Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  elfzolborelfzop1 Structured version   Visualization version   GIF version

Theorem elfzolborelfzop1 48512
Description: An element of a half-open integer interval is either equal to the left bound of the interval or an element of a half-open integer interval with a lower bound increased by 1. (Contributed by AV, 2-Jun-2020.)
Assertion
Ref Expression
elfzolborelfzop1 (𝐾 ∈ (𝑀..^𝑁) → (𝐾 = 𝑀𝐾 ∈ ((𝑀 + 1)..^𝑁)))

Proof of Theorem elfzolborelfzop1
StepHypRef Expression
1 elfzo2 13630 . 2 (𝐾 ∈ (𝑀..^𝑁) ↔ (𝐾 ∈ (ℤ𝑀) ∧ 𝑁 ∈ ℤ ∧ 𝐾 < 𝑁))
2 eluz2 12806 . . . 4 (𝐾 ∈ (ℤ𝑀) ↔ (𝑀 ∈ ℤ ∧ 𝐾 ∈ ℤ ∧ 𝑀𝐾))
3 zre 12540 . . . . . . 7 (𝑀 ∈ ℤ → 𝑀 ∈ ℝ)
4 zre 12540 . . . . . . 7 (𝐾 ∈ ℤ → 𝐾 ∈ ℝ)
5 leloe 11267 . . . . . . 7 ((𝑀 ∈ ℝ ∧ 𝐾 ∈ ℝ) → (𝑀𝐾 ↔ (𝑀 < 𝐾𝑀 = 𝐾)))
63, 4, 5syl2an 596 . . . . . 6 ((𝑀 ∈ ℤ ∧ 𝐾 ∈ ℤ) → (𝑀𝐾 ↔ (𝑀 < 𝐾𝑀 = 𝐾)))
7 peano2z 12581 . . . . . . . . . . . . . . . 16 (𝑀 ∈ ℤ → (𝑀 + 1) ∈ ℤ)
87adantr 480 . . . . . . . . . . . . . . 15 ((𝑀 ∈ ℤ ∧ 𝐾 ∈ ℤ) → (𝑀 + 1) ∈ ℤ)
98ad2antrl 728 . . . . . . . . . . . . . 14 ((𝑀 < 𝐾 ∧ ((𝑀 ∈ ℤ ∧ 𝐾 ∈ ℤ) ∧ 𝑁 ∈ ℤ)) → (𝑀 + 1) ∈ ℤ)
10 simprlr 779 . . . . . . . . . . . . . 14 ((𝑀 < 𝐾 ∧ ((𝑀 ∈ ℤ ∧ 𝐾 ∈ ℤ) ∧ 𝑁 ∈ ℤ)) → 𝐾 ∈ ℤ)
11 simpl 482 . . . . . . . . . . . . . . 15 ((𝑀 < 𝐾 ∧ ((𝑀 ∈ ℤ ∧ 𝐾 ∈ ℤ) ∧ 𝑁 ∈ ℤ)) → 𝑀 < 𝐾)
12 zltp1le 12590 . . . . . . . . . . . . . . . 16 ((𝑀 ∈ ℤ ∧ 𝐾 ∈ ℤ) → (𝑀 < 𝐾 ↔ (𝑀 + 1) ≤ 𝐾))
1312ad2antrl 728 . . . . . . . . . . . . . . 15 ((𝑀 < 𝐾 ∧ ((𝑀 ∈ ℤ ∧ 𝐾 ∈ ℤ) ∧ 𝑁 ∈ ℤ)) → (𝑀 < 𝐾 ↔ (𝑀 + 1) ≤ 𝐾))
1411, 13mpbid 232 . . . . . . . . . . . . . 14 ((𝑀 < 𝐾 ∧ ((𝑀 ∈ ℤ ∧ 𝐾 ∈ ℤ) ∧ 𝑁 ∈ ℤ)) → (𝑀 + 1) ≤ 𝐾)
159, 10, 143jca 1128 . . . . . . . . . . . . 13 ((𝑀 < 𝐾 ∧ ((𝑀 ∈ ℤ ∧ 𝐾 ∈ ℤ) ∧ 𝑁 ∈ ℤ)) → ((𝑀 + 1) ∈ ℤ ∧ 𝐾 ∈ ℤ ∧ (𝑀 + 1) ≤ 𝐾))
1615adantr 480 . . . . . . . . . . . 12 (((𝑀 < 𝐾 ∧ ((𝑀 ∈ ℤ ∧ 𝐾 ∈ ℤ) ∧ 𝑁 ∈ ℤ)) ∧ 𝐾 < 𝑁) → ((𝑀 + 1) ∈ ℤ ∧ 𝐾 ∈ ℤ ∧ (𝑀 + 1) ≤ 𝐾))
17 simplrr 777 . . . . . . . . . . . 12 (((𝑀 < 𝐾 ∧ ((𝑀 ∈ ℤ ∧ 𝐾 ∈ ℤ) ∧ 𝑁 ∈ ℤ)) ∧ 𝐾 < 𝑁) → 𝑁 ∈ ℤ)
18 simpr 484 . . . . . . . . . . . 12 (((𝑀 < 𝐾 ∧ ((𝑀 ∈ ℤ ∧ 𝐾 ∈ ℤ) ∧ 𝑁 ∈ ℤ)) ∧ 𝐾 < 𝑁) → 𝐾 < 𝑁)
19 elfzo2 13630 . . . . . . . . . . . . 13 (𝐾 ∈ ((𝑀 + 1)..^𝑁) ↔ (𝐾 ∈ (ℤ‘(𝑀 + 1)) ∧ 𝑁 ∈ ℤ ∧ 𝐾 < 𝑁))
20 eluz2 12806 . . . . . . . . . . . . . 14 (𝐾 ∈ (ℤ‘(𝑀 + 1)) ↔ ((𝑀 + 1) ∈ ℤ ∧ 𝐾 ∈ ℤ ∧ (𝑀 + 1) ≤ 𝐾))
21203anbi1i 1157 . . . . . . . . . . . . 13 ((𝐾 ∈ (ℤ‘(𝑀 + 1)) ∧ 𝑁 ∈ ℤ ∧ 𝐾 < 𝑁) ↔ (((𝑀 + 1) ∈ ℤ ∧ 𝐾 ∈ ℤ ∧ (𝑀 + 1) ≤ 𝐾) ∧ 𝑁 ∈ ℤ ∧ 𝐾 < 𝑁))
2219, 21bitri 275 . . . . . . . . . . . 12 (𝐾 ∈ ((𝑀 + 1)..^𝑁) ↔ (((𝑀 + 1) ∈ ℤ ∧ 𝐾 ∈ ℤ ∧ (𝑀 + 1) ≤ 𝐾) ∧ 𝑁 ∈ ℤ ∧ 𝐾 < 𝑁))
2316, 17, 18, 22syl3anbrc 1344 . . . . . . . . . . 11 (((𝑀 < 𝐾 ∧ ((𝑀 ∈ ℤ ∧ 𝐾 ∈ ℤ) ∧ 𝑁 ∈ ℤ)) ∧ 𝐾 < 𝑁) → 𝐾 ∈ ((𝑀 + 1)..^𝑁))
2423olcd 874 . . . . . . . . . 10 (((𝑀 < 𝐾 ∧ ((𝑀 ∈ ℤ ∧ 𝐾 ∈ ℤ) ∧ 𝑁 ∈ ℤ)) ∧ 𝐾 < 𝑁) → (𝐾 = 𝑀𝐾 ∈ ((𝑀 + 1)..^𝑁)))
2524exp31 419 . . . . . . . . 9 (𝑀 < 𝐾 → (((𝑀 ∈ ℤ ∧ 𝐾 ∈ ℤ) ∧ 𝑁 ∈ ℤ) → (𝐾 < 𝑁 → (𝐾 = 𝑀𝐾 ∈ ((𝑀 + 1)..^𝑁)))))
26 orc 867 . . . . . . . . . . 11 (𝐾 = 𝑀 → (𝐾 = 𝑀𝐾 ∈ ((𝑀 + 1)..^𝑁)))
2726eqcoms 2738 . . . . . . . . . 10 (𝑀 = 𝐾 → (𝐾 = 𝑀𝐾 ∈ ((𝑀 + 1)..^𝑁)))
28272a1d 26 . . . . . . . . 9 (𝑀 = 𝐾 → (((𝑀 ∈ ℤ ∧ 𝐾 ∈ ℤ) ∧ 𝑁 ∈ ℤ) → (𝐾 < 𝑁 → (𝐾 = 𝑀𝐾 ∈ ((𝑀 + 1)..^𝑁)))))
2925, 28jaoi 857 . . . . . . . 8 ((𝑀 < 𝐾𝑀 = 𝐾) → (((𝑀 ∈ ℤ ∧ 𝐾 ∈ ℤ) ∧ 𝑁 ∈ ℤ) → (𝐾 < 𝑁 → (𝐾 = 𝑀𝐾 ∈ ((𝑀 + 1)..^𝑁)))))
3029expd 415 . . . . . . 7 ((𝑀 < 𝐾𝑀 = 𝐾) → ((𝑀 ∈ ℤ ∧ 𝐾 ∈ ℤ) → (𝑁 ∈ ℤ → (𝐾 < 𝑁 → (𝐾 = 𝑀𝐾 ∈ ((𝑀 + 1)..^𝑁))))))
3130com12 32 . . . . . 6 ((𝑀 ∈ ℤ ∧ 𝐾 ∈ ℤ) → ((𝑀 < 𝐾𝑀 = 𝐾) → (𝑁 ∈ ℤ → (𝐾 < 𝑁 → (𝐾 = 𝑀𝐾 ∈ ((𝑀 + 1)..^𝑁))))))
326, 31sylbid 240 . . . . 5 ((𝑀 ∈ ℤ ∧ 𝐾 ∈ ℤ) → (𝑀𝐾 → (𝑁 ∈ ℤ → (𝐾 < 𝑁 → (𝐾 = 𝑀𝐾 ∈ ((𝑀 + 1)..^𝑁))))))
33323impia 1117 . . . 4 ((𝑀 ∈ ℤ ∧ 𝐾 ∈ ℤ ∧ 𝑀𝐾) → (𝑁 ∈ ℤ → (𝐾 < 𝑁 → (𝐾 = 𝑀𝐾 ∈ ((𝑀 + 1)..^𝑁)))))
342, 33sylbi 217 . . 3 (𝐾 ∈ (ℤ𝑀) → (𝑁 ∈ ℤ → (𝐾 < 𝑁 → (𝐾 = 𝑀𝐾 ∈ ((𝑀 + 1)..^𝑁)))))
35343imp 1110 . 2 ((𝐾 ∈ (ℤ𝑀) ∧ 𝑁 ∈ ℤ ∧ 𝐾 < 𝑁) → (𝐾 = 𝑀𝐾 ∈ ((𝑀 + 1)..^𝑁)))
361, 35sylbi 217 1 (𝐾 ∈ (𝑀..^𝑁) → (𝐾 = 𝑀𝐾 ∈ ((𝑀 + 1)..^𝑁)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wo 847  w3a 1086   = wceq 1540  wcel 2109   class class class wbr 5110  cfv 6514  (class class class)co 7390  cr 11074  1c1 11076   + caddc 11078   < clt 11215  cle 11216  cz 12536  cuz 12800  ..^cfzo 13622
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-cnex 11131  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-om 7846  df-1st 7971  df-2nd 7972  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-er 8674  df-en 8922  df-dom 8923  df-sdom 8924  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415  df-nn 12194  df-n0 12450  df-z 12537  df-uz 12801  df-fz 13476  df-fzo 13623
This theorem is referenced by:  nnpw2blenfzo2  48575
  Copyright terms: Public domain W3C validator