MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  opfi1uzind Structured version   Visualization version   GIF version

Theorem opfi1uzind 14483
Description: Properties of an ordered pair with a finite first component with at least L elements, proven by finite induction on the size of the first component. This theorem can be applied for graphs (represented as ordered pairs of vertices and edges) with a finite number of vertices, usually with 𝐿 = 0 (see opfi1ind 14484) or 𝐿 = 1. (Contributed by AV, 22-Oct-2020.) (Revised by AV, 28-Mar-2021.)
Hypotheses
Ref Expression
opfi1uzind.e 𝐸 ∈ V
opfi1uzind.f 𝐹 ∈ V
opfi1uzind.l 𝐿 ∈ ℕ0
opfi1uzind.1 ((𝑣 = 𝑉𝑒 = 𝐸) → (𝜓𝜑))
opfi1uzind.2 ((𝑣 = 𝑤𝑒 = 𝑓) → (𝜓𝜃))
opfi1uzind.3 ((⟨𝑣, 𝑒⟩ ∈ 𝐺𝑛𝑣) → ⟨(𝑣 ∖ {𝑛}), 𝐹⟩ ∈ 𝐺)
opfi1uzind.4 ((𝑤 = (𝑣 ∖ {𝑛}) ∧ 𝑓 = 𝐹) → (𝜃𝜒))
opfi1uzind.base ((⟨𝑣, 𝑒⟩ ∈ 𝐺 ∧ (♯‘𝑣) = 𝐿) → 𝜓)
opfi1uzind.step ((((𝑦 + 1) ∈ ℕ0 ∧ (⟨𝑣, 𝑒⟩ ∈ 𝐺 ∧ (♯‘𝑣) = (𝑦 + 1) ∧ 𝑛𝑣)) ∧ 𝜒) → 𝜓)
Assertion
Ref Expression
opfi1uzind ((⟨𝑉, 𝐸⟩ ∈ 𝐺𝑉 ∈ Fin ∧ 𝐿 ≤ (♯‘𝑉)) → 𝜑)
Distinct variable groups:   𝑒,𝑛,𝑣,𝑦   𝑒,𝐸,𝑛,𝑣   𝑓,𝐹,𝑤   𝑒,𝐺,𝑓,𝑛,𝑣,𝑤,𝑦   𝑒,𝑉,𝑛,𝑣   𝜓,𝑓,𝑛,𝑤,𝑦   𝜃,𝑒,𝑛,𝑣   𝜒,𝑓,𝑤   𝜑,𝑒,𝑛,𝑣   𝑒,𝐿,𝑛,𝑣,𝑦
Allowed substitution hints:   𝜑(𝑦,𝑤,𝑓)   𝜓(𝑣,𝑒)   𝜒(𝑦,𝑣,𝑒,𝑛)   𝜃(𝑦,𝑤,𝑓)   𝐸(𝑦,𝑤,𝑓)   𝐹(𝑦,𝑣,𝑒,𝑛)   𝐿(𝑤,𝑓)   𝑉(𝑦,𝑤,𝑓)

Proof of Theorem opfi1uzind
Dummy variables 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 opfi1uzind.e . . . . . . 7 𝐸 ∈ V
21a1i 11 . . . . . 6 (𝑎 = 𝑉𝐸 ∈ V)
3 opeq12 4842 . . . . . . 7 ((𝑎 = 𝑉𝑏 = 𝐸) → ⟨𝑎, 𝑏⟩ = ⟨𝑉, 𝐸⟩)
43eleq1d 2814 . . . . . 6 ((𝑎 = 𝑉𝑏 = 𝐸) → (⟨𝑎, 𝑏⟩ ∈ 𝐺 ↔ ⟨𝑉, 𝐸⟩ ∈ 𝐺))
52, 4sbcied 3800 . . . . 5 (𝑎 = 𝑉 → ([𝐸 / 𝑏]𝑎, 𝑏⟩ ∈ 𝐺 ↔ ⟨𝑉, 𝐸⟩ ∈ 𝐺))
65sbcieg 3796 . . . 4 (𝑉 ∈ Fin → ([𝑉 / 𝑎][𝐸 / 𝑏]𝑎, 𝑏⟩ ∈ 𝐺 ↔ ⟨𝑉, 𝐸⟩ ∈ 𝐺))
76biimparc 479 . . 3 ((⟨𝑉, 𝐸⟩ ∈ 𝐺𝑉 ∈ Fin) → [𝑉 / 𝑎][𝐸 / 𝑏]𝑎, 𝑏⟩ ∈ 𝐺)
873adant3 1132 . 2 ((⟨𝑉, 𝐸⟩ ∈ 𝐺𝑉 ∈ Fin ∧ 𝐿 ≤ (♯‘𝑉)) → [𝑉 / 𝑎][𝐸 / 𝑏]𝑎, 𝑏⟩ ∈ 𝐺)
9 opfi1uzind.f . . 3 𝐹 ∈ V
10 opfi1uzind.l . . 3 𝐿 ∈ ℕ0
11 opfi1uzind.1 . . 3 ((𝑣 = 𝑉𝑒 = 𝐸) → (𝜓𝜑))
12 opfi1uzind.2 . . 3 ((𝑣 = 𝑤𝑒 = 𝑓) → (𝜓𝜃))
13 vex 3454 . . . . . 6 𝑣 ∈ V
14 vex 3454 . . . . . 6 𝑒 ∈ V
15 opeq12 4842 . . . . . . 7 ((𝑎 = 𝑣𝑏 = 𝑒) → ⟨𝑎, 𝑏⟩ = ⟨𝑣, 𝑒⟩)
1615eleq1d 2814 . . . . . 6 ((𝑎 = 𝑣𝑏 = 𝑒) → (⟨𝑎, 𝑏⟩ ∈ 𝐺 ↔ ⟨𝑣, 𝑒⟩ ∈ 𝐺))
1713, 14, 16sbc2ie 3832 . . . . 5 ([𝑣 / 𝑎][𝑒 / 𝑏]𝑎, 𝑏⟩ ∈ 𝐺 ↔ ⟨𝑣, 𝑒⟩ ∈ 𝐺)
18 opfi1uzind.3 . . . . 5 ((⟨𝑣, 𝑒⟩ ∈ 𝐺𝑛𝑣) → ⟨(𝑣 ∖ {𝑛}), 𝐹⟩ ∈ 𝐺)
1917, 18sylanb 581 . . . 4 (([𝑣 / 𝑎][𝑒 / 𝑏]𝑎, 𝑏⟩ ∈ 𝐺𝑛𝑣) → ⟨(𝑣 ∖ {𝑛}), 𝐹⟩ ∈ 𝐺)
2013difexi 5288 . . . . 5 (𝑣 ∖ {𝑛}) ∈ V
21 opeq12 4842 . . . . . 6 ((𝑎 = (𝑣 ∖ {𝑛}) ∧ 𝑏 = 𝐹) → ⟨𝑎, 𝑏⟩ = ⟨(𝑣 ∖ {𝑛}), 𝐹⟩)
2221eleq1d 2814 . . . . 5 ((𝑎 = (𝑣 ∖ {𝑛}) ∧ 𝑏 = 𝐹) → (⟨𝑎, 𝑏⟩ ∈ 𝐺 ↔ ⟨(𝑣 ∖ {𝑛}), 𝐹⟩ ∈ 𝐺))
2320, 9, 22sbc2ie 3832 . . . 4 ([(𝑣 ∖ {𝑛}) / 𝑎][𝐹 / 𝑏]𝑎, 𝑏⟩ ∈ 𝐺 ↔ ⟨(𝑣 ∖ {𝑛}), 𝐹⟩ ∈ 𝐺)
2419, 23sylibr 234 . . 3 (([𝑣 / 𝑎][𝑒 / 𝑏]𝑎, 𝑏⟩ ∈ 𝐺𝑛𝑣) → [(𝑣 ∖ {𝑛}) / 𝑎][𝐹 / 𝑏]𝑎, 𝑏⟩ ∈ 𝐺)
25 opfi1uzind.4 . . 3 ((𝑤 = (𝑣 ∖ {𝑛}) ∧ 𝑓 = 𝐹) → (𝜃𝜒))
26 opfi1uzind.base . . . 4 ((⟨𝑣, 𝑒⟩ ∈ 𝐺 ∧ (♯‘𝑣) = 𝐿) → 𝜓)
2717, 26sylanb 581 . . 3 (([𝑣 / 𝑎][𝑒 / 𝑏]𝑎, 𝑏⟩ ∈ 𝐺 ∧ (♯‘𝑣) = 𝐿) → 𝜓)
28173anbi1i 1157 . . . . 5 (([𝑣 / 𝑎][𝑒 / 𝑏]𝑎, 𝑏⟩ ∈ 𝐺 ∧ (♯‘𝑣) = (𝑦 + 1) ∧ 𝑛𝑣) ↔ (⟨𝑣, 𝑒⟩ ∈ 𝐺 ∧ (♯‘𝑣) = (𝑦 + 1) ∧ 𝑛𝑣))
2928anbi2i 623 . . . 4 (((𝑦 + 1) ∈ ℕ0 ∧ ([𝑣 / 𝑎][𝑒 / 𝑏]𝑎, 𝑏⟩ ∈ 𝐺 ∧ (♯‘𝑣) = (𝑦 + 1) ∧ 𝑛𝑣)) ↔ ((𝑦 + 1) ∈ ℕ0 ∧ (⟨𝑣, 𝑒⟩ ∈ 𝐺 ∧ (♯‘𝑣) = (𝑦 + 1) ∧ 𝑛𝑣)))
30 opfi1uzind.step . . . 4 ((((𝑦 + 1) ∈ ℕ0 ∧ (⟨𝑣, 𝑒⟩ ∈ 𝐺 ∧ (♯‘𝑣) = (𝑦 + 1) ∧ 𝑛𝑣)) ∧ 𝜒) → 𝜓)
3129, 30sylanb 581 . . 3 ((((𝑦 + 1) ∈ ℕ0 ∧ ([𝑣 / 𝑎][𝑒 / 𝑏]𝑎, 𝑏⟩ ∈ 𝐺 ∧ (♯‘𝑣) = (𝑦 + 1) ∧ 𝑛𝑣)) ∧ 𝜒) → 𝜓)
329, 10, 11, 12, 24, 25, 27, 31fi1uzind 14479 . 2 (([𝑉 / 𝑎][𝐸 / 𝑏]𝑎, 𝑏⟩ ∈ 𝐺𝑉 ∈ Fin ∧ 𝐿 ≤ (♯‘𝑉)) → 𝜑)
338, 32syld3an1 1412 1 ((⟨𝑉, 𝐸⟩ ∈ 𝐺𝑉 ∈ Fin ∧ 𝐿 ≤ (♯‘𝑉)) → 𝜑)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  Vcvv 3450  [wsbc 3756  cdif 3914  {csn 4592  cop 4598   class class class wbr 5110  cfv 6514  (class class class)co 7390  Fincfn 8921  1c1 11076   + caddc 11078  cle 11216  0cn0 12449  chash 14302
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-cnex 11131  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-int 4914  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-om 7846  df-1st 7971  df-2nd 7972  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-1o 8437  df-oadd 8441  df-er 8674  df-en 8922  df-dom 8923  df-sdom 8924  df-fin 8925  df-dju 9861  df-card 9899  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415  df-nn 12194  df-n0 12450  df-xnn0 12523  df-z 12537  df-uz 12801  df-fz 13476  df-hash 14303
This theorem is referenced by:  opfi1ind  14484
  Copyright terms: Public domain W3C validator