![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > opfi1uzind | Structured version Visualization version GIF version |
Description: Properties of an ordered pair with a finite first component with at least L elements, proven by finite induction on the size of the first component. This theorem can be applied for graphs (represented as ordered pairs of vertices and edges) with a finite number of vertices, usually with 𝐿 = 0 (see opfi1ind 14513) or 𝐿 = 1. (Contributed by AV, 22-Oct-2020.) (Revised by AV, 28-Mar-2021.) |
Ref | Expression |
---|---|
opfi1uzind.e | ⊢ 𝐸 ∈ V |
opfi1uzind.f | ⊢ 𝐹 ∈ V |
opfi1uzind.l | ⊢ 𝐿 ∈ ℕ0 |
opfi1uzind.1 | ⊢ ((𝑣 = 𝑉 ∧ 𝑒 = 𝐸) → (𝜓 ↔ 𝜑)) |
opfi1uzind.2 | ⊢ ((𝑣 = 𝑤 ∧ 𝑒 = 𝑓) → (𝜓 ↔ 𝜃)) |
opfi1uzind.3 | ⊢ ((〈𝑣, 𝑒〉 ∈ 𝐺 ∧ 𝑛 ∈ 𝑣) → 〈(𝑣 ∖ {𝑛}), 𝐹〉 ∈ 𝐺) |
opfi1uzind.4 | ⊢ ((𝑤 = (𝑣 ∖ {𝑛}) ∧ 𝑓 = 𝐹) → (𝜃 ↔ 𝜒)) |
opfi1uzind.base | ⊢ ((〈𝑣, 𝑒〉 ∈ 𝐺 ∧ (♯‘𝑣) = 𝐿) → 𝜓) |
opfi1uzind.step | ⊢ ((((𝑦 + 1) ∈ ℕ0 ∧ (〈𝑣, 𝑒〉 ∈ 𝐺 ∧ (♯‘𝑣) = (𝑦 + 1) ∧ 𝑛 ∈ 𝑣)) ∧ 𝜒) → 𝜓) |
Ref | Expression |
---|---|
opfi1uzind | ⊢ ((〈𝑉, 𝐸〉 ∈ 𝐺 ∧ 𝑉 ∈ Fin ∧ 𝐿 ≤ (♯‘𝑉)) → 𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | opfi1uzind.e | . . . . . . 7 ⊢ 𝐸 ∈ V | |
2 | 1 | a1i 11 | . . . . . 6 ⊢ (𝑎 = 𝑉 → 𝐸 ∈ V) |
3 | opeq12 4873 | . . . . . . 7 ⊢ ((𝑎 = 𝑉 ∧ 𝑏 = 𝐸) → 〈𝑎, 𝑏〉 = 〈𝑉, 𝐸〉) | |
4 | 3 | eleq1d 2811 | . . . . . 6 ⊢ ((𝑎 = 𝑉 ∧ 𝑏 = 𝐸) → (〈𝑎, 𝑏〉 ∈ 𝐺 ↔ 〈𝑉, 𝐸〉 ∈ 𝐺)) |
5 | 2, 4 | sbcied 3821 | . . . . 5 ⊢ (𝑎 = 𝑉 → ([𝐸 / 𝑏]〈𝑎, 𝑏〉 ∈ 𝐺 ↔ 〈𝑉, 𝐸〉 ∈ 𝐺)) |
6 | 5 | sbcieg 3816 | . . . 4 ⊢ (𝑉 ∈ Fin → ([𝑉 / 𝑎][𝐸 / 𝑏]〈𝑎, 𝑏〉 ∈ 𝐺 ↔ 〈𝑉, 𝐸〉 ∈ 𝐺)) |
7 | 6 | biimparc 478 | . . 3 ⊢ ((〈𝑉, 𝐸〉 ∈ 𝐺 ∧ 𝑉 ∈ Fin) → [𝑉 / 𝑎][𝐸 / 𝑏]〈𝑎, 𝑏〉 ∈ 𝐺) |
8 | 7 | 3adant3 1129 | . 2 ⊢ ((〈𝑉, 𝐸〉 ∈ 𝐺 ∧ 𝑉 ∈ Fin ∧ 𝐿 ≤ (♯‘𝑉)) → [𝑉 / 𝑎][𝐸 / 𝑏]〈𝑎, 𝑏〉 ∈ 𝐺) |
9 | opfi1uzind.f | . . 3 ⊢ 𝐹 ∈ V | |
10 | opfi1uzind.l | . . 3 ⊢ 𝐿 ∈ ℕ0 | |
11 | opfi1uzind.1 | . . 3 ⊢ ((𝑣 = 𝑉 ∧ 𝑒 = 𝐸) → (𝜓 ↔ 𝜑)) | |
12 | opfi1uzind.2 | . . 3 ⊢ ((𝑣 = 𝑤 ∧ 𝑒 = 𝑓) → (𝜓 ↔ 𝜃)) | |
13 | vex 3466 | . . . . . 6 ⊢ 𝑣 ∈ V | |
14 | vex 3466 | . . . . . 6 ⊢ 𝑒 ∈ V | |
15 | opeq12 4873 | . . . . . . 7 ⊢ ((𝑎 = 𝑣 ∧ 𝑏 = 𝑒) → 〈𝑎, 𝑏〉 = 〈𝑣, 𝑒〉) | |
16 | 15 | eleq1d 2811 | . . . . . 6 ⊢ ((𝑎 = 𝑣 ∧ 𝑏 = 𝑒) → (〈𝑎, 𝑏〉 ∈ 𝐺 ↔ 〈𝑣, 𝑒〉 ∈ 𝐺)) |
17 | 13, 14, 16 | sbc2ie 3858 | . . . . 5 ⊢ ([𝑣 / 𝑎][𝑒 / 𝑏]〈𝑎, 𝑏〉 ∈ 𝐺 ↔ 〈𝑣, 𝑒〉 ∈ 𝐺) |
18 | opfi1uzind.3 | . . . . 5 ⊢ ((〈𝑣, 𝑒〉 ∈ 𝐺 ∧ 𝑛 ∈ 𝑣) → 〈(𝑣 ∖ {𝑛}), 𝐹〉 ∈ 𝐺) | |
19 | 17, 18 | sylanb 579 | . . . 4 ⊢ (([𝑣 / 𝑎][𝑒 / 𝑏]〈𝑎, 𝑏〉 ∈ 𝐺 ∧ 𝑛 ∈ 𝑣) → 〈(𝑣 ∖ {𝑛}), 𝐹〉 ∈ 𝐺) |
20 | 13 | difexi 5325 | . . . . 5 ⊢ (𝑣 ∖ {𝑛}) ∈ V |
21 | opeq12 4873 | . . . . . 6 ⊢ ((𝑎 = (𝑣 ∖ {𝑛}) ∧ 𝑏 = 𝐹) → 〈𝑎, 𝑏〉 = 〈(𝑣 ∖ {𝑛}), 𝐹〉) | |
22 | 21 | eleq1d 2811 | . . . . 5 ⊢ ((𝑎 = (𝑣 ∖ {𝑛}) ∧ 𝑏 = 𝐹) → (〈𝑎, 𝑏〉 ∈ 𝐺 ↔ 〈(𝑣 ∖ {𝑛}), 𝐹〉 ∈ 𝐺)) |
23 | 20, 9, 22 | sbc2ie 3858 | . . . 4 ⊢ ([(𝑣 ∖ {𝑛}) / 𝑎][𝐹 / 𝑏]〈𝑎, 𝑏〉 ∈ 𝐺 ↔ 〈(𝑣 ∖ {𝑛}), 𝐹〉 ∈ 𝐺) |
24 | 19, 23 | sylibr 233 | . . 3 ⊢ (([𝑣 / 𝑎][𝑒 / 𝑏]〈𝑎, 𝑏〉 ∈ 𝐺 ∧ 𝑛 ∈ 𝑣) → [(𝑣 ∖ {𝑛}) / 𝑎][𝐹 / 𝑏]〈𝑎, 𝑏〉 ∈ 𝐺) |
25 | opfi1uzind.4 | . . 3 ⊢ ((𝑤 = (𝑣 ∖ {𝑛}) ∧ 𝑓 = 𝐹) → (𝜃 ↔ 𝜒)) | |
26 | opfi1uzind.base | . . . 4 ⊢ ((〈𝑣, 𝑒〉 ∈ 𝐺 ∧ (♯‘𝑣) = 𝐿) → 𝜓) | |
27 | 17, 26 | sylanb 579 | . . 3 ⊢ (([𝑣 / 𝑎][𝑒 / 𝑏]〈𝑎, 𝑏〉 ∈ 𝐺 ∧ (♯‘𝑣) = 𝐿) → 𝜓) |
28 | 17 | 3anbi1i 1154 | . . . . 5 ⊢ (([𝑣 / 𝑎][𝑒 / 𝑏]〈𝑎, 𝑏〉 ∈ 𝐺 ∧ (♯‘𝑣) = (𝑦 + 1) ∧ 𝑛 ∈ 𝑣) ↔ (〈𝑣, 𝑒〉 ∈ 𝐺 ∧ (♯‘𝑣) = (𝑦 + 1) ∧ 𝑛 ∈ 𝑣)) |
29 | 28 | anbi2i 621 | . . . 4 ⊢ (((𝑦 + 1) ∈ ℕ0 ∧ ([𝑣 / 𝑎][𝑒 / 𝑏]〈𝑎, 𝑏〉 ∈ 𝐺 ∧ (♯‘𝑣) = (𝑦 + 1) ∧ 𝑛 ∈ 𝑣)) ↔ ((𝑦 + 1) ∈ ℕ0 ∧ (〈𝑣, 𝑒〉 ∈ 𝐺 ∧ (♯‘𝑣) = (𝑦 + 1) ∧ 𝑛 ∈ 𝑣))) |
30 | opfi1uzind.step | . . . 4 ⊢ ((((𝑦 + 1) ∈ ℕ0 ∧ (〈𝑣, 𝑒〉 ∈ 𝐺 ∧ (♯‘𝑣) = (𝑦 + 1) ∧ 𝑛 ∈ 𝑣)) ∧ 𝜒) → 𝜓) | |
31 | 29, 30 | sylanb 579 | . . 3 ⊢ ((((𝑦 + 1) ∈ ℕ0 ∧ ([𝑣 / 𝑎][𝑒 / 𝑏]〈𝑎, 𝑏〉 ∈ 𝐺 ∧ (♯‘𝑣) = (𝑦 + 1) ∧ 𝑛 ∈ 𝑣)) ∧ 𝜒) → 𝜓) |
32 | 9, 10, 11, 12, 24, 25, 27, 31 | fi1uzind 14508 | . 2 ⊢ (([𝑉 / 𝑎][𝐸 / 𝑏]〈𝑎, 𝑏〉 ∈ 𝐺 ∧ 𝑉 ∈ Fin ∧ 𝐿 ≤ (♯‘𝑉)) → 𝜑) |
33 | 8, 32 | syld3an1 1407 | 1 ⊢ ((〈𝑉, 𝐸〉 ∈ 𝐺 ∧ 𝑉 ∈ Fin ∧ 𝐿 ≤ (♯‘𝑉)) → 𝜑) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 394 ∧ w3a 1084 = wceq 1534 ∈ wcel 2099 Vcvv 3462 [wsbc 3775 ∖ cdif 3943 {csn 4623 〈cop 4629 class class class wbr 5143 ‘cfv 6543 (class class class)co 7413 Fincfn 8963 1c1 11147 + caddc 11149 ≤ cle 11287 ℕ0cn0 12515 ♯chash 14339 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2697 ax-sep 5294 ax-nul 5301 ax-pow 5359 ax-pr 5423 ax-un 7735 ax-cnex 11202 ax-resscn 11203 ax-1cn 11204 ax-icn 11205 ax-addcl 11206 ax-addrcl 11207 ax-mulcl 11208 ax-mulrcl 11209 ax-mulcom 11210 ax-addass 11211 ax-mulass 11212 ax-distr 11213 ax-i2m1 11214 ax-1ne0 11215 ax-1rid 11216 ax-rnegex 11217 ax-rrecex 11218 ax-cnre 11219 ax-pre-lttri 11220 ax-pre-lttrn 11221 ax-pre-ltadd 11222 ax-pre-mulgt0 11223 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2529 df-eu 2558 df-clab 2704 df-cleq 2718 df-clel 2803 df-nfc 2878 df-ne 2931 df-nel 3037 df-ral 3052 df-rex 3061 df-reu 3365 df-rab 3420 df-v 3464 df-sbc 3776 df-csb 3892 df-dif 3949 df-un 3951 df-in 3953 df-ss 3963 df-pss 3966 df-nul 4323 df-if 4524 df-pw 4599 df-sn 4624 df-pr 4626 df-op 4630 df-uni 4906 df-int 4947 df-iun 4995 df-br 5144 df-opab 5206 df-mpt 5227 df-tr 5261 df-id 5570 df-eprel 5576 df-po 5584 df-so 5585 df-fr 5627 df-we 5629 df-xp 5678 df-rel 5679 df-cnv 5680 df-co 5681 df-dm 5682 df-rn 5683 df-res 5684 df-ima 5685 df-pred 6302 df-ord 6368 df-on 6369 df-lim 6370 df-suc 6371 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-riota 7369 df-ov 7416 df-oprab 7417 df-mpo 7418 df-om 7866 df-1st 7992 df-2nd 7993 df-frecs 8285 df-wrecs 8316 df-recs 8390 df-rdg 8429 df-1o 8485 df-oadd 8489 df-er 8723 df-en 8964 df-dom 8965 df-sdom 8966 df-fin 8967 df-dju 9934 df-card 9972 df-pnf 11288 df-mnf 11289 df-xr 11290 df-ltxr 11291 df-le 11292 df-sub 11484 df-neg 11485 df-nn 12256 df-n0 12516 df-xnn0 12588 df-z 12602 df-uz 12866 df-fz 13530 df-hash 14340 |
This theorem is referenced by: opfi1ind 14513 |
Copyright terms: Public domain | W3C validator |