Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  nnolog2flm1 Structured version   Visualization version   GIF version

Theorem nnolog2flm1 48537
Description: The floor of the binary logarithm of an odd integer greater than 1 is the floor of the binary logarithm of the integer decreased by 1. (Contributed by AV, 2-Jun-2020.)
Assertion
Ref Expression
nnolog2flm1 ((𝑁 ∈ (ℤ‘2) ∧ ((𝑁 + 1) / 2) ∈ ℕ) → (⌊‘(2 logb 𝑁)) = (⌊‘(2 logb (𝑁 − 1))))

Proof of Theorem nnolog2flm1
StepHypRef Expression
1 eluz2nn 12903 . . . 4 (𝑁 ∈ (ℤ‘2) → 𝑁 ∈ ℕ)
2 nnpw2blenfzo2 48529 . . . 4 (𝑁 ∈ ℕ → (𝑁 = (2↑((#b𝑁) − 1)) ∨ 𝑁 ∈ (((2↑((#b𝑁) − 1)) + 1)..^(2↑(#b𝑁)))))
31, 2syl 17 . . 3 (𝑁 ∈ (ℤ‘2) → (𝑁 = (2↑((#b𝑁) − 1)) ∨ 𝑁 ∈ (((2↑((#b𝑁) − 1)) + 1)..^(2↑(#b𝑁)))))
41adantl 481 . . . . . . . . 9 ((𝑁 = (2↑((#b𝑁) − 1)) ∧ 𝑁 ∈ (ℤ‘2)) → 𝑁 ∈ ℕ)
5 nneo 12682 . . . . . . . . . 10 (𝑁 ∈ ℕ → ((𝑁 / 2) ∈ ℕ ↔ ¬ ((𝑁 + 1) / 2) ∈ ℕ))
65bicomd 223 . . . . . . . . 9 (𝑁 ∈ ℕ → (¬ ((𝑁 + 1) / 2) ∈ ℕ ↔ (𝑁 / 2) ∈ ℕ))
74, 6syl 17 . . . . . . . 8 ((𝑁 = (2↑((#b𝑁) − 1)) ∧ 𝑁 ∈ (ℤ‘2)) → (¬ ((𝑁 + 1) / 2) ∈ ℕ ↔ (𝑁 / 2) ∈ ℕ))
8 notnotb 315 . . . . . . . 8 ((𝑁 / 2) ∈ ℕ ↔ ¬ ¬ (𝑁 / 2) ∈ ℕ)
97, 8bitrdi 287 . . . . . . 7 ((𝑁 = (2↑((#b𝑁) − 1)) ∧ 𝑁 ∈ (ℤ‘2)) → (¬ ((𝑁 + 1) / 2) ∈ ℕ ↔ ¬ ¬ (𝑁 / 2) ∈ ℕ))
109con4bid 317 . . . . . 6 ((𝑁 = (2↑((#b𝑁) − 1)) ∧ 𝑁 ∈ (ℤ‘2)) → (((𝑁 + 1) / 2) ∈ ℕ ↔ ¬ (𝑁 / 2) ∈ ℕ))
11 simpl 482 . . . . . . . . 9 ((𝑁 = (2↑((#b𝑁) − 1)) ∧ 𝑁 ∈ (ℤ‘2)) → 𝑁 = (2↑((#b𝑁) − 1)))
1211oveq1d 7425 . . . . . . . 8 ((𝑁 = (2↑((#b𝑁) − 1)) ∧ 𝑁 ∈ (ℤ‘2)) → (𝑁 / 2) = ((2↑((#b𝑁) − 1)) / 2))
13 blennnelnn 48523 . . . . . . . . . . . . 13 (𝑁 ∈ ℕ → (#b𝑁) ∈ ℕ)
1413nnnn0d 12567 . . . . . . . . . . . 12 (𝑁 ∈ ℕ → (#b𝑁) ∈ ℕ0)
151, 14syl 17 . . . . . . . . . . 11 (𝑁 ∈ (ℤ‘2) → (#b𝑁) ∈ ℕ0)
16 2m1e1 12371 . . . . . . . . . . . . . 14 (2 − 1) = 1
17 2cn 12320 . . . . . . . . . . . . . . . . 17 2 ∈ ℂ
18 2ne0 12349 . . . . . . . . . . . . . . . . 17 2 ≠ 0
19 1ne2 12453 . . . . . . . . . . . . . . . . . 18 1 ≠ 2
2019necomi 2987 . . . . . . . . . . . . . . . . 17 2 ≠ 1
21 logbid1 26735 . . . . . . . . . . . . . . . . 17 ((2 ∈ ℂ ∧ 2 ≠ 0 ∧ 2 ≠ 1) → (2 logb 2) = 1)
2217, 18, 20, 21mp3an 1463 . . . . . . . . . . . . . . . 16 (2 logb 2) = 1
23 eluzle 12870 . . . . . . . . . . . . . . . . 17 (𝑁 ∈ (ℤ‘2) → 2 ≤ 𝑁)
24 2z 12629 . . . . . . . . . . . . . . . . . . 19 2 ∈ ℤ
25 uzid 12872 . . . . . . . . . . . . . . . . . . 19 (2 ∈ ℤ → 2 ∈ (ℤ‘2))
2624, 25mp1i 13 . . . . . . . . . . . . . . . . . 18 (𝑁 ∈ (ℤ‘2) → 2 ∈ (ℤ‘2))
27 2rp 13018 . . . . . . . . . . . . . . . . . . 19 2 ∈ ℝ+
2827a1i 11 . . . . . . . . . . . . . . . . . 18 (𝑁 ∈ (ℤ‘2) → 2 ∈ ℝ+)
291nnrpd 13054 . . . . . . . . . . . . . . . . . 18 (𝑁 ∈ (ℤ‘2) → 𝑁 ∈ ℝ+)
30 logbleb 26750 . . . . . . . . . . . . . . . . . 18 ((2 ∈ (ℤ‘2) ∧ 2 ∈ ℝ+𝑁 ∈ ℝ+) → (2 ≤ 𝑁 ↔ (2 logb 2) ≤ (2 logb 𝑁)))
3126, 28, 29, 30syl3anc 1373 . . . . . . . . . . . . . . . . 17 (𝑁 ∈ (ℤ‘2) → (2 ≤ 𝑁 ↔ (2 logb 2) ≤ (2 logb 𝑁)))
3223, 31mpbid 232 . . . . . . . . . . . . . . . 16 (𝑁 ∈ (ℤ‘2) → (2 logb 2) ≤ (2 logb 𝑁))
3322, 32eqbrtrrid 5160 . . . . . . . . . . . . . . 15 (𝑁 ∈ (ℤ‘2) → 1 ≤ (2 logb 𝑁))
3420a1i 11 . . . . . . . . . . . . . . . . 17 (𝑁 ∈ (ℤ‘2) → 2 ≠ 1)
35 relogbcl 26740 . . . . . . . . . . . . . . . . 17 ((2 ∈ ℝ+𝑁 ∈ ℝ+ ∧ 2 ≠ 1) → (2 logb 𝑁) ∈ ℝ)
3628, 29, 34, 35syl3anc 1373 . . . . . . . . . . . . . . . 16 (𝑁 ∈ (ℤ‘2) → (2 logb 𝑁) ∈ ℝ)
37 1zzd 12628 . . . . . . . . . . . . . . . 16 (𝑁 ∈ (ℤ‘2) → 1 ∈ ℤ)
38 flge 13827 . . . . . . . . . . . . . . . 16 (((2 logb 𝑁) ∈ ℝ ∧ 1 ∈ ℤ) → (1 ≤ (2 logb 𝑁) ↔ 1 ≤ (⌊‘(2 logb 𝑁))))
3936, 37, 38syl2anc 584 . . . . . . . . . . . . . . 15 (𝑁 ∈ (ℤ‘2) → (1 ≤ (2 logb 𝑁) ↔ 1 ≤ (⌊‘(2 logb 𝑁))))
4033, 39mpbid 232 . . . . . . . . . . . . . 14 (𝑁 ∈ (ℤ‘2) → 1 ≤ (⌊‘(2 logb 𝑁)))
4116, 40eqbrtrid 5159 . . . . . . . . . . . . 13 (𝑁 ∈ (ℤ‘2) → (2 − 1) ≤ (⌊‘(2 logb 𝑁)))
42 2re 12319 . . . . . . . . . . . . . . 15 2 ∈ ℝ
4342a1i 11 . . . . . . . . . . . . . 14 (𝑁 ∈ (ℤ‘2) → 2 ∈ ℝ)
44 1red 11241 . . . . . . . . . . . . . 14 (𝑁 ∈ (ℤ‘2) → 1 ∈ ℝ)
4536flcld 13820 . . . . . . . . . . . . . . 15 (𝑁 ∈ (ℤ‘2) → (⌊‘(2 logb 𝑁)) ∈ ℤ)
4645zred 12702 . . . . . . . . . . . . . 14 (𝑁 ∈ (ℤ‘2) → (⌊‘(2 logb 𝑁)) ∈ ℝ)
4743, 44, 46lesubaddd 11839 . . . . . . . . . . . . 13 (𝑁 ∈ (ℤ‘2) → ((2 − 1) ≤ (⌊‘(2 logb 𝑁)) ↔ 2 ≤ ((⌊‘(2 logb 𝑁)) + 1)))
4841, 47mpbid 232 . . . . . . . . . . . 12 (𝑁 ∈ (ℤ‘2) → 2 ≤ ((⌊‘(2 logb 𝑁)) + 1))
49 blennn 48522 . . . . . . . . . . . . 13 (𝑁 ∈ ℕ → (#b𝑁) = ((⌊‘(2 logb 𝑁)) + 1))
501, 49syl 17 . . . . . . . . . . . 12 (𝑁 ∈ (ℤ‘2) → (#b𝑁) = ((⌊‘(2 logb 𝑁)) + 1))
5148, 50breqtrrd 5152 . . . . . . . . . . 11 (𝑁 ∈ (ℤ‘2) → 2 ≤ (#b𝑁))
52 nn0ge2m1nn 12576 . . . . . . . . . . 11 (((#b𝑁) ∈ ℕ0 ∧ 2 ≤ (#b𝑁)) → ((#b𝑁) − 1) ∈ ℕ)
5315, 51, 52syl2anc 584 . . . . . . . . . 10 (𝑁 ∈ (ℤ‘2) → ((#b𝑁) − 1) ∈ ℕ)
5453adantl 481 . . . . . . . . 9 ((𝑁 = (2↑((#b𝑁) − 1)) ∧ 𝑁 ∈ (ℤ‘2)) → ((#b𝑁) − 1) ∈ ℕ)
55 nnpw2even 48476 . . . . . . . . 9 (((#b𝑁) − 1) ∈ ℕ → ((2↑((#b𝑁) − 1)) / 2) ∈ ℕ)
5654, 55syl 17 . . . . . . . 8 ((𝑁 = (2↑((#b𝑁) − 1)) ∧ 𝑁 ∈ (ℤ‘2)) → ((2↑((#b𝑁) − 1)) / 2) ∈ ℕ)
5712, 56eqeltrd 2835 . . . . . . 7 ((𝑁 = (2↑((#b𝑁) − 1)) ∧ 𝑁 ∈ (ℤ‘2)) → (𝑁 / 2) ∈ ℕ)
5857pm2.24d 151 . . . . . 6 ((𝑁 = (2↑((#b𝑁) − 1)) ∧ 𝑁 ∈ (ℤ‘2)) → (¬ (𝑁 / 2) ∈ ℕ → (⌊‘(2 logb 𝑁)) = (⌊‘(2 logb (𝑁 − 1)))))
5910, 58sylbid 240 . . . . 5 ((𝑁 = (2↑((#b𝑁) − 1)) ∧ 𝑁 ∈ (ℤ‘2)) → (((𝑁 + 1) / 2) ∈ ℕ → (⌊‘(2 logb 𝑁)) = (⌊‘(2 logb (𝑁 − 1)))))
6059ex 412 . . . 4 (𝑁 = (2↑((#b𝑁) − 1)) → (𝑁 ∈ (ℤ‘2) → (((𝑁 + 1) / 2) ∈ ℕ → (⌊‘(2 logb 𝑁)) = (⌊‘(2 logb (𝑁 − 1))))))
611, 13syl 17 . . . . . . . . 9 (𝑁 ∈ (ℤ‘2) → (#b𝑁) ∈ ℕ)
62 nnm1nn0 12547 . . . . . . . . 9 ((#b𝑁) ∈ ℕ → ((#b𝑁) − 1) ∈ ℕ0)
6361, 62syl 17 . . . . . . . 8 (𝑁 ∈ (ℤ‘2) → ((#b𝑁) − 1) ∈ ℕ0)
6463ad2antlr 727 . . . . . . 7 (((𝑁 ∈ (((2↑((#b𝑁) − 1)) + 1)..^(2↑(#b𝑁))) ∧ 𝑁 ∈ (ℤ‘2)) ∧ ((𝑁 + 1) / 2) ∈ ℕ) → ((#b𝑁) − 1) ∈ ℕ0)
651ad2antlr 727 . . . . . . . . 9 (((𝑁 ∈ (((2↑((#b𝑁) − 1)) + 1)..^(2↑(#b𝑁))) ∧ 𝑁 ∈ (ℤ‘2)) ∧ ((𝑁 + 1) / 2) ∈ ℕ) → 𝑁 ∈ ℕ)
66 nnpw2blenfzo 48528 . . . . . . . . 9 (𝑁 ∈ ℕ → 𝑁 ∈ ((2↑((#b𝑁) − 1))..^(2↑(#b𝑁))))
6765, 66syl 17 . . . . . . . 8 (((𝑁 ∈ (((2↑((#b𝑁) − 1)) + 1)..^(2↑(#b𝑁))) ∧ 𝑁 ∈ (ℤ‘2)) ∧ ((𝑁 + 1) / 2) ∈ ℕ) → 𝑁 ∈ ((2↑((#b𝑁) − 1))..^(2↑(#b𝑁))))
6861nncnd 12261 . . . . . . . . . . . 12 (𝑁 ∈ (ℤ‘2) → (#b𝑁) ∈ ℂ)
6968ad2antlr 727 . . . . . . . . . . 11 (((𝑁 ∈ (((2↑((#b𝑁) − 1)) + 1)..^(2↑(#b𝑁))) ∧ 𝑁 ∈ (ℤ‘2)) ∧ ((𝑁 + 1) / 2) ∈ ℕ) → (#b𝑁) ∈ ℂ)
70 npcan1 11667 . . . . . . . . . . 11 ((#b𝑁) ∈ ℂ → (((#b𝑁) − 1) + 1) = (#b𝑁))
7169, 70syl 17 . . . . . . . . . 10 (((𝑁 ∈ (((2↑((#b𝑁) − 1)) + 1)..^(2↑(#b𝑁))) ∧ 𝑁 ∈ (ℤ‘2)) ∧ ((𝑁 + 1) / 2) ∈ ℕ) → (((#b𝑁) − 1) + 1) = (#b𝑁))
7271oveq2d 7426 . . . . . . . . 9 (((𝑁 ∈ (((2↑((#b𝑁) − 1)) + 1)..^(2↑(#b𝑁))) ∧ 𝑁 ∈ (ℤ‘2)) ∧ ((𝑁 + 1) / 2) ∈ ℕ) → (2↑(((#b𝑁) − 1) + 1)) = (2↑(#b𝑁)))
7372oveq2d 7426 . . . . . . . 8 (((𝑁 ∈ (((2↑((#b𝑁) − 1)) + 1)..^(2↑(#b𝑁))) ∧ 𝑁 ∈ (ℤ‘2)) ∧ ((𝑁 + 1) / 2) ∈ ℕ) → ((2↑((#b𝑁) − 1))..^(2↑(((#b𝑁) − 1) + 1))) = ((2↑((#b𝑁) − 1))..^(2↑(#b𝑁))))
7467, 73eleqtrrd 2838 . . . . . . 7 (((𝑁 ∈ (((2↑((#b𝑁) − 1)) + 1)..^(2↑(#b𝑁))) ∧ 𝑁 ∈ (ℤ‘2)) ∧ ((𝑁 + 1) / 2) ∈ ℕ) → 𝑁 ∈ ((2↑((#b𝑁) − 1))..^(2↑(((#b𝑁) − 1) + 1))))
75 fllog2 48515 . . . . . . 7 ((((#b𝑁) − 1) ∈ ℕ0𝑁 ∈ ((2↑((#b𝑁) − 1))..^(2↑(((#b𝑁) − 1) + 1)))) → (⌊‘(2 logb 𝑁)) = ((#b𝑁) − 1))
7664, 74, 75syl2anc 584 . . . . . 6 (((𝑁 ∈ (((2↑((#b𝑁) − 1)) + 1)..^(2↑(#b𝑁))) ∧ 𝑁 ∈ (ℤ‘2)) ∧ ((𝑁 + 1) / 2) ∈ ℕ) → (⌊‘(2 logb 𝑁)) = ((#b𝑁) − 1))
7761ad2antlr 727 . . . . . . . 8 (((𝑁 ∈ (((2↑((#b𝑁) − 1)) + 1)..^(2↑(#b𝑁))) ∧ 𝑁 ∈ (ℤ‘2)) ∧ ((𝑁 + 1) / 2) ∈ ℕ) → (#b𝑁) ∈ ℕ)
7877, 62syl 17 . . . . . . 7 (((𝑁 ∈ (((2↑((#b𝑁) − 1)) + 1)..^(2↑(#b𝑁))) ∧ 𝑁 ∈ (ℤ‘2)) ∧ ((𝑁 + 1) / 2) ∈ ℕ) → ((#b𝑁) − 1) ∈ ℕ0)
79 elfzo2 13684 . . . . . . . . . . . 12 (𝑁 ∈ (((2↑((#b𝑁) − 1)) + 1)..^(2↑(#b𝑁))) ↔ (𝑁 ∈ (ℤ‘((2↑((#b𝑁) − 1)) + 1)) ∧ (2↑(#b𝑁)) ∈ ℤ ∧ 𝑁 < (2↑(#b𝑁))))
80 eluz2 12863 . . . . . . . . . . . . 13 (𝑁 ∈ (ℤ‘((2↑((#b𝑁) − 1)) + 1)) ↔ (((2↑((#b𝑁) − 1)) + 1) ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ ((2↑((#b𝑁) − 1)) + 1) ≤ 𝑁))
81803anbi1i 1157 . . . . . . . . . . . 12 ((𝑁 ∈ (ℤ‘((2↑((#b𝑁) − 1)) + 1)) ∧ (2↑(#b𝑁)) ∈ ℤ ∧ 𝑁 < (2↑(#b𝑁))) ↔ ((((2↑((#b𝑁) − 1)) + 1) ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ ((2↑((#b𝑁) − 1)) + 1) ≤ 𝑁) ∧ (2↑(#b𝑁)) ∈ ℤ ∧ 𝑁 < (2↑(#b𝑁))))
8279, 81bitri 275 . . . . . . . . . . 11 (𝑁 ∈ (((2↑((#b𝑁) − 1)) + 1)..^(2↑(#b𝑁))) ↔ ((((2↑((#b𝑁) − 1)) + 1) ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ ((2↑((#b𝑁) − 1)) + 1) ≤ 𝑁) ∧ (2↑(#b𝑁)) ∈ ℤ ∧ 𝑁 < (2↑(#b𝑁))))
83 2nn 12318 . . . . . . . . . . . . . . . . . . . 20 2 ∈ ℕ
8483a1i 11 . . . . . . . . . . . . . . . . . . 19 (𝑁 ∈ (ℤ‘2) → 2 ∈ ℕ)
8584, 63jca 511 . . . . . . . . . . . . . . . . . 18 (𝑁 ∈ (ℤ‘2) → (2 ∈ ℕ ∧ ((#b𝑁) − 1) ∈ ℕ0))
8685adantl 481 . . . . . . . . . . . . . . . . 17 ((((((2↑((#b𝑁) − 1)) + 1) ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ ((2↑((#b𝑁) − 1)) + 1) ≤ 𝑁) ∧ 𝑁 < (2↑(#b𝑁))) ∧ 𝑁 ∈ (ℤ‘2)) → (2 ∈ ℕ ∧ ((#b𝑁) − 1) ∈ ℕ0))
87 nnexpcl 14097 . . . . . . . . . . . . . . . . 17 ((2 ∈ ℕ ∧ ((#b𝑁) − 1) ∈ ℕ0) → (2↑((#b𝑁) − 1)) ∈ ℕ)
8886, 87syl 17 . . . . . . . . . . . . . . . 16 ((((((2↑((#b𝑁) − 1)) + 1) ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ ((2↑((#b𝑁) − 1)) + 1) ≤ 𝑁) ∧ 𝑁 < (2↑(#b𝑁))) ∧ 𝑁 ∈ (ℤ‘2)) → (2↑((#b𝑁) − 1)) ∈ ℕ)
8988nnzd 12620 . . . . . . . . . . . . . . 15 ((((((2↑((#b𝑁) − 1)) + 1) ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ ((2↑((#b𝑁) − 1)) + 1) ≤ 𝑁) ∧ 𝑁 < (2↑(#b𝑁))) ∧ 𝑁 ∈ (ℤ‘2)) → (2↑((#b𝑁) − 1)) ∈ ℤ)
90 peano2zm 12640 . . . . . . . . . . . . . . . . . 18 (𝑁 ∈ ℤ → (𝑁 − 1) ∈ ℤ)
91903ad2ant2 1134 . . . . . . . . . . . . . . . . 17 ((((2↑((#b𝑁) − 1)) + 1) ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ ((2↑((#b𝑁) − 1)) + 1) ≤ 𝑁) → (𝑁 − 1) ∈ ℤ)
9291adantr 480 . . . . . . . . . . . . . . . 16 (((((2↑((#b𝑁) − 1)) + 1) ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ ((2↑((#b𝑁) − 1)) + 1) ≤ 𝑁) ∧ 𝑁 < (2↑(#b𝑁))) → (𝑁 − 1) ∈ ℤ)
9392adantr 480 . . . . . . . . . . . . . . 15 ((((((2↑((#b𝑁) − 1)) + 1) ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ ((2↑((#b𝑁) − 1)) + 1) ≤ 𝑁) ∧ 𝑁 < (2↑(#b𝑁))) ∧ 𝑁 ∈ (ℤ‘2)) → (𝑁 − 1) ∈ ℤ)
9484, 63nnexpcld 14268 . . . . . . . . . . . . . . . . . . . . 21 (𝑁 ∈ (ℤ‘2) → (2↑((#b𝑁) − 1)) ∈ ℕ)
9594nnred 12260 . . . . . . . . . . . . . . . . . . . 20 (𝑁 ∈ (ℤ‘2) → (2↑((#b𝑁) − 1)) ∈ ℝ)
961nnred 12260 . . . . . . . . . . . . . . . . . . . 20 (𝑁 ∈ (ℤ‘2) → 𝑁 ∈ ℝ)
97 leaddsub 11718 . . . . . . . . . . . . . . . . . . . 20 (((2↑((#b𝑁) − 1)) ∈ ℝ ∧ 1 ∈ ℝ ∧ 𝑁 ∈ ℝ) → (((2↑((#b𝑁) − 1)) + 1) ≤ 𝑁 ↔ (2↑((#b𝑁) − 1)) ≤ (𝑁 − 1)))
9895, 44, 96, 97syl3anc 1373 . . . . . . . . . . . . . . . . . . 19 (𝑁 ∈ (ℤ‘2) → (((2↑((#b𝑁) − 1)) + 1) ≤ 𝑁 ↔ (2↑((#b𝑁) − 1)) ≤ (𝑁 − 1)))
9998biimpcd 249 . . . . . . . . . . . . . . . . . 18 (((2↑((#b𝑁) − 1)) + 1) ≤ 𝑁 → (𝑁 ∈ (ℤ‘2) → (2↑((#b𝑁) − 1)) ≤ (𝑁 − 1)))
100993ad2ant3 1135 . . . . . . . . . . . . . . . . 17 ((((2↑((#b𝑁) − 1)) + 1) ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ ((2↑((#b𝑁) − 1)) + 1) ≤ 𝑁) → (𝑁 ∈ (ℤ‘2) → (2↑((#b𝑁) − 1)) ≤ (𝑁 − 1)))
101100adantr 480 . . . . . . . . . . . . . . . 16 (((((2↑((#b𝑁) − 1)) + 1) ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ ((2↑((#b𝑁) − 1)) + 1) ≤ 𝑁) ∧ 𝑁 < (2↑(#b𝑁))) → (𝑁 ∈ (ℤ‘2) → (2↑((#b𝑁) − 1)) ≤ (𝑁 − 1)))
102101imp 406 . . . . . . . . . . . . . . 15 ((((((2↑((#b𝑁) − 1)) + 1) ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ ((2↑((#b𝑁) − 1)) + 1) ≤ 𝑁) ∧ 𝑁 < (2↑(#b𝑁))) ∧ 𝑁 ∈ (ℤ‘2)) → (2↑((#b𝑁) − 1)) ≤ (𝑁 − 1))
103 eluz2 12863 . . . . . . . . . . . . . . 15 ((𝑁 − 1) ∈ (ℤ‘(2↑((#b𝑁) − 1))) ↔ ((2↑((#b𝑁) − 1)) ∈ ℤ ∧ (𝑁 − 1) ∈ ℤ ∧ (2↑((#b𝑁) − 1)) ≤ (𝑁 − 1)))
10489, 93, 102, 103syl3anbrc 1344 . . . . . . . . . . . . . 14 ((((((2↑((#b𝑁) − 1)) + 1) ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ ((2↑((#b𝑁) − 1)) + 1) ≤ 𝑁) ∧ 𝑁 < (2↑(#b𝑁))) ∧ 𝑁 ∈ (ℤ‘2)) → (𝑁 − 1) ∈ (ℤ‘(2↑((#b𝑁) − 1))))
10570eleq1d 2820 . . . . . . . . . . . . . . . . . . . 20 ((#b𝑁) ∈ ℂ → ((((#b𝑁) − 1) + 1) ∈ ℕ0 ↔ (#b𝑁) ∈ ℕ0))
10668, 105syl 17 . . . . . . . . . . . . . . . . . . 19 (𝑁 ∈ (ℤ‘2) → ((((#b𝑁) − 1) + 1) ∈ ℕ0 ↔ (#b𝑁) ∈ ℕ0))
10715, 106mpbird 257 . . . . . . . . . . . . . . . . . 18 (𝑁 ∈ (ℤ‘2) → (((#b𝑁) − 1) + 1) ∈ ℕ0)
10884, 107jca 511 . . . . . . . . . . . . . . . . 17 (𝑁 ∈ (ℤ‘2) → (2 ∈ ℕ ∧ (((#b𝑁) − 1) + 1) ∈ ℕ0))
109108adantl 481 . . . . . . . . . . . . . . . 16 ((((((2↑((#b𝑁) − 1)) + 1) ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ ((2↑((#b𝑁) − 1)) + 1) ≤ 𝑁) ∧ 𝑁 < (2↑(#b𝑁))) ∧ 𝑁 ∈ (ℤ‘2)) → (2 ∈ ℕ ∧ (((#b𝑁) − 1) + 1) ∈ ℕ0))
110 nnexpcl 14097 . . . . . . . . . . . . . . . 16 ((2 ∈ ℕ ∧ (((#b𝑁) − 1) + 1) ∈ ℕ0) → (2↑(((#b𝑁) − 1) + 1)) ∈ ℕ)
111109, 110syl 17 . . . . . . . . . . . . . . 15 ((((((2↑((#b𝑁) − 1)) + 1) ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ ((2↑((#b𝑁) − 1)) + 1) ≤ 𝑁) ∧ 𝑁 < (2↑(#b𝑁))) ∧ 𝑁 ∈ (ℤ‘2)) → (2↑(((#b𝑁) − 1) + 1)) ∈ ℕ)
112111nnzd 12620 . . . . . . . . . . . . . 14 ((((((2↑((#b𝑁) − 1)) + 1) ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ ((2↑((#b𝑁) − 1)) + 1) ≤ 𝑁) ∧ 𝑁 < (2↑(#b𝑁))) ∧ 𝑁 ∈ (ℤ‘2)) → (2↑(((#b𝑁) − 1) + 1)) ∈ ℤ)
113 ltle 11328 . . . . . . . . . . . . . . . . . . 19 ((𝑁 ∈ ℝ ∧ (2↑(#b𝑁)) ∈ ℝ) → (𝑁 < (2↑(#b𝑁)) → 𝑁 ≤ (2↑(#b𝑁))))
114 nnre 12252 . . . . . . . . . . . . . . . . . . . . 21 (𝑁 ∈ ℕ → 𝑁 ∈ ℝ)
11542a1i 11 . . . . . . . . . . . . . . . . . . . . . 22 (𝑁 ∈ ℕ → 2 ∈ ℝ)
116115, 14reexpcld 14186 . . . . . . . . . . . . . . . . . . . . 21 (𝑁 ∈ ℕ → (2↑(#b𝑁)) ∈ ℝ)
117114, 116jca 511 . . . . . . . . . . . . . . . . . . . 20 (𝑁 ∈ ℕ → (𝑁 ∈ ℝ ∧ (2↑(#b𝑁)) ∈ ℝ))
1181, 117syl 17 . . . . . . . . . . . . . . . . . . 19 (𝑁 ∈ (ℤ‘2) → (𝑁 ∈ ℝ ∧ (2↑(#b𝑁)) ∈ ℝ))
119113, 118syl11 33 . . . . . . . . . . . . . . . . . 18 (𝑁 < (2↑(#b𝑁)) → (𝑁 ∈ (ℤ‘2) → 𝑁 ≤ (2↑(#b𝑁))))
120119adantl 481 . . . . . . . . . . . . . . . . 17 (((((2↑((#b𝑁) − 1)) + 1) ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ ((2↑((#b𝑁) − 1)) + 1) ≤ 𝑁) ∧ 𝑁 < (2↑(#b𝑁))) → (𝑁 ∈ (ℤ‘2) → 𝑁 ≤ (2↑(#b𝑁))))
121120imp 406 . . . . . . . . . . . . . . . 16 ((((((2↑((#b𝑁) − 1)) + 1) ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ ((2↑((#b𝑁) − 1)) + 1) ≤ 𝑁) ∧ 𝑁 < (2↑(#b𝑁))) ∧ 𝑁 ∈ (ℤ‘2)) → 𝑁 ≤ (2↑(#b𝑁)))
122 simpll2 1214 . . . . . . . . . . . . . . . . 17 ((((((2↑((#b𝑁) − 1)) + 1) ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ ((2↑((#b𝑁) − 1)) + 1) ≤ 𝑁) ∧ 𝑁 < (2↑(#b𝑁))) ∧ 𝑁 ∈ (ℤ‘2)) → 𝑁 ∈ ℤ)
12384, 15nnexpcld 14268 . . . . . . . . . . . . . . . . . . 19 (𝑁 ∈ (ℤ‘2) → (2↑(#b𝑁)) ∈ ℕ)
124123nnzd 12620 . . . . . . . . . . . . . . . . . 18 (𝑁 ∈ (ℤ‘2) → (2↑(#b𝑁)) ∈ ℤ)
125124adantl 481 . . . . . . . . . . . . . . . . 17 ((((((2↑((#b𝑁) − 1)) + 1) ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ ((2↑((#b𝑁) − 1)) + 1) ≤ 𝑁) ∧ 𝑁 < (2↑(#b𝑁))) ∧ 𝑁 ∈ (ℤ‘2)) → (2↑(#b𝑁)) ∈ ℤ)
126 zlem1lt 12649 . . . . . . . . . . . . . . . . 17 ((𝑁 ∈ ℤ ∧ (2↑(#b𝑁)) ∈ ℤ) → (𝑁 ≤ (2↑(#b𝑁)) ↔ (𝑁 − 1) < (2↑(#b𝑁))))
127122, 125, 126syl2anc 584 . . . . . . . . . . . . . . . 16 ((((((2↑((#b𝑁) − 1)) + 1) ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ ((2↑((#b𝑁) − 1)) + 1) ≤ 𝑁) ∧ 𝑁 < (2↑(#b𝑁))) ∧ 𝑁 ∈ (ℤ‘2)) → (𝑁 ≤ (2↑(#b𝑁)) ↔ (𝑁 − 1) < (2↑(#b𝑁))))
128121, 127mpbid 232 . . . . . . . . . . . . . . 15 ((((((2↑((#b𝑁) − 1)) + 1) ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ ((2↑((#b𝑁) − 1)) + 1) ≤ 𝑁) ∧ 𝑁 < (2↑(#b𝑁))) ∧ 𝑁 ∈ (ℤ‘2)) → (𝑁 − 1) < (2↑(#b𝑁)))
12968, 70syl 17 . . . . . . . . . . . . . . . . 17 (𝑁 ∈ (ℤ‘2) → (((#b𝑁) − 1) + 1) = (#b𝑁))
130129oveq2d 7426 . . . . . . . . . . . . . . . 16 (𝑁 ∈ (ℤ‘2) → (2↑(((#b𝑁) − 1) + 1)) = (2↑(#b𝑁)))
131130adantl 481 . . . . . . . . . . . . . . 15 ((((((2↑((#b𝑁) − 1)) + 1) ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ ((2↑((#b𝑁) − 1)) + 1) ≤ 𝑁) ∧ 𝑁 < (2↑(#b𝑁))) ∧ 𝑁 ∈ (ℤ‘2)) → (2↑(((#b𝑁) − 1) + 1)) = (2↑(#b𝑁)))
132128, 131breqtrrd 5152 . . . . . . . . . . . . . 14 ((((((2↑((#b𝑁) − 1)) + 1) ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ ((2↑((#b𝑁) − 1)) + 1) ≤ 𝑁) ∧ 𝑁 < (2↑(#b𝑁))) ∧ 𝑁 ∈ (ℤ‘2)) → (𝑁 − 1) < (2↑(((#b𝑁) − 1) + 1)))
133104, 112, 1323jca 1128 . . . . . . . . . . . . 13 ((((((2↑((#b𝑁) − 1)) + 1) ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ ((2↑((#b𝑁) − 1)) + 1) ≤ 𝑁) ∧ 𝑁 < (2↑(#b𝑁))) ∧ 𝑁 ∈ (ℤ‘2)) → ((𝑁 − 1) ∈ (ℤ‘(2↑((#b𝑁) − 1))) ∧ (2↑(((#b𝑁) − 1) + 1)) ∈ ℤ ∧ (𝑁 − 1) < (2↑(((#b𝑁) − 1) + 1))))
134133ex 412 . . . . . . . . . . . 12 (((((2↑((#b𝑁) − 1)) + 1) ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ ((2↑((#b𝑁) − 1)) + 1) ≤ 𝑁) ∧ 𝑁 < (2↑(#b𝑁))) → (𝑁 ∈ (ℤ‘2) → ((𝑁 − 1) ∈ (ℤ‘(2↑((#b𝑁) − 1))) ∧ (2↑(((#b𝑁) − 1) + 1)) ∈ ℤ ∧ (𝑁 − 1) < (2↑(((#b𝑁) − 1) + 1)))))
1351343adant2 1131 . . . . . . . . . . 11 (((((2↑((#b𝑁) − 1)) + 1) ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ ((2↑((#b𝑁) − 1)) + 1) ≤ 𝑁) ∧ (2↑(#b𝑁)) ∈ ℤ ∧ 𝑁 < (2↑(#b𝑁))) → (𝑁 ∈ (ℤ‘2) → ((𝑁 − 1) ∈ (ℤ‘(2↑((#b𝑁) − 1))) ∧ (2↑(((#b𝑁) − 1) + 1)) ∈ ℤ ∧ (𝑁 − 1) < (2↑(((#b𝑁) − 1) + 1)))))
13682, 135sylbi 217 . . . . . . . . . 10 (𝑁 ∈ (((2↑((#b𝑁) − 1)) + 1)..^(2↑(#b𝑁))) → (𝑁 ∈ (ℤ‘2) → ((𝑁 − 1) ∈ (ℤ‘(2↑((#b𝑁) − 1))) ∧ (2↑(((#b𝑁) − 1) + 1)) ∈ ℤ ∧ (𝑁 − 1) < (2↑(((#b𝑁) − 1) + 1)))))
137136imp 406 . . . . . . . . 9 ((𝑁 ∈ (((2↑((#b𝑁) − 1)) + 1)..^(2↑(#b𝑁))) ∧ 𝑁 ∈ (ℤ‘2)) → ((𝑁 − 1) ∈ (ℤ‘(2↑((#b𝑁) − 1))) ∧ (2↑(((#b𝑁) − 1) + 1)) ∈ ℤ ∧ (𝑁 − 1) < (2↑(((#b𝑁) − 1) + 1))))
138 elfzo2 13684 . . . . . . . . 9 ((𝑁 − 1) ∈ ((2↑((#b𝑁) − 1))..^(2↑(((#b𝑁) − 1) + 1))) ↔ ((𝑁 − 1) ∈ (ℤ‘(2↑((#b𝑁) − 1))) ∧ (2↑(((#b𝑁) − 1) + 1)) ∈ ℤ ∧ (𝑁 − 1) < (2↑(((#b𝑁) − 1) + 1))))
139137, 138sylibr 234 . . . . . . . 8 ((𝑁 ∈ (((2↑((#b𝑁) − 1)) + 1)..^(2↑(#b𝑁))) ∧ 𝑁 ∈ (ℤ‘2)) → (𝑁 − 1) ∈ ((2↑((#b𝑁) − 1))..^(2↑(((#b𝑁) − 1) + 1))))
140139adantr 480 . . . . . . 7 (((𝑁 ∈ (((2↑((#b𝑁) − 1)) + 1)..^(2↑(#b𝑁))) ∧ 𝑁 ∈ (ℤ‘2)) ∧ ((𝑁 + 1) / 2) ∈ ℕ) → (𝑁 − 1) ∈ ((2↑((#b𝑁) − 1))..^(2↑(((#b𝑁) − 1) + 1))))
141 fllog2 48515 . . . . . . 7 ((((#b𝑁) − 1) ∈ ℕ0 ∧ (𝑁 − 1) ∈ ((2↑((#b𝑁) − 1))..^(2↑(((#b𝑁) − 1) + 1)))) → (⌊‘(2 logb (𝑁 − 1))) = ((#b𝑁) − 1))
14278, 140, 141syl2anc 584 . . . . . 6 (((𝑁 ∈ (((2↑((#b𝑁) − 1)) + 1)..^(2↑(#b𝑁))) ∧ 𝑁 ∈ (ℤ‘2)) ∧ ((𝑁 + 1) / 2) ∈ ℕ) → (⌊‘(2 logb (𝑁 − 1))) = ((#b𝑁) − 1))
14376, 142eqtr4d 2774 . . . . 5 (((𝑁 ∈ (((2↑((#b𝑁) − 1)) + 1)..^(2↑(#b𝑁))) ∧ 𝑁 ∈ (ℤ‘2)) ∧ ((𝑁 + 1) / 2) ∈ ℕ) → (⌊‘(2 logb 𝑁)) = (⌊‘(2 logb (𝑁 − 1))))
144143exp31 419 . . . 4 (𝑁 ∈ (((2↑((#b𝑁) − 1)) + 1)..^(2↑(#b𝑁))) → (𝑁 ∈ (ℤ‘2) → (((𝑁 + 1) / 2) ∈ ℕ → (⌊‘(2 logb 𝑁)) = (⌊‘(2 logb (𝑁 − 1))))))
14560, 144jaoi 857 . . 3 ((𝑁 = (2↑((#b𝑁) − 1)) ∨ 𝑁 ∈ (((2↑((#b𝑁) − 1)) + 1)..^(2↑(#b𝑁)))) → (𝑁 ∈ (ℤ‘2) → (((𝑁 + 1) / 2) ∈ ℕ → (⌊‘(2 logb 𝑁)) = (⌊‘(2 logb (𝑁 − 1))))))
1463, 145mpcom 38 . 2 (𝑁 ∈ (ℤ‘2) → (((𝑁 + 1) / 2) ∈ ℕ → (⌊‘(2 logb 𝑁)) = (⌊‘(2 logb (𝑁 − 1)))))
147146imp 406 1 ((𝑁 ∈ (ℤ‘2) ∧ ((𝑁 + 1) / 2) ∈ ℕ) → (⌊‘(2 logb 𝑁)) = (⌊‘(2 logb (𝑁 − 1))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 847  w3a 1086   = wceq 1540  wcel 2109  wne 2933   class class class wbr 5124  cfv 6536  (class class class)co 7410  cc 11132  cr 11133  0cc0 11134  1c1 11135   + caddc 11137   < clt 11274  cle 11275  cmin 11471   / cdiv 11899  cn 12245  2c2 12300  0cn0 12506  cz 12593  cuz 12857  +crp 13013  ..^cfzo 13676  cfl 13812  cexp 14084   logb clogb 26731  #bcblen 48516
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-rep 5254  ax-sep 5271  ax-nul 5281  ax-pow 5340  ax-pr 5407  ax-un 7734  ax-inf2 9660  ax-cnex 11190  ax-resscn 11191  ax-1cn 11192  ax-icn 11193  ax-addcl 11194  ax-addrcl 11195  ax-mulcl 11196  ax-mulrcl 11197  ax-mulcom 11198  ax-addass 11199  ax-mulass 11200  ax-distr 11201  ax-i2m1 11202  ax-1ne0 11203  ax-1rid 11204  ax-rnegex 11205  ax-rrecex 11206  ax-cnre 11207  ax-pre-lttri 11208  ax-pre-lttrn 11209  ax-pre-ltadd 11210  ax-pre-mulgt0 11211  ax-pre-sup 11212  ax-addf 11213
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-nel 3038  df-ral 3053  df-rex 3062  df-rmo 3364  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-tp 4611  df-op 4613  df-uni 4889  df-int 4928  df-iun 4974  df-iin 4975  df-br 5125  df-opab 5187  df-mpt 5207  df-tr 5235  df-id 5553  df-eprel 5558  df-po 5566  df-so 5567  df-fr 5611  df-se 5612  df-we 5613  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-pred 6295  df-ord 6360  df-on 6361  df-lim 6362  df-suc 6363  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-isom 6545  df-riota 7367  df-ov 7413  df-oprab 7414  df-mpo 7415  df-of 7676  df-om 7867  df-1st 7993  df-2nd 7994  df-supp 8165  df-frecs 8285  df-wrecs 8316  df-recs 8390  df-rdg 8429  df-1o 8485  df-2o 8486  df-er 8724  df-map 8847  df-pm 8848  df-ixp 8917  df-en 8965  df-dom 8966  df-sdom 8967  df-fin 8968  df-fsupp 9379  df-fi 9428  df-sup 9459  df-inf 9460  df-oi 9529  df-card 9958  df-pnf 11276  df-mnf 11277  df-xr 11278  df-ltxr 11279  df-le 11280  df-sub 11473  df-neg 11474  df-div 11900  df-nn 12246  df-2 12308  df-3 12309  df-4 12310  df-5 12311  df-6 12312  df-7 12313  df-8 12314  df-9 12315  df-n0 12507  df-z 12594  df-dec 12714  df-uz 12858  df-q 12970  df-rp 13014  df-xneg 13133  df-xadd 13134  df-xmul 13135  df-ioo 13371  df-ioc 13372  df-ico 13373  df-icc 13374  df-fz 13530  df-fzo 13677  df-fl 13814  df-mod 13892  df-seq 14025  df-exp 14085  df-fac 14297  df-bc 14326  df-hash 14354  df-shft 15091  df-cj 15123  df-re 15124  df-im 15125  df-sqrt 15259  df-abs 15260  df-limsup 15492  df-clim 15509  df-rlim 15510  df-sum 15708  df-ef 16088  df-sin 16090  df-cos 16091  df-pi 16093  df-struct 17171  df-sets 17188  df-slot 17206  df-ndx 17218  df-base 17234  df-ress 17257  df-plusg 17289  df-mulr 17290  df-starv 17291  df-sca 17292  df-vsca 17293  df-ip 17294  df-tset 17295  df-ple 17296  df-ds 17298  df-unif 17299  df-hom 17300  df-cco 17301  df-rest 17441  df-topn 17442  df-0g 17460  df-gsum 17461  df-topgen 17462  df-pt 17463  df-prds 17466  df-xrs 17521  df-qtop 17526  df-imas 17527  df-xps 17529  df-mre 17603  df-mrc 17604  df-acs 17606  df-mgm 18623  df-sgrp 18702  df-mnd 18718  df-submnd 18767  df-mulg 19056  df-cntz 19305  df-cmn 19768  df-psmet 21312  df-xmet 21313  df-met 21314  df-bl 21315  df-mopn 21316  df-fbas 21317  df-fg 21318  df-cnfld 21321  df-top 22837  df-topon 22854  df-topsp 22876  df-bases 22889  df-cld 22962  df-ntr 22963  df-cls 22964  df-nei 23041  df-lp 23079  df-perf 23080  df-cn 23170  df-cnp 23171  df-haus 23258  df-tx 23505  df-hmeo 23698  df-fil 23789  df-fm 23881  df-flim 23882  df-flf 23883  df-xms 24264  df-ms 24265  df-tms 24266  df-cncf 24827  df-limc 25824  df-dv 25825  df-log 26522  df-cxp 26523  df-logb 26732  df-blen 48517
This theorem is referenced by:  blennngt2o2  48539
  Copyright terms: Public domain W3C validator