Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  elfzolborelfzop1 Structured version   Visualization version   GIF version

Theorem elfzolborelfzop1 46119
Description: An element of a half-open integer interval is either equal to the left bound of the interval or an element of a half-open integer interval with a lower bound increased by 1. (Contributed by AV, 2-Jun-2020.)
Assertion
Ref Expression
elfzolborelfzop1 (𝐾 ∈ (𝑀..^𝑁) → (𝐾 = 𝑀𝐾 ∈ ((𝑀 + 1)..^𝑁)))

Proof of Theorem elfzolborelfzop1
StepHypRef Expression
1 elfzo2 13460 . 2 (𝐾 ∈ (𝑀..^𝑁) ↔ (𝐾 ∈ (ℤ𝑀) ∧ 𝑁 ∈ ℤ ∧ 𝐾 < 𝑁))
2 eluz2 12658 . . . 4 (𝐾 ∈ (ℤ𝑀) ↔ (𝑀 ∈ ℤ ∧ 𝐾 ∈ ℤ ∧ 𝑀𝐾))
3 zre 12393 . . . . . . 7 (𝑀 ∈ ℤ → 𝑀 ∈ ℝ)
4 zre 12393 . . . . . . 7 (𝐾 ∈ ℤ → 𝐾 ∈ ℝ)
5 leloe 11131 . . . . . . 7 ((𝑀 ∈ ℝ ∧ 𝐾 ∈ ℝ) → (𝑀𝐾 ↔ (𝑀 < 𝐾𝑀 = 𝐾)))
63, 4, 5syl2an 596 . . . . . 6 ((𝑀 ∈ ℤ ∧ 𝐾 ∈ ℤ) → (𝑀𝐾 ↔ (𝑀 < 𝐾𝑀 = 𝐾)))
7 peano2z 12431 . . . . . . . . . . . . . . . 16 (𝑀 ∈ ℤ → (𝑀 + 1) ∈ ℤ)
87adantr 481 . . . . . . . . . . . . . . 15 ((𝑀 ∈ ℤ ∧ 𝐾 ∈ ℤ) → (𝑀 + 1) ∈ ℤ)
98ad2antrl 725 . . . . . . . . . . . . . 14 ((𝑀 < 𝐾 ∧ ((𝑀 ∈ ℤ ∧ 𝐾 ∈ ℤ) ∧ 𝑁 ∈ ℤ)) → (𝑀 + 1) ∈ ℤ)
10 simprlr 777 . . . . . . . . . . . . . 14 ((𝑀 < 𝐾 ∧ ((𝑀 ∈ ℤ ∧ 𝐾 ∈ ℤ) ∧ 𝑁 ∈ ℤ)) → 𝐾 ∈ ℤ)
11 simpl 483 . . . . . . . . . . . . . . 15 ((𝑀 < 𝐾 ∧ ((𝑀 ∈ ℤ ∧ 𝐾 ∈ ℤ) ∧ 𝑁 ∈ ℤ)) → 𝑀 < 𝐾)
12 zltp1le 12440 . . . . . . . . . . . . . . . 16 ((𝑀 ∈ ℤ ∧ 𝐾 ∈ ℤ) → (𝑀 < 𝐾 ↔ (𝑀 + 1) ≤ 𝐾))
1312ad2antrl 725 . . . . . . . . . . . . . . 15 ((𝑀 < 𝐾 ∧ ((𝑀 ∈ ℤ ∧ 𝐾 ∈ ℤ) ∧ 𝑁 ∈ ℤ)) → (𝑀 < 𝐾 ↔ (𝑀 + 1) ≤ 𝐾))
1411, 13mpbid 231 . . . . . . . . . . . . . 14 ((𝑀 < 𝐾 ∧ ((𝑀 ∈ ℤ ∧ 𝐾 ∈ ℤ) ∧ 𝑁 ∈ ℤ)) → (𝑀 + 1) ≤ 𝐾)
159, 10, 143jca 1127 . . . . . . . . . . . . 13 ((𝑀 < 𝐾 ∧ ((𝑀 ∈ ℤ ∧ 𝐾 ∈ ℤ) ∧ 𝑁 ∈ ℤ)) → ((𝑀 + 1) ∈ ℤ ∧ 𝐾 ∈ ℤ ∧ (𝑀 + 1) ≤ 𝐾))
1615adantr 481 . . . . . . . . . . . 12 (((𝑀 < 𝐾 ∧ ((𝑀 ∈ ℤ ∧ 𝐾 ∈ ℤ) ∧ 𝑁 ∈ ℤ)) ∧ 𝐾 < 𝑁) → ((𝑀 + 1) ∈ ℤ ∧ 𝐾 ∈ ℤ ∧ (𝑀 + 1) ≤ 𝐾))
17 simplrr 775 . . . . . . . . . . . 12 (((𝑀 < 𝐾 ∧ ((𝑀 ∈ ℤ ∧ 𝐾 ∈ ℤ) ∧ 𝑁 ∈ ℤ)) ∧ 𝐾 < 𝑁) → 𝑁 ∈ ℤ)
18 simpr 485 . . . . . . . . . . . 12 (((𝑀 < 𝐾 ∧ ((𝑀 ∈ ℤ ∧ 𝐾 ∈ ℤ) ∧ 𝑁 ∈ ℤ)) ∧ 𝐾 < 𝑁) → 𝐾 < 𝑁)
19 elfzo2 13460 . . . . . . . . . . . . 13 (𝐾 ∈ ((𝑀 + 1)..^𝑁) ↔ (𝐾 ∈ (ℤ‘(𝑀 + 1)) ∧ 𝑁 ∈ ℤ ∧ 𝐾 < 𝑁))
20 eluz2 12658 . . . . . . . . . . . . . 14 (𝐾 ∈ (ℤ‘(𝑀 + 1)) ↔ ((𝑀 + 1) ∈ ℤ ∧ 𝐾 ∈ ℤ ∧ (𝑀 + 1) ≤ 𝐾))
21203anbi1i 1156 . . . . . . . . . . . . 13 ((𝐾 ∈ (ℤ‘(𝑀 + 1)) ∧ 𝑁 ∈ ℤ ∧ 𝐾 < 𝑁) ↔ (((𝑀 + 1) ∈ ℤ ∧ 𝐾 ∈ ℤ ∧ (𝑀 + 1) ≤ 𝐾) ∧ 𝑁 ∈ ℤ ∧ 𝐾 < 𝑁))
2219, 21bitri 274 . . . . . . . . . . . 12 (𝐾 ∈ ((𝑀 + 1)..^𝑁) ↔ (((𝑀 + 1) ∈ ℤ ∧ 𝐾 ∈ ℤ ∧ (𝑀 + 1) ≤ 𝐾) ∧ 𝑁 ∈ ℤ ∧ 𝐾 < 𝑁))
2316, 17, 18, 22syl3anbrc 1342 . . . . . . . . . . 11 (((𝑀 < 𝐾 ∧ ((𝑀 ∈ ℤ ∧ 𝐾 ∈ ℤ) ∧ 𝑁 ∈ ℤ)) ∧ 𝐾 < 𝑁) → 𝐾 ∈ ((𝑀 + 1)..^𝑁))
2423olcd 871 . . . . . . . . . 10 (((𝑀 < 𝐾 ∧ ((𝑀 ∈ ℤ ∧ 𝐾 ∈ ℤ) ∧ 𝑁 ∈ ℤ)) ∧ 𝐾 < 𝑁) → (𝐾 = 𝑀𝐾 ∈ ((𝑀 + 1)..^𝑁)))
2524exp31 420 . . . . . . . . 9 (𝑀 < 𝐾 → (((𝑀 ∈ ℤ ∧ 𝐾 ∈ ℤ) ∧ 𝑁 ∈ ℤ) → (𝐾 < 𝑁 → (𝐾 = 𝑀𝐾 ∈ ((𝑀 + 1)..^𝑁)))))
26 orc 864 . . . . . . . . . . 11 (𝐾 = 𝑀 → (𝐾 = 𝑀𝐾 ∈ ((𝑀 + 1)..^𝑁)))
2726eqcoms 2745 . . . . . . . . . 10 (𝑀 = 𝐾 → (𝐾 = 𝑀𝐾 ∈ ((𝑀 + 1)..^𝑁)))
28272a1d 26 . . . . . . . . 9 (𝑀 = 𝐾 → (((𝑀 ∈ ℤ ∧ 𝐾 ∈ ℤ) ∧ 𝑁 ∈ ℤ) → (𝐾 < 𝑁 → (𝐾 = 𝑀𝐾 ∈ ((𝑀 + 1)..^𝑁)))))
2925, 28jaoi 854 . . . . . . . 8 ((𝑀 < 𝐾𝑀 = 𝐾) → (((𝑀 ∈ ℤ ∧ 𝐾 ∈ ℤ) ∧ 𝑁 ∈ ℤ) → (𝐾 < 𝑁 → (𝐾 = 𝑀𝐾 ∈ ((𝑀 + 1)..^𝑁)))))
3029expd 416 . . . . . . 7 ((𝑀 < 𝐾𝑀 = 𝐾) → ((𝑀 ∈ ℤ ∧ 𝐾 ∈ ℤ) → (𝑁 ∈ ℤ → (𝐾 < 𝑁 → (𝐾 = 𝑀𝐾 ∈ ((𝑀 + 1)..^𝑁))))))
3130com12 32 . . . . . 6 ((𝑀 ∈ ℤ ∧ 𝐾 ∈ ℤ) → ((𝑀 < 𝐾𝑀 = 𝐾) → (𝑁 ∈ ℤ → (𝐾 < 𝑁 → (𝐾 = 𝑀𝐾 ∈ ((𝑀 + 1)..^𝑁))))))
326, 31sylbid 239 . . . . 5 ((𝑀 ∈ ℤ ∧ 𝐾 ∈ ℤ) → (𝑀𝐾 → (𝑁 ∈ ℤ → (𝐾 < 𝑁 → (𝐾 = 𝑀𝐾 ∈ ((𝑀 + 1)..^𝑁))))))
33323impia 1116 . . . 4 ((𝑀 ∈ ℤ ∧ 𝐾 ∈ ℤ ∧ 𝑀𝐾) → (𝑁 ∈ ℤ → (𝐾 < 𝑁 → (𝐾 = 𝑀𝐾 ∈ ((𝑀 + 1)..^𝑁)))))
342, 33sylbi 216 . . 3 (𝐾 ∈ (ℤ𝑀) → (𝑁 ∈ ℤ → (𝐾 < 𝑁 → (𝐾 = 𝑀𝐾 ∈ ((𝑀 + 1)..^𝑁)))))
35343imp 1110 . 2 ((𝐾 ∈ (ℤ𝑀) ∧ 𝑁 ∈ ℤ ∧ 𝐾 < 𝑁) → (𝐾 = 𝑀𝐾 ∈ ((𝑀 + 1)..^𝑁)))
361, 35sylbi 216 1 (𝐾 ∈ (𝑀..^𝑁) → (𝐾 = 𝑀𝐾 ∈ ((𝑀 + 1)..^𝑁)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  wo 844  w3a 1086   = wceq 1540  wcel 2105   class class class wbr 5085  cfv 6463  (class class class)co 7313  cr 10940  1c1 10942   + caddc 10944   < clt 11079  cle 11080  cz 12389  cuz 12652  ..^cfzo 13452
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2708  ax-sep 5236  ax-nul 5243  ax-pow 5301  ax-pr 5365  ax-un 7626  ax-cnex 10997  ax-resscn 10998  ax-1cn 10999  ax-icn 11000  ax-addcl 11001  ax-addrcl 11002  ax-mulcl 11003  ax-mulrcl 11004  ax-mulcom 11005  ax-addass 11006  ax-mulass 11007  ax-distr 11008  ax-i2m1 11009  ax-1ne0 11010  ax-1rid 11011  ax-rnegex 11012  ax-rrecex 11013  ax-cnre 11014  ax-pre-lttri 11015  ax-pre-lttrn 11016  ax-pre-ltadd 11017  ax-pre-mulgt0 11018
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2815  df-nfc 2887  df-ne 2942  df-nel 3048  df-ral 3063  df-rex 3072  df-reu 3351  df-rab 3405  df-v 3443  df-sbc 3726  df-csb 3842  df-dif 3899  df-un 3901  df-in 3903  df-ss 3913  df-pss 3915  df-nul 4267  df-if 4470  df-pw 4545  df-sn 4570  df-pr 4572  df-op 4576  df-uni 4849  df-iun 4937  df-br 5086  df-opab 5148  df-mpt 5169  df-tr 5203  df-id 5505  df-eprel 5511  df-po 5519  df-so 5520  df-fr 5560  df-we 5562  df-xp 5611  df-rel 5612  df-cnv 5613  df-co 5614  df-dm 5615  df-rn 5616  df-res 5617  df-ima 5618  df-pred 6222  df-ord 6289  df-on 6290  df-lim 6291  df-suc 6292  df-iota 6415  df-fun 6465  df-fn 6466  df-f 6467  df-f1 6468  df-fo 6469  df-f1o 6470  df-fv 6471  df-riota 7270  df-ov 7316  df-oprab 7317  df-mpo 7318  df-om 7756  df-1st 7874  df-2nd 7875  df-frecs 8142  df-wrecs 8173  df-recs 8247  df-rdg 8286  df-er 8544  df-en 8780  df-dom 8781  df-sdom 8782  df-pnf 11081  df-mnf 11082  df-xr 11083  df-ltxr 11084  df-le 11085  df-sub 11277  df-neg 11278  df-nn 12044  df-n0 12304  df-z 12390  df-uz 12653  df-fz 13310  df-fzo 13453
This theorem is referenced by:  nnpw2blenfzo2  46187
  Copyright terms: Public domain W3C validator