| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > opfi1uzind | Structured version Visualization version GIF version | ||
| Description: Properties of an ordered pair with a finite first component with at least L elements, proven by finite induction on the size of the first component. This theorem can be applied for graphs (represented as ordered pairs of vertices and edges) with a finite number of vertices, usually with 𝐿 = 0 (see opfi1ind 14425) or 𝐿 = 1. (Contributed by AV, 22-Oct-2020.) (Revised by AV, 28-Mar-2021.) |
| Ref | Expression |
|---|---|
| opfi1uzind.e | ⊢ 𝐸 ∈ V |
| opfi1uzind.f | ⊢ 𝐹 ∈ V |
| opfi1uzind.l | ⊢ 𝐿 ∈ ℕ0 |
| opfi1uzind.1 | ⊢ ((𝑣 = 𝑉 ∧ 𝑒 = 𝐸) → (𝜓 ↔ 𝜑)) |
| opfi1uzind.2 | ⊢ ((𝑣 = 𝑤 ∧ 𝑒 = 𝑓) → (𝜓 ↔ 𝜃)) |
| opfi1uzind.3 | ⊢ ((〈𝑣, 𝑒〉 ∈ 𝐺 ∧ 𝑛 ∈ 𝑣) → 〈(𝑣 ∖ {𝑛}), 𝐹〉 ∈ 𝐺) |
| opfi1uzind.4 | ⊢ ((𝑤 = (𝑣 ∖ {𝑛}) ∧ 𝑓 = 𝐹) → (𝜃 ↔ 𝜒)) |
| opfi1uzind.base | ⊢ ((〈𝑣, 𝑒〉 ∈ 𝐺 ∧ (♯‘𝑣) = 𝐿) → 𝜓) |
| opfi1uzind.step | ⊢ ((((𝑦 + 1) ∈ ℕ0 ∧ (〈𝑣, 𝑒〉 ∈ 𝐺 ∧ (♯‘𝑣) = (𝑦 + 1) ∧ 𝑛 ∈ 𝑣)) ∧ 𝜒) → 𝜓) |
| Ref | Expression |
|---|---|
| opfi1uzind | ⊢ ((〈𝑉, 𝐸〉 ∈ 𝐺 ∧ 𝑉 ∈ Fin ∧ 𝐿 ≤ (♯‘𝑉)) → 𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | opfi1uzind.e | . . . . . . 7 ⊢ 𝐸 ∈ V | |
| 2 | 1 | a1i 11 | . . . . . 6 ⊢ (𝑎 = 𝑉 → 𝐸 ∈ V) |
| 3 | opeq12 4826 | . . . . . . 7 ⊢ ((𝑎 = 𝑉 ∧ 𝑏 = 𝐸) → 〈𝑎, 𝑏〉 = 〈𝑉, 𝐸〉) | |
| 4 | 3 | eleq1d 2816 | . . . . . 6 ⊢ ((𝑎 = 𝑉 ∧ 𝑏 = 𝐸) → (〈𝑎, 𝑏〉 ∈ 𝐺 ↔ 〈𝑉, 𝐸〉 ∈ 𝐺)) |
| 5 | 2, 4 | sbcied 3780 | . . . . 5 ⊢ (𝑎 = 𝑉 → ([𝐸 / 𝑏]〈𝑎, 𝑏〉 ∈ 𝐺 ↔ 〈𝑉, 𝐸〉 ∈ 𝐺)) |
| 6 | 5 | sbcieg 3776 | . . . 4 ⊢ (𝑉 ∈ Fin → ([𝑉 / 𝑎][𝐸 / 𝑏]〈𝑎, 𝑏〉 ∈ 𝐺 ↔ 〈𝑉, 𝐸〉 ∈ 𝐺)) |
| 7 | 6 | biimparc 479 | . . 3 ⊢ ((〈𝑉, 𝐸〉 ∈ 𝐺 ∧ 𝑉 ∈ Fin) → [𝑉 / 𝑎][𝐸 / 𝑏]〈𝑎, 𝑏〉 ∈ 𝐺) |
| 8 | 7 | 3adant3 1132 | . 2 ⊢ ((〈𝑉, 𝐸〉 ∈ 𝐺 ∧ 𝑉 ∈ Fin ∧ 𝐿 ≤ (♯‘𝑉)) → [𝑉 / 𝑎][𝐸 / 𝑏]〈𝑎, 𝑏〉 ∈ 𝐺) |
| 9 | opfi1uzind.f | . . 3 ⊢ 𝐹 ∈ V | |
| 10 | opfi1uzind.l | . . 3 ⊢ 𝐿 ∈ ℕ0 | |
| 11 | opfi1uzind.1 | . . 3 ⊢ ((𝑣 = 𝑉 ∧ 𝑒 = 𝐸) → (𝜓 ↔ 𝜑)) | |
| 12 | opfi1uzind.2 | . . 3 ⊢ ((𝑣 = 𝑤 ∧ 𝑒 = 𝑓) → (𝜓 ↔ 𝜃)) | |
| 13 | vex 3440 | . . . . . 6 ⊢ 𝑣 ∈ V | |
| 14 | vex 3440 | . . . . . 6 ⊢ 𝑒 ∈ V | |
| 15 | opeq12 4826 | . . . . . . 7 ⊢ ((𝑎 = 𝑣 ∧ 𝑏 = 𝑒) → 〈𝑎, 𝑏〉 = 〈𝑣, 𝑒〉) | |
| 16 | 15 | eleq1d 2816 | . . . . . 6 ⊢ ((𝑎 = 𝑣 ∧ 𝑏 = 𝑒) → (〈𝑎, 𝑏〉 ∈ 𝐺 ↔ 〈𝑣, 𝑒〉 ∈ 𝐺)) |
| 17 | 13, 14, 16 | sbc2ie 3812 | . . . . 5 ⊢ ([𝑣 / 𝑎][𝑒 / 𝑏]〈𝑎, 𝑏〉 ∈ 𝐺 ↔ 〈𝑣, 𝑒〉 ∈ 𝐺) |
| 18 | opfi1uzind.3 | . . . . 5 ⊢ ((〈𝑣, 𝑒〉 ∈ 𝐺 ∧ 𝑛 ∈ 𝑣) → 〈(𝑣 ∖ {𝑛}), 𝐹〉 ∈ 𝐺) | |
| 19 | 17, 18 | sylanb 581 | . . . 4 ⊢ (([𝑣 / 𝑎][𝑒 / 𝑏]〈𝑎, 𝑏〉 ∈ 𝐺 ∧ 𝑛 ∈ 𝑣) → 〈(𝑣 ∖ {𝑛}), 𝐹〉 ∈ 𝐺) |
| 20 | 13 | difexi 5270 | . . . . 5 ⊢ (𝑣 ∖ {𝑛}) ∈ V |
| 21 | opeq12 4826 | . . . . . 6 ⊢ ((𝑎 = (𝑣 ∖ {𝑛}) ∧ 𝑏 = 𝐹) → 〈𝑎, 𝑏〉 = 〈(𝑣 ∖ {𝑛}), 𝐹〉) | |
| 22 | 21 | eleq1d 2816 | . . . . 5 ⊢ ((𝑎 = (𝑣 ∖ {𝑛}) ∧ 𝑏 = 𝐹) → (〈𝑎, 𝑏〉 ∈ 𝐺 ↔ 〈(𝑣 ∖ {𝑛}), 𝐹〉 ∈ 𝐺)) |
| 23 | 20, 9, 22 | sbc2ie 3812 | . . . 4 ⊢ ([(𝑣 ∖ {𝑛}) / 𝑎][𝐹 / 𝑏]〈𝑎, 𝑏〉 ∈ 𝐺 ↔ 〈(𝑣 ∖ {𝑛}), 𝐹〉 ∈ 𝐺) |
| 24 | 19, 23 | sylibr 234 | . . 3 ⊢ (([𝑣 / 𝑎][𝑒 / 𝑏]〈𝑎, 𝑏〉 ∈ 𝐺 ∧ 𝑛 ∈ 𝑣) → [(𝑣 ∖ {𝑛}) / 𝑎][𝐹 / 𝑏]〈𝑎, 𝑏〉 ∈ 𝐺) |
| 25 | opfi1uzind.4 | . . 3 ⊢ ((𝑤 = (𝑣 ∖ {𝑛}) ∧ 𝑓 = 𝐹) → (𝜃 ↔ 𝜒)) | |
| 26 | opfi1uzind.base | . . . 4 ⊢ ((〈𝑣, 𝑒〉 ∈ 𝐺 ∧ (♯‘𝑣) = 𝐿) → 𝜓) | |
| 27 | 17, 26 | sylanb 581 | . . 3 ⊢ (([𝑣 / 𝑎][𝑒 / 𝑏]〈𝑎, 𝑏〉 ∈ 𝐺 ∧ (♯‘𝑣) = 𝐿) → 𝜓) |
| 28 | 17 | 3anbi1i 1157 | . . . . 5 ⊢ (([𝑣 / 𝑎][𝑒 / 𝑏]〈𝑎, 𝑏〉 ∈ 𝐺 ∧ (♯‘𝑣) = (𝑦 + 1) ∧ 𝑛 ∈ 𝑣) ↔ (〈𝑣, 𝑒〉 ∈ 𝐺 ∧ (♯‘𝑣) = (𝑦 + 1) ∧ 𝑛 ∈ 𝑣)) |
| 29 | 28 | anbi2i 623 | . . . 4 ⊢ (((𝑦 + 1) ∈ ℕ0 ∧ ([𝑣 / 𝑎][𝑒 / 𝑏]〈𝑎, 𝑏〉 ∈ 𝐺 ∧ (♯‘𝑣) = (𝑦 + 1) ∧ 𝑛 ∈ 𝑣)) ↔ ((𝑦 + 1) ∈ ℕ0 ∧ (〈𝑣, 𝑒〉 ∈ 𝐺 ∧ (♯‘𝑣) = (𝑦 + 1) ∧ 𝑛 ∈ 𝑣))) |
| 30 | opfi1uzind.step | . . . 4 ⊢ ((((𝑦 + 1) ∈ ℕ0 ∧ (〈𝑣, 𝑒〉 ∈ 𝐺 ∧ (♯‘𝑣) = (𝑦 + 1) ∧ 𝑛 ∈ 𝑣)) ∧ 𝜒) → 𝜓) | |
| 31 | 29, 30 | sylanb 581 | . . 3 ⊢ ((((𝑦 + 1) ∈ ℕ0 ∧ ([𝑣 / 𝑎][𝑒 / 𝑏]〈𝑎, 𝑏〉 ∈ 𝐺 ∧ (♯‘𝑣) = (𝑦 + 1) ∧ 𝑛 ∈ 𝑣)) ∧ 𝜒) → 𝜓) |
| 32 | 9, 10, 11, 12, 24, 25, 27, 31 | fi1uzind 14420 | . 2 ⊢ (([𝑉 / 𝑎][𝐸 / 𝑏]〈𝑎, 𝑏〉 ∈ 𝐺 ∧ 𝑉 ∈ Fin ∧ 𝐿 ≤ (♯‘𝑉)) → 𝜑) |
| 33 | 8, 32 | syld3an1 1412 | 1 ⊢ ((〈𝑉, 𝐸〉 ∈ 𝐺 ∧ 𝑉 ∈ Fin ∧ 𝐿 ≤ (♯‘𝑉)) → 𝜑) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 = wceq 1541 ∈ wcel 2111 Vcvv 3436 [wsbc 3736 ∖ cdif 3894 {csn 4575 〈cop 4581 class class class wbr 5093 ‘cfv 6487 (class class class)co 7352 Fincfn 8875 1c1 11013 + caddc 11015 ≤ cle 11153 ℕ0cn0 12387 ♯chash 14243 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5236 ax-nul 5246 ax-pow 5305 ax-pr 5372 ax-un 7674 ax-cnex 11068 ax-resscn 11069 ax-1cn 11070 ax-icn 11071 ax-addcl 11072 ax-addrcl 11073 ax-mulcl 11074 ax-mulrcl 11075 ax-mulcom 11076 ax-addass 11077 ax-mulass 11078 ax-distr 11079 ax-i2m1 11080 ax-1ne0 11081 ax-1rid 11082 ax-rnegex 11083 ax-rrecex 11084 ax-cnre 11085 ax-pre-lttri 11086 ax-pre-lttrn 11087 ax-pre-ltadd 11088 ax-pre-mulgt0 11089 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4283 df-if 4475 df-pw 4551 df-sn 4576 df-pr 4578 df-op 4582 df-uni 4859 df-int 4898 df-iun 4943 df-br 5094 df-opab 5156 df-mpt 5175 df-tr 5201 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-pred 6254 df-ord 6315 df-on 6316 df-lim 6317 df-suc 6318 df-iota 6443 df-fun 6489 df-fn 6490 df-f 6491 df-f1 6492 df-fo 6493 df-f1o 6494 df-fv 6495 df-riota 7309 df-ov 7355 df-oprab 7356 df-mpo 7357 df-om 7803 df-1st 7927 df-2nd 7928 df-frecs 8217 df-wrecs 8248 df-recs 8297 df-rdg 8335 df-1o 8391 df-oadd 8395 df-er 8628 df-en 8876 df-dom 8877 df-sdom 8878 df-fin 8879 df-dju 9800 df-card 9838 df-pnf 11154 df-mnf 11155 df-xr 11156 df-ltxr 11157 df-le 11158 df-sub 11352 df-neg 11353 df-nn 12132 df-n0 12388 df-xnn0 12461 df-z 12475 df-uz 12739 df-fz 13414 df-hash 14244 |
| This theorem is referenced by: opfi1ind 14425 |
| Copyright terms: Public domain | W3C validator |