Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  nnolog2flm1 Structured version   Visualization version   GIF version

Theorem nnolog2flm1 46666
Description: The floor of the binary logarithm of an odd integer greater than 1 is the floor of the binary logarithm of the integer decreased by 1. (Contributed by AV, 2-Jun-2020.)
Assertion
Ref Expression
nnolog2flm1 ((𝑁 ∈ (ℤ‘2) ∧ ((𝑁 + 1) / 2) ∈ ℕ) → (⌊‘(2 logb 𝑁)) = (⌊‘(2 logb (𝑁 − 1))))

Proof of Theorem nnolog2flm1
StepHypRef Expression
1 eluz2nn 12809 . . . 4 (𝑁 ∈ (ℤ‘2) → 𝑁 ∈ ℕ)
2 nnpw2blenfzo2 46658 . . . 4 (𝑁 ∈ ℕ → (𝑁 = (2↑((#b𝑁) − 1)) ∨ 𝑁 ∈ (((2↑((#b𝑁) − 1)) + 1)..^(2↑(#b𝑁)))))
31, 2syl 17 . . 3 (𝑁 ∈ (ℤ‘2) → (𝑁 = (2↑((#b𝑁) − 1)) ∨ 𝑁 ∈ (((2↑((#b𝑁) − 1)) + 1)..^(2↑(#b𝑁)))))
41adantl 482 . . . . . . . . 9 ((𝑁 = (2↑((#b𝑁) − 1)) ∧ 𝑁 ∈ (ℤ‘2)) → 𝑁 ∈ ℕ)
5 nneo 12587 . . . . . . . . . 10 (𝑁 ∈ ℕ → ((𝑁 / 2) ∈ ℕ ↔ ¬ ((𝑁 + 1) / 2) ∈ ℕ))
65bicomd 222 . . . . . . . . 9 (𝑁 ∈ ℕ → (¬ ((𝑁 + 1) / 2) ∈ ℕ ↔ (𝑁 / 2) ∈ ℕ))
74, 6syl 17 . . . . . . . 8 ((𝑁 = (2↑((#b𝑁) − 1)) ∧ 𝑁 ∈ (ℤ‘2)) → (¬ ((𝑁 + 1) / 2) ∈ ℕ ↔ (𝑁 / 2) ∈ ℕ))
8 notnotb 314 . . . . . . . 8 ((𝑁 / 2) ∈ ℕ ↔ ¬ ¬ (𝑁 / 2) ∈ ℕ)
97, 8bitrdi 286 . . . . . . 7 ((𝑁 = (2↑((#b𝑁) − 1)) ∧ 𝑁 ∈ (ℤ‘2)) → (¬ ((𝑁 + 1) / 2) ∈ ℕ ↔ ¬ ¬ (𝑁 / 2) ∈ ℕ))
109con4bid 316 . . . . . 6 ((𝑁 = (2↑((#b𝑁) − 1)) ∧ 𝑁 ∈ (ℤ‘2)) → (((𝑁 + 1) / 2) ∈ ℕ ↔ ¬ (𝑁 / 2) ∈ ℕ))
11 simpl 483 . . . . . . . . 9 ((𝑁 = (2↑((#b𝑁) − 1)) ∧ 𝑁 ∈ (ℤ‘2)) → 𝑁 = (2↑((#b𝑁) − 1)))
1211oveq1d 7372 . . . . . . . 8 ((𝑁 = (2↑((#b𝑁) − 1)) ∧ 𝑁 ∈ (ℤ‘2)) → (𝑁 / 2) = ((2↑((#b𝑁) − 1)) / 2))
13 blennnelnn 46652 . . . . . . . . . . . . 13 (𝑁 ∈ ℕ → (#b𝑁) ∈ ℕ)
1413nnnn0d 12473 . . . . . . . . . . . 12 (𝑁 ∈ ℕ → (#b𝑁) ∈ ℕ0)
151, 14syl 17 . . . . . . . . . . 11 (𝑁 ∈ (ℤ‘2) → (#b𝑁) ∈ ℕ0)
16 2m1e1 12279 . . . . . . . . . . . . . 14 (2 − 1) = 1
17 2cn 12228 . . . . . . . . . . . . . . . . 17 2 ∈ ℂ
18 2ne0 12257 . . . . . . . . . . . . . . . . 17 2 ≠ 0
19 1ne2 12361 . . . . . . . . . . . . . . . . . 18 1 ≠ 2
2019necomi 2998 . . . . . . . . . . . . . . . . 17 2 ≠ 1
21 logbid1 26118 . . . . . . . . . . . . . . . . 17 ((2 ∈ ℂ ∧ 2 ≠ 0 ∧ 2 ≠ 1) → (2 logb 2) = 1)
2217, 18, 20, 21mp3an 1461 . . . . . . . . . . . . . . . 16 (2 logb 2) = 1
23 eluzle 12776 . . . . . . . . . . . . . . . . 17 (𝑁 ∈ (ℤ‘2) → 2 ≤ 𝑁)
24 2z 12535 . . . . . . . . . . . . . . . . . . 19 2 ∈ ℤ
25 uzid 12778 . . . . . . . . . . . . . . . . . . 19 (2 ∈ ℤ → 2 ∈ (ℤ‘2))
2624, 25mp1i 13 . . . . . . . . . . . . . . . . . 18 (𝑁 ∈ (ℤ‘2) → 2 ∈ (ℤ‘2))
27 2rp 12920 . . . . . . . . . . . . . . . . . . 19 2 ∈ ℝ+
2827a1i 11 . . . . . . . . . . . . . . . . . 18 (𝑁 ∈ (ℤ‘2) → 2 ∈ ℝ+)
291nnrpd 12955 . . . . . . . . . . . . . . . . . 18 (𝑁 ∈ (ℤ‘2) → 𝑁 ∈ ℝ+)
30 logbleb 26133 . . . . . . . . . . . . . . . . . 18 ((2 ∈ (ℤ‘2) ∧ 2 ∈ ℝ+𝑁 ∈ ℝ+) → (2 ≤ 𝑁 ↔ (2 logb 2) ≤ (2 logb 𝑁)))
3126, 28, 29, 30syl3anc 1371 . . . . . . . . . . . . . . . . 17 (𝑁 ∈ (ℤ‘2) → (2 ≤ 𝑁 ↔ (2 logb 2) ≤ (2 logb 𝑁)))
3223, 31mpbid 231 . . . . . . . . . . . . . . . 16 (𝑁 ∈ (ℤ‘2) → (2 logb 2) ≤ (2 logb 𝑁))
3322, 32eqbrtrrid 5141 . . . . . . . . . . . . . . 15 (𝑁 ∈ (ℤ‘2) → 1 ≤ (2 logb 𝑁))
3420a1i 11 . . . . . . . . . . . . . . . . 17 (𝑁 ∈ (ℤ‘2) → 2 ≠ 1)
35 relogbcl 26123 . . . . . . . . . . . . . . . . 17 ((2 ∈ ℝ+𝑁 ∈ ℝ+ ∧ 2 ≠ 1) → (2 logb 𝑁) ∈ ℝ)
3628, 29, 34, 35syl3anc 1371 . . . . . . . . . . . . . . . 16 (𝑁 ∈ (ℤ‘2) → (2 logb 𝑁) ∈ ℝ)
37 1zzd 12534 . . . . . . . . . . . . . . . 16 (𝑁 ∈ (ℤ‘2) → 1 ∈ ℤ)
38 flge 13710 . . . . . . . . . . . . . . . 16 (((2 logb 𝑁) ∈ ℝ ∧ 1 ∈ ℤ) → (1 ≤ (2 logb 𝑁) ↔ 1 ≤ (⌊‘(2 logb 𝑁))))
3936, 37, 38syl2anc 584 . . . . . . . . . . . . . . 15 (𝑁 ∈ (ℤ‘2) → (1 ≤ (2 logb 𝑁) ↔ 1 ≤ (⌊‘(2 logb 𝑁))))
4033, 39mpbid 231 . . . . . . . . . . . . . 14 (𝑁 ∈ (ℤ‘2) → 1 ≤ (⌊‘(2 logb 𝑁)))
4116, 40eqbrtrid 5140 . . . . . . . . . . . . 13 (𝑁 ∈ (ℤ‘2) → (2 − 1) ≤ (⌊‘(2 logb 𝑁)))
42 2re 12227 . . . . . . . . . . . . . . 15 2 ∈ ℝ
4342a1i 11 . . . . . . . . . . . . . 14 (𝑁 ∈ (ℤ‘2) → 2 ∈ ℝ)
44 1red 11156 . . . . . . . . . . . . . 14 (𝑁 ∈ (ℤ‘2) → 1 ∈ ℝ)
4536flcld 13703 . . . . . . . . . . . . . . 15 (𝑁 ∈ (ℤ‘2) → (⌊‘(2 logb 𝑁)) ∈ ℤ)
4645zred 12607 . . . . . . . . . . . . . 14 (𝑁 ∈ (ℤ‘2) → (⌊‘(2 logb 𝑁)) ∈ ℝ)
4743, 44, 46lesubaddd 11752 . . . . . . . . . . . . 13 (𝑁 ∈ (ℤ‘2) → ((2 − 1) ≤ (⌊‘(2 logb 𝑁)) ↔ 2 ≤ ((⌊‘(2 logb 𝑁)) + 1)))
4841, 47mpbid 231 . . . . . . . . . . . 12 (𝑁 ∈ (ℤ‘2) → 2 ≤ ((⌊‘(2 logb 𝑁)) + 1))
49 blennn 46651 . . . . . . . . . . . . 13 (𝑁 ∈ ℕ → (#b𝑁) = ((⌊‘(2 logb 𝑁)) + 1))
501, 49syl 17 . . . . . . . . . . . 12 (𝑁 ∈ (ℤ‘2) → (#b𝑁) = ((⌊‘(2 logb 𝑁)) + 1))
5148, 50breqtrrd 5133 . . . . . . . . . . 11 (𝑁 ∈ (ℤ‘2) → 2 ≤ (#b𝑁))
52 nn0ge2m1nn 12482 . . . . . . . . . . 11 (((#b𝑁) ∈ ℕ0 ∧ 2 ≤ (#b𝑁)) → ((#b𝑁) − 1) ∈ ℕ)
5315, 51, 52syl2anc 584 . . . . . . . . . 10 (𝑁 ∈ (ℤ‘2) → ((#b𝑁) − 1) ∈ ℕ)
5453adantl 482 . . . . . . . . 9 ((𝑁 = (2↑((#b𝑁) − 1)) ∧ 𝑁 ∈ (ℤ‘2)) → ((#b𝑁) − 1) ∈ ℕ)
55 nnpw2even 46605 . . . . . . . . 9 (((#b𝑁) − 1) ∈ ℕ → ((2↑((#b𝑁) − 1)) / 2) ∈ ℕ)
5654, 55syl 17 . . . . . . . 8 ((𝑁 = (2↑((#b𝑁) − 1)) ∧ 𝑁 ∈ (ℤ‘2)) → ((2↑((#b𝑁) − 1)) / 2) ∈ ℕ)
5712, 56eqeltrd 2838 . . . . . . 7 ((𝑁 = (2↑((#b𝑁) − 1)) ∧ 𝑁 ∈ (ℤ‘2)) → (𝑁 / 2) ∈ ℕ)
5857pm2.24d 151 . . . . . 6 ((𝑁 = (2↑((#b𝑁) − 1)) ∧ 𝑁 ∈ (ℤ‘2)) → (¬ (𝑁 / 2) ∈ ℕ → (⌊‘(2 logb 𝑁)) = (⌊‘(2 logb (𝑁 − 1)))))
5910, 58sylbid 239 . . . . 5 ((𝑁 = (2↑((#b𝑁) − 1)) ∧ 𝑁 ∈ (ℤ‘2)) → (((𝑁 + 1) / 2) ∈ ℕ → (⌊‘(2 logb 𝑁)) = (⌊‘(2 logb (𝑁 − 1)))))
6059ex 413 . . . 4 (𝑁 = (2↑((#b𝑁) − 1)) → (𝑁 ∈ (ℤ‘2) → (((𝑁 + 1) / 2) ∈ ℕ → (⌊‘(2 logb 𝑁)) = (⌊‘(2 logb (𝑁 − 1))))))
611, 13syl 17 . . . . . . . . 9 (𝑁 ∈ (ℤ‘2) → (#b𝑁) ∈ ℕ)
62 nnm1nn0 12454 . . . . . . . . 9 ((#b𝑁) ∈ ℕ → ((#b𝑁) − 1) ∈ ℕ0)
6361, 62syl 17 . . . . . . . 8 (𝑁 ∈ (ℤ‘2) → ((#b𝑁) − 1) ∈ ℕ0)
6463ad2antlr 725 . . . . . . 7 (((𝑁 ∈ (((2↑((#b𝑁) − 1)) + 1)..^(2↑(#b𝑁))) ∧ 𝑁 ∈ (ℤ‘2)) ∧ ((𝑁 + 1) / 2) ∈ ℕ) → ((#b𝑁) − 1) ∈ ℕ0)
651ad2antlr 725 . . . . . . . . 9 (((𝑁 ∈ (((2↑((#b𝑁) − 1)) + 1)..^(2↑(#b𝑁))) ∧ 𝑁 ∈ (ℤ‘2)) ∧ ((𝑁 + 1) / 2) ∈ ℕ) → 𝑁 ∈ ℕ)
66 nnpw2blenfzo 46657 . . . . . . . . 9 (𝑁 ∈ ℕ → 𝑁 ∈ ((2↑((#b𝑁) − 1))..^(2↑(#b𝑁))))
6765, 66syl 17 . . . . . . . 8 (((𝑁 ∈ (((2↑((#b𝑁) − 1)) + 1)..^(2↑(#b𝑁))) ∧ 𝑁 ∈ (ℤ‘2)) ∧ ((𝑁 + 1) / 2) ∈ ℕ) → 𝑁 ∈ ((2↑((#b𝑁) − 1))..^(2↑(#b𝑁))))
6861nncnd 12169 . . . . . . . . . . . 12 (𝑁 ∈ (ℤ‘2) → (#b𝑁) ∈ ℂ)
6968ad2antlr 725 . . . . . . . . . . 11 (((𝑁 ∈ (((2↑((#b𝑁) − 1)) + 1)..^(2↑(#b𝑁))) ∧ 𝑁 ∈ (ℤ‘2)) ∧ ((𝑁 + 1) / 2) ∈ ℕ) → (#b𝑁) ∈ ℂ)
70 npcan1 11580 . . . . . . . . . . 11 ((#b𝑁) ∈ ℂ → (((#b𝑁) − 1) + 1) = (#b𝑁))
7169, 70syl 17 . . . . . . . . . 10 (((𝑁 ∈ (((2↑((#b𝑁) − 1)) + 1)..^(2↑(#b𝑁))) ∧ 𝑁 ∈ (ℤ‘2)) ∧ ((𝑁 + 1) / 2) ∈ ℕ) → (((#b𝑁) − 1) + 1) = (#b𝑁))
7271oveq2d 7373 . . . . . . . . 9 (((𝑁 ∈ (((2↑((#b𝑁) − 1)) + 1)..^(2↑(#b𝑁))) ∧ 𝑁 ∈ (ℤ‘2)) ∧ ((𝑁 + 1) / 2) ∈ ℕ) → (2↑(((#b𝑁) − 1) + 1)) = (2↑(#b𝑁)))
7372oveq2d 7373 . . . . . . . 8 (((𝑁 ∈ (((2↑((#b𝑁) − 1)) + 1)..^(2↑(#b𝑁))) ∧ 𝑁 ∈ (ℤ‘2)) ∧ ((𝑁 + 1) / 2) ∈ ℕ) → ((2↑((#b𝑁) − 1))..^(2↑(((#b𝑁) − 1) + 1))) = ((2↑((#b𝑁) − 1))..^(2↑(#b𝑁))))
7467, 73eleqtrrd 2841 . . . . . . 7 (((𝑁 ∈ (((2↑((#b𝑁) − 1)) + 1)..^(2↑(#b𝑁))) ∧ 𝑁 ∈ (ℤ‘2)) ∧ ((𝑁 + 1) / 2) ∈ ℕ) → 𝑁 ∈ ((2↑((#b𝑁) − 1))..^(2↑(((#b𝑁) − 1) + 1))))
75 fllog2 46644 . . . . . . 7 ((((#b𝑁) − 1) ∈ ℕ0𝑁 ∈ ((2↑((#b𝑁) − 1))..^(2↑(((#b𝑁) − 1) + 1)))) → (⌊‘(2 logb 𝑁)) = ((#b𝑁) − 1))
7664, 74, 75syl2anc 584 . . . . . 6 (((𝑁 ∈ (((2↑((#b𝑁) − 1)) + 1)..^(2↑(#b𝑁))) ∧ 𝑁 ∈ (ℤ‘2)) ∧ ((𝑁 + 1) / 2) ∈ ℕ) → (⌊‘(2 logb 𝑁)) = ((#b𝑁) − 1))
7761ad2antlr 725 . . . . . . . 8 (((𝑁 ∈ (((2↑((#b𝑁) − 1)) + 1)..^(2↑(#b𝑁))) ∧ 𝑁 ∈ (ℤ‘2)) ∧ ((𝑁 + 1) / 2) ∈ ℕ) → (#b𝑁) ∈ ℕ)
7877, 62syl 17 . . . . . . 7 (((𝑁 ∈ (((2↑((#b𝑁) − 1)) + 1)..^(2↑(#b𝑁))) ∧ 𝑁 ∈ (ℤ‘2)) ∧ ((𝑁 + 1) / 2) ∈ ℕ) → ((#b𝑁) − 1) ∈ ℕ0)
79 elfzo2 13575 . . . . . . . . . . . 12 (𝑁 ∈ (((2↑((#b𝑁) − 1)) + 1)..^(2↑(#b𝑁))) ↔ (𝑁 ∈ (ℤ‘((2↑((#b𝑁) − 1)) + 1)) ∧ (2↑(#b𝑁)) ∈ ℤ ∧ 𝑁 < (2↑(#b𝑁))))
80 eluz2 12769 . . . . . . . . . . . . 13 (𝑁 ∈ (ℤ‘((2↑((#b𝑁) − 1)) + 1)) ↔ (((2↑((#b𝑁) − 1)) + 1) ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ ((2↑((#b𝑁) − 1)) + 1) ≤ 𝑁))
81803anbi1i 1157 . . . . . . . . . . . 12 ((𝑁 ∈ (ℤ‘((2↑((#b𝑁) − 1)) + 1)) ∧ (2↑(#b𝑁)) ∈ ℤ ∧ 𝑁 < (2↑(#b𝑁))) ↔ ((((2↑((#b𝑁) − 1)) + 1) ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ ((2↑((#b𝑁) − 1)) + 1) ≤ 𝑁) ∧ (2↑(#b𝑁)) ∈ ℤ ∧ 𝑁 < (2↑(#b𝑁))))
8279, 81bitri 274 . . . . . . . . . . 11 (𝑁 ∈ (((2↑((#b𝑁) − 1)) + 1)..^(2↑(#b𝑁))) ↔ ((((2↑((#b𝑁) − 1)) + 1) ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ ((2↑((#b𝑁) − 1)) + 1) ≤ 𝑁) ∧ (2↑(#b𝑁)) ∈ ℤ ∧ 𝑁 < (2↑(#b𝑁))))
83 2nn 12226 . . . . . . . . . . . . . . . . . . . 20 2 ∈ ℕ
8483a1i 11 . . . . . . . . . . . . . . . . . . 19 (𝑁 ∈ (ℤ‘2) → 2 ∈ ℕ)
8584, 63jca 512 . . . . . . . . . . . . . . . . . 18 (𝑁 ∈ (ℤ‘2) → (2 ∈ ℕ ∧ ((#b𝑁) − 1) ∈ ℕ0))
8685adantl 482 . . . . . . . . . . . . . . . . 17 ((((((2↑((#b𝑁) − 1)) + 1) ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ ((2↑((#b𝑁) − 1)) + 1) ≤ 𝑁) ∧ 𝑁 < (2↑(#b𝑁))) ∧ 𝑁 ∈ (ℤ‘2)) → (2 ∈ ℕ ∧ ((#b𝑁) − 1) ∈ ℕ0))
87 nnexpcl 13980 . . . . . . . . . . . . . . . . 17 ((2 ∈ ℕ ∧ ((#b𝑁) − 1) ∈ ℕ0) → (2↑((#b𝑁) − 1)) ∈ ℕ)
8886, 87syl 17 . . . . . . . . . . . . . . . 16 ((((((2↑((#b𝑁) − 1)) + 1) ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ ((2↑((#b𝑁) − 1)) + 1) ≤ 𝑁) ∧ 𝑁 < (2↑(#b𝑁))) ∧ 𝑁 ∈ (ℤ‘2)) → (2↑((#b𝑁) − 1)) ∈ ℕ)
8988nnzd 12526 . . . . . . . . . . . . . . 15 ((((((2↑((#b𝑁) − 1)) + 1) ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ ((2↑((#b𝑁) − 1)) + 1) ≤ 𝑁) ∧ 𝑁 < (2↑(#b𝑁))) ∧ 𝑁 ∈ (ℤ‘2)) → (2↑((#b𝑁) − 1)) ∈ ℤ)
90 peano2zm 12546 . . . . . . . . . . . . . . . . . 18 (𝑁 ∈ ℤ → (𝑁 − 1) ∈ ℤ)
91903ad2ant2 1134 . . . . . . . . . . . . . . . . 17 ((((2↑((#b𝑁) − 1)) + 1) ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ ((2↑((#b𝑁) − 1)) + 1) ≤ 𝑁) → (𝑁 − 1) ∈ ℤ)
9291adantr 481 . . . . . . . . . . . . . . . 16 (((((2↑((#b𝑁) − 1)) + 1) ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ ((2↑((#b𝑁) − 1)) + 1) ≤ 𝑁) ∧ 𝑁 < (2↑(#b𝑁))) → (𝑁 − 1) ∈ ℤ)
9392adantr 481 . . . . . . . . . . . . . . 15 ((((((2↑((#b𝑁) − 1)) + 1) ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ ((2↑((#b𝑁) − 1)) + 1) ≤ 𝑁) ∧ 𝑁 < (2↑(#b𝑁))) ∧ 𝑁 ∈ (ℤ‘2)) → (𝑁 − 1) ∈ ℤ)
9484, 63nnexpcld 14148 . . . . . . . . . . . . . . . . . . . . 21 (𝑁 ∈ (ℤ‘2) → (2↑((#b𝑁) − 1)) ∈ ℕ)
9594nnred 12168 . . . . . . . . . . . . . . . . . . . 20 (𝑁 ∈ (ℤ‘2) → (2↑((#b𝑁) − 1)) ∈ ℝ)
961nnred 12168 . . . . . . . . . . . . . . . . . . . 20 (𝑁 ∈ (ℤ‘2) → 𝑁 ∈ ℝ)
97 leaddsub 11631 . . . . . . . . . . . . . . . . . . . 20 (((2↑((#b𝑁) − 1)) ∈ ℝ ∧ 1 ∈ ℝ ∧ 𝑁 ∈ ℝ) → (((2↑((#b𝑁) − 1)) + 1) ≤ 𝑁 ↔ (2↑((#b𝑁) − 1)) ≤ (𝑁 − 1)))
9895, 44, 96, 97syl3anc 1371 . . . . . . . . . . . . . . . . . . 19 (𝑁 ∈ (ℤ‘2) → (((2↑((#b𝑁) − 1)) + 1) ≤ 𝑁 ↔ (2↑((#b𝑁) − 1)) ≤ (𝑁 − 1)))
9998biimpcd 248 . . . . . . . . . . . . . . . . . 18 (((2↑((#b𝑁) − 1)) + 1) ≤ 𝑁 → (𝑁 ∈ (ℤ‘2) → (2↑((#b𝑁) − 1)) ≤ (𝑁 − 1)))
100993ad2ant3 1135 . . . . . . . . . . . . . . . . 17 ((((2↑((#b𝑁) − 1)) + 1) ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ ((2↑((#b𝑁) − 1)) + 1) ≤ 𝑁) → (𝑁 ∈ (ℤ‘2) → (2↑((#b𝑁) − 1)) ≤ (𝑁 − 1)))
101100adantr 481 . . . . . . . . . . . . . . . 16 (((((2↑((#b𝑁) − 1)) + 1) ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ ((2↑((#b𝑁) − 1)) + 1) ≤ 𝑁) ∧ 𝑁 < (2↑(#b𝑁))) → (𝑁 ∈ (ℤ‘2) → (2↑((#b𝑁) − 1)) ≤ (𝑁 − 1)))
102101imp 407 . . . . . . . . . . . . . . 15 ((((((2↑((#b𝑁) − 1)) + 1) ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ ((2↑((#b𝑁) − 1)) + 1) ≤ 𝑁) ∧ 𝑁 < (2↑(#b𝑁))) ∧ 𝑁 ∈ (ℤ‘2)) → (2↑((#b𝑁) − 1)) ≤ (𝑁 − 1))
103 eluz2 12769 . . . . . . . . . . . . . . 15 ((𝑁 − 1) ∈ (ℤ‘(2↑((#b𝑁) − 1))) ↔ ((2↑((#b𝑁) − 1)) ∈ ℤ ∧ (𝑁 − 1) ∈ ℤ ∧ (2↑((#b𝑁) − 1)) ≤ (𝑁 − 1)))
10489, 93, 102, 103syl3anbrc 1343 . . . . . . . . . . . . . 14 ((((((2↑((#b𝑁) − 1)) + 1) ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ ((2↑((#b𝑁) − 1)) + 1) ≤ 𝑁) ∧ 𝑁 < (2↑(#b𝑁))) ∧ 𝑁 ∈ (ℤ‘2)) → (𝑁 − 1) ∈ (ℤ‘(2↑((#b𝑁) − 1))))
10570eleq1d 2822 . . . . . . . . . . . . . . . . . . . 20 ((#b𝑁) ∈ ℂ → ((((#b𝑁) − 1) + 1) ∈ ℕ0 ↔ (#b𝑁) ∈ ℕ0))
10668, 105syl 17 . . . . . . . . . . . . . . . . . . 19 (𝑁 ∈ (ℤ‘2) → ((((#b𝑁) − 1) + 1) ∈ ℕ0 ↔ (#b𝑁) ∈ ℕ0))
10715, 106mpbird 256 . . . . . . . . . . . . . . . . . 18 (𝑁 ∈ (ℤ‘2) → (((#b𝑁) − 1) + 1) ∈ ℕ0)
10884, 107jca 512 . . . . . . . . . . . . . . . . 17 (𝑁 ∈ (ℤ‘2) → (2 ∈ ℕ ∧ (((#b𝑁) − 1) + 1) ∈ ℕ0))
109108adantl 482 . . . . . . . . . . . . . . . 16 ((((((2↑((#b𝑁) − 1)) + 1) ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ ((2↑((#b𝑁) − 1)) + 1) ≤ 𝑁) ∧ 𝑁 < (2↑(#b𝑁))) ∧ 𝑁 ∈ (ℤ‘2)) → (2 ∈ ℕ ∧ (((#b𝑁) − 1) + 1) ∈ ℕ0))
110 nnexpcl 13980 . . . . . . . . . . . . . . . 16 ((2 ∈ ℕ ∧ (((#b𝑁) − 1) + 1) ∈ ℕ0) → (2↑(((#b𝑁) − 1) + 1)) ∈ ℕ)
111109, 110syl 17 . . . . . . . . . . . . . . 15 ((((((2↑((#b𝑁) − 1)) + 1) ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ ((2↑((#b𝑁) − 1)) + 1) ≤ 𝑁) ∧ 𝑁 < (2↑(#b𝑁))) ∧ 𝑁 ∈ (ℤ‘2)) → (2↑(((#b𝑁) − 1) + 1)) ∈ ℕ)
112111nnzd 12526 . . . . . . . . . . . . . 14 ((((((2↑((#b𝑁) − 1)) + 1) ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ ((2↑((#b𝑁) − 1)) + 1) ≤ 𝑁) ∧ 𝑁 < (2↑(#b𝑁))) ∧ 𝑁 ∈ (ℤ‘2)) → (2↑(((#b𝑁) − 1) + 1)) ∈ ℤ)
113 ltle 11243 . . . . . . . . . . . . . . . . . . 19 ((𝑁 ∈ ℝ ∧ (2↑(#b𝑁)) ∈ ℝ) → (𝑁 < (2↑(#b𝑁)) → 𝑁 ≤ (2↑(#b𝑁))))
114 nnre 12160 . . . . . . . . . . . . . . . . . . . . 21 (𝑁 ∈ ℕ → 𝑁 ∈ ℝ)
11542a1i 11 . . . . . . . . . . . . . . . . . . . . . 22 (𝑁 ∈ ℕ → 2 ∈ ℝ)
116115, 14reexpcld 14068 . . . . . . . . . . . . . . . . . . . . 21 (𝑁 ∈ ℕ → (2↑(#b𝑁)) ∈ ℝ)
117114, 116jca 512 . . . . . . . . . . . . . . . . . . . 20 (𝑁 ∈ ℕ → (𝑁 ∈ ℝ ∧ (2↑(#b𝑁)) ∈ ℝ))
1181, 117syl 17 . . . . . . . . . . . . . . . . . . 19 (𝑁 ∈ (ℤ‘2) → (𝑁 ∈ ℝ ∧ (2↑(#b𝑁)) ∈ ℝ))
119113, 118syl11 33 . . . . . . . . . . . . . . . . . 18 (𝑁 < (2↑(#b𝑁)) → (𝑁 ∈ (ℤ‘2) → 𝑁 ≤ (2↑(#b𝑁))))
120119adantl 482 . . . . . . . . . . . . . . . . 17 (((((2↑((#b𝑁) − 1)) + 1) ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ ((2↑((#b𝑁) − 1)) + 1) ≤ 𝑁) ∧ 𝑁 < (2↑(#b𝑁))) → (𝑁 ∈ (ℤ‘2) → 𝑁 ≤ (2↑(#b𝑁))))
121120imp 407 . . . . . . . . . . . . . . . 16 ((((((2↑((#b𝑁) − 1)) + 1) ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ ((2↑((#b𝑁) − 1)) + 1) ≤ 𝑁) ∧ 𝑁 < (2↑(#b𝑁))) ∧ 𝑁 ∈ (ℤ‘2)) → 𝑁 ≤ (2↑(#b𝑁)))
122 simpll2 1213 . . . . . . . . . . . . . . . . 17 ((((((2↑((#b𝑁) − 1)) + 1) ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ ((2↑((#b𝑁) − 1)) + 1) ≤ 𝑁) ∧ 𝑁 < (2↑(#b𝑁))) ∧ 𝑁 ∈ (ℤ‘2)) → 𝑁 ∈ ℤ)
12384, 15nnexpcld 14148 . . . . . . . . . . . . . . . . . . 19 (𝑁 ∈ (ℤ‘2) → (2↑(#b𝑁)) ∈ ℕ)
124123nnzd 12526 . . . . . . . . . . . . . . . . . 18 (𝑁 ∈ (ℤ‘2) → (2↑(#b𝑁)) ∈ ℤ)
125124adantl 482 . . . . . . . . . . . . . . . . 17 ((((((2↑((#b𝑁) − 1)) + 1) ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ ((2↑((#b𝑁) − 1)) + 1) ≤ 𝑁) ∧ 𝑁 < (2↑(#b𝑁))) ∧ 𝑁 ∈ (ℤ‘2)) → (2↑(#b𝑁)) ∈ ℤ)
126 zlem1lt 12555 . . . . . . . . . . . . . . . . 17 ((𝑁 ∈ ℤ ∧ (2↑(#b𝑁)) ∈ ℤ) → (𝑁 ≤ (2↑(#b𝑁)) ↔ (𝑁 − 1) < (2↑(#b𝑁))))
127122, 125, 126syl2anc 584 . . . . . . . . . . . . . . . 16 ((((((2↑((#b𝑁) − 1)) + 1) ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ ((2↑((#b𝑁) − 1)) + 1) ≤ 𝑁) ∧ 𝑁 < (2↑(#b𝑁))) ∧ 𝑁 ∈ (ℤ‘2)) → (𝑁 ≤ (2↑(#b𝑁)) ↔ (𝑁 − 1) < (2↑(#b𝑁))))
128121, 127mpbid 231 . . . . . . . . . . . . . . 15 ((((((2↑((#b𝑁) − 1)) + 1) ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ ((2↑((#b𝑁) − 1)) + 1) ≤ 𝑁) ∧ 𝑁 < (2↑(#b𝑁))) ∧ 𝑁 ∈ (ℤ‘2)) → (𝑁 − 1) < (2↑(#b𝑁)))
12968, 70syl 17 . . . . . . . . . . . . . . . . 17 (𝑁 ∈ (ℤ‘2) → (((#b𝑁) − 1) + 1) = (#b𝑁))
130129oveq2d 7373 . . . . . . . . . . . . . . . 16 (𝑁 ∈ (ℤ‘2) → (2↑(((#b𝑁) − 1) + 1)) = (2↑(#b𝑁)))
131130adantl 482 . . . . . . . . . . . . . . 15 ((((((2↑((#b𝑁) − 1)) + 1) ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ ((2↑((#b𝑁) − 1)) + 1) ≤ 𝑁) ∧ 𝑁 < (2↑(#b𝑁))) ∧ 𝑁 ∈ (ℤ‘2)) → (2↑(((#b𝑁) − 1) + 1)) = (2↑(#b𝑁)))
132128, 131breqtrrd 5133 . . . . . . . . . . . . . 14 ((((((2↑((#b𝑁) − 1)) + 1) ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ ((2↑((#b𝑁) − 1)) + 1) ≤ 𝑁) ∧ 𝑁 < (2↑(#b𝑁))) ∧ 𝑁 ∈ (ℤ‘2)) → (𝑁 − 1) < (2↑(((#b𝑁) − 1) + 1)))
133104, 112, 1323jca 1128 . . . . . . . . . . . . 13 ((((((2↑((#b𝑁) − 1)) + 1) ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ ((2↑((#b𝑁) − 1)) + 1) ≤ 𝑁) ∧ 𝑁 < (2↑(#b𝑁))) ∧ 𝑁 ∈ (ℤ‘2)) → ((𝑁 − 1) ∈ (ℤ‘(2↑((#b𝑁) − 1))) ∧ (2↑(((#b𝑁) − 1) + 1)) ∈ ℤ ∧ (𝑁 − 1) < (2↑(((#b𝑁) − 1) + 1))))
134133ex 413 . . . . . . . . . . . 12 (((((2↑((#b𝑁) − 1)) + 1) ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ ((2↑((#b𝑁) − 1)) + 1) ≤ 𝑁) ∧ 𝑁 < (2↑(#b𝑁))) → (𝑁 ∈ (ℤ‘2) → ((𝑁 − 1) ∈ (ℤ‘(2↑((#b𝑁) − 1))) ∧ (2↑(((#b𝑁) − 1) + 1)) ∈ ℤ ∧ (𝑁 − 1) < (2↑(((#b𝑁) − 1) + 1)))))
1351343adant2 1131 . . . . . . . . . . 11 (((((2↑((#b𝑁) − 1)) + 1) ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ ((2↑((#b𝑁) − 1)) + 1) ≤ 𝑁) ∧ (2↑(#b𝑁)) ∈ ℤ ∧ 𝑁 < (2↑(#b𝑁))) → (𝑁 ∈ (ℤ‘2) → ((𝑁 − 1) ∈ (ℤ‘(2↑((#b𝑁) − 1))) ∧ (2↑(((#b𝑁) − 1) + 1)) ∈ ℤ ∧ (𝑁 − 1) < (2↑(((#b𝑁) − 1) + 1)))))
13682, 135sylbi 216 . . . . . . . . . 10 (𝑁 ∈ (((2↑((#b𝑁) − 1)) + 1)..^(2↑(#b𝑁))) → (𝑁 ∈ (ℤ‘2) → ((𝑁 − 1) ∈ (ℤ‘(2↑((#b𝑁) − 1))) ∧ (2↑(((#b𝑁) − 1) + 1)) ∈ ℤ ∧ (𝑁 − 1) < (2↑(((#b𝑁) − 1) + 1)))))
137136imp 407 . . . . . . . . 9 ((𝑁 ∈ (((2↑((#b𝑁) − 1)) + 1)..^(2↑(#b𝑁))) ∧ 𝑁 ∈ (ℤ‘2)) → ((𝑁 − 1) ∈ (ℤ‘(2↑((#b𝑁) − 1))) ∧ (2↑(((#b𝑁) − 1) + 1)) ∈ ℤ ∧ (𝑁 − 1) < (2↑(((#b𝑁) − 1) + 1))))
138 elfzo2 13575 . . . . . . . . 9 ((𝑁 − 1) ∈ ((2↑((#b𝑁) − 1))..^(2↑(((#b𝑁) − 1) + 1))) ↔ ((𝑁 − 1) ∈ (ℤ‘(2↑((#b𝑁) − 1))) ∧ (2↑(((#b𝑁) − 1) + 1)) ∈ ℤ ∧ (𝑁 − 1) < (2↑(((#b𝑁) − 1) + 1))))
139137, 138sylibr 233 . . . . . . . 8 ((𝑁 ∈ (((2↑((#b𝑁) − 1)) + 1)..^(2↑(#b𝑁))) ∧ 𝑁 ∈ (ℤ‘2)) → (𝑁 − 1) ∈ ((2↑((#b𝑁) − 1))..^(2↑(((#b𝑁) − 1) + 1))))
140139adantr 481 . . . . . . 7 (((𝑁 ∈ (((2↑((#b𝑁) − 1)) + 1)..^(2↑(#b𝑁))) ∧ 𝑁 ∈ (ℤ‘2)) ∧ ((𝑁 + 1) / 2) ∈ ℕ) → (𝑁 − 1) ∈ ((2↑((#b𝑁) − 1))..^(2↑(((#b𝑁) − 1) + 1))))
141 fllog2 46644 . . . . . . 7 ((((#b𝑁) − 1) ∈ ℕ0 ∧ (𝑁 − 1) ∈ ((2↑((#b𝑁) − 1))..^(2↑(((#b𝑁) − 1) + 1)))) → (⌊‘(2 logb (𝑁 − 1))) = ((#b𝑁) − 1))
14278, 140, 141syl2anc 584 . . . . . 6 (((𝑁 ∈ (((2↑((#b𝑁) − 1)) + 1)..^(2↑(#b𝑁))) ∧ 𝑁 ∈ (ℤ‘2)) ∧ ((𝑁 + 1) / 2) ∈ ℕ) → (⌊‘(2 logb (𝑁 − 1))) = ((#b𝑁) − 1))
14376, 142eqtr4d 2779 . . . . 5 (((𝑁 ∈ (((2↑((#b𝑁) − 1)) + 1)..^(2↑(#b𝑁))) ∧ 𝑁 ∈ (ℤ‘2)) ∧ ((𝑁 + 1) / 2) ∈ ℕ) → (⌊‘(2 logb 𝑁)) = (⌊‘(2 logb (𝑁 − 1))))
144143exp31 420 . . . 4 (𝑁 ∈ (((2↑((#b𝑁) − 1)) + 1)..^(2↑(#b𝑁))) → (𝑁 ∈ (ℤ‘2) → (((𝑁 + 1) / 2) ∈ ℕ → (⌊‘(2 logb 𝑁)) = (⌊‘(2 logb (𝑁 − 1))))))
14560, 144jaoi 855 . . 3 ((𝑁 = (2↑((#b𝑁) − 1)) ∨ 𝑁 ∈ (((2↑((#b𝑁) − 1)) + 1)..^(2↑(#b𝑁)))) → (𝑁 ∈ (ℤ‘2) → (((𝑁 + 1) / 2) ∈ ℕ → (⌊‘(2 logb 𝑁)) = (⌊‘(2 logb (𝑁 − 1))))))
1463, 145mpcom 38 . 2 (𝑁 ∈ (ℤ‘2) → (((𝑁 + 1) / 2) ∈ ℕ → (⌊‘(2 logb 𝑁)) = (⌊‘(2 logb (𝑁 − 1)))))
147146imp 407 1 ((𝑁 ∈ (ℤ‘2) ∧ ((𝑁 + 1) / 2) ∈ ℕ) → (⌊‘(2 logb 𝑁)) = (⌊‘(2 logb (𝑁 − 1))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 396  wo 845  w3a 1087   = wceq 1541  wcel 2106  wne 2943   class class class wbr 5105  cfv 6496  (class class class)co 7357  cc 11049  cr 11050  0cc0 11051  1c1 11052   + caddc 11054   < clt 11189  cle 11190  cmin 11385   / cdiv 11812  cn 12153  2c2 12208  0cn0 12413  cz 12499  cuz 12763  +crp 12915  ..^cfzo 13567  cfl 13695  cexp 13967   logb clogb 26114  #bcblen 46645
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-rep 5242  ax-sep 5256  ax-nul 5263  ax-pow 5320  ax-pr 5384  ax-un 7672  ax-inf2 9577  ax-cnex 11107  ax-resscn 11108  ax-1cn 11109  ax-icn 11110  ax-addcl 11111  ax-addrcl 11112  ax-mulcl 11113  ax-mulrcl 11114  ax-mulcom 11115  ax-addass 11116  ax-mulass 11117  ax-distr 11118  ax-i2m1 11119  ax-1ne0 11120  ax-1rid 11121  ax-rnegex 11122  ax-rrecex 11123  ax-cnre 11124  ax-pre-lttri 11125  ax-pre-lttrn 11126  ax-pre-ltadd 11127  ax-pre-mulgt0 11128  ax-pre-sup 11129  ax-addf 11130  ax-mulf 11131
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3065  df-rex 3074  df-rmo 3353  df-reu 3354  df-rab 3408  df-v 3447  df-sbc 3740  df-csb 3856  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-pss 3929  df-nul 4283  df-if 4487  df-pw 4562  df-sn 4587  df-pr 4589  df-tp 4591  df-op 4593  df-uni 4866  df-int 4908  df-iun 4956  df-iin 4957  df-br 5106  df-opab 5168  df-mpt 5189  df-tr 5223  df-id 5531  df-eprel 5537  df-po 5545  df-so 5546  df-fr 5588  df-se 5589  df-we 5590  df-xp 5639  df-rel 5640  df-cnv 5641  df-co 5642  df-dm 5643  df-rn 5644  df-res 5645  df-ima 5646  df-pred 6253  df-ord 6320  df-on 6321  df-lim 6322  df-suc 6323  df-iota 6448  df-fun 6498  df-fn 6499  df-f 6500  df-f1 6501  df-fo 6502  df-f1o 6503  df-fv 6504  df-isom 6505  df-riota 7313  df-ov 7360  df-oprab 7361  df-mpo 7362  df-of 7617  df-om 7803  df-1st 7921  df-2nd 7922  df-supp 8093  df-frecs 8212  df-wrecs 8243  df-recs 8317  df-rdg 8356  df-1o 8412  df-2o 8413  df-er 8648  df-map 8767  df-pm 8768  df-ixp 8836  df-en 8884  df-dom 8885  df-sdom 8886  df-fin 8887  df-fsupp 9306  df-fi 9347  df-sup 9378  df-inf 9379  df-oi 9446  df-card 9875  df-pnf 11191  df-mnf 11192  df-xr 11193  df-ltxr 11194  df-le 11195  df-sub 11387  df-neg 11388  df-div 11813  df-nn 12154  df-2 12216  df-3 12217  df-4 12218  df-5 12219  df-6 12220  df-7 12221  df-8 12222  df-9 12223  df-n0 12414  df-z 12500  df-dec 12619  df-uz 12764  df-q 12874  df-rp 12916  df-xneg 13033  df-xadd 13034  df-xmul 13035  df-ioo 13268  df-ioc 13269  df-ico 13270  df-icc 13271  df-fz 13425  df-fzo 13568  df-fl 13697  df-mod 13775  df-seq 13907  df-exp 13968  df-fac 14174  df-bc 14203  df-hash 14231  df-shft 14952  df-cj 14984  df-re 14985  df-im 14986  df-sqrt 15120  df-abs 15121  df-limsup 15353  df-clim 15370  df-rlim 15371  df-sum 15571  df-ef 15950  df-sin 15952  df-cos 15953  df-pi 15955  df-struct 17019  df-sets 17036  df-slot 17054  df-ndx 17066  df-base 17084  df-ress 17113  df-plusg 17146  df-mulr 17147  df-starv 17148  df-sca 17149  df-vsca 17150  df-ip 17151  df-tset 17152  df-ple 17153  df-ds 17155  df-unif 17156  df-hom 17157  df-cco 17158  df-rest 17304  df-topn 17305  df-0g 17323  df-gsum 17324  df-topgen 17325  df-pt 17326  df-prds 17329  df-xrs 17384  df-qtop 17389  df-imas 17390  df-xps 17392  df-mre 17466  df-mrc 17467  df-acs 17469  df-mgm 18497  df-sgrp 18546  df-mnd 18557  df-submnd 18602  df-mulg 18873  df-cntz 19097  df-cmn 19564  df-psmet 20788  df-xmet 20789  df-met 20790  df-bl 20791  df-mopn 20792  df-fbas 20793  df-fg 20794  df-cnfld 20797  df-top 22243  df-topon 22260  df-topsp 22282  df-bases 22296  df-cld 22370  df-ntr 22371  df-cls 22372  df-nei 22449  df-lp 22487  df-perf 22488  df-cn 22578  df-cnp 22579  df-haus 22666  df-tx 22913  df-hmeo 23106  df-fil 23197  df-fm 23289  df-flim 23290  df-flf 23291  df-xms 23673  df-ms 23674  df-tms 23675  df-cncf 24241  df-limc 25230  df-dv 25231  df-log 25912  df-cxp 25913  df-logb 26115  df-blen 46646
This theorem is referenced by:  blennngt2o2  46668
  Copyright terms: Public domain W3C validator