (𝜓𝜑))
14 brfi1uzind.2 . . 3 ((𝑣 = 𝑤𝑒 = 𝑓) → (𝜓𝜃))
15 vex 3440 . . . . 5 𝑣 ∈ V
16 vex 3440 . . . . 5 𝑒 ∈ V
17 breq12 4971 . . . . 5 ((𝑎 = 𝑣𝑏 = 𝑒) → (𝑎𝐺𝑏𝑣𝐺𝑒))
1815, 16, 17sbc2ie 3782 . . . 4 ([𝑣 / 𝑎][𝑒 / 𝑏]𝑎𝐺𝑏𝑣𝐺𝑒)
19 brfi1uzind.3 . . . . 5 ((𝑣𝐺𝑒𝑛𝑣) → (𝑣 ∖ {𝑛})𝐺𝐹)
2015difexi 5128 . . . . . 6 (𝑣 ∖ {𝑛}) ∈ V
21 breq12 4971 . . . . . 6 ((𝑎 = (𝑣 ∖ {𝑛}) ∧ 𝑏 = 𝐹) → (𝑎𝐺𝑏 ↔ (𝑣 ∖ {𝑛})𝐺𝐹))
2220, 11, 21sbc2ie 3782 . . . . 5 ([(𝑣 ∖ {𝑛}) / 𝑎][𝐹 / 𝑏]𝑎𝐺𝑏 ↔ (𝑣 ∖ {𝑛})𝐺𝐹)
2319, 22sylibr 235 . . . 4 ((𝑣𝐺𝑒𝑛𝑣) → [(𝑣 ∖ {𝑛}) / 𝑎][𝐹 / 𝑏]𝑎𝐺𝑏)
2418, 23sylanb 581 . . 3 (([𝑣 / 𝑎][𝑒 / 𝑏]𝑎𝐺𝑏𝑛𝑣) → [(𝑣 ∖ {𝑛}) / 𝑎][𝐹 / 𝑏]𝑎𝐺𝑏)
25 brfi1uzind.4 . . 3 ((𝑤 = (𝑣 ∖ {𝑛}) ∧ 𝑓 = 𝐹) → (𝜃𝜒))
26 brfi1uzind.base . . . 4 ((𝑣𝐺𝑒 ∧ (♯‘𝑣) = 𝐿) → 𝜓)
2718, 26sylanb 581 . . 3 (([𝑣 / 𝑎][𝑒 / 𝑏]𝑎𝐺𝑏 ∧ (♯‘𝑣) = 𝐿) → 𝜓)
28183anbi1i 1150 . . . . 5 (([𝑣 / 𝑎][𝑒 / 𝑏]𝑎𝐺𝑏 ∧ (♯‘𝑣) = (𝑦 + 1) ∧ 𝑛𝑣) ↔ (𝑣𝐺𝑒 ∧ (♯‘𝑣) = (𝑦 + 1) ∧ 𝑛𝑣))
2928anbi2i 622 . . . 4 (((𝑦 + 1) ∈ ℕ0 ∧ ([𝑣 / 𝑎][𝑒 / 𝑏]𝑎𝐺𝑏 ∧ (♯‘𝑣) = (𝑦 + 1) ∧ 𝑛𝑣)) ↔ ((𝑦 + 1) ∈ ℕ0 ∧ (𝑣𝐺𝑒 ∧ (♯‘𝑣) = (𝑦 + 1) ∧ 𝑛𝑣)))
30 brfi1uzind.step . . . 4 ((((𝑦 + 1) ∈ ℕ0 ∧ (𝑣𝐺𝑒 ∧ (♯‘𝑣) = (𝑦 + 1) ∧ 𝑛𝑣)) ∧ 𝜒) → 𝜓)
3129, 30sylanb 581 . . 3 ((((𝑦 + 1) ∈ ℕ0 ∧ ([𝑣 / 𝑎][𝑒 / 𝑏]𝑎𝐺𝑏 ∧ (♯‘𝑣) = (𝑦 + 1) ∧ 𝑛𝑣)) ∧ 𝜒) → 𝜓)
3211, 12, 13, 14, 24, 25, 27, 31fi1uzind 13706 . 2 (([𝑉 / 𝑎][𝐸 / 𝑏]𝑎𝐺𝑏𝑉 ∈ Fin ∧ 𝐿 ≤ (♯‘𝑉)) → 𝜑)
3310, 32syl3an1 1156 1 ((𝑉𝐺𝐸𝑉 ∈ Fin ∧ 𝐿 ≤ (♯‘𝑉)) → 𝜑)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 207  wa 396  w3a 1080   = wceq 1522  wcel 2081  Vcvv 3437  [wsbc 3709  cdif 3860  {csn 4476   class class class wbr 4966  Rel wrel 5453  cfv 6230  (class class class)co 7021  Fincfn 8362  1c1 10389   + caddc 10391  cle 10527  0cn0 11750  chash 13545
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1777  ax-4 1791  ax-5 1888  ax-6 1947  ax-7 1992  ax-8 2083  ax-9 2091  ax-10 2112  ax-11 2126  ax-12 2141  ax-13 2344  ax-ext 2769  ax-rep 5086  ax-sep 5099  ax-nul 5106  ax-pow 5162  ax-pr 5226  ax-un 7324  ax-cnex 10444  ax-resscn 10445  ax-1cn 10446  ax-icn 10447  ax-addcl 10448  ax-addrcl 10449  ax-mulcl 10450  ax-mulrcl 10451  ax-mulcom 10452  ax-addass 10453  ax-mulass 10454  ax-distr 10455  ax-i2m1 10456  ax-1ne0 10457  ax-1rid 10458  ax-rnegex 10459  ax-rrecex 10460  ax-cnre 10461  ax-pre-lttri 10462  ax-pre-lttrn 10463  ax-pre-ltadd 10464  ax-pre-mulgt0 10465
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 843  df-3or 1081  df-3an 1082  df-tru 1525  df-ex 1762  df-nf 1766  df-sb 2043  df-mo 2576  df-eu 2612  df-clab 2776  df-cleq 2788  df-clel 2863  df-nfc 2935  df-ne 2985  df-nel 3091  df-ral 3110  df-rex 3111  df-reu 3112  df-rmo 3113  df-rab 3114  df-v 3439  df-sbc 3710  df-csb 3816  df-dif 3866  df-un 3868  df-in 3870  df-ss 3878  df-pss 3880  df-nul 4216  df-if 4386  df-pw 4459  df-sn 4477  df-pr 4479  df-tp 4481  df-op 4483  df-uni 4750  df-int 4787  df-iun 4831  df-br 4967  df-opab 5029  df-mpt 5046  df-tr 5069  df-id 5353  df-eprel 5358  df-po 5367  df-so 5368  df-fr 5407  df-we 5409  df-xp 5454  df-rel 5455  df-cnv 5456  df-co 5457  df-dm 5458  df-rn 5459  df-res 5460  df-ima 5461  df-pred 6028  df-ord 6074  df-on 6075  df-lim 6076  df-suc 6077  df-iota 6194  df-fun 6232  df-fn 6233  df-f 6234  df-f1 6235  df-fo 6236  df-f1o 6237  df-fv 6238  df-riota 6982  df-ov 7024  df-oprab 7025  df-mpo 7026  df-om 7442  df-1st 7550  df-2nd 7551  df-wrecs 7803  df-recs 7865  df-rdg 7903  df-1o 7958  df-oadd 7962  df-er 8144  df-en 8363  df-dom 8364  df-sdom 8365  df-fin 8366  df-dju 9181  df-card 9219  df-pnf 10528  df-mnf 10529  df-xr 10530  df-ltxr 10531  df-le 10532  df-sub 10724  df-neg 10725  df-nn 11492  df-n0 11751  df-xnn0 11821  df-z 11835  df-uz 12099  df-fz 12748  df-hash 13546
This theorem is referenced by:  brfi1ind  13708
  Copyright terms: Public domain W3C validator