Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  elfzolborelfzop1 Structured version   Visualization version   GIF version

Theorem elfzolborelfzop1 48436
Description: An element of a half-open integer interval is either equal to the left bound of the interval or an element of a half-open integer interval with a lower bound increased by 1. (Contributed by AV, 2-Jun-2020.)
Assertion
Ref Expression
elfzolborelfzop1 (𝐾 ∈ (𝑀..^𝑁) → (𝐾 = 𝑀𝐾 ∈ ((𝑀 + 1)..^𝑁)))

Proof of Theorem elfzolborelfzop1
StepHypRef Expression
1 elfzo2 13702 . 2 (𝐾 ∈ (𝑀..^𝑁) ↔ (𝐾 ∈ (ℤ𝑀) ∧ 𝑁 ∈ ℤ ∧ 𝐾 < 𝑁))
2 eluz2 12884 . . . 4 (𝐾 ∈ (ℤ𝑀) ↔ (𝑀 ∈ ℤ ∧ 𝐾 ∈ ℤ ∧ 𝑀𝐾))
3 zre 12617 . . . . . . 7 (𝑀 ∈ ℤ → 𝑀 ∈ ℝ)
4 zre 12617 . . . . . . 7 (𝐾 ∈ ℤ → 𝐾 ∈ ℝ)
5 leloe 11347 . . . . . . 7 ((𝑀 ∈ ℝ ∧ 𝐾 ∈ ℝ) → (𝑀𝐾 ↔ (𝑀 < 𝐾𝑀 = 𝐾)))
63, 4, 5syl2an 596 . . . . . 6 ((𝑀 ∈ ℤ ∧ 𝐾 ∈ ℤ) → (𝑀𝐾 ↔ (𝑀 < 𝐾𝑀 = 𝐾)))
7 peano2z 12658 . . . . . . . . . . . . . . . 16 (𝑀 ∈ ℤ → (𝑀 + 1) ∈ ℤ)
87adantr 480 . . . . . . . . . . . . . . 15 ((𝑀 ∈ ℤ ∧ 𝐾 ∈ ℤ) → (𝑀 + 1) ∈ ℤ)
98ad2antrl 728 . . . . . . . . . . . . . 14 ((𝑀 < 𝐾 ∧ ((𝑀 ∈ ℤ ∧ 𝐾 ∈ ℤ) ∧ 𝑁 ∈ ℤ)) → (𝑀 + 1) ∈ ℤ)
10 simprlr 780 . . . . . . . . . . . . . 14 ((𝑀 < 𝐾 ∧ ((𝑀 ∈ ℤ ∧ 𝐾 ∈ ℤ) ∧ 𝑁 ∈ ℤ)) → 𝐾 ∈ ℤ)
11 simpl 482 . . . . . . . . . . . . . . 15 ((𝑀 < 𝐾 ∧ ((𝑀 ∈ ℤ ∧ 𝐾 ∈ ℤ) ∧ 𝑁 ∈ ℤ)) → 𝑀 < 𝐾)
12 zltp1le 12667 . . . . . . . . . . . . . . . 16 ((𝑀 ∈ ℤ ∧ 𝐾 ∈ ℤ) → (𝑀 < 𝐾 ↔ (𝑀 + 1) ≤ 𝐾))
1312ad2antrl 728 . . . . . . . . . . . . . . 15 ((𝑀 < 𝐾 ∧ ((𝑀 ∈ ℤ ∧ 𝐾 ∈ ℤ) ∧ 𝑁 ∈ ℤ)) → (𝑀 < 𝐾 ↔ (𝑀 + 1) ≤ 𝐾))
1411, 13mpbid 232 . . . . . . . . . . . . . 14 ((𝑀 < 𝐾 ∧ ((𝑀 ∈ ℤ ∧ 𝐾 ∈ ℤ) ∧ 𝑁 ∈ ℤ)) → (𝑀 + 1) ≤ 𝐾)
159, 10, 143jca 1129 . . . . . . . . . . . . 13 ((𝑀 < 𝐾 ∧ ((𝑀 ∈ ℤ ∧ 𝐾 ∈ ℤ) ∧ 𝑁 ∈ ℤ)) → ((𝑀 + 1) ∈ ℤ ∧ 𝐾 ∈ ℤ ∧ (𝑀 + 1) ≤ 𝐾))
1615adantr 480 . . . . . . . . . . . 12 (((𝑀 < 𝐾 ∧ ((𝑀 ∈ ℤ ∧ 𝐾 ∈ ℤ) ∧ 𝑁 ∈ ℤ)) ∧ 𝐾 < 𝑁) → ((𝑀 + 1) ∈ ℤ ∧ 𝐾 ∈ ℤ ∧ (𝑀 + 1) ≤ 𝐾))
17 simplrr 778 . . . . . . . . . . . 12 (((𝑀 < 𝐾 ∧ ((𝑀 ∈ ℤ ∧ 𝐾 ∈ ℤ) ∧ 𝑁 ∈ ℤ)) ∧ 𝐾 < 𝑁) → 𝑁 ∈ ℤ)
18 simpr 484 . . . . . . . . . . . 12 (((𝑀 < 𝐾 ∧ ((𝑀 ∈ ℤ ∧ 𝐾 ∈ ℤ) ∧ 𝑁 ∈ ℤ)) ∧ 𝐾 < 𝑁) → 𝐾 < 𝑁)
19 elfzo2 13702 . . . . . . . . . . . . 13 (𝐾 ∈ ((𝑀 + 1)..^𝑁) ↔ (𝐾 ∈ (ℤ‘(𝑀 + 1)) ∧ 𝑁 ∈ ℤ ∧ 𝐾 < 𝑁))
20 eluz2 12884 . . . . . . . . . . . . . 14 (𝐾 ∈ (ℤ‘(𝑀 + 1)) ↔ ((𝑀 + 1) ∈ ℤ ∧ 𝐾 ∈ ℤ ∧ (𝑀 + 1) ≤ 𝐾))
21203anbi1i 1158 . . . . . . . . . . . . 13 ((𝐾 ∈ (ℤ‘(𝑀 + 1)) ∧ 𝑁 ∈ ℤ ∧ 𝐾 < 𝑁) ↔ (((𝑀 + 1) ∈ ℤ ∧ 𝐾 ∈ ℤ ∧ (𝑀 + 1) ≤ 𝐾) ∧ 𝑁 ∈ ℤ ∧ 𝐾 < 𝑁))
2219, 21bitri 275 . . . . . . . . . . . 12 (𝐾 ∈ ((𝑀 + 1)..^𝑁) ↔ (((𝑀 + 1) ∈ ℤ ∧ 𝐾 ∈ ℤ ∧ (𝑀 + 1) ≤ 𝐾) ∧ 𝑁 ∈ ℤ ∧ 𝐾 < 𝑁))
2316, 17, 18, 22syl3anbrc 1344 . . . . . . . . . . 11 (((𝑀 < 𝐾 ∧ ((𝑀 ∈ ℤ ∧ 𝐾 ∈ ℤ) ∧ 𝑁 ∈ ℤ)) ∧ 𝐾 < 𝑁) → 𝐾 ∈ ((𝑀 + 1)..^𝑁))
2423olcd 875 . . . . . . . . . 10 (((𝑀 < 𝐾 ∧ ((𝑀 ∈ ℤ ∧ 𝐾 ∈ ℤ) ∧ 𝑁 ∈ ℤ)) ∧ 𝐾 < 𝑁) → (𝐾 = 𝑀𝐾 ∈ ((𝑀 + 1)..^𝑁)))
2524exp31 419 . . . . . . . . 9 (𝑀 < 𝐾 → (((𝑀 ∈ ℤ ∧ 𝐾 ∈ ℤ) ∧ 𝑁 ∈ ℤ) → (𝐾 < 𝑁 → (𝐾 = 𝑀𝐾 ∈ ((𝑀 + 1)..^𝑁)))))
26 orc 868 . . . . . . . . . . 11 (𝐾 = 𝑀 → (𝐾 = 𝑀𝐾 ∈ ((𝑀 + 1)..^𝑁)))
2726eqcoms 2745 . . . . . . . . . 10 (𝑀 = 𝐾 → (𝐾 = 𝑀𝐾 ∈ ((𝑀 + 1)..^𝑁)))
28272a1d 26 . . . . . . . . 9 (𝑀 = 𝐾 → (((𝑀 ∈ ℤ ∧ 𝐾 ∈ ℤ) ∧ 𝑁 ∈ ℤ) → (𝐾 < 𝑁 → (𝐾 = 𝑀𝐾 ∈ ((𝑀 + 1)..^𝑁)))))
2925, 28jaoi 858 . . . . . . . 8 ((𝑀 < 𝐾𝑀 = 𝐾) → (((𝑀 ∈ ℤ ∧ 𝐾 ∈ ℤ) ∧ 𝑁 ∈ ℤ) → (𝐾 < 𝑁 → (𝐾 = 𝑀𝐾 ∈ ((𝑀 + 1)..^𝑁)))))
3029expd 415 . . . . . . 7 ((𝑀 < 𝐾𝑀 = 𝐾) → ((𝑀 ∈ ℤ ∧ 𝐾 ∈ ℤ) → (𝑁 ∈ ℤ → (𝐾 < 𝑁 → (𝐾 = 𝑀𝐾 ∈ ((𝑀 + 1)..^𝑁))))))
3130com12 32 . . . . . 6 ((𝑀 ∈ ℤ ∧ 𝐾 ∈ ℤ) → ((𝑀 < 𝐾𝑀 = 𝐾) → (𝑁 ∈ ℤ → (𝐾 < 𝑁 → (𝐾 = 𝑀𝐾 ∈ ((𝑀 + 1)..^𝑁))))))
326, 31sylbid 240 . . . . 5 ((𝑀 ∈ ℤ ∧ 𝐾 ∈ ℤ) → (𝑀𝐾 → (𝑁 ∈ ℤ → (𝐾 < 𝑁 → (𝐾 = 𝑀𝐾 ∈ ((𝑀 + 1)..^𝑁))))))
33323impia 1118 . . . 4 ((𝑀 ∈ ℤ ∧ 𝐾 ∈ ℤ ∧ 𝑀𝐾) → (𝑁 ∈ ℤ → (𝐾 < 𝑁 → (𝐾 = 𝑀𝐾 ∈ ((𝑀 + 1)..^𝑁)))))
342, 33sylbi 217 . . 3 (𝐾 ∈ (ℤ𝑀) → (𝑁 ∈ ℤ → (𝐾 < 𝑁 → (𝐾 = 𝑀𝐾 ∈ ((𝑀 + 1)..^𝑁)))))
35343imp 1111 . 2 ((𝐾 ∈ (ℤ𝑀) ∧ 𝑁 ∈ ℤ ∧ 𝐾 < 𝑁) → (𝐾 = 𝑀𝐾 ∈ ((𝑀 + 1)..^𝑁)))
361, 35sylbi 217 1 (𝐾 ∈ (𝑀..^𝑁) → (𝐾 = 𝑀𝐾 ∈ ((𝑀 + 1)..^𝑁)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wo 848  w3a 1087   = wceq 1540  wcel 2108   class class class wbr 5143  cfv 6561  (class class class)co 7431  cr 11154  1c1 11156   + caddc 11158   < clt 11295  cle 11296  cz 12613  cuz 12878  ..^cfzo 13694
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-cnex 11211  ax-resscn 11212  ax-1cn 11213  ax-icn 11214  ax-addcl 11215  ax-addrcl 11216  ax-mulcl 11217  ax-mulrcl 11218  ax-mulcom 11219  ax-addass 11220  ax-mulass 11221  ax-distr 11222  ax-i2m1 11223  ax-1ne0 11224  ax-1rid 11225  ax-rnegex 11226  ax-rrecex 11227  ax-cnre 11228  ax-pre-lttri 11229  ax-pre-lttrn 11230  ax-pre-ltadd 11231  ax-pre-mulgt0 11232
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-pred 6321  df-ord 6387  df-on 6388  df-lim 6389  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8014  df-2nd 8015  df-frecs 8306  df-wrecs 8337  df-recs 8411  df-rdg 8450  df-er 8745  df-en 8986  df-dom 8987  df-sdom 8988  df-pnf 11297  df-mnf 11298  df-xr 11299  df-ltxr 11300  df-le 11301  df-sub 11494  df-neg 11495  df-nn 12267  df-n0 12527  df-z 12614  df-uz 12879  df-fz 13548  df-fzo 13695
This theorem is referenced by:  nnpw2blenfzo2  48503
  Copyright terms: Public domain W3C validator