![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > opfi1uzind | Structured version Visualization version GIF version |
Description: Properties of an ordered pair with a finite first component with at least L elements, proven by finite induction on the size of the first component. This theorem can be applied for graphs (represented as orderd pairs of vertices and edges) with a finite number of vertices, usually with 𝐿 = 0 (see opfi1ind 14428) or 𝐿 = 1. (Contributed by AV, 22-Oct-2020.) (Revised by AV, 28-Mar-2021.) |
Ref | Expression |
---|---|
opfi1uzind.e | ⊢ 𝐸 ∈ V |
opfi1uzind.f | ⊢ 𝐹 ∈ V |
opfi1uzind.l | ⊢ 𝐿 ∈ ℕ0 |
opfi1uzind.1 | ⊢ ((𝑣 = 𝑉 ∧ 𝑒 = 𝐸) → (𝜓 ↔ 𝜑)) |
opfi1uzind.2 | ⊢ ((𝑣 = 𝑤 ∧ 𝑒 = 𝑓) → (𝜓 ↔ 𝜃)) |
opfi1uzind.3 | ⊢ ((⟨𝑣, 𝑒⟩ ∈ 𝐺 ∧ 𝑛 ∈ 𝑣) → ⟨(𝑣 ∖ {𝑛}), 𝐹⟩ ∈ 𝐺) |
opfi1uzind.4 | ⊢ ((𝑤 = (𝑣 ∖ {𝑛}) ∧ 𝑓 = 𝐹) → (𝜃 ↔ 𝜒)) |
opfi1uzind.base | ⊢ ((⟨𝑣, 𝑒⟩ ∈ 𝐺 ∧ (♯‘𝑣) = 𝐿) → 𝜓) |
opfi1uzind.step | ⊢ ((((𝑦 + 1) ∈ ℕ0 ∧ (⟨𝑣, 𝑒⟩ ∈ 𝐺 ∧ (♯‘𝑣) = (𝑦 + 1) ∧ 𝑛 ∈ 𝑣)) ∧ 𝜒) → 𝜓) |
Ref | Expression |
---|---|
opfi1uzind | ⊢ ((⟨𝑉, 𝐸⟩ ∈ 𝐺 ∧ 𝑉 ∈ Fin ∧ 𝐿 ≤ (♯‘𝑉)) → 𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | opfi1uzind.e | . . . . . . 7 ⊢ 𝐸 ∈ V | |
2 | 1 | a1i 11 | . . . . . 6 ⊢ (𝑎 = 𝑉 → 𝐸 ∈ V) |
3 | opeq12 4852 | . . . . . . 7 ⊢ ((𝑎 = 𝑉 ∧ 𝑏 = 𝐸) → ⟨𝑎, 𝑏⟩ = ⟨𝑉, 𝐸⟩) | |
4 | 3 | eleq1d 2817 | . . . . . 6 ⊢ ((𝑎 = 𝑉 ∧ 𝑏 = 𝐸) → (⟨𝑎, 𝑏⟩ ∈ 𝐺 ↔ ⟨𝑉, 𝐸⟩ ∈ 𝐺)) |
5 | 2, 4 | sbcied 3802 | . . . . 5 ⊢ (𝑎 = 𝑉 → ([𝐸 / 𝑏]⟨𝑎, 𝑏⟩ ∈ 𝐺 ↔ ⟨𝑉, 𝐸⟩ ∈ 𝐺)) |
6 | 5 | sbcieg 3797 | . . . 4 ⊢ (𝑉 ∈ Fin → ([𝑉 / 𝑎][𝐸 / 𝑏]⟨𝑎, 𝑏⟩ ∈ 𝐺 ↔ ⟨𝑉, 𝐸⟩ ∈ 𝐺)) |
7 | 6 | biimparc 480 | . . 3 ⊢ ((⟨𝑉, 𝐸⟩ ∈ 𝐺 ∧ 𝑉 ∈ Fin) → [𝑉 / 𝑎][𝐸 / 𝑏]⟨𝑎, 𝑏⟩ ∈ 𝐺) |
8 | 7 | 3adant3 1132 | . 2 ⊢ ((⟨𝑉, 𝐸⟩ ∈ 𝐺 ∧ 𝑉 ∈ Fin ∧ 𝐿 ≤ (♯‘𝑉)) → [𝑉 / 𝑎][𝐸 / 𝑏]⟨𝑎, 𝑏⟩ ∈ 𝐺) |
9 | opfi1uzind.f | . . 3 ⊢ 𝐹 ∈ V | |
10 | opfi1uzind.l | . . 3 ⊢ 𝐿 ∈ ℕ0 | |
11 | opfi1uzind.1 | . . 3 ⊢ ((𝑣 = 𝑉 ∧ 𝑒 = 𝐸) → (𝜓 ↔ 𝜑)) | |
12 | opfi1uzind.2 | . . 3 ⊢ ((𝑣 = 𝑤 ∧ 𝑒 = 𝑓) → (𝜓 ↔ 𝜃)) | |
13 | vex 3463 | . . . . . 6 ⊢ 𝑣 ∈ V | |
14 | vex 3463 | . . . . . 6 ⊢ 𝑒 ∈ V | |
15 | opeq12 4852 | . . . . . . 7 ⊢ ((𝑎 = 𝑣 ∧ 𝑏 = 𝑒) → ⟨𝑎, 𝑏⟩ = ⟨𝑣, 𝑒⟩) | |
16 | 15 | eleq1d 2817 | . . . . . 6 ⊢ ((𝑎 = 𝑣 ∧ 𝑏 = 𝑒) → (⟨𝑎, 𝑏⟩ ∈ 𝐺 ↔ ⟨𝑣, 𝑒⟩ ∈ 𝐺)) |
17 | 13, 14, 16 | sbc2ie 3840 | . . . . 5 ⊢ ([𝑣 / 𝑎][𝑒 / 𝑏]⟨𝑎, 𝑏⟩ ∈ 𝐺 ↔ ⟨𝑣, 𝑒⟩ ∈ 𝐺) |
18 | opfi1uzind.3 | . . . . 5 ⊢ ((⟨𝑣, 𝑒⟩ ∈ 𝐺 ∧ 𝑛 ∈ 𝑣) → ⟨(𝑣 ∖ {𝑛}), 𝐹⟩ ∈ 𝐺) | |
19 | 17, 18 | sylanb 581 | . . . 4 ⊢ (([𝑣 / 𝑎][𝑒 / 𝑏]⟨𝑎, 𝑏⟩ ∈ 𝐺 ∧ 𝑛 ∈ 𝑣) → ⟨(𝑣 ∖ {𝑛}), 𝐹⟩ ∈ 𝐺) |
20 | 13 | difexi 5305 | . . . . 5 ⊢ (𝑣 ∖ {𝑛}) ∈ V |
21 | opeq12 4852 | . . . . . 6 ⊢ ((𝑎 = (𝑣 ∖ {𝑛}) ∧ 𝑏 = 𝐹) → ⟨𝑎, 𝑏⟩ = ⟨(𝑣 ∖ {𝑛}), 𝐹⟩) | |
22 | 21 | eleq1d 2817 | . . . . 5 ⊢ ((𝑎 = (𝑣 ∖ {𝑛}) ∧ 𝑏 = 𝐹) → (⟨𝑎, 𝑏⟩ ∈ 𝐺 ↔ ⟨(𝑣 ∖ {𝑛}), 𝐹⟩ ∈ 𝐺)) |
23 | 20, 9, 22 | sbc2ie 3840 | . . . 4 ⊢ ([(𝑣 ∖ {𝑛}) / 𝑎][𝐹 / 𝑏]⟨𝑎, 𝑏⟩ ∈ 𝐺 ↔ ⟨(𝑣 ∖ {𝑛}), 𝐹⟩ ∈ 𝐺) |
24 | 19, 23 | sylibr 233 | . . 3 ⊢ (([𝑣 / 𝑎][𝑒 / 𝑏]⟨𝑎, 𝑏⟩ ∈ 𝐺 ∧ 𝑛 ∈ 𝑣) → [(𝑣 ∖ {𝑛}) / 𝑎][𝐹 / 𝑏]⟨𝑎, 𝑏⟩ ∈ 𝐺) |
25 | opfi1uzind.4 | . . 3 ⊢ ((𝑤 = (𝑣 ∖ {𝑛}) ∧ 𝑓 = 𝐹) → (𝜃 ↔ 𝜒)) | |
26 | opfi1uzind.base | . . . 4 ⊢ ((⟨𝑣, 𝑒⟩ ∈ 𝐺 ∧ (♯‘𝑣) = 𝐿) → 𝜓) | |
27 | 17, 26 | sylanb 581 | . . 3 ⊢ (([𝑣 / 𝑎][𝑒 / 𝑏]⟨𝑎, 𝑏⟩ ∈ 𝐺 ∧ (♯‘𝑣) = 𝐿) → 𝜓) |
28 | 17 | 3anbi1i 1157 | . . . . 5 ⊢ (([𝑣 / 𝑎][𝑒 / 𝑏]⟨𝑎, 𝑏⟩ ∈ 𝐺 ∧ (♯‘𝑣) = (𝑦 + 1) ∧ 𝑛 ∈ 𝑣) ↔ (⟨𝑣, 𝑒⟩ ∈ 𝐺 ∧ (♯‘𝑣) = (𝑦 + 1) ∧ 𝑛 ∈ 𝑣)) |
29 | 28 | anbi2i 623 | . . . 4 ⊢ (((𝑦 + 1) ∈ ℕ0 ∧ ([𝑣 / 𝑎][𝑒 / 𝑏]⟨𝑎, 𝑏⟩ ∈ 𝐺 ∧ (♯‘𝑣) = (𝑦 + 1) ∧ 𝑛 ∈ 𝑣)) ↔ ((𝑦 + 1) ∈ ℕ0 ∧ (⟨𝑣, 𝑒⟩ ∈ 𝐺 ∧ (♯‘𝑣) = (𝑦 + 1) ∧ 𝑛 ∈ 𝑣))) |
30 | opfi1uzind.step | . . . 4 ⊢ ((((𝑦 + 1) ∈ ℕ0 ∧ (⟨𝑣, 𝑒⟩ ∈ 𝐺 ∧ (♯‘𝑣) = (𝑦 + 1) ∧ 𝑛 ∈ 𝑣)) ∧ 𝜒) → 𝜓) | |
31 | 29, 30 | sylanb 581 | . . 3 ⊢ ((((𝑦 + 1) ∈ ℕ0 ∧ ([𝑣 / 𝑎][𝑒 / 𝑏]⟨𝑎, 𝑏⟩ ∈ 𝐺 ∧ (♯‘𝑣) = (𝑦 + 1) ∧ 𝑛 ∈ 𝑣)) ∧ 𝜒) → 𝜓) |
32 | 9, 10, 11, 12, 24, 25, 27, 31 | fi1uzind 14423 | . 2 ⊢ (([𝑉 / 𝑎][𝐸 / 𝑏]⟨𝑎, 𝑏⟩ ∈ 𝐺 ∧ 𝑉 ∈ Fin ∧ 𝐿 ≤ (♯‘𝑉)) → 𝜑) |
33 | 8, 32 | syld3an1 1410 | 1 ⊢ ((⟨𝑉, 𝐸⟩ ∈ 𝐺 ∧ 𝑉 ∈ Fin ∧ 𝐿 ≤ (♯‘𝑉)) → 𝜑) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 ∧ w3a 1087 = wceq 1541 ∈ wcel 2106 Vcvv 3459 [wsbc 3757 ∖ cdif 3925 {csn 4606 ⟨cop 4612 class class class wbr 5125 ‘cfv 6516 (class class class)co 7377 Fincfn 8905 1c1 11076 + caddc 11078 ≤ cle 11214 ℕ0cn0 12437 ♯chash 14255 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2702 ax-sep 5276 ax-nul 5283 ax-pow 5340 ax-pr 5404 ax-un 7692 ax-cnex 11131 ax-resscn 11132 ax-1cn 11133 ax-icn 11134 ax-addcl 11135 ax-addrcl 11136 ax-mulcl 11137 ax-mulrcl 11138 ax-mulcom 11139 ax-addass 11140 ax-mulass 11141 ax-distr 11142 ax-i2m1 11143 ax-1ne0 11144 ax-1rid 11145 ax-rnegex 11146 ax-rrecex 11147 ax-cnre 11148 ax-pre-lttri 11149 ax-pre-lttrn 11150 ax-pre-ltadd 11151 ax-pre-mulgt0 11152 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2533 df-eu 2562 df-clab 2709 df-cleq 2723 df-clel 2809 df-nfc 2884 df-ne 2940 df-nel 3046 df-ral 3061 df-rex 3070 df-reu 3365 df-rab 3419 df-v 3461 df-sbc 3758 df-csb 3874 df-dif 3931 df-un 3933 df-in 3935 df-ss 3945 df-pss 3947 df-nul 4303 df-if 4507 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4886 df-int 4928 df-iun 4976 df-br 5126 df-opab 5188 df-mpt 5209 df-tr 5243 df-id 5551 df-eprel 5557 df-po 5565 df-so 5566 df-fr 5608 df-we 5610 df-xp 5659 df-rel 5660 df-cnv 5661 df-co 5662 df-dm 5663 df-rn 5664 df-res 5665 df-ima 5666 df-pred 6273 df-ord 6340 df-on 6341 df-lim 6342 df-suc 6343 df-iota 6468 df-fun 6518 df-fn 6519 df-f 6520 df-f1 6521 df-fo 6522 df-f1o 6523 df-fv 6524 df-riota 7333 df-ov 7380 df-oprab 7381 df-mpo 7382 df-om 7823 df-1st 7941 df-2nd 7942 df-frecs 8232 df-wrecs 8263 df-recs 8337 df-rdg 8376 df-1o 8432 df-oadd 8436 df-er 8670 df-en 8906 df-dom 8907 df-sdom 8908 df-fin 8909 df-dju 9861 df-card 9899 df-pnf 11215 df-mnf 11216 df-xr 11217 df-ltxr 11218 df-le 11219 df-sub 11411 df-neg 11412 df-nn 12178 df-n0 12438 df-xnn0 12510 df-z 12524 df-uz 12788 df-fz 13450 df-hash 14256 |
This theorem is referenced by: opfi1ind 14428 |
Copyright terms: Public domain | W3C validator |