Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  nnolog2flm1 Structured version   Visualization version   GIF version

Theorem nnolog2flm1 44649
Description: The floor of the binary logarithm of an odd integer greater than 1 is the floor of the binary logarithm of the integer decreased by 1. (Contributed by AV, 2-Jun-2020.)
Assertion
Ref Expression
nnolog2flm1 ((𝑁 ∈ (ℤ‘2) ∧ ((𝑁 + 1) / 2) ∈ ℕ) → (⌊‘(2 logb 𝑁)) = (⌊‘(2 logb (𝑁 − 1))))

Proof of Theorem nnolog2flm1
StepHypRef Expression
1 eluz2nn 12283 . . . 4 (𝑁 ∈ (ℤ‘2) → 𝑁 ∈ ℕ)
2 nnpw2blenfzo2 44641 . . . 4 (𝑁 ∈ ℕ → (𝑁 = (2↑((#b𝑁) − 1)) ∨ 𝑁 ∈ (((2↑((#b𝑁) − 1)) + 1)..^(2↑(#b𝑁)))))
31, 2syl 17 . . 3 (𝑁 ∈ (ℤ‘2) → (𝑁 = (2↑((#b𝑁) − 1)) ∨ 𝑁 ∈ (((2↑((#b𝑁) − 1)) + 1)..^(2↑(#b𝑁)))))
41adantl 484 . . . . . . . . 9 ((𝑁 = (2↑((#b𝑁) − 1)) ∧ 𝑁 ∈ (ℤ‘2)) → 𝑁 ∈ ℕ)
5 nneo 12065 . . . . . . . . . 10 (𝑁 ∈ ℕ → ((𝑁 / 2) ∈ ℕ ↔ ¬ ((𝑁 + 1) / 2) ∈ ℕ))
65bicomd 225 . . . . . . . . 9 (𝑁 ∈ ℕ → (¬ ((𝑁 + 1) / 2) ∈ ℕ ↔ (𝑁 / 2) ∈ ℕ))
74, 6syl 17 . . . . . . . 8 ((𝑁 = (2↑((#b𝑁) − 1)) ∧ 𝑁 ∈ (ℤ‘2)) → (¬ ((𝑁 + 1) / 2) ∈ ℕ ↔ (𝑁 / 2) ∈ ℕ))
8 notnotb 317 . . . . . . . 8 ((𝑁 / 2) ∈ ℕ ↔ ¬ ¬ (𝑁 / 2) ∈ ℕ)
97, 8syl6bb 289 . . . . . . 7 ((𝑁 = (2↑((#b𝑁) − 1)) ∧ 𝑁 ∈ (ℤ‘2)) → (¬ ((𝑁 + 1) / 2) ∈ ℕ ↔ ¬ ¬ (𝑁 / 2) ∈ ℕ))
109con4bid 319 . . . . . 6 ((𝑁 = (2↑((#b𝑁) − 1)) ∧ 𝑁 ∈ (ℤ‘2)) → (((𝑁 + 1) / 2) ∈ ℕ ↔ ¬ (𝑁 / 2) ∈ ℕ))
11 simpl 485 . . . . . . . . 9 ((𝑁 = (2↑((#b𝑁) − 1)) ∧ 𝑁 ∈ (ℤ‘2)) → 𝑁 = (2↑((#b𝑁) − 1)))
1211oveq1d 7170 . . . . . . . 8 ((𝑁 = (2↑((#b𝑁) − 1)) ∧ 𝑁 ∈ (ℤ‘2)) → (𝑁 / 2) = ((2↑((#b𝑁) − 1)) / 2))
13 blennnelnn 44635 . . . . . . . . . . . . 13 (𝑁 ∈ ℕ → (#b𝑁) ∈ ℕ)
1413nnnn0d 11954 . . . . . . . . . . . 12 (𝑁 ∈ ℕ → (#b𝑁) ∈ ℕ0)
151, 14syl 17 . . . . . . . . . . 11 (𝑁 ∈ (ℤ‘2) → (#b𝑁) ∈ ℕ0)
16 2m1e1 11762 . . . . . . . . . . . . . 14 (2 − 1) = 1
17 2cn 11711 . . . . . . . . . . . . . . . . 17 2 ∈ ℂ
18 2ne0 11740 . . . . . . . . . . . . . . . . 17 2 ≠ 0
19 1ne2 11844 . . . . . . . . . . . . . . . . . 18 1 ≠ 2
2019necomi 3070 . . . . . . . . . . . . . . . . 17 2 ≠ 1
21 logbid1 25345 . . . . . . . . . . . . . . . . 17 ((2 ∈ ℂ ∧ 2 ≠ 0 ∧ 2 ≠ 1) → (2 logb 2) = 1)
2217, 18, 20, 21mp3an 1457 . . . . . . . . . . . . . . . 16 (2 logb 2) = 1
23 eluzle 12255 . . . . . . . . . . . . . . . . 17 (𝑁 ∈ (ℤ‘2) → 2 ≤ 𝑁)
24 2z 12013 . . . . . . . . . . . . . . . . . . 19 2 ∈ ℤ
25 uzid 12257 . . . . . . . . . . . . . . . . . . 19 (2 ∈ ℤ → 2 ∈ (ℤ‘2))
2624, 25mp1i 13 . . . . . . . . . . . . . . . . . 18 (𝑁 ∈ (ℤ‘2) → 2 ∈ (ℤ‘2))
27 2rp 12393 . . . . . . . . . . . . . . . . . . 19 2 ∈ ℝ+
2827a1i 11 . . . . . . . . . . . . . . . . . 18 (𝑁 ∈ (ℤ‘2) → 2 ∈ ℝ+)
291nnrpd 12428 . . . . . . . . . . . . . . . . . 18 (𝑁 ∈ (ℤ‘2) → 𝑁 ∈ ℝ+)
30 logbleb 25360 . . . . . . . . . . . . . . . . . 18 ((2 ∈ (ℤ‘2) ∧ 2 ∈ ℝ+𝑁 ∈ ℝ+) → (2 ≤ 𝑁 ↔ (2 logb 2) ≤ (2 logb 𝑁)))
3126, 28, 29, 30syl3anc 1367 . . . . . . . . . . . . . . . . 17 (𝑁 ∈ (ℤ‘2) → (2 ≤ 𝑁 ↔ (2 logb 2) ≤ (2 logb 𝑁)))
3223, 31mpbid 234 . . . . . . . . . . . . . . . 16 (𝑁 ∈ (ℤ‘2) → (2 logb 2) ≤ (2 logb 𝑁))
3322, 32eqbrtrrid 5101 . . . . . . . . . . . . . . 15 (𝑁 ∈ (ℤ‘2) → 1 ≤ (2 logb 𝑁))
3420a1i 11 . . . . . . . . . . . . . . . . 17 (𝑁 ∈ (ℤ‘2) → 2 ≠ 1)
35 relogbcl 25350 . . . . . . . . . . . . . . . . 17 ((2 ∈ ℝ+𝑁 ∈ ℝ+ ∧ 2 ≠ 1) → (2 logb 𝑁) ∈ ℝ)
3628, 29, 34, 35syl3anc 1367 . . . . . . . . . . . . . . . 16 (𝑁 ∈ (ℤ‘2) → (2 logb 𝑁) ∈ ℝ)
37 1zzd 12012 . . . . . . . . . . . . . . . 16 (𝑁 ∈ (ℤ‘2) → 1 ∈ ℤ)
38 flge 13174 . . . . . . . . . . . . . . . 16 (((2 logb 𝑁) ∈ ℝ ∧ 1 ∈ ℤ) → (1 ≤ (2 logb 𝑁) ↔ 1 ≤ (⌊‘(2 logb 𝑁))))
3936, 37, 38syl2anc 586 . . . . . . . . . . . . . . 15 (𝑁 ∈ (ℤ‘2) → (1 ≤ (2 logb 𝑁) ↔ 1 ≤ (⌊‘(2 logb 𝑁))))
4033, 39mpbid 234 . . . . . . . . . . . . . 14 (𝑁 ∈ (ℤ‘2) → 1 ≤ (⌊‘(2 logb 𝑁)))
4116, 40eqbrtrid 5100 . . . . . . . . . . . . 13 (𝑁 ∈ (ℤ‘2) → (2 − 1) ≤ (⌊‘(2 logb 𝑁)))
42 2re 11710 . . . . . . . . . . . . . . 15 2 ∈ ℝ
4342a1i 11 . . . . . . . . . . . . . 14 (𝑁 ∈ (ℤ‘2) → 2 ∈ ℝ)
44 1red 10641 . . . . . . . . . . . . . 14 (𝑁 ∈ (ℤ‘2) → 1 ∈ ℝ)
4536flcld 13167 . . . . . . . . . . . . . . 15 (𝑁 ∈ (ℤ‘2) → (⌊‘(2 logb 𝑁)) ∈ ℤ)
4645zred 12086 . . . . . . . . . . . . . 14 (𝑁 ∈ (ℤ‘2) → (⌊‘(2 logb 𝑁)) ∈ ℝ)
4743, 44, 46lesubaddd 11236 . . . . . . . . . . . . 13 (𝑁 ∈ (ℤ‘2) → ((2 − 1) ≤ (⌊‘(2 logb 𝑁)) ↔ 2 ≤ ((⌊‘(2 logb 𝑁)) + 1)))
4841, 47mpbid 234 . . . . . . . . . . . 12 (𝑁 ∈ (ℤ‘2) → 2 ≤ ((⌊‘(2 logb 𝑁)) + 1))
49 blennn 44634 . . . . . . . . . . . . 13 (𝑁 ∈ ℕ → (#b𝑁) = ((⌊‘(2 logb 𝑁)) + 1))
501, 49syl 17 . . . . . . . . . . . 12 (𝑁 ∈ (ℤ‘2) → (#b𝑁) = ((⌊‘(2 logb 𝑁)) + 1))
5148, 50breqtrrd 5093 . . . . . . . . . . 11 (𝑁 ∈ (ℤ‘2) → 2 ≤ (#b𝑁))
52 nn0ge2m1nn 11963 . . . . . . . . . . 11 (((#b𝑁) ∈ ℕ0 ∧ 2 ≤ (#b𝑁)) → ((#b𝑁) − 1) ∈ ℕ)
5315, 51, 52syl2anc 586 . . . . . . . . . 10 (𝑁 ∈ (ℤ‘2) → ((#b𝑁) − 1) ∈ ℕ)
5453adantl 484 . . . . . . . . 9 ((𝑁 = (2↑((#b𝑁) − 1)) ∧ 𝑁 ∈ (ℤ‘2)) → ((#b𝑁) − 1) ∈ ℕ)
55 nnpw2even 44588 . . . . . . . . 9 (((#b𝑁) − 1) ∈ ℕ → ((2↑((#b𝑁) − 1)) / 2) ∈ ℕ)
5654, 55syl 17 . . . . . . . 8 ((𝑁 = (2↑((#b𝑁) − 1)) ∧ 𝑁 ∈ (ℤ‘2)) → ((2↑((#b𝑁) − 1)) / 2) ∈ ℕ)
5712, 56eqeltrd 2913 . . . . . . 7 ((𝑁 = (2↑((#b𝑁) − 1)) ∧ 𝑁 ∈ (ℤ‘2)) → (𝑁 / 2) ∈ ℕ)
5857pm2.24d 154 . . . . . 6 ((𝑁 = (2↑((#b𝑁) − 1)) ∧ 𝑁 ∈ (ℤ‘2)) → (¬ (𝑁 / 2) ∈ ℕ → (⌊‘(2 logb 𝑁)) = (⌊‘(2 logb (𝑁 − 1)))))
5910, 58sylbid 242 . . . . 5 ((𝑁 = (2↑((#b𝑁) − 1)) ∧ 𝑁 ∈ (ℤ‘2)) → (((𝑁 + 1) / 2) ∈ ℕ → (⌊‘(2 logb 𝑁)) = (⌊‘(2 logb (𝑁 − 1)))))
6059ex 415 . . . 4 (𝑁 = (2↑((#b𝑁) − 1)) → (𝑁 ∈ (ℤ‘2) → (((𝑁 + 1) / 2) ∈ ℕ → (⌊‘(2 logb 𝑁)) = (⌊‘(2 logb (𝑁 − 1))))))
611, 13syl 17 . . . . . . . . 9 (𝑁 ∈ (ℤ‘2) → (#b𝑁) ∈ ℕ)
62 nnm1nn0 11937 . . . . . . . . 9 ((#b𝑁) ∈ ℕ → ((#b𝑁) − 1) ∈ ℕ0)
6361, 62syl 17 . . . . . . . 8 (𝑁 ∈ (ℤ‘2) → ((#b𝑁) − 1) ∈ ℕ0)
6463ad2antlr 725 . . . . . . 7 (((𝑁 ∈ (((2↑((#b𝑁) − 1)) + 1)..^(2↑(#b𝑁))) ∧ 𝑁 ∈ (ℤ‘2)) ∧ ((𝑁 + 1) / 2) ∈ ℕ) → ((#b𝑁) − 1) ∈ ℕ0)
651ad2antlr 725 . . . . . . . . 9 (((𝑁 ∈ (((2↑((#b𝑁) − 1)) + 1)..^(2↑(#b𝑁))) ∧ 𝑁 ∈ (ℤ‘2)) ∧ ((𝑁 + 1) / 2) ∈ ℕ) → 𝑁 ∈ ℕ)
66 nnpw2blenfzo 44640 . . . . . . . . 9 (𝑁 ∈ ℕ → 𝑁 ∈ ((2↑((#b𝑁) − 1))..^(2↑(#b𝑁))))
6765, 66syl 17 . . . . . . . 8 (((𝑁 ∈ (((2↑((#b𝑁) − 1)) + 1)..^(2↑(#b𝑁))) ∧ 𝑁 ∈ (ℤ‘2)) ∧ ((𝑁 + 1) / 2) ∈ ℕ) → 𝑁 ∈ ((2↑((#b𝑁) − 1))..^(2↑(#b𝑁))))
6861nncnd 11653 . . . . . . . . . . . 12 (𝑁 ∈ (ℤ‘2) → (#b𝑁) ∈ ℂ)
6968ad2antlr 725 . . . . . . . . . . 11 (((𝑁 ∈ (((2↑((#b𝑁) − 1)) + 1)..^(2↑(#b𝑁))) ∧ 𝑁 ∈ (ℤ‘2)) ∧ ((𝑁 + 1) / 2) ∈ ℕ) → (#b𝑁) ∈ ℂ)
70 npcan1 11064 . . . . . . . . . . 11 ((#b𝑁) ∈ ℂ → (((#b𝑁) − 1) + 1) = (#b𝑁))
7169, 70syl 17 . . . . . . . . . 10 (((𝑁 ∈ (((2↑((#b𝑁) − 1)) + 1)..^(2↑(#b𝑁))) ∧ 𝑁 ∈ (ℤ‘2)) ∧ ((𝑁 + 1) / 2) ∈ ℕ) → (((#b𝑁) − 1) + 1) = (#b𝑁))
7271oveq2d 7171 . . . . . . . . 9 (((𝑁 ∈ (((2↑((#b𝑁) − 1)) + 1)..^(2↑(#b𝑁))) ∧ 𝑁 ∈ (ℤ‘2)) ∧ ((𝑁 + 1) / 2) ∈ ℕ) → (2↑(((#b𝑁) − 1) + 1)) = (2↑(#b𝑁)))
7372oveq2d 7171 . . . . . . . 8 (((𝑁 ∈ (((2↑((#b𝑁) − 1)) + 1)..^(2↑(#b𝑁))) ∧ 𝑁 ∈ (ℤ‘2)) ∧ ((𝑁 + 1) / 2) ∈ ℕ) → ((2↑((#b𝑁) − 1))..^(2↑(((#b𝑁) − 1) + 1))) = ((2↑((#b𝑁) − 1))..^(2↑(#b𝑁))))
7467, 73eleqtrrd 2916 . . . . . . 7 (((𝑁 ∈ (((2↑((#b𝑁) − 1)) + 1)..^(2↑(#b𝑁))) ∧ 𝑁 ∈ (ℤ‘2)) ∧ ((𝑁 + 1) / 2) ∈ ℕ) → 𝑁 ∈ ((2↑((#b𝑁) − 1))..^(2↑(((#b𝑁) − 1) + 1))))
75 fllog2 44627 . . . . . . 7 ((((#b𝑁) − 1) ∈ ℕ0𝑁 ∈ ((2↑((#b𝑁) − 1))..^(2↑(((#b𝑁) − 1) + 1)))) → (⌊‘(2 logb 𝑁)) = ((#b𝑁) − 1))
7664, 74, 75syl2anc 586 . . . . . 6 (((𝑁 ∈ (((2↑((#b𝑁) − 1)) + 1)..^(2↑(#b𝑁))) ∧ 𝑁 ∈ (ℤ‘2)) ∧ ((𝑁 + 1) / 2) ∈ ℕ) → (⌊‘(2 logb 𝑁)) = ((#b𝑁) − 1))
7761ad2antlr 725 . . . . . . . 8 (((𝑁 ∈ (((2↑((#b𝑁) − 1)) + 1)..^(2↑(#b𝑁))) ∧ 𝑁 ∈ (ℤ‘2)) ∧ ((𝑁 + 1) / 2) ∈ ℕ) → (#b𝑁) ∈ ℕ)
7877, 62syl 17 . . . . . . 7 (((𝑁 ∈ (((2↑((#b𝑁) − 1)) + 1)..^(2↑(#b𝑁))) ∧ 𝑁 ∈ (ℤ‘2)) ∧ ((𝑁 + 1) / 2) ∈ ℕ) → ((#b𝑁) − 1) ∈ ℕ0)
79 elfzo2 13040 . . . . . . . . . . . 12 (𝑁 ∈ (((2↑((#b𝑁) − 1)) + 1)..^(2↑(#b𝑁))) ↔ (𝑁 ∈ (ℤ‘((2↑((#b𝑁) − 1)) + 1)) ∧ (2↑(#b𝑁)) ∈ ℤ ∧ 𝑁 < (2↑(#b𝑁))))
80 eluz2 12248 . . . . . . . . . . . . 13 (𝑁 ∈ (ℤ‘((2↑((#b𝑁) − 1)) + 1)) ↔ (((2↑((#b𝑁) − 1)) + 1) ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ ((2↑((#b𝑁) − 1)) + 1) ≤ 𝑁))
81803anbi1i 1153 . . . . . . . . . . . 12 ((𝑁 ∈ (ℤ‘((2↑((#b𝑁) − 1)) + 1)) ∧ (2↑(#b𝑁)) ∈ ℤ ∧ 𝑁 < (2↑(#b𝑁))) ↔ ((((2↑((#b𝑁) − 1)) + 1) ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ ((2↑((#b𝑁) − 1)) + 1) ≤ 𝑁) ∧ (2↑(#b𝑁)) ∈ ℤ ∧ 𝑁 < (2↑(#b𝑁))))
8279, 81bitri 277 . . . . . . . . . . 11 (𝑁 ∈ (((2↑((#b𝑁) − 1)) + 1)..^(2↑(#b𝑁))) ↔ ((((2↑((#b𝑁) − 1)) + 1) ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ ((2↑((#b𝑁) − 1)) + 1) ≤ 𝑁) ∧ (2↑(#b𝑁)) ∈ ℤ ∧ 𝑁 < (2↑(#b𝑁))))
83 2nn 11709 . . . . . . . . . . . . . . . . . . . 20 2 ∈ ℕ
8483a1i 11 . . . . . . . . . . . . . . . . . . 19 (𝑁 ∈ (ℤ‘2) → 2 ∈ ℕ)
8584, 63jca 514 . . . . . . . . . . . . . . . . . 18 (𝑁 ∈ (ℤ‘2) → (2 ∈ ℕ ∧ ((#b𝑁) − 1) ∈ ℕ0))
8685adantl 484 . . . . . . . . . . . . . . . . 17 ((((((2↑((#b𝑁) − 1)) + 1) ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ ((2↑((#b𝑁) − 1)) + 1) ≤ 𝑁) ∧ 𝑁 < (2↑(#b𝑁))) ∧ 𝑁 ∈ (ℤ‘2)) → (2 ∈ ℕ ∧ ((#b𝑁) − 1) ∈ ℕ0))
87 nnexpcl 13441 . . . . . . . . . . . . . . . . 17 ((2 ∈ ℕ ∧ ((#b𝑁) − 1) ∈ ℕ0) → (2↑((#b𝑁) − 1)) ∈ ℕ)
8886, 87syl 17 . . . . . . . . . . . . . . . 16 ((((((2↑((#b𝑁) − 1)) + 1) ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ ((2↑((#b𝑁) − 1)) + 1) ≤ 𝑁) ∧ 𝑁 < (2↑(#b𝑁))) ∧ 𝑁 ∈ (ℤ‘2)) → (2↑((#b𝑁) − 1)) ∈ ℕ)
8988nnzd 12085 . . . . . . . . . . . . . . 15 ((((((2↑((#b𝑁) − 1)) + 1) ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ ((2↑((#b𝑁) − 1)) + 1) ≤ 𝑁) ∧ 𝑁 < (2↑(#b𝑁))) ∧ 𝑁 ∈ (ℤ‘2)) → (2↑((#b𝑁) − 1)) ∈ ℤ)
90 peano2zm 12024 . . . . . . . . . . . . . . . . . 18 (𝑁 ∈ ℤ → (𝑁 − 1) ∈ ℤ)
91903ad2ant2 1130 . . . . . . . . . . . . . . . . 17 ((((2↑((#b𝑁) − 1)) + 1) ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ ((2↑((#b𝑁) − 1)) + 1) ≤ 𝑁) → (𝑁 − 1) ∈ ℤ)
9291adantr 483 . . . . . . . . . . . . . . . 16 (((((2↑((#b𝑁) − 1)) + 1) ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ ((2↑((#b𝑁) − 1)) + 1) ≤ 𝑁) ∧ 𝑁 < (2↑(#b𝑁))) → (𝑁 − 1) ∈ ℤ)
9392adantr 483 . . . . . . . . . . . . . . 15 ((((((2↑((#b𝑁) − 1)) + 1) ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ ((2↑((#b𝑁) − 1)) + 1) ≤ 𝑁) ∧ 𝑁 < (2↑(#b𝑁))) ∧ 𝑁 ∈ (ℤ‘2)) → (𝑁 − 1) ∈ ℤ)
9484, 63nnexpcld 13605 . . . . . . . . . . . . . . . . . . . . 21 (𝑁 ∈ (ℤ‘2) → (2↑((#b𝑁) − 1)) ∈ ℕ)
9594nnred 11652 . . . . . . . . . . . . . . . . . . . 20 (𝑁 ∈ (ℤ‘2) → (2↑((#b𝑁) − 1)) ∈ ℝ)
961nnred 11652 . . . . . . . . . . . . . . . . . . . 20 (𝑁 ∈ (ℤ‘2) → 𝑁 ∈ ℝ)
97 leaddsub 11115 . . . . . . . . . . . . . . . . . . . 20 (((2↑((#b𝑁) − 1)) ∈ ℝ ∧ 1 ∈ ℝ ∧ 𝑁 ∈ ℝ) → (((2↑((#b𝑁) − 1)) + 1) ≤ 𝑁 ↔ (2↑((#b𝑁) − 1)) ≤ (𝑁 − 1)))
9895, 44, 96, 97syl3anc 1367 . . . . . . . . . . . . . . . . . . 19 (𝑁 ∈ (ℤ‘2) → (((2↑((#b𝑁) − 1)) + 1) ≤ 𝑁 ↔ (2↑((#b𝑁) − 1)) ≤ (𝑁 − 1)))
9998biimpcd 251 . . . . . . . . . . . . . . . . . 18 (((2↑((#b𝑁) − 1)) + 1) ≤ 𝑁 → (𝑁 ∈ (ℤ‘2) → (2↑((#b𝑁) − 1)) ≤ (𝑁 − 1)))
100993ad2ant3 1131 . . . . . . . . . . . . . . . . 17 ((((2↑((#b𝑁) − 1)) + 1) ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ ((2↑((#b𝑁) − 1)) + 1) ≤ 𝑁) → (𝑁 ∈ (ℤ‘2) → (2↑((#b𝑁) − 1)) ≤ (𝑁 − 1)))
101100adantr 483 . . . . . . . . . . . . . . . 16 (((((2↑((#b𝑁) − 1)) + 1) ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ ((2↑((#b𝑁) − 1)) + 1) ≤ 𝑁) ∧ 𝑁 < (2↑(#b𝑁))) → (𝑁 ∈ (ℤ‘2) → (2↑((#b𝑁) − 1)) ≤ (𝑁 − 1)))
102101imp 409 . . . . . . . . . . . . . . 15 ((((((2↑((#b𝑁) − 1)) + 1) ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ ((2↑((#b𝑁) − 1)) + 1) ≤ 𝑁) ∧ 𝑁 < (2↑(#b𝑁))) ∧ 𝑁 ∈ (ℤ‘2)) → (2↑((#b𝑁) − 1)) ≤ (𝑁 − 1))
103 eluz2 12248 . . . . . . . . . . . . . . 15 ((𝑁 − 1) ∈ (ℤ‘(2↑((#b𝑁) − 1))) ↔ ((2↑((#b𝑁) − 1)) ∈ ℤ ∧ (𝑁 − 1) ∈ ℤ ∧ (2↑((#b𝑁) − 1)) ≤ (𝑁 − 1)))
10489, 93, 102, 103syl3anbrc 1339 . . . . . . . . . . . . . 14 ((((((2↑((#b𝑁) − 1)) + 1) ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ ((2↑((#b𝑁) − 1)) + 1) ≤ 𝑁) ∧ 𝑁 < (2↑(#b𝑁))) ∧ 𝑁 ∈ (ℤ‘2)) → (𝑁 − 1) ∈ (ℤ‘(2↑((#b𝑁) − 1))))
10570eleq1d 2897 . . . . . . . . . . . . . . . . . . . 20 ((#b𝑁) ∈ ℂ → ((((#b𝑁) − 1) + 1) ∈ ℕ0 ↔ (#b𝑁) ∈ ℕ0))
10668, 105syl 17 . . . . . . . . . . . . . . . . . . 19 (𝑁 ∈ (ℤ‘2) → ((((#b𝑁) − 1) + 1) ∈ ℕ0 ↔ (#b𝑁) ∈ ℕ0))
10715, 106mpbird 259 . . . . . . . . . . . . . . . . . 18 (𝑁 ∈ (ℤ‘2) → (((#b𝑁) − 1) + 1) ∈ ℕ0)
10884, 107jca 514 . . . . . . . . . . . . . . . . 17 (𝑁 ∈ (ℤ‘2) → (2 ∈ ℕ ∧ (((#b𝑁) − 1) + 1) ∈ ℕ0))
109108adantl 484 . . . . . . . . . . . . . . . 16 ((((((2↑((#b𝑁) − 1)) + 1) ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ ((2↑((#b𝑁) − 1)) + 1) ≤ 𝑁) ∧ 𝑁 < (2↑(#b𝑁))) ∧ 𝑁 ∈ (ℤ‘2)) → (2 ∈ ℕ ∧ (((#b𝑁) − 1) + 1) ∈ ℕ0))
110 nnexpcl 13441 . . . . . . . . . . . . . . . 16 ((2 ∈ ℕ ∧ (((#b𝑁) − 1) + 1) ∈ ℕ0) → (2↑(((#b𝑁) − 1) + 1)) ∈ ℕ)
111109, 110syl 17 . . . . . . . . . . . . . . 15 ((((((2↑((#b𝑁) − 1)) + 1) ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ ((2↑((#b𝑁) − 1)) + 1) ≤ 𝑁) ∧ 𝑁 < (2↑(#b𝑁))) ∧ 𝑁 ∈ (ℤ‘2)) → (2↑(((#b𝑁) − 1) + 1)) ∈ ℕ)
112111nnzd 12085 . . . . . . . . . . . . . 14 ((((((2↑((#b𝑁) − 1)) + 1) ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ ((2↑((#b𝑁) − 1)) + 1) ≤ 𝑁) ∧ 𝑁 < (2↑(#b𝑁))) ∧ 𝑁 ∈ (ℤ‘2)) → (2↑(((#b𝑁) − 1) + 1)) ∈ ℤ)
113 ltle 10728 . . . . . . . . . . . . . . . . . . 19 ((𝑁 ∈ ℝ ∧ (2↑(#b𝑁)) ∈ ℝ) → (𝑁 < (2↑(#b𝑁)) → 𝑁 ≤ (2↑(#b𝑁))))
114 nnre 11644 . . . . . . . . . . . . . . . . . . . . 21 (𝑁 ∈ ℕ → 𝑁 ∈ ℝ)
11542a1i 11 . . . . . . . . . . . . . . . . . . . . . 22 (𝑁 ∈ ℕ → 2 ∈ ℝ)
116115, 14reexpcld 13526 . . . . . . . . . . . . . . . . . . . . 21 (𝑁 ∈ ℕ → (2↑(#b𝑁)) ∈ ℝ)
117114, 116jca 514 . . . . . . . . . . . . . . . . . . . 20 (𝑁 ∈ ℕ → (𝑁 ∈ ℝ ∧ (2↑(#b𝑁)) ∈ ℝ))
1181, 117syl 17 . . . . . . . . . . . . . . . . . . 19 (𝑁 ∈ (ℤ‘2) → (𝑁 ∈ ℝ ∧ (2↑(#b𝑁)) ∈ ℝ))
119113, 118syl11 33 . . . . . . . . . . . . . . . . . 18 (𝑁 < (2↑(#b𝑁)) → (𝑁 ∈ (ℤ‘2) → 𝑁 ≤ (2↑(#b𝑁))))
120119adantl 484 . . . . . . . . . . . . . . . . 17 (((((2↑((#b𝑁) − 1)) + 1) ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ ((2↑((#b𝑁) − 1)) + 1) ≤ 𝑁) ∧ 𝑁 < (2↑(#b𝑁))) → (𝑁 ∈ (ℤ‘2) → 𝑁 ≤ (2↑(#b𝑁))))
121120imp 409 . . . . . . . . . . . . . . . 16 ((((((2↑((#b𝑁) − 1)) + 1) ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ ((2↑((#b𝑁) − 1)) + 1) ≤ 𝑁) ∧ 𝑁 < (2↑(#b𝑁))) ∧ 𝑁 ∈ (ℤ‘2)) → 𝑁 ≤ (2↑(#b𝑁)))
122 simpll2 1209 . . . . . . . . . . . . . . . . 17 ((((((2↑((#b𝑁) − 1)) + 1) ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ ((2↑((#b𝑁) − 1)) + 1) ≤ 𝑁) ∧ 𝑁 < (2↑(#b𝑁))) ∧ 𝑁 ∈ (ℤ‘2)) → 𝑁 ∈ ℤ)
12384, 15nnexpcld 13605 . . . . . . . . . . . . . . . . . . 19 (𝑁 ∈ (ℤ‘2) → (2↑(#b𝑁)) ∈ ℕ)
124123nnzd 12085 . . . . . . . . . . . . . . . . . 18 (𝑁 ∈ (ℤ‘2) → (2↑(#b𝑁)) ∈ ℤ)
125124adantl 484 . . . . . . . . . . . . . . . . 17 ((((((2↑((#b𝑁) − 1)) + 1) ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ ((2↑((#b𝑁) − 1)) + 1) ≤ 𝑁) ∧ 𝑁 < (2↑(#b𝑁))) ∧ 𝑁 ∈ (ℤ‘2)) → (2↑(#b𝑁)) ∈ ℤ)
126 zlem1lt 12033 . . . . . . . . . . . . . . . . 17 ((𝑁 ∈ ℤ ∧ (2↑(#b𝑁)) ∈ ℤ) → (𝑁 ≤ (2↑(#b𝑁)) ↔ (𝑁 − 1) < (2↑(#b𝑁))))
127122, 125, 126syl2anc 586 . . . . . . . . . . . . . . . 16 ((((((2↑((#b𝑁) − 1)) + 1) ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ ((2↑((#b𝑁) − 1)) + 1) ≤ 𝑁) ∧ 𝑁 < (2↑(#b𝑁))) ∧ 𝑁 ∈ (ℤ‘2)) → (𝑁 ≤ (2↑(#b𝑁)) ↔ (𝑁 − 1) < (2↑(#b𝑁))))
128121, 127mpbid 234 . . . . . . . . . . . . . . 15 ((((((2↑((#b𝑁) − 1)) + 1) ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ ((2↑((#b𝑁) − 1)) + 1) ≤ 𝑁) ∧ 𝑁 < (2↑(#b𝑁))) ∧ 𝑁 ∈ (ℤ‘2)) → (𝑁 − 1) < (2↑(#b𝑁)))
12968, 70syl 17 . . . . . . . . . . . . . . . . 17 (𝑁 ∈ (ℤ‘2) → (((#b𝑁) − 1) + 1) = (#b𝑁))
130129oveq2d 7171 . . . . . . . . . . . . . . . 16 (𝑁 ∈ (ℤ‘2) → (2↑(((#b𝑁) − 1) + 1)) = (2↑(#b𝑁)))
131130adantl 484 . . . . . . . . . . . . . . 15 ((((((2↑((#b𝑁) − 1)) + 1) ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ ((2↑((#b𝑁) − 1)) + 1) ≤ 𝑁) ∧ 𝑁 < (2↑(#b𝑁))) ∧ 𝑁 ∈ (ℤ‘2)) → (2↑(((#b𝑁) − 1) + 1)) = (2↑(#b𝑁)))
132128, 131breqtrrd 5093 . . . . . . . . . . . . . 14 ((((((2↑((#b𝑁) − 1)) + 1) ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ ((2↑((#b𝑁) − 1)) + 1) ≤ 𝑁) ∧ 𝑁 < (2↑(#b𝑁))) ∧ 𝑁 ∈ (ℤ‘2)) → (𝑁 − 1) < (2↑(((#b𝑁) − 1) + 1)))
133104, 112, 1323jca 1124 . . . . . . . . . . . . 13 ((((((2↑((#b𝑁) − 1)) + 1) ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ ((2↑((#b𝑁) − 1)) + 1) ≤ 𝑁) ∧ 𝑁 < (2↑(#b𝑁))) ∧ 𝑁 ∈ (ℤ‘2)) → ((𝑁 − 1) ∈ (ℤ‘(2↑((#b𝑁) − 1))) ∧ (2↑(((#b𝑁) − 1) + 1)) ∈ ℤ ∧ (𝑁 − 1) < (2↑(((#b𝑁) − 1) + 1))))
134133ex 415 . . . . . . . . . . . 12 (((((2↑((#b𝑁) − 1)) + 1) ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ ((2↑((#b𝑁) − 1)) + 1) ≤ 𝑁) ∧ 𝑁 < (2↑(#b𝑁))) → (𝑁 ∈ (ℤ‘2) → ((𝑁 − 1) ∈ (ℤ‘(2↑((#b𝑁) − 1))) ∧ (2↑(((#b𝑁) − 1) + 1)) ∈ ℤ ∧ (𝑁 − 1) < (2↑(((#b𝑁) − 1) + 1)))))
1351343adant2 1127 . . . . . . . . . . 11 (((((2↑((#b𝑁) − 1)) + 1) ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ ((2↑((#b𝑁) − 1)) + 1) ≤ 𝑁) ∧ (2↑(#b𝑁)) ∈ ℤ ∧ 𝑁 < (2↑(#b𝑁))) → (𝑁 ∈ (ℤ‘2) → ((𝑁 − 1) ∈ (ℤ‘(2↑((#b𝑁) − 1))) ∧ (2↑(((#b𝑁) − 1) + 1)) ∈ ℤ ∧ (𝑁 − 1) < (2↑(((#b𝑁) − 1) + 1)))))
13682, 135sylbi 219 . . . . . . . . . 10 (𝑁 ∈ (((2↑((#b𝑁) − 1)) + 1)..^(2↑(#b𝑁))) → (𝑁 ∈ (ℤ‘2) → ((𝑁 − 1) ∈ (ℤ‘(2↑((#b𝑁) − 1))) ∧ (2↑(((#b𝑁) − 1) + 1)) ∈ ℤ ∧ (𝑁 − 1) < (2↑(((#b𝑁) − 1) + 1)))))
137136imp 409 . . . . . . . . 9 ((𝑁 ∈ (((2↑((#b𝑁) − 1)) + 1)..^(2↑(#b𝑁))) ∧ 𝑁 ∈ (ℤ‘2)) → ((𝑁 − 1) ∈ (ℤ‘(2↑((#b𝑁) − 1))) ∧ (2↑(((#b𝑁) − 1) + 1)) ∈ ℤ ∧ (𝑁 − 1) < (2↑(((#b𝑁) − 1) + 1))))
138 elfzo2 13040 . . . . . . . . 9 ((𝑁 − 1) ∈ ((2↑((#b𝑁) − 1))..^(2↑(((#b𝑁) − 1) + 1))) ↔ ((𝑁 − 1) ∈ (ℤ‘(2↑((#b𝑁) − 1))) ∧ (2↑(((#b𝑁) − 1) + 1)) ∈ ℤ ∧ (𝑁 − 1) < (2↑(((#b𝑁) − 1) + 1))))
139137, 138sylibr 236 . . . . . . . 8 ((𝑁 ∈ (((2↑((#b𝑁) − 1)) + 1)..^(2↑(#b𝑁))) ∧ 𝑁 ∈ (ℤ‘2)) → (𝑁 − 1) ∈ ((2↑((#b𝑁) − 1))..^(2↑(((#b𝑁) − 1) + 1))))
140139adantr 483 . . . . . . 7 (((𝑁 ∈ (((2↑((#b𝑁) − 1)) + 1)..^(2↑(#b𝑁))) ∧ 𝑁 ∈ (ℤ‘2)) ∧ ((𝑁 + 1) / 2) ∈ ℕ) → (𝑁 − 1) ∈ ((2↑((#b𝑁) − 1))..^(2↑(((#b𝑁) − 1) + 1))))
141 fllog2 44627 . . . . . . 7 ((((#b𝑁) − 1) ∈ ℕ0 ∧ (𝑁 − 1) ∈ ((2↑((#b𝑁) − 1))..^(2↑(((#b𝑁) − 1) + 1)))) → (⌊‘(2 logb (𝑁 − 1))) = ((#b𝑁) − 1))
14278, 140, 141syl2anc 586 . . . . . 6 (((𝑁 ∈ (((2↑((#b𝑁) − 1)) + 1)..^(2↑(#b𝑁))) ∧ 𝑁 ∈ (ℤ‘2)) ∧ ((𝑁 + 1) / 2) ∈ ℕ) → (⌊‘(2 logb (𝑁 − 1))) = ((#b𝑁) − 1))
14376, 142eqtr4d 2859 . . . . 5 (((𝑁 ∈ (((2↑((#b𝑁) − 1)) + 1)..^(2↑(#b𝑁))) ∧ 𝑁 ∈ (ℤ‘2)) ∧ ((𝑁 + 1) / 2) ∈ ℕ) → (⌊‘(2 logb 𝑁)) = (⌊‘(2 logb (𝑁 − 1))))
144143exp31 422 . . . 4 (𝑁 ∈ (((2↑((#b𝑁) − 1)) + 1)..^(2↑(#b𝑁))) → (𝑁 ∈ (ℤ‘2) → (((𝑁 + 1) / 2) ∈ ℕ → (⌊‘(2 logb 𝑁)) = (⌊‘(2 logb (𝑁 − 1))))))
14560, 144jaoi 853 . . 3 ((𝑁 = (2↑((#b𝑁) − 1)) ∨ 𝑁 ∈ (((2↑((#b𝑁) − 1)) + 1)..^(2↑(#b𝑁)))) → (𝑁 ∈ (ℤ‘2) → (((𝑁 + 1) / 2) ∈ ℕ → (⌊‘(2 logb 𝑁)) = (⌊‘(2 logb (𝑁 − 1))))))
1463, 145mpcom 38 . 2 (𝑁 ∈ (ℤ‘2) → (((𝑁 + 1) / 2) ∈ ℕ → (⌊‘(2 logb 𝑁)) = (⌊‘(2 logb (𝑁 − 1)))))
147146imp 409 1 ((𝑁 ∈ (ℤ‘2) ∧ ((𝑁 + 1) / 2) ∈ ℕ) → (⌊‘(2 logb 𝑁)) = (⌊‘(2 logb (𝑁 − 1))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 208  wa 398  wo 843  w3a 1083   = wceq 1533  wcel 2110  wne 3016   class class class wbr 5065  cfv 6354  (class class class)co 7155  cc 10534  cr 10535  0cc0 10536  1c1 10537   + caddc 10539   < clt 10674  cle 10675  cmin 10869   / cdiv 11296  cn 11637  2c2 11691  0cn0 11896  cz 11980  cuz 12242  +crp 12388  ..^cfzo 13032  cfl 13159  cexp 13428   logb clogb 25341  #bcblen 44628
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2157  ax-12 2173  ax-ext 2793  ax-rep 5189  ax-sep 5202  ax-nul 5209  ax-pow 5265  ax-pr 5329  ax-un 7460  ax-inf2 9103  ax-cnex 10592  ax-resscn 10593  ax-1cn 10594  ax-icn 10595  ax-addcl 10596  ax-addrcl 10597  ax-mulcl 10598  ax-mulrcl 10599  ax-mulcom 10600  ax-addass 10601  ax-mulass 10602  ax-distr 10603  ax-i2m1 10604  ax-1ne0 10605  ax-1rid 10606  ax-rnegex 10607  ax-rrecex 10608  ax-cnre 10609  ax-pre-lttri 10610  ax-pre-lttrn 10611  ax-pre-ltadd 10612  ax-pre-mulgt0 10613  ax-pre-sup 10614  ax-addf 10615  ax-mulf 10616
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1536  df-fal 1546  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3496  df-sbc 3772  df-csb 3883  df-dif 3938  df-un 3940  df-in 3942  df-ss 3951  df-pss 3953  df-nul 4291  df-if 4467  df-pw 4540  df-sn 4567  df-pr 4569  df-tp 4571  df-op 4573  df-uni 4838  df-int 4876  df-iun 4920  df-iin 4921  df-br 5066  df-opab 5128  df-mpt 5146  df-tr 5172  df-id 5459  df-eprel 5464  df-po 5473  df-so 5474  df-fr 5513  df-se 5514  df-we 5515  df-xp 5560  df-rel 5561  df-cnv 5562  df-co 5563  df-dm 5564  df-rn 5565  df-res 5566  df-ima 5567  df-pred 6147  df-ord 6193  df-on 6194  df-lim 6195  df-suc 6196  df-iota 6313  df-fun 6356  df-fn 6357  df-f 6358  df-f1 6359  df-fo 6360  df-f1o 6361  df-fv 6362  df-isom 6363  df-riota 7113  df-ov 7158  df-oprab 7159  df-mpo 7160  df-of 7408  df-om 7580  df-1st 7688  df-2nd 7689  df-supp 7830  df-wrecs 7946  df-recs 8007  df-rdg 8045  df-1o 8101  df-2o 8102  df-oadd 8105  df-er 8288  df-map 8407  df-pm 8408  df-ixp 8461  df-en 8509  df-dom 8510  df-sdom 8511  df-fin 8512  df-fsupp 8833  df-fi 8874  df-sup 8905  df-inf 8906  df-oi 8973  df-card 9367  df-pnf 10676  df-mnf 10677  df-xr 10678  df-ltxr 10679  df-le 10680  df-sub 10871  df-neg 10872  df-div 11297  df-nn 11638  df-2 11699  df-3 11700  df-4 11701  df-5 11702  df-6 11703  df-7 11704  df-8 11705  df-9 11706  df-n0 11897  df-z 11981  df-dec 12098  df-uz 12243  df-q 12348  df-rp 12389  df-xneg 12506  df-xadd 12507  df-xmul 12508  df-ioo 12741  df-ioc 12742  df-ico 12743  df-icc 12744  df-fz 12892  df-fzo 13033  df-fl 13161  df-mod 13237  df-seq 13369  df-exp 13429  df-fac 13633  df-bc 13662  df-hash 13690  df-shft 14425  df-cj 14457  df-re 14458  df-im 14459  df-sqrt 14593  df-abs 14594  df-limsup 14827  df-clim 14844  df-rlim 14845  df-sum 15042  df-ef 15420  df-sin 15422  df-cos 15423  df-pi 15425  df-struct 16484  df-ndx 16485  df-slot 16486  df-base 16488  df-sets 16489  df-ress 16490  df-plusg 16577  df-mulr 16578  df-starv 16579  df-sca 16580  df-vsca 16581  df-ip 16582  df-tset 16583  df-ple 16584  df-ds 16586  df-unif 16587  df-hom 16588  df-cco 16589  df-rest 16695  df-topn 16696  df-0g 16714  df-gsum 16715  df-topgen 16716  df-pt 16717  df-prds 16720  df-xrs 16774  df-qtop 16779  df-imas 16780  df-xps 16782  df-mre 16856  df-mrc 16857  df-acs 16859  df-mgm 17851  df-sgrp 17900  df-mnd 17911  df-submnd 17956  df-mulg 18224  df-cntz 18446  df-cmn 18907  df-psmet 20536  df-xmet 20537  df-met 20538  df-bl 20539  df-mopn 20540  df-fbas 20541  df-fg 20542  df-cnfld 20545  df-top 21501  df-topon 21518  df-topsp 21540  df-bases 21553  df-cld 21626  df-ntr 21627  df-cls 21628  df-nei 21705  df-lp 21743  df-perf 21744  df-cn 21834  df-cnp 21835  df-haus 21922  df-tx 22169  df-hmeo 22362  df-fil 22453  df-fm 22545  df-flim 22546  df-flf 22547  df-xms 22929  df-ms 22930  df-tms 22931  df-cncf 23485  df-limc 24463  df-dv 24464  df-log 25139  df-cxp 25140  df-logb 25342  df-blen 44629
This theorem is referenced by:  blennngt2o2  44651
  Copyright terms: Public domain W3C validator