MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  opfi1uzind Structured version   Visualization version   GIF version

Theorem opfi1uzind 13855
Description: Properties of an ordered pair with a finite first component with at least L elements, proven by finite induction on the size of the first component. This theorem can be applied for graphs (represented as orderd pairs of vertices and edges) with a finite number of vertices, usually with 𝐿 = 0 (see opfi1ind 13856) or 𝐿 = 1. (Contributed by AV, 22-Oct-2020.) (Revised by AV, 28-Mar-2021.)
Hypotheses
Ref Expression
opfi1uzind.e 𝐸 ∈ V
opfi1uzind.f 𝐹 ∈ V
opfi1uzind.l 𝐿 ∈ ℕ0
opfi1uzind.1 ((𝑣 = 𝑉𝑒 = 𝐸) → (𝜓𝜑))
opfi1uzind.2 ((𝑣 = 𝑤𝑒 = 𝑓) → (𝜓𝜃))
opfi1uzind.3 ((⟨𝑣, 𝑒⟩ ∈ 𝐺𝑛𝑣) → ⟨(𝑣 ∖ {𝑛}), 𝐹⟩ ∈ 𝐺)
opfi1uzind.4 ((𝑤 = (𝑣 ∖ {𝑛}) ∧ 𝑓 = 𝐹) → (𝜃𝜒))
opfi1uzind.base ((⟨𝑣, 𝑒⟩ ∈ 𝐺 ∧ (♯‘𝑣) = 𝐿) → 𝜓)
opfi1uzind.step ((((𝑦 + 1) ∈ ℕ0 ∧ (⟨𝑣, 𝑒⟩ ∈ 𝐺 ∧ (♯‘𝑣) = (𝑦 + 1) ∧ 𝑛𝑣)) ∧ 𝜒) → 𝜓)
Assertion
Ref Expression
opfi1uzind ((⟨𝑉, 𝐸⟩ ∈ 𝐺𝑉 ∈ Fin ∧ 𝐿 ≤ (♯‘𝑉)) → 𝜑)
Distinct variable groups:   𝑒,𝑛,𝑣,𝑦   𝑒,𝐸,𝑛,𝑣   𝑓,𝐹,𝑤   𝑒,𝐺,𝑓,𝑛,𝑣,𝑤,𝑦   𝑒,𝑉,𝑛,𝑣   𝜓,𝑓,𝑛,𝑤,𝑦   𝜃,𝑒,𝑛,𝑣   𝜒,𝑓,𝑤   𝜑,𝑒,𝑛,𝑣   𝑒,𝐿,𝑛,𝑣,𝑦
Allowed substitution hints:   𝜑(𝑦,𝑤,𝑓)   𝜓(𝑣,𝑒)   𝜒(𝑦,𝑣,𝑒,𝑛)   𝜃(𝑦,𝑤,𝑓)   𝐸(𝑦,𝑤,𝑓)   𝐹(𝑦,𝑣,𝑒,𝑛)   𝐿(𝑤,𝑓)   𝑉(𝑦,𝑤,𝑓)

Proof of Theorem opfi1uzind
Dummy variables 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 opfi1uzind.e . . . . . . 7 𝐸 ∈ V
21a1i 11 . . . . . 6 (𝑎 = 𝑉𝐸 ∈ V)
3 opeq12 4767 . . . . . . 7 ((𝑎 = 𝑉𝑏 = 𝐸) → ⟨𝑎, 𝑏⟩ = ⟨𝑉, 𝐸⟩)
43eleq1d 2874 . . . . . 6 ((𝑎 = 𝑉𝑏 = 𝐸) → (⟨𝑎, 𝑏⟩ ∈ 𝐺 ↔ ⟨𝑉, 𝐸⟩ ∈ 𝐺))
52, 4sbcied 3762 . . . . 5 (𝑎 = 𝑉 → ([𝐸 / 𝑏]𝑎, 𝑏⟩ ∈ 𝐺 ↔ ⟨𝑉, 𝐸⟩ ∈ 𝐺))
65sbcieg 3758 . . . 4 (𝑉 ∈ Fin → ([𝑉 / 𝑎][𝐸 / 𝑏]𝑎, 𝑏⟩ ∈ 𝐺 ↔ ⟨𝑉, 𝐸⟩ ∈ 𝐺))
76biimparc 483 . . 3 ((⟨𝑉, 𝐸⟩ ∈ 𝐺𝑉 ∈ Fin) → [𝑉 / 𝑎][𝐸 / 𝑏]𝑎, 𝑏⟩ ∈ 𝐺)
873adant3 1129 . 2 ((⟨𝑉, 𝐸⟩ ∈ 𝐺𝑉 ∈ Fin ∧ 𝐿 ≤ (♯‘𝑉)) → [𝑉 / 𝑎][𝐸 / 𝑏]𝑎, 𝑏⟩ ∈ 𝐺)
9 opfi1uzind.f . . 3 𝐹 ∈ V
10 opfi1uzind.l . . 3 𝐿 ∈ ℕ0
11 opfi1uzind.1 . . 3 ((𝑣 = 𝑉𝑒 = 𝐸) → (𝜓𝜑))
12 opfi1uzind.2 . . 3 ((𝑣 = 𝑤𝑒 = 𝑓) → (𝜓𝜃))
13 vex 3444 . . . . . 6 𝑣 ∈ V
14 vex 3444 . . . . . 6 𝑒 ∈ V
15 opeq12 4767 . . . . . . 7 ((𝑎 = 𝑣𝑏 = 𝑒) → ⟨𝑎, 𝑏⟩ = ⟨𝑣, 𝑒⟩)
1615eleq1d 2874 . . . . . 6 ((𝑎 = 𝑣𝑏 = 𝑒) → (⟨𝑎, 𝑏⟩ ∈ 𝐺 ↔ ⟨𝑣, 𝑒⟩ ∈ 𝐺))
1713, 14, 16sbc2ie 3796 . . . . 5 ([𝑣 / 𝑎][𝑒 / 𝑏]𝑎, 𝑏⟩ ∈ 𝐺 ↔ ⟨𝑣, 𝑒⟩ ∈ 𝐺)
18 opfi1uzind.3 . . . . 5 ((⟨𝑣, 𝑒⟩ ∈ 𝐺𝑛𝑣) → ⟨(𝑣 ∖ {𝑛}), 𝐹⟩ ∈ 𝐺)
1917, 18sylanb 584 . . . 4 (([𝑣 / 𝑎][𝑒 / 𝑏]𝑎, 𝑏⟩ ∈ 𝐺𝑛𝑣) → ⟨(𝑣 ∖ {𝑛}), 𝐹⟩ ∈ 𝐺)
2013difexi 5196 . . . . 5 (𝑣 ∖ {𝑛}) ∈ V
21 opeq12 4767 . . . . . 6 ((𝑎 = (𝑣 ∖ {𝑛}) ∧ 𝑏 = 𝐹) → ⟨𝑎, 𝑏⟩ = ⟨(𝑣 ∖ {𝑛}), 𝐹⟩)
2221eleq1d 2874 . . . . 5 ((𝑎 = (𝑣 ∖ {𝑛}) ∧ 𝑏 = 𝐹) → (⟨𝑎, 𝑏⟩ ∈ 𝐺 ↔ ⟨(𝑣 ∖ {𝑛}), 𝐹⟩ ∈ 𝐺))
2320, 9, 22sbc2ie 3796 . . . 4 ([(𝑣 ∖ {𝑛}) / 𝑎][𝐹 / 𝑏]𝑎, 𝑏⟩ ∈ 𝐺 ↔ ⟨(𝑣 ∖ {𝑛}), 𝐹⟩ ∈ 𝐺)
2419, 23sylibr 237 . . 3 (([𝑣 / 𝑎][𝑒 / 𝑏]𝑎, 𝑏⟩ ∈ 𝐺𝑛𝑣) → [(𝑣 ∖ {𝑛}) / 𝑎][𝐹 / 𝑏]𝑎, 𝑏⟩ ∈ 𝐺)
25 opfi1uzind.4 . . 3 ((𝑤 = (𝑣 ∖ {𝑛}) ∧ 𝑓 = 𝐹) → (𝜃𝜒))
26 opfi1uzind.base . . . 4 ((⟨𝑣, 𝑒⟩ ∈ 𝐺 ∧ (♯‘𝑣) = 𝐿) → 𝜓)
2717, 26sylanb 584 . . 3 (([𝑣 / 𝑎][𝑒 / 𝑏]𝑎, 𝑏⟩ ∈ 𝐺 ∧ (♯‘𝑣) = 𝐿) → 𝜓)
28173anbi1i 1154 . . . . 5 (([𝑣 / 𝑎][𝑒 / 𝑏]𝑎, 𝑏⟩ ∈ 𝐺 ∧ (♯‘𝑣) = (𝑦 + 1) ∧ 𝑛𝑣) ↔ (⟨𝑣, 𝑒⟩ ∈ 𝐺 ∧ (♯‘𝑣) = (𝑦 + 1) ∧ 𝑛𝑣))
2928anbi2i 625 . . . 4 (((𝑦 + 1) ∈ ℕ0 ∧ ([𝑣 / 𝑎][𝑒 / 𝑏]𝑎, 𝑏⟩ ∈ 𝐺 ∧ (♯‘𝑣) = (𝑦 + 1) ∧ 𝑛𝑣)) ↔ ((𝑦 + 1) ∈ ℕ0 ∧ (⟨𝑣, 𝑒⟩ ∈ 𝐺 ∧ (♯‘𝑣) = (𝑦 + 1) ∧ 𝑛𝑣)))
30 opfi1uzind.step . . . 4 ((((𝑦 + 1) ∈ ℕ0 ∧ (⟨𝑣, 𝑒⟩ ∈ 𝐺 ∧ (♯‘𝑣) = (𝑦 + 1) ∧ 𝑛𝑣)) ∧ 𝜒) → 𝜓)
3129, 30sylanb 584 . . 3 ((((𝑦 + 1) ∈ ℕ0 ∧ ([𝑣 / 𝑎][𝑒 / 𝑏]𝑎, 𝑏⟩ ∈ 𝐺 ∧ (♯‘𝑣) = (𝑦 + 1) ∧ 𝑛𝑣)) ∧ 𝜒) → 𝜓)
329, 10, 11, 12, 24, 25, 27, 31fi1uzind 13851 . 2 (([𝑉 / 𝑎][𝐸 / 𝑏]𝑎, 𝑏⟩ ∈ 𝐺𝑉 ∈ Fin ∧ 𝐿 ≤ (♯‘𝑉)) → 𝜑)
338, 32syld3an1 1407 1 ((⟨𝑉, 𝐸⟩ ∈ 𝐺𝑉 ∈ Fin ∧ 𝐿 ≤ (♯‘𝑉)) → 𝜑)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399  w3a 1084   = wceq 1538  wcel 2111  Vcvv 3441  [wsbc 3720  cdif 3878  {csn 4525  cop 4531   class class class wbr 5030  cfv 6324  (class class class)co 7135  Fincfn 8492  1c1 10527   + caddc 10529  cle 10665  0cn0 11885  chash 13686
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4801  df-int 4839  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-pred 6116  df-ord 6162  df-on 6163  df-lim 6164  df-suc 6165  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-riota 7093  df-ov 7138  df-oprab 7139  df-mpo 7140  df-om 7561  df-1st 7671  df-2nd 7672  df-wrecs 7930  df-recs 7991  df-rdg 8029  df-1o 8085  df-oadd 8089  df-er 8272  df-en 8493  df-dom 8494  df-sdom 8495  df-fin 8496  df-dju 9314  df-card 9352  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-nn 11626  df-n0 11886  df-xnn0 11956  df-z 11970  df-uz 12232  df-fz 12886  df-hash 13687
This theorem is referenced by:  opfi1ind  13856
  Copyright terms: Public domain W3C validator