MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  brfi1uzind Structured version   Visualization version   GIF version

Theorem brfi1uzind 14544
Description: Properties of a binary relation with a finite first component with at least L elements, proven by finite induction on the size of the first component. This theorem can be applied for graphs (as binary relation between the set of vertices and an edge function) with a finite number of vertices, usually with 𝐿 = 0 (see brfi1ind 14545) or 𝐿 = 1. (Contributed by Alexander van der Vekens, 7-Jan-2018.) (Proof shortened by AV, 23-Oct-2020.) (Revised by AV, 28-Mar-2021.)
Hypotheses
Ref Expression
brfi1uzind.r Rel 𝐺
brfi1uzind.f 𝐹 ∈ V
brfi1uzind.l 𝐿 ∈ ℕ0
brfi1uzind.1 ((𝑣 = 𝑉𝑒 = 𝐸) → (𝜓𝜑))
brfi1uzind.2 ((𝑣 = 𝑤𝑒 = 𝑓) → (𝜓𝜃))
brfi1uzind.3 ((𝑣𝐺𝑒𝑛𝑣) → (𝑣 ∖ {𝑛})𝐺𝐹)
brfi1uzind.4 ((𝑤 = (𝑣 ∖ {𝑛}) ∧ 𝑓 = 𝐹) → (𝜃𝜒))
brfi1uzind.base ((𝑣𝐺𝑒 ∧ (♯‘𝑣) = 𝐿) → 𝜓)
brfi1uzind.step ((((𝑦 + 1) ∈ ℕ0 ∧ (𝑣𝐺𝑒 ∧ (♯‘𝑣) = (𝑦 + 1) ∧ 𝑛𝑣)) ∧ 𝜒) → 𝜓)
Assertion
Ref Expression
brfi1uzind ((𝑉𝐺𝐸𝑉 ∈ Fin ∧ 𝐿 ≤ (♯‘𝑉)) → 𝜑)
Distinct variable groups:   𝑒,𝐸,𝑛,𝑣   𝑓,𝐹,𝑤   𝑒,𝐺,𝑓,𝑛,𝑣,𝑤,𝑦   𝑒,𝐿,𝑛,𝑣,𝑦   𝑒,𝑉,𝑛,𝑣   𝜓,𝑓,𝑛,𝑤,𝑦   𝜃,𝑒,𝑛,𝑣   𝜒,𝑓,𝑤   𝜑,𝑒,𝑛,𝑣
Allowed substitution hints:   𝜑(𝑦,𝑤,𝑓)   𝜓(𝑣,𝑒)   𝜒(𝑦,𝑣,𝑒,𝑛)   𝜃(𝑦,𝑤,𝑓)   𝐸(𝑦,𝑤,𝑓)   𝐹(𝑦,𝑣,𝑒,𝑛)   𝐿(𝑤,𝑓)   𝑉(𝑦,𝑤,𝑓)

Proof of Theorem brfi1uzind
Dummy variables 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 brfi1uzind.r . . . 4 Rel 𝐺
21brrelex12i 5744 . . 3 (𝑉𝐺𝐸 → (𝑉 ∈ V ∧ 𝐸 ∈ V))
3 simpl 482 . . . . 5 ((𝑉 ∈ V ∧ 𝐸 ∈ V) → 𝑉 ∈ V)
4 simplr 769 . . . . . 6 (((𝑉 ∈ V ∧ 𝐸 ∈ V) ∧ 𝑎 = 𝑉) → 𝐸 ∈ V)
5 breq12 5153 . . . . . . 7 ((𝑎 = 𝑉𝑏 = 𝐸) → (𝑎𝐺𝑏𝑉𝐺𝐸))
65adantll 714 . . . . . 6 ((((𝑉 ∈ V ∧ 𝐸 ∈ V) ∧ 𝑎 = 𝑉) ∧ 𝑏 = 𝐸) → (𝑎𝐺𝑏𝑉𝐺𝐸))
74, 6sbcied 3837 . . . . 5 (((𝑉 ∈ V ∧ 𝐸 ∈ V) ∧ 𝑎 = 𝑉) → ([𝐸 / 𝑏]𝑎𝐺𝑏𝑉𝐺𝐸))
83, 7sbcied 3837 . . . 4 ((𝑉 ∈ V ∧ 𝐸 ∈ V) → ([𝑉 / 𝑎][𝐸 / 𝑏]𝑎𝐺𝑏𝑉𝐺𝐸))
98biimprcd 250 . . 3 (𝑉𝐺𝐸 → ((𝑉 ∈ V ∧ 𝐸 ∈ V) → [𝑉 / 𝑎][𝐸 / 𝑏]𝑎𝐺𝑏))
102, 9mpd 15 . 2 (𝑉𝐺𝐸[𝑉 / 𝑎][𝐸 / 𝑏]𝑎𝐺𝑏)
11 brfi1uzind.f . . 3 𝐹 ∈ V
12 brfi1uzind.l . . 3 𝐿 ∈ ℕ0
13 brfi1uzind.1 . . 3 ((𝑣 = 𝑉𝑒 = 𝐸) → (𝜓𝜑))
14 brfi1uzind.2 . . 3 ((𝑣 = 𝑤𝑒 = 𝑓) → (𝜓𝜃))
15 vex 3482 . . . . 5 𝑣 ∈ V
16 vex 3482 . . . . 5 𝑒 ∈ V
17 breq12 5153 . . . . 5 ((𝑎 = 𝑣𝑏 = 𝑒) → (𝑎𝐺𝑏𝑣𝐺𝑒))
1815, 16, 17sbc2ie 3874 . . . 4 ([𝑣 / 𝑎][𝑒 / 𝑏]𝑎𝐺𝑏𝑣𝐺𝑒)
19 brfi1uzind.3 . . . . 5 ((𝑣𝐺𝑒𝑛𝑣) → (𝑣 ∖ {𝑛})𝐺𝐹)
2015difexi 5336 . . . . . 6 (𝑣 ∖ {𝑛}) ∈ V
21 breq12 5153 . . . . . 6 ((𝑎 = (𝑣 ∖ {𝑛}) ∧ 𝑏 = 𝐹) → (𝑎𝐺𝑏 ↔ (𝑣 ∖ {𝑛})𝐺𝐹))
2220, 11, 21sbc2ie 3874 . . . . 5 ([(𝑣 ∖ {𝑛}) / 𝑎][𝐹 / 𝑏]𝑎𝐺𝑏 ↔ (𝑣 ∖ {𝑛})𝐺𝐹)
2319, 22sylibr 234 . . . 4 ((𝑣𝐺𝑒𝑛𝑣) → [(𝑣 ∖ {𝑛}) / 𝑎][𝐹 / 𝑏]𝑎𝐺𝑏)
2418, 23sylanb 581 . . 3 (([𝑣 / 𝑎][𝑒 / 𝑏]𝑎𝐺𝑏𝑛𝑣) → [(𝑣 ∖ {𝑛}) / 𝑎][𝐹 / 𝑏]𝑎𝐺𝑏)
25 brfi1uzind.4 . . 3 ((𝑤 = (𝑣 ∖ {𝑛}) ∧ 𝑓 = 𝐹) → (𝜃𝜒))
26 brfi1uzind.base . . . 4 ((𝑣𝐺𝑒 ∧ (♯‘𝑣) = 𝐿) → 𝜓)
2718, 26sylanb 581 . . 3 (([𝑣 / 𝑎][𝑒 / 𝑏]𝑎𝐺𝑏 ∧ (♯‘𝑣) = 𝐿) → 𝜓)
28183anbi1i 1156 . . . . 5 (([𝑣 / 𝑎][𝑒 / 𝑏]𝑎𝐺𝑏 ∧ (♯‘𝑣) = (𝑦 + 1) ∧ 𝑛𝑣) ↔ (𝑣𝐺𝑒 ∧ (♯‘𝑣) = (𝑦 + 1) ∧ 𝑛𝑣))
2928anbi2i 623 . . . 4 (((𝑦 + 1) ∈ ℕ0 ∧ ([𝑣 / 𝑎][𝑒 / 𝑏]𝑎𝐺𝑏 ∧ (♯‘𝑣) = (𝑦 + 1) ∧ 𝑛𝑣)) ↔ ((𝑦 + 1) ∈ ℕ0 ∧ (𝑣𝐺𝑒 ∧ (♯‘𝑣) = (𝑦 + 1) ∧ 𝑛𝑣)))
30 brfi1uzind.step . . . 4 ((((𝑦 + 1) ∈ ℕ0 ∧ (𝑣𝐺𝑒 ∧ (♯‘𝑣) = (𝑦 + 1) ∧ 𝑛𝑣)) ∧ 𝜒) → 𝜓)
3129, 30sylanb 581 . . 3 ((((𝑦 + 1) ∈ ℕ0 ∧ ([𝑣 / 𝑎][𝑒 / 𝑏]𝑎𝐺𝑏 ∧ (♯‘𝑣) = (𝑦 + 1) ∧ 𝑛𝑣)) ∧ 𝜒) → 𝜓)
3211, 12, 13, 14, 24, 25, 27, 31fi1uzind 14543 . 2 (([𝑉 / 𝑎][𝐸 / 𝑏]𝑎𝐺𝑏𝑉 ∈ Fin ∧ 𝐿 ≤ (♯‘𝑉)) → 𝜑)
3310, 32syl3an1 1162 1 ((𝑉𝐺𝐸𝑉 ∈ Fin ∧ 𝐿 ≤ (♯‘𝑉)) → 𝜑)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1537  wcel 2106  Vcvv 3478  [wsbc 3791  cdif 3960  {csn 4631   class class class wbr 5148  Rel wrel 5694  cfv 6563  (class class class)co 7431  Fincfn 8984  1c1 11154   + caddc 11156  cle 11294  0cn0 12524  chash 14366
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754  ax-cnex 11209  ax-resscn 11210  ax-1cn 11211  ax-icn 11212  ax-addcl 11213  ax-addrcl 11214  ax-mulcl 11215  ax-mulrcl 11216  ax-mulcom 11217  ax-addass 11218  ax-mulass 11219  ax-distr 11220  ax-i2m1 11221  ax-1ne0 11222  ax-1rid 11223  ax-rnegex 11224  ax-rrecex 11225  ax-cnre 11226  ax-pre-lttri 11227  ax-pre-lttrn 11228  ax-pre-ltadd 11229  ax-pre-mulgt0 11230
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-int 4952  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5583  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-we 5643  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-pred 6323  df-ord 6389  df-on 6390  df-lim 6391  df-suc 6392  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8013  df-2nd 8014  df-frecs 8305  df-wrecs 8336  df-recs 8410  df-rdg 8449  df-1o 8505  df-oadd 8509  df-er 8744  df-en 8985  df-dom 8986  df-sdom 8987  df-fin 8988  df-dju 9939  df-card 9977  df-pnf 11295  df-mnf 11296  df-xr 11297  df-ltxr 11298  df-le 11299  df-sub 11492  df-neg 11493  df-nn 12265  df-n0 12525  df-xnn0 12598  df-z 12612  df-uz 12877  df-fz 13545  df-hash 14367
This theorem is referenced by:  brfi1ind  14545
  Copyright terms: Public domain W3C validator