| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > opfi1uzind | Structured version Visualization version GIF version | ||
| Description: Properties of an ordered pair with a finite first component with at least L elements, proven by finite induction on the size of the first component. This theorem can be applied for graphs (represented as ordered pairs of vertices and edges) with a finite number of vertices, usually with 𝐿 = 0 (see opfi1ind 14484) or 𝐿 = 1. (Contributed by AV, 22-Oct-2020.) (Revised by AV, 28-Mar-2021.) |
| Ref | Expression |
|---|---|
| opfi1uzind.e | ⊢ 𝐸 ∈ V |
| opfi1uzind.f | ⊢ 𝐹 ∈ V |
| opfi1uzind.l | ⊢ 𝐿 ∈ ℕ0 |
| opfi1uzind.1 | ⊢ ((𝑣 = 𝑉 ∧ 𝑒 = 𝐸) → (𝜓 ↔ 𝜑)) |
| opfi1uzind.2 | ⊢ ((𝑣 = 𝑤 ∧ 𝑒 = 𝑓) → (𝜓 ↔ 𝜃)) |
| opfi1uzind.3 | ⊢ ((〈𝑣, 𝑒〉 ∈ 𝐺 ∧ 𝑛 ∈ 𝑣) → 〈(𝑣 ∖ {𝑛}), 𝐹〉 ∈ 𝐺) |
| opfi1uzind.4 | ⊢ ((𝑤 = (𝑣 ∖ {𝑛}) ∧ 𝑓 = 𝐹) → (𝜃 ↔ 𝜒)) |
| opfi1uzind.base | ⊢ ((〈𝑣, 𝑒〉 ∈ 𝐺 ∧ (♯‘𝑣) = 𝐿) → 𝜓) |
| opfi1uzind.step | ⊢ ((((𝑦 + 1) ∈ ℕ0 ∧ (〈𝑣, 𝑒〉 ∈ 𝐺 ∧ (♯‘𝑣) = (𝑦 + 1) ∧ 𝑛 ∈ 𝑣)) ∧ 𝜒) → 𝜓) |
| Ref | Expression |
|---|---|
| opfi1uzind | ⊢ ((〈𝑉, 𝐸〉 ∈ 𝐺 ∧ 𝑉 ∈ Fin ∧ 𝐿 ≤ (♯‘𝑉)) → 𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | opfi1uzind.e | . . . . . . 7 ⊢ 𝐸 ∈ V | |
| 2 | 1 | a1i 11 | . . . . . 6 ⊢ (𝑎 = 𝑉 → 𝐸 ∈ V) |
| 3 | opeq12 4842 | . . . . . . 7 ⊢ ((𝑎 = 𝑉 ∧ 𝑏 = 𝐸) → 〈𝑎, 𝑏〉 = 〈𝑉, 𝐸〉) | |
| 4 | 3 | eleq1d 2814 | . . . . . 6 ⊢ ((𝑎 = 𝑉 ∧ 𝑏 = 𝐸) → (〈𝑎, 𝑏〉 ∈ 𝐺 ↔ 〈𝑉, 𝐸〉 ∈ 𝐺)) |
| 5 | 2, 4 | sbcied 3800 | . . . . 5 ⊢ (𝑎 = 𝑉 → ([𝐸 / 𝑏]〈𝑎, 𝑏〉 ∈ 𝐺 ↔ 〈𝑉, 𝐸〉 ∈ 𝐺)) |
| 6 | 5 | sbcieg 3796 | . . . 4 ⊢ (𝑉 ∈ Fin → ([𝑉 / 𝑎][𝐸 / 𝑏]〈𝑎, 𝑏〉 ∈ 𝐺 ↔ 〈𝑉, 𝐸〉 ∈ 𝐺)) |
| 7 | 6 | biimparc 479 | . . 3 ⊢ ((〈𝑉, 𝐸〉 ∈ 𝐺 ∧ 𝑉 ∈ Fin) → [𝑉 / 𝑎][𝐸 / 𝑏]〈𝑎, 𝑏〉 ∈ 𝐺) |
| 8 | 7 | 3adant3 1132 | . 2 ⊢ ((〈𝑉, 𝐸〉 ∈ 𝐺 ∧ 𝑉 ∈ Fin ∧ 𝐿 ≤ (♯‘𝑉)) → [𝑉 / 𝑎][𝐸 / 𝑏]〈𝑎, 𝑏〉 ∈ 𝐺) |
| 9 | opfi1uzind.f | . . 3 ⊢ 𝐹 ∈ V | |
| 10 | opfi1uzind.l | . . 3 ⊢ 𝐿 ∈ ℕ0 | |
| 11 | opfi1uzind.1 | . . 3 ⊢ ((𝑣 = 𝑉 ∧ 𝑒 = 𝐸) → (𝜓 ↔ 𝜑)) | |
| 12 | opfi1uzind.2 | . . 3 ⊢ ((𝑣 = 𝑤 ∧ 𝑒 = 𝑓) → (𝜓 ↔ 𝜃)) | |
| 13 | vex 3454 | . . . . . 6 ⊢ 𝑣 ∈ V | |
| 14 | vex 3454 | . . . . . 6 ⊢ 𝑒 ∈ V | |
| 15 | opeq12 4842 | . . . . . . 7 ⊢ ((𝑎 = 𝑣 ∧ 𝑏 = 𝑒) → 〈𝑎, 𝑏〉 = 〈𝑣, 𝑒〉) | |
| 16 | 15 | eleq1d 2814 | . . . . . 6 ⊢ ((𝑎 = 𝑣 ∧ 𝑏 = 𝑒) → (〈𝑎, 𝑏〉 ∈ 𝐺 ↔ 〈𝑣, 𝑒〉 ∈ 𝐺)) |
| 17 | 13, 14, 16 | sbc2ie 3832 | . . . . 5 ⊢ ([𝑣 / 𝑎][𝑒 / 𝑏]〈𝑎, 𝑏〉 ∈ 𝐺 ↔ 〈𝑣, 𝑒〉 ∈ 𝐺) |
| 18 | opfi1uzind.3 | . . . . 5 ⊢ ((〈𝑣, 𝑒〉 ∈ 𝐺 ∧ 𝑛 ∈ 𝑣) → 〈(𝑣 ∖ {𝑛}), 𝐹〉 ∈ 𝐺) | |
| 19 | 17, 18 | sylanb 581 | . . . 4 ⊢ (([𝑣 / 𝑎][𝑒 / 𝑏]〈𝑎, 𝑏〉 ∈ 𝐺 ∧ 𝑛 ∈ 𝑣) → 〈(𝑣 ∖ {𝑛}), 𝐹〉 ∈ 𝐺) |
| 20 | 13 | difexi 5288 | . . . . 5 ⊢ (𝑣 ∖ {𝑛}) ∈ V |
| 21 | opeq12 4842 | . . . . . 6 ⊢ ((𝑎 = (𝑣 ∖ {𝑛}) ∧ 𝑏 = 𝐹) → 〈𝑎, 𝑏〉 = 〈(𝑣 ∖ {𝑛}), 𝐹〉) | |
| 22 | 21 | eleq1d 2814 | . . . . 5 ⊢ ((𝑎 = (𝑣 ∖ {𝑛}) ∧ 𝑏 = 𝐹) → (〈𝑎, 𝑏〉 ∈ 𝐺 ↔ 〈(𝑣 ∖ {𝑛}), 𝐹〉 ∈ 𝐺)) |
| 23 | 20, 9, 22 | sbc2ie 3832 | . . . 4 ⊢ ([(𝑣 ∖ {𝑛}) / 𝑎][𝐹 / 𝑏]〈𝑎, 𝑏〉 ∈ 𝐺 ↔ 〈(𝑣 ∖ {𝑛}), 𝐹〉 ∈ 𝐺) |
| 24 | 19, 23 | sylibr 234 | . . 3 ⊢ (([𝑣 / 𝑎][𝑒 / 𝑏]〈𝑎, 𝑏〉 ∈ 𝐺 ∧ 𝑛 ∈ 𝑣) → [(𝑣 ∖ {𝑛}) / 𝑎][𝐹 / 𝑏]〈𝑎, 𝑏〉 ∈ 𝐺) |
| 25 | opfi1uzind.4 | . . 3 ⊢ ((𝑤 = (𝑣 ∖ {𝑛}) ∧ 𝑓 = 𝐹) → (𝜃 ↔ 𝜒)) | |
| 26 | opfi1uzind.base | . . . 4 ⊢ ((〈𝑣, 𝑒〉 ∈ 𝐺 ∧ (♯‘𝑣) = 𝐿) → 𝜓) | |
| 27 | 17, 26 | sylanb 581 | . . 3 ⊢ (([𝑣 / 𝑎][𝑒 / 𝑏]〈𝑎, 𝑏〉 ∈ 𝐺 ∧ (♯‘𝑣) = 𝐿) → 𝜓) |
| 28 | 17 | 3anbi1i 1157 | . . . . 5 ⊢ (([𝑣 / 𝑎][𝑒 / 𝑏]〈𝑎, 𝑏〉 ∈ 𝐺 ∧ (♯‘𝑣) = (𝑦 + 1) ∧ 𝑛 ∈ 𝑣) ↔ (〈𝑣, 𝑒〉 ∈ 𝐺 ∧ (♯‘𝑣) = (𝑦 + 1) ∧ 𝑛 ∈ 𝑣)) |
| 29 | 28 | anbi2i 623 | . . . 4 ⊢ (((𝑦 + 1) ∈ ℕ0 ∧ ([𝑣 / 𝑎][𝑒 / 𝑏]〈𝑎, 𝑏〉 ∈ 𝐺 ∧ (♯‘𝑣) = (𝑦 + 1) ∧ 𝑛 ∈ 𝑣)) ↔ ((𝑦 + 1) ∈ ℕ0 ∧ (〈𝑣, 𝑒〉 ∈ 𝐺 ∧ (♯‘𝑣) = (𝑦 + 1) ∧ 𝑛 ∈ 𝑣))) |
| 30 | opfi1uzind.step | . . . 4 ⊢ ((((𝑦 + 1) ∈ ℕ0 ∧ (〈𝑣, 𝑒〉 ∈ 𝐺 ∧ (♯‘𝑣) = (𝑦 + 1) ∧ 𝑛 ∈ 𝑣)) ∧ 𝜒) → 𝜓) | |
| 31 | 29, 30 | sylanb 581 | . . 3 ⊢ ((((𝑦 + 1) ∈ ℕ0 ∧ ([𝑣 / 𝑎][𝑒 / 𝑏]〈𝑎, 𝑏〉 ∈ 𝐺 ∧ (♯‘𝑣) = (𝑦 + 1) ∧ 𝑛 ∈ 𝑣)) ∧ 𝜒) → 𝜓) |
| 32 | 9, 10, 11, 12, 24, 25, 27, 31 | fi1uzind 14479 | . 2 ⊢ (([𝑉 / 𝑎][𝐸 / 𝑏]〈𝑎, 𝑏〉 ∈ 𝐺 ∧ 𝑉 ∈ Fin ∧ 𝐿 ≤ (♯‘𝑉)) → 𝜑) |
| 33 | 8, 32 | syld3an1 1412 | 1 ⊢ ((〈𝑉, 𝐸〉 ∈ 𝐺 ∧ 𝑉 ∈ Fin ∧ 𝐿 ≤ (♯‘𝑉)) → 𝜑) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 Vcvv 3450 [wsbc 3756 ∖ cdif 3914 {csn 4592 〈cop 4598 class class class wbr 5110 ‘cfv 6514 (class class class)co 7390 Fincfn 8921 1c1 11076 + caddc 11078 ≤ cle 11216 ℕ0cn0 12449 ♯chash 14302 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 ax-cnex 11131 ax-resscn 11132 ax-1cn 11133 ax-icn 11134 ax-addcl 11135 ax-addrcl 11136 ax-mulcl 11137 ax-mulrcl 11138 ax-mulcom 11139 ax-addass 11140 ax-mulass 11141 ax-distr 11142 ax-i2m1 11143 ax-1ne0 11144 ax-1rid 11145 ax-rnegex 11146 ax-rrecex 11147 ax-cnre 11148 ax-pre-lttri 11149 ax-pre-lttrn 11150 ax-pre-ltadd 11151 ax-pre-mulgt0 11152 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-pss 3937 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-int 4914 df-iun 4960 df-br 5111 df-opab 5173 df-mpt 5192 df-tr 5218 df-id 5536 df-eprel 5541 df-po 5549 df-so 5550 df-fr 5594 df-we 5596 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-pred 6277 df-ord 6338 df-on 6339 df-lim 6340 df-suc 6341 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-riota 7347 df-ov 7393 df-oprab 7394 df-mpo 7395 df-om 7846 df-1st 7971 df-2nd 7972 df-frecs 8263 df-wrecs 8294 df-recs 8343 df-rdg 8381 df-1o 8437 df-oadd 8441 df-er 8674 df-en 8922 df-dom 8923 df-sdom 8924 df-fin 8925 df-dju 9861 df-card 9899 df-pnf 11217 df-mnf 11218 df-xr 11219 df-ltxr 11220 df-le 11221 df-sub 11414 df-neg 11415 df-nn 12194 df-n0 12450 df-xnn0 12523 df-z 12537 df-uz 12801 df-fz 13476 df-hash 14303 |
| This theorem is referenced by: opfi1ind 14484 |
| Copyright terms: Public domain | W3C validator |