MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  opfi1uzind Structured version   Visualization version   GIF version

Theorem opfi1uzind 14424
Description: Properties of an ordered pair with a finite first component with at least L elements, proven by finite induction on the size of the first component. This theorem can be applied for graphs (represented as ordered pairs of vertices and edges) with a finite number of vertices, usually with 𝐿 = 0 (see opfi1ind 14425) or 𝐿 = 1. (Contributed by AV, 22-Oct-2020.) (Revised by AV, 28-Mar-2021.)
Hypotheses
Ref Expression
opfi1uzind.e 𝐸 ∈ V
opfi1uzind.f 𝐹 ∈ V
opfi1uzind.l 𝐿 ∈ ℕ0
opfi1uzind.1 ((𝑣 = 𝑉𝑒 = 𝐸) → (𝜓𝜑))
opfi1uzind.2 ((𝑣 = 𝑤𝑒 = 𝑓) → (𝜓𝜃))
opfi1uzind.3 ((⟨𝑣, 𝑒⟩ ∈ 𝐺𝑛𝑣) → ⟨(𝑣 ∖ {𝑛}), 𝐹⟩ ∈ 𝐺)
opfi1uzind.4 ((𝑤 = (𝑣 ∖ {𝑛}) ∧ 𝑓 = 𝐹) → (𝜃𝜒))
opfi1uzind.base ((⟨𝑣, 𝑒⟩ ∈ 𝐺 ∧ (♯‘𝑣) = 𝐿) → 𝜓)
opfi1uzind.step ((((𝑦 + 1) ∈ ℕ0 ∧ (⟨𝑣, 𝑒⟩ ∈ 𝐺 ∧ (♯‘𝑣) = (𝑦 + 1) ∧ 𝑛𝑣)) ∧ 𝜒) → 𝜓)
Assertion
Ref Expression
opfi1uzind ((⟨𝑉, 𝐸⟩ ∈ 𝐺𝑉 ∈ Fin ∧ 𝐿 ≤ (♯‘𝑉)) → 𝜑)
Distinct variable groups:   𝑒,𝑛,𝑣,𝑦   𝑒,𝐸,𝑛,𝑣   𝑓,𝐹,𝑤   𝑒,𝐺,𝑓,𝑛,𝑣,𝑤,𝑦   𝑒,𝑉,𝑛,𝑣   𝜓,𝑓,𝑛,𝑤,𝑦   𝜃,𝑒,𝑛,𝑣   𝜒,𝑓,𝑤   𝜑,𝑒,𝑛,𝑣   𝑒,𝐿,𝑛,𝑣,𝑦
Allowed substitution hints:   𝜑(𝑦,𝑤,𝑓)   𝜓(𝑣,𝑒)   𝜒(𝑦,𝑣,𝑒,𝑛)   𝜃(𝑦,𝑤,𝑓)   𝐸(𝑦,𝑤,𝑓)   𝐹(𝑦,𝑣,𝑒,𝑛)   𝐿(𝑤,𝑓)   𝑉(𝑦,𝑤,𝑓)

Proof of Theorem opfi1uzind
Dummy variables 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 opfi1uzind.e . . . . . . 7 𝐸 ∈ V
21a1i 11 . . . . . 6 (𝑎 = 𝑉𝐸 ∈ V)
3 opeq12 4826 . . . . . . 7 ((𝑎 = 𝑉𝑏 = 𝐸) → ⟨𝑎, 𝑏⟩ = ⟨𝑉, 𝐸⟩)
43eleq1d 2816 . . . . . 6 ((𝑎 = 𝑉𝑏 = 𝐸) → (⟨𝑎, 𝑏⟩ ∈ 𝐺 ↔ ⟨𝑉, 𝐸⟩ ∈ 𝐺))
52, 4sbcied 3780 . . . . 5 (𝑎 = 𝑉 → ([𝐸 / 𝑏]𝑎, 𝑏⟩ ∈ 𝐺 ↔ ⟨𝑉, 𝐸⟩ ∈ 𝐺))
65sbcieg 3776 . . . 4 (𝑉 ∈ Fin → ([𝑉 / 𝑎][𝐸 / 𝑏]𝑎, 𝑏⟩ ∈ 𝐺 ↔ ⟨𝑉, 𝐸⟩ ∈ 𝐺))
76biimparc 479 . . 3 ((⟨𝑉, 𝐸⟩ ∈ 𝐺𝑉 ∈ Fin) → [𝑉 / 𝑎][𝐸 / 𝑏]𝑎, 𝑏⟩ ∈ 𝐺)
873adant3 1132 . 2 ((⟨𝑉, 𝐸⟩ ∈ 𝐺𝑉 ∈ Fin ∧ 𝐿 ≤ (♯‘𝑉)) → [𝑉 / 𝑎][𝐸 / 𝑏]𝑎, 𝑏⟩ ∈ 𝐺)
9 opfi1uzind.f . . 3 𝐹 ∈ V
10 opfi1uzind.l . . 3 𝐿 ∈ ℕ0
11 opfi1uzind.1 . . 3 ((𝑣 = 𝑉𝑒 = 𝐸) → (𝜓𝜑))
12 opfi1uzind.2 . . 3 ((𝑣 = 𝑤𝑒 = 𝑓) → (𝜓𝜃))
13 vex 3440 . . . . . 6 𝑣 ∈ V
14 vex 3440 . . . . . 6 𝑒 ∈ V
15 opeq12 4826 . . . . . . 7 ((𝑎 = 𝑣𝑏 = 𝑒) → ⟨𝑎, 𝑏⟩ = ⟨𝑣, 𝑒⟩)
1615eleq1d 2816 . . . . . 6 ((𝑎 = 𝑣𝑏 = 𝑒) → (⟨𝑎, 𝑏⟩ ∈ 𝐺 ↔ ⟨𝑣, 𝑒⟩ ∈ 𝐺))
1713, 14, 16sbc2ie 3812 . . . . 5 ([𝑣 / 𝑎][𝑒 / 𝑏]𝑎, 𝑏⟩ ∈ 𝐺 ↔ ⟨𝑣, 𝑒⟩ ∈ 𝐺)
18 opfi1uzind.3 . . . . 5 ((⟨𝑣, 𝑒⟩ ∈ 𝐺𝑛𝑣) → ⟨(𝑣 ∖ {𝑛}), 𝐹⟩ ∈ 𝐺)
1917, 18sylanb 581 . . . 4 (([𝑣 / 𝑎][𝑒 / 𝑏]𝑎, 𝑏⟩ ∈ 𝐺𝑛𝑣) → ⟨(𝑣 ∖ {𝑛}), 𝐹⟩ ∈ 𝐺)
2013difexi 5270 . . . . 5 (𝑣 ∖ {𝑛}) ∈ V
21 opeq12 4826 . . . . . 6 ((𝑎 = (𝑣 ∖ {𝑛}) ∧ 𝑏 = 𝐹) → ⟨𝑎, 𝑏⟩ = ⟨(𝑣 ∖ {𝑛}), 𝐹⟩)
2221eleq1d 2816 . . . . 5 ((𝑎 = (𝑣 ∖ {𝑛}) ∧ 𝑏 = 𝐹) → (⟨𝑎, 𝑏⟩ ∈ 𝐺 ↔ ⟨(𝑣 ∖ {𝑛}), 𝐹⟩ ∈ 𝐺))
2320, 9, 22sbc2ie 3812 . . . 4 ([(𝑣 ∖ {𝑛}) / 𝑎][𝐹 / 𝑏]𝑎, 𝑏⟩ ∈ 𝐺 ↔ ⟨(𝑣 ∖ {𝑛}), 𝐹⟩ ∈ 𝐺)
2419, 23sylibr 234 . . 3 (([𝑣 / 𝑎][𝑒 / 𝑏]𝑎, 𝑏⟩ ∈ 𝐺𝑛𝑣) → [(𝑣 ∖ {𝑛}) / 𝑎][𝐹 / 𝑏]𝑎, 𝑏⟩ ∈ 𝐺)
25 opfi1uzind.4 . . 3 ((𝑤 = (𝑣 ∖ {𝑛}) ∧ 𝑓 = 𝐹) → (𝜃𝜒))
26 opfi1uzind.base . . . 4 ((⟨𝑣, 𝑒⟩ ∈ 𝐺 ∧ (♯‘𝑣) = 𝐿) → 𝜓)
2717, 26sylanb 581 . . 3 (([𝑣 / 𝑎][𝑒 / 𝑏]𝑎, 𝑏⟩ ∈ 𝐺 ∧ (♯‘𝑣) = 𝐿) → 𝜓)
28173anbi1i 1157 . . . . 5 (([𝑣 / 𝑎][𝑒 / 𝑏]𝑎, 𝑏⟩ ∈ 𝐺 ∧ (♯‘𝑣) = (𝑦 + 1) ∧ 𝑛𝑣) ↔ (⟨𝑣, 𝑒⟩ ∈ 𝐺 ∧ (♯‘𝑣) = (𝑦 + 1) ∧ 𝑛𝑣))
2928anbi2i 623 . . . 4 (((𝑦 + 1) ∈ ℕ0 ∧ ([𝑣 / 𝑎][𝑒 / 𝑏]𝑎, 𝑏⟩ ∈ 𝐺 ∧ (♯‘𝑣) = (𝑦 + 1) ∧ 𝑛𝑣)) ↔ ((𝑦 + 1) ∈ ℕ0 ∧ (⟨𝑣, 𝑒⟩ ∈ 𝐺 ∧ (♯‘𝑣) = (𝑦 + 1) ∧ 𝑛𝑣)))
30 opfi1uzind.step . . . 4 ((((𝑦 + 1) ∈ ℕ0 ∧ (⟨𝑣, 𝑒⟩ ∈ 𝐺 ∧ (♯‘𝑣) = (𝑦 + 1) ∧ 𝑛𝑣)) ∧ 𝜒) → 𝜓)
3129, 30sylanb 581 . . 3 ((((𝑦 + 1) ∈ ℕ0 ∧ ([𝑣 / 𝑎][𝑒 / 𝑏]𝑎, 𝑏⟩ ∈ 𝐺 ∧ (♯‘𝑣) = (𝑦 + 1) ∧ 𝑛𝑣)) ∧ 𝜒) → 𝜓)
329, 10, 11, 12, 24, 25, 27, 31fi1uzind 14420 . 2 (([𝑉 / 𝑎][𝐸 / 𝑏]𝑎, 𝑏⟩ ∈ 𝐺𝑉 ∈ Fin ∧ 𝐿 ≤ (♯‘𝑉)) → 𝜑)
338, 32syld3an1 1412 1 ((⟨𝑉, 𝐸⟩ ∈ 𝐺𝑉 ∈ Fin ∧ 𝐿 ≤ (♯‘𝑉)) → 𝜑)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1541  wcel 2111  Vcvv 3436  [wsbc 3736  cdif 3894  {csn 4575  cop 4581   class class class wbr 5093  cfv 6487  (class class class)co 7352  Fincfn 8875  1c1 11013   + caddc 11015  cle 11153  0cn0 12387  chash 14243
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5236  ax-nul 5246  ax-pow 5305  ax-pr 5372  ax-un 7674  ax-cnex 11068  ax-resscn 11069  ax-1cn 11070  ax-icn 11071  ax-addcl 11072  ax-addrcl 11073  ax-mulcl 11074  ax-mulrcl 11075  ax-mulcom 11076  ax-addass 11077  ax-mulass 11078  ax-distr 11079  ax-i2m1 11080  ax-1ne0 11081  ax-1rid 11082  ax-rnegex 11083  ax-rrecex 11084  ax-cnre 11085  ax-pre-lttri 11086  ax-pre-lttrn 11087  ax-pre-ltadd 11088  ax-pre-mulgt0 11089
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4283  df-if 4475  df-pw 4551  df-sn 4576  df-pr 4578  df-op 4582  df-uni 4859  df-int 4898  df-iun 4943  df-br 5094  df-opab 5156  df-mpt 5175  df-tr 5201  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6254  df-ord 6315  df-on 6316  df-lim 6317  df-suc 6318  df-iota 6443  df-fun 6489  df-fn 6490  df-f 6491  df-f1 6492  df-fo 6493  df-f1o 6494  df-fv 6495  df-riota 7309  df-ov 7355  df-oprab 7356  df-mpo 7357  df-om 7803  df-1st 7927  df-2nd 7928  df-frecs 8217  df-wrecs 8248  df-recs 8297  df-rdg 8335  df-1o 8391  df-oadd 8395  df-er 8628  df-en 8876  df-dom 8877  df-sdom 8878  df-fin 8879  df-dju 9800  df-card 9838  df-pnf 11154  df-mnf 11155  df-xr 11156  df-ltxr 11157  df-le 11158  df-sub 11352  df-neg 11353  df-nn 12132  df-n0 12388  df-xnn0 12461  df-z 12475  df-uz 12739  df-fz 13414  df-hash 14244
This theorem is referenced by:  opfi1ind  14425
  Copyright terms: Public domain W3C validator