MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  brfi1uzind Structured version   Visualization version   GIF version

Theorem brfi1uzind 14557
Description: Properties of a binary relation with a finite first component with at least L elements, proven by finite induction on the size of the first component. This theorem can be applied for graphs (as binary relation between the set of vertices and an edge function) with a finite number of vertices, usually with 𝐿 = 0 (see brfi1ind 14558) or 𝐿 = 1. (Contributed by Alexander van der Vekens, 7-Jan-2018.) (Proof shortened by AV, 23-Oct-2020.) (Revised by AV, 28-Mar-2021.)
Hypotheses
Ref Expression
brfi1uzind.r Rel 𝐺
brfi1uzind.f 𝐹 ∈ V
brfi1uzind.l 𝐿 ∈ ℕ0
brfi1uzind.1 ((𝑣 = 𝑉𝑒 = 𝐸) → (𝜓𝜑))
brfi1uzind.2 ((𝑣 = 𝑤𝑒 = 𝑓) → (𝜓𝜃))
brfi1uzind.3 ((𝑣𝐺𝑒𝑛𝑣) → (𝑣 ∖ {𝑛})𝐺𝐹)
brfi1uzind.4 ((𝑤 = (𝑣 ∖ {𝑛}) ∧ 𝑓 = 𝐹) → (𝜃𝜒))
brfi1uzind.base ((𝑣𝐺𝑒 ∧ (♯‘𝑣) = 𝐿) → 𝜓)
brfi1uzind.step ((((𝑦 + 1) ∈ ℕ0 ∧ (𝑣𝐺𝑒 ∧ (♯‘𝑣) = (𝑦 + 1) ∧ 𝑛𝑣)) ∧ 𝜒) → 𝜓)
Assertion
Ref Expression
brfi1uzind ((𝑉𝐺𝐸𝑉 ∈ Fin ∧ 𝐿 ≤ (♯‘𝑉)) → 𝜑)
Distinct variable groups:   𝑒,𝐸,𝑛,𝑣   𝑓,𝐹,𝑤   𝑒,𝐺,𝑓,𝑛,𝑣,𝑤,𝑦   𝑒,𝐿,𝑛,𝑣,𝑦   𝑒,𝑉,𝑛,𝑣   𝜓,𝑓,𝑛,𝑤,𝑦   𝜃,𝑒,𝑛,𝑣   𝜒,𝑓,𝑤   𝜑,𝑒,𝑛,𝑣
Allowed substitution hints:   𝜑(𝑦,𝑤,𝑓)   𝜓(𝑣,𝑒)   𝜒(𝑦,𝑣,𝑒,𝑛)   𝜃(𝑦,𝑤,𝑓)   𝐸(𝑦,𝑤,𝑓)   𝐹(𝑦,𝑣,𝑒,𝑛)   𝐿(𝑤,𝑓)   𝑉(𝑦,𝑤,𝑓)

Proof of Theorem brfi1uzind
Dummy variables 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 brfi1uzind.r . . . 4 Rel 𝐺
21brrelex12i 5755 . . 3 (𝑉𝐺𝐸 → (𝑉 ∈ V ∧ 𝐸 ∈ V))
3 simpl 482 . . . . 5 ((𝑉 ∈ V ∧ 𝐸 ∈ V) → 𝑉 ∈ V)
4 simplr 768 . . . . . 6 (((𝑉 ∈ V ∧ 𝐸 ∈ V) ∧ 𝑎 = 𝑉) → 𝐸 ∈ V)
5 breq12 5171 . . . . . . 7 ((𝑎 = 𝑉𝑏 = 𝐸) → (𝑎𝐺𝑏𝑉𝐺𝐸))
65adantll 713 . . . . . 6 ((((𝑉 ∈ V ∧ 𝐸 ∈ V) ∧ 𝑎 = 𝑉) ∧ 𝑏 = 𝐸) → (𝑎𝐺𝑏𝑉𝐺𝐸))
74, 6sbcied 3850 . . . . 5 (((𝑉 ∈ V ∧ 𝐸 ∈ V) ∧ 𝑎 = 𝑉) → ([𝐸 / 𝑏]𝑎𝐺𝑏𝑉𝐺𝐸))
83, 7sbcied 3850 . . . 4 ((𝑉 ∈ V ∧ 𝐸 ∈ V) → ([𝑉 / 𝑎][𝐸 / 𝑏]𝑎𝐺𝑏𝑉𝐺𝐸))
98biimprcd 250 . . 3 (𝑉𝐺𝐸 → ((𝑉 ∈ V ∧ 𝐸 ∈ V) → [𝑉 / 𝑎][𝐸 / 𝑏]𝑎𝐺𝑏))
102, 9mpd 15 . 2 (𝑉𝐺𝐸[𝑉 / 𝑎][𝐸 / 𝑏]𝑎𝐺𝑏)
11 brfi1uzind.f . . 3 𝐹 ∈ V
12 brfi1uzind.l . . 3 𝐿 ∈ ℕ0
13 brfi1uzind.1 . . 3 ((𝑣 = 𝑉𝑒 = 𝐸) → (𝜓𝜑))
14 brfi1uzind.2 . . 3 ((𝑣 = 𝑤𝑒 = 𝑓) → (𝜓𝜃))
15 vex 3492 . . . . 5 𝑣 ∈ V
16 vex 3492 . . . . 5 𝑒 ∈ V
17 breq12 5171 . . . . 5 ((𝑎 = 𝑣𝑏 = 𝑒) → (𝑎𝐺𝑏𝑣𝐺𝑒))
1815, 16, 17sbc2ie 3887 . . . 4 ([𝑣 / 𝑎][𝑒 / 𝑏]𝑎𝐺𝑏𝑣𝐺𝑒)
19 brfi1uzind.3 . . . . 5 ((𝑣𝐺𝑒𝑛𝑣) → (𝑣 ∖ {𝑛})𝐺𝐹)
2015difexi 5348 . . . . . 6 (𝑣 ∖ {𝑛}) ∈ V
21 breq12 5171 . . . . . 6 ((𝑎 = (𝑣 ∖ {𝑛}) ∧ 𝑏 = 𝐹) → (𝑎𝐺𝑏 ↔ (𝑣 ∖ {𝑛})𝐺𝐹))
2220, 11, 21sbc2ie 3887 . . . . 5 ([(𝑣 ∖ {𝑛}) / 𝑎][𝐹 / 𝑏]𝑎𝐺𝑏 ↔ (𝑣 ∖ {𝑛})𝐺𝐹)
2319, 22sylibr 234 . . . 4 ((𝑣𝐺𝑒𝑛𝑣) → [(𝑣 ∖ {𝑛}) / 𝑎][𝐹 / 𝑏]𝑎𝐺𝑏)
2418, 23sylanb 580 . . 3 (([𝑣 / 𝑎][𝑒 / 𝑏]𝑎𝐺𝑏𝑛𝑣) → [(𝑣 ∖ {𝑛}) / 𝑎][𝐹 / 𝑏]𝑎𝐺𝑏)
25 brfi1uzind.4 . . 3 ((𝑤 = (𝑣 ∖ {𝑛}) ∧ 𝑓 = 𝐹) → (𝜃𝜒))
26 brfi1uzind.base . . . 4 ((𝑣𝐺𝑒 ∧ (♯‘𝑣) = 𝐿) → 𝜓)
2718, 26sylanb 580 . . 3 (([𝑣 / 𝑎][𝑒 / 𝑏]𝑎𝐺𝑏 ∧ (♯‘𝑣) = 𝐿) → 𝜓)
28183anbi1i 1157 . . . . 5 (([𝑣 / 𝑎][𝑒 / 𝑏]𝑎𝐺𝑏 ∧ (♯‘𝑣) = (𝑦 + 1) ∧ 𝑛𝑣) ↔ (𝑣𝐺𝑒 ∧ (♯‘𝑣) = (𝑦 + 1) ∧ 𝑛𝑣))
2928anbi2i 622 . . . 4 (((𝑦 + 1) ∈ ℕ0 ∧ ([𝑣 / 𝑎][𝑒 / 𝑏]𝑎𝐺𝑏 ∧ (♯‘𝑣) = (𝑦 + 1) ∧ 𝑛𝑣)) ↔ ((𝑦 + 1) ∈ ℕ0 ∧ (𝑣𝐺𝑒 ∧ (♯‘𝑣) = (𝑦 + 1) ∧ 𝑛𝑣)))
30 brfi1uzind.step . . . 4 ((((𝑦 + 1) ∈ ℕ0 ∧ (𝑣𝐺𝑒 ∧ (♯‘𝑣) = (𝑦 + 1) ∧ 𝑛𝑣)) ∧ 𝜒) → 𝜓)
3129, 30sylanb 580 . . 3 ((((𝑦 + 1) ∈ ℕ0 ∧ ([𝑣 / 𝑎][𝑒 / 𝑏]𝑎𝐺𝑏 ∧ (♯‘𝑣) = (𝑦 + 1) ∧ 𝑛𝑣)) ∧ 𝜒) → 𝜓)
3211, 12, 13, 14, 24, 25, 27, 31fi1uzind 14556 . 2 (([𝑉 / 𝑎][𝐸 / 𝑏]𝑎𝐺𝑏𝑉 ∈ Fin ∧ 𝐿 ≤ (♯‘𝑉)) → 𝜑)
3310, 32syl3an1 1163 1 ((𝑉𝐺𝐸𝑉 ∈ Fin ∧ 𝐿 ≤ (♯‘𝑉)) → 𝜑)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1087   = wceq 1537  wcel 2108  Vcvv 3488  [wsbc 3804  cdif 3973  {csn 4648   class class class wbr 5166  Rel wrel 5705  cfv 6573  (class class class)co 7448  Fincfn 9003  1c1 11185   + caddc 11187  cle 11325  0cn0 12553  chash 14379
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-int 4971  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-om 7904  df-1st 8030  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-1o 8522  df-oadd 8526  df-er 8763  df-en 9004  df-dom 9005  df-sdom 9006  df-fin 9007  df-dju 9970  df-card 10008  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-nn 12294  df-n0 12554  df-xnn0 12626  df-z 12640  df-uz 12904  df-fz 13568  df-hash 14380
This theorem is referenced by:  brfi1ind  14558
  Copyright terms: Public domain W3C validator