Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > brfi1uzind | Structured version Visualization version GIF version |
Description: Properties of a binary relation with a finite first component with at least L elements, proven by finite induction on the size of the first component. This theorem can be applied for graphs (as binary relation between the set of vertices and an edge function) with a finite number of vertices, usually with 𝐿 = 0 (see brfi1ind 14194) or 𝐿 = 1. (Contributed by Alexander van der Vekens, 7-Jan-2018.) (Proof shortened by AV, 23-Oct-2020.) (Revised by AV, 28-Mar-2021.) |
Ref | Expression |
---|---|
brfi1uzind.r | ⊢ Rel 𝐺 |
brfi1uzind.f | ⊢ 𝐹 ∈ V |
brfi1uzind.l | ⊢ 𝐿 ∈ ℕ0 |
brfi1uzind.1 | ⊢ ((𝑣 = 𝑉 ∧ 𝑒 = 𝐸) → (𝜓 ↔ 𝜑)) |
brfi1uzind.2 | ⊢ ((𝑣 = 𝑤 ∧ 𝑒 = 𝑓) → (𝜓 ↔ 𝜃)) |
brfi1uzind.3 | ⊢ ((𝑣𝐺𝑒 ∧ 𝑛 ∈ 𝑣) → (𝑣 ∖ {𝑛})𝐺𝐹) |
brfi1uzind.4 | ⊢ ((𝑤 = (𝑣 ∖ {𝑛}) ∧ 𝑓 = 𝐹) → (𝜃 ↔ 𝜒)) |
brfi1uzind.base | ⊢ ((𝑣𝐺𝑒 ∧ (♯‘𝑣) = 𝐿) → 𝜓) |
brfi1uzind.step | ⊢ ((((𝑦 + 1) ∈ ℕ0 ∧ (𝑣𝐺𝑒 ∧ (♯‘𝑣) = (𝑦 + 1) ∧ 𝑛 ∈ 𝑣)) ∧ 𝜒) → 𝜓) |
Ref | Expression |
---|---|
brfi1uzind | ⊢ ((𝑉𝐺𝐸 ∧ 𝑉 ∈ Fin ∧ 𝐿 ≤ (♯‘𝑉)) → 𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | brfi1uzind.r | . . . 4 ⊢ Rel 𝐺 | |
2 | 1 | brrelex12i 5641 | . . 3 ⊢ (𝑉𝐺𝐸 → (𝑉 ∈ V ∧ 𝐸 ∈ V)) |
3 | simpl 482 | . . . . 5 ⊢ ((𝑉 ∈ V ∧ 𝐸 ∈ V) → 𝑉 ∈ V) | |
4 | simplr 765 | . . . . . 6 ⊢ (((𝑉 ∈ V ∧ 𝐸 ∈ V) ∧ 𝑎 = 𝑉) → 𝐸 ∈ V) | |
5 | breq12 5083 | . . . . . . 7 ⊢ ((𝑎 = 𝑉 ∧ 𝑏 = 𝐸) → (𝑎𝐺𝑏 ↔ 𝑉𝐺𝐸)) | |
6 | 5 | adantll 710 | . . . . . 6 ⊢ ((((𝑉 ∈ V ∧ 𝐸 ∈ V) ∧ 𝑎 = 𝑉) ∧ 𝑏 = 𝐸) → (𝑎𝐺𝑏 ↔ 𝑉𝐺𝐸)) |
7 | 4, 6 | sbcied 3764 | . . . . 5 ⊢ (((𝑉 ∈ V ∧ 𝐸 ∈ V) ∧ 𝑎 = 𝑉) → ([𝐸 / 𝑏]𝑎𝐺𝑏 ↔ 𝑉𝐺𝐸)) |
8 | 3, 7 | sbcied 3764 | . . . 4 ⊢ ((𝑉 ∈ V ∧ 𝐸 ∈ V) → ([𝑉 / 𝑎][𝐸 / 𝑏]𝑎𝐺𝑏 ↔ 𝑉𝐺𝐸)) |
9 | 8 | biimprcd 249 | . . 3 ⊢ (𝑉𝐺𝐸 → ((𝑉 ∈ V ∧ 𝐸 ∈ V) → [𝑉 / 𝑎][𝐸 / 𝑏]𝑎𝐺𝑏)) |
10 | 2, 9 | mpd 15 | . 2 ⊢ (𝑉𝐺𝐸 → [𝑉 / 𝑎][𝐸 / 𝑏]𝑎𝐺𝑏) |
11 | brfi1uzind.f | . . 3 ⊢ 𝐹 ∈ V | |
12 | brfi1uzind.l | . . 3 ⊢ 𝐿 ∈ ℕ0 | |
13 | brfi1uzind.1 | . . 3 ⊢ ((𝑣 = 𝑉 ∧ 𝑒 = 𝐸) → (𝜓 ↔ 𝜑)) | |
14 | brfi1uzind.2 | . . 3 ⊢ ((𝑣 = 𝑤 ∧ 𝑒 = 𝑓) → (𝜓 ↔ 𝜃)) | |
15 | vex 3434 | . . . . 5 ⊢ 𝑣 ∈ V | |
16 | vex 3434 | . . . . 5 ⊢ 𝑒 ∈ V | |
17 | breq12 5083 | . . . . 5 ⊢ ((𝑎 = 𝑣 ∧ 𝑏 = 𝑒) → (𝑎𝐺𝑏 ↔ 𝑣𝐺𝑒)) | |
18 | 15, 16, 17 | sbc2ie 3803 | . . . 4 ⊢ ([𝑣 / 𝑎][𝑒 / 𝑏]𝑎𝐺𝑏 ↔ 𝑣𝐺𝑒) |
19 | brfi1uzind.3 | . . . . 5 ⊢ ((𝑣𝐺𝑒 ∧ 𝑛 ∈ 𝑣) → (𝑣 ∖ {𝑛})𝐺𝐹) | |
20 | 15 | difexi 5255 | . . . . . 6 ⊢ (𝑣 ∖ {𝑛}) ∈ V |
21 | breq12 5083 | . . . . . 6 ⊢ ((𝑎 = (𝑣 ∖ {𝑛}) ∧ 𝑏 = 𝐹) → (𝑎𝐺𝑏 ↔ (𝑣 ∖ {𝑛})𝐺𝐹)) | |
22 | 20, 11, 21 | sbc2ie 3803 | . . . . 5 ⊢ ([(𝑣 ∖ {𝑛}) / 𝑎][𝐹 / 𝑏]𝑎𝐺𝑏 ↔ (𝑣 ∖ {𝑛})𝐺𝐹) |
23 | 19, 22 | sylibr 233 | . . . 4 ⊢ ((𝑣𝐺𝑒 ∧ 𝑛 ∈ 𝑣) → [(𝑣 ∖ {𝑛}) / 𝑎][𝐹 / 𝑏]𝑎𝐺𝑏) |
24 | 18, 23 | sylanb 580 | . . 3 ⊢ (([𝑣 / 𝑎][𝑒 / 𝑏]𝑎𝐺𝑏 ∧ 𝑛 ∈ 𝑣) → [(𝑣 ∖ {𝑛}) / 𝑎][𝐹 / 𝑏]𝑎𝐺𝑏) |
25 | brfi1uzind.4 | . . 3 ⊢ ((𝑤 = (𝑣 ∖ {𝑛}) ∧ 𝑓 = 𝐹) → (𝜃 ↔ 𝜒)) | |
26 | brfi1uzind.base | . . . 4 ⊢ ((𝑣𝐺𝑒 ∧ (♯‘𝑣) = 𝐿) → 𝜓) | |
27 | 18, 26 | sylanb 580 | . . 3 ⊢ (([𝑣 / 𝑎][𝑒 / 𝑏]𝑎𝐺𝑏 ∧ (♯‘𝑣) = 𝐿) → 𝜓) |
28 | 18 | 3anbi1i 1155 | . . . . 5 ⊢ (([𝑣 / 𝑎][𝑒 / 𝑏]𝑎𝐺𝑏 ∧ (♯‘𝑣) = (𝑦 + 1) ∧ 𝑛 ∈ 𝑣) ↔ (𝑣𝐺𝑒 ∧ (♯‘𝑣) = (𝑦 + 1) ∧ 𝑛 ∈ 𝑣)) |
29 | 28 | anbi2i 622 | . . . 4 ⊢ (((𝑦 + 1) ∈ ℕ0 ∧ ([𝑣 / 𝑎][𝑒 / 𝑏]𝑎𝐺𝑏 ∧ (♯‘𝑣) = (𝑦 + 1) ∧ 𝑛 ∈ 𝑣)) ↔ ((𝑦 + 1) ∈ ℕ0 ∧ (𝑣𝐺𝑒 ∧ (♯‘𝑣) = (𝑦 + 1) ∧ 𝑛 ∈ 𝑣))) |
30 | brfi1uzind.step | . . . 4 ⊢ ((((𝑦 + 1) ∈ ℕ0 ∧ (𝑣𝐺𝑒 ∧ (♯‘𝑣) = (𝑦 + 1) ∧ 𝑛 ∈ 𝑣)) ∧ 𝜒) → 𝜓) | |
31 | 29, 30 | sylanb 580 | . . 3 ⊢ ((((𝑦 + 1) ∈ ℕ0 ∧ ([𝑣 / 𝑎][𝑒 / 𝑏]𝑎𝐺𝑏 ∧ (♯‘𝑣) = (𝑦 + 1) ∧ 𝑛 ∈ 𝑣)) ∧ 𝜒) → 𝜓) |
32 | 11, 12, 13, 14, 24, 25, 27, 31 | fi1uzind 14192 | . 2 ⊢ (([𝑉 / 𝑎][𝐸 / 𝑏]𝑎𝐺𝑏 ∧ 𝑉 ∈ Fin ∧ 𝐿 ≤ (♯‘𝑉)) → 𝜑) |
33 | 10, 32 | syl3an1 1161 | 1 ⊢ ((𝑉𝐺𝐸 ∧ 𝑉 ∈ Fin ∧ 𝐿 ≤ (♯‘𝑉)) → 𝜑) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 ∧ w3a 1085 = wceq 1541 ∈ wcel 2109 Vcvv 3430 [wsbc 3719 ∖ cdif 3888 {csn 4566 class class class wbr 5078 Rel wrel 5593 ‘cfv 6430 (class class class)co 7268 Fincfn 8707 1c1 10856 + caddc 10858 ≤ cle 10994 ℕ0cn0 12216 ♯chash 14025 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1801 ax-4 1815 ax-5 1916 ax-6 1974 ax-7 2014 ax-8 2111 ax-9 2119 ax-10 2140 ax-11 2157 ax-12 2174 ax-ext 2710 ax-sep 5226 ax-nul 5233 ax-pow 5291 ax-pr 5355 ax-un 7579 ax-cnex 10911 ax-resscn 10912 ax-1cn 10913 ax-icn 10914 ax-addcl 10915 ax-addrcl 10916 ax-mulcl 10917 ax-mulrcl 10918 ax-mulcom 10919 ax-addass 10920 ax-mulass 10921 ax-distr 10922 ax-i2m1 10923 ax-1ne0 10924 ax-1rid 10925 ax-rnegex 10926 ax-rrecex 10927 ax-cnre 10928 ax-pre-lttri 10929 ax-pre-lttrn 10930 ax-pre-ltadd 10931 ax-pre-mulgt0 10932 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1544 df-fal 1554 df-ex 1786 df-nf 1790 df-sb 2071 df-mo 2541 df-eu 2570 df-clab 2717 df-cleq 2731 df-clel 2817 df-nfc 2890 df-ne 2945 df-nel 3051 df-ral 3070 df-rex 3071 df-reu 3072 df-rab 3074 df-v 3432 df-sbc 3720 df-csb 3837 df-dif 3894 df-un 3896 df-in 3898 df-ss 3908 df-pss 3910 df-nul 4262 df-if 4465 df-pw 4540 df-sn 4567 df-pr 4569 df-tp 4571 df-op 4573 df-uni 4845 df-int 4885 df-iun 4931 df-br 5079 df-opab 5141 df-mpt 5162 df-tr 5196 df-id 5488 df-eprel 5494 df-po 5502 df-so 5503 df-fr 5543 df-we 5545 df-xp 5594 df-rel 5595 df-cnv 5596 df-co 5597 df-dm 5598 df-rn 5599 df-res 5600 df-ima 5601 df-pred 6199 df-ord 6266 df-on 6267 df-lim 6268 df-suc 6269 df-iota 6388 df-fun 6432 df-fn 6433 df-f 6434 df-f1 6435 df-fo 6436 df-f1o 6437 df-fv 6438 df-riota 7225 df-ov 7271 df-oprab 7272 df-mpo 7273 df-om 7701 df-1st 7817 df-2nd 7818 df-frecs 8081 df-wrecs 8112 df-recs 8186 df-rdg 8225 df-1o 8281 df-oadd 8285 df-er 8472 df-en 8708 df-dom 8709 df-sdom 8710 df-fin 8711 df-dju 9643 df-card 9681 df-pnf 10995 df-mnf 10996 df-xr 10997 df-ltxr 10998 df-le 10999 df-sub 11190 df-neg 11191 df-nn 11957 df-n0 12217 df-xnn0 12289 df-z 12303 df-uz 12565 df-fz 13222 df-hash 14026 |
This theorem is referenced by: brfi1ind 14194 |
Copyright terms: Public domain | W3C validator |