| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > opfi1uzind | Structured version Visualization version GIF version | ||
| Description: Properties of an ordered pair with a finite first component with at least L elements, proven by finite induction on the size of the first component. This theorem can be applied for graphs (represented as ordered pairs of vertices and edges) with a finite number of vertices, usually with 𝐿 = 0 (see opfi1ind 14453) or 𝐿 = 1. (Contributed by AV, 22-Oct-2020.) (Revised by AV, 28-Mar-2021.) |
| Ref | Expression |
|---|---|
| opfi1uzind.e | ⊢ 𝐸 ∈ V |
| opfi1uzind.f | ⊢ 𝐹 ∈ V |
| opfi1uzind.l | ⊢ 𝐿 ∈ ℕ0 |
| opfi1uzind.1 | ⊢ ((𝑣 = 𝑉 ∧ 𝑒 = 𝐸) → (𝜓 ↔ 𝜑)) |
| opfi1uzind.2 | ⊢ ((𝑣 = 𝑤 ∧ 𝑒 = 𝑓) → (𝜓 ↔ 𝜃)) |
| opfi1uzind.3 | ⊢ ((〈𝑣, 𝑒〉 ∈ 𝐺 ∧ 𝑛 ∈ 𝑣) → 〈(𝑣 ∖ {𝑛}), 𝐹〉 ∈ 𝐺) |
| opfi1uzind.4 | ⊢ ((𝑤 = (𝑣 ∖ {𝑛}) ∧ 𝑓 = 𝐹) → (𝜃 ↔ 𝜒)) |
| opfi1uzind.base | ⊢ ((〈𝑣, 𝑒〉 ∈ 𝐺 ∧ (♯‘𝑣) = 𝐿) → 𝜓) |
| opfi1uzind.step | ⊢ ((((𝑦 + 1) ∈ ℕ0 ∧ (〈𝑣, 𝑒〉 ∈ 𝐺 ∧ (♯‘𝑣) = (𝑦 + 1) ∧ 𝑛 ∈ 𝑣)) ∧ 𝜒) → 𝜓) |
| Ref | Expression |
|---|---|
| opfi1uzind | ⊢ ((〈𝑉, 𝐸〉 ∈ 𝐺 ∧ 𝑉 ∈ Fin ∧ 𝐿 ≤ (♯‘𝑉)) → 𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | opfi1uzind.e | . . . . . . 7 ⊢ 𝐸 ∈ V | |
| 2 | 1 | a1i 11 | . . . . . 6 ⊢ (𝑎 = 𝑉 → 𝐸 ∈ V) |
| 3 | opeq12 4835 | . . . . . . 7 ⊢ ((𝑎 = 𝑉 ∧ 𝑏 = 𝐸) → 〈𝑎, 𝑏〉 = 〈𝑉, 𝐸〉) | |
| 4 | 3 | eleq1d 2813 | . . . . . 6 ⊢ ((𝑎 = 𝑉 ∧ 𝑏 = 𝐸) → (〈𝑎, 𝑏〉 ∈ 𝐺 ↔ 〈𝑉, 𝐸〉 ∈ 𝐺)) |
| 5 | 2, 4 | sbcied 3794 | . . . . 5 ⊢ (𝑎 = 𝑉 → ([𝐸 / 𝑏]〈𝑎, 𝑏〉 ∈ 𝐺 ↔ 〈𝑉, 𝐸〉 ∈ 𝐺)) |
| 6 | 5 | sbcieg 3790 | . . . 4 ⊢ (𝑉 ∈ Fin → ([𝑉 / 𝑎][𝐸 / 𝑏]〈𝑎, 𝑏〉 ∈ 𝐺 ↔ 〈𝑉, 𝐸〉 ∈ 𝐺)) |
| 7 | 6 | biimparc 479 | . . 3 ⊢ ((〈𝑉, 𝐸〉 ∈ 𝐺 ∧ 𝑉 ∈ Fin) → [𝑉 / 𝑎][𝐸 / 𝑏]〈𝑎, 𝑏〉 ∈ 𝐺) |
| 8 | 7 | 3adant3 1132 | . 2 ⊢ ((〈𝑉, 𝐸〉 ∈ 𝐺 ∧ 𝑉 ∈ Fin ∧ 𝐿 ≤ (♯‘𝑉)) → [𝑉 / 𝑎][𝐸 / 𝑏]〈𝑎, 𝑏〉 ∈ 𝐺) |
| 9 | opfi1uzind.f | . . 3 ⊢ 𝐹 ∈ V | |
| 10 | opfi1uzind.l | . . 3 ⊢ 𝐿 ∈ ℕ0 | |
| 11 | opfi1uzind.1 | . . 3 ⊢ ((𝑣 = 𝑉 ∧ 𝑒 = 𝐸) → (𝜓 ↔ 𝜑)) | |
| 12 | opfi1uzind.2 | . . 3 ⊢ ((𝑣 = 𝑤 ∧ 𝑒 = 𝑓) → (𝜓 ↔ 𝜃)) | |
| 13 | vex 3448 | . . . . . 6 ⊢ 𝑣 ∈ V | |
| 14 | vex 3448 | . . . . . 6 ⊢ 𝑒 ∈ V | |
| 15 | opeq12 4835 | . . . . . . 7 ⊢ ((𝑎 = 𝑣 ∧ 𝑏 = 𝑒) → 〈𝑎, 𝑏〉 = 〈𝑣, 𝑒〉) | |
| 16 | 15 | eleq1d 2813 | . . . . . 6 ⊢ ((𝑎 = 𝑣 ∧ 𝑏 = 𝑒) → (〈𝑎, 𝑏〉 ∈ 𝐺 ↔ 〈𝑣, 𝑒〉 ∈ 𝐺)) |
| 17 | 13, 14, 16 | sbc2ie 3826 | . . . . 5 ⊢ ([𝑣 / 𝑎][𝑒 / 𝑏]〈𝑎, 𝑏〉 ∈ 𝐺 ↔ 〈𝑣, 𝑒〉 ∈ 𝐺) |
| 18 | opfi1uzind.3 | . . . . 5 ⊢ ((〈𝑣, 𝑒〉 ∈ 𝐺 ∧ 𝑛 ∈ 𝑣) → 〈(𝑣 ∖ {𝑛}), 𝐹〉 ∈ 𝐺) | |
| 19 | 17, 18 | sylanb 581 | . . . 4 ⊢ (([𝑣 / 𝑎][𝑒 / 𝑏]〈𝑎, 𝑏〉 ∈ 𝐺 ∧ 𝑛 ∈ 𝑣) → 〈(𝑣 ∖ {𝑛}), 𝐹〉 ∈ 𝐺) |
| 20 | 13 | difexi 5280 | . . . . 5 ⊢ (𝑣 ∖ {𝑛}) ∈ V |
| 21 | opeq12 4835 | . . . . . 6 ⊢ ((𝑎 = (𝑣 ∖ {𝑛}) ∧ 𝑏 = 𝐹) → 〈𝑎, 𝑏〉 = 〈(𝑣 ∖ {𝑛}), 𝐹〉) | |
| 22 | 21 | eleq1d 2813 | . . . . 5 ⊢ ((𝑎 = (𝑣 ∖ {𝑛}) ∧ 𝑏 = 𝐹) → (〈𝑎, 𝑏〉 ∈ 𝐺 ↔ 〈(𝑣 ∖ {𝑛}), 𝐹〉 ∈ 𝐺)) |
| 23 | 20, 9, 22 | sbc2ie 3826 | . . . 4 ⊢ ([(𝑣 ∖ {𝑛}) / 𝑎][𝐹 / 𝑏]〈𝑎, 𝑏〉 ∈ 𝐺 ↔ 〈(𝑣 ∖ {𝑛}), 𝐹〉 ∈ 𝐺) |
| 24 | 19, 23 | sylibr 234 | . . 3 ⊢ (([𝑣 / 𝑎][𝑒 / 𝑏]〈𝑎, 𝑏〉 ∈ 𝐺 ∧ 𝑛 ∈ 𝑣) → [(𝑣 ∖ {𝑛}) / 𝑎][𝐹 / 𝑏]〈𝑎, 𝑏〉 ∈ 𝐺) |
| 25 | opfi1uzind.4 | . . 3 ⊢ ((𝑤 = (𝑣 ∖ {𝑛}) ∧ 𝑓 = 𝐹) → (𝜃 ↔ 𝜒)) | |
| 26 | opfi1uzind.base | . . . 4 ⊢ ((〈𝑣, 𝑒〉 ∈ 𝐺 ∧ (♯‘𝑣) = 𝐿) → 𝜓) | |
| 27 | 17, 26 | sylanb 581 | . . 3 ⊢ (([𝑣 / 𝑎][𝑒 / 𝑏]〈𝑎, 𝑏〉 ∈ 𝐺 ∧ (♯‘𝑣) = 𝐿) → 𝜓) |
| 28 | 17 | 3anbi1i 1157 | . . . . 5 ⊢ (([𝑣 / 𝑎][𝑒 / 𝑏]〈𝑎, 𝑏〉 ∈ 𝐺 ∧ (♯‘𝑣) = (𝑦 + 1) ∧ 𝑛 ∈ 𝑣) ↔ (〈𝑣, 𝑒〉 ∈ 𝐺 ∧ (♯‘𝑣) = (𝑦 + 1) ∧ 𝑛 ∈ 𝑣)) |
| 29 | 28 | anbi2i 623 | . . . 4 ⊢ (((𝑦 + 1) ∈ ℕ0 ∧ ([𝑣 / 𝑎][𝑒 / 𝑏]〈𝑎, 𝑏〉 ∈ 𝐺 ∧ (♯‘𝑣) = (𝑦 + 1) ∧ 𝑛 ∈ 𝑣)) ↔ ((𝑦 + 1) ∈ ℕ0 ∧ (〈𝑣, 𝑒〉 ∈ 𝐺 ∧ (♯‘𝑣) = (𝑦 + 1) ∧ 𝑛 ∈ 𝑣))) |
| 30 | opfi1uzind.step | . . . 4 ⊢ ((((𝑦 + 1) ∈ ℕ0 ∧ (〈𝑣, 𝑒〉 ∈ 𝐺 ∧ (♯‘𝑣) = (𝑦 + 1) ∧ 𝑛 ∈ 𝑣)) ∧ 𝜒) → 𝜓) | |
| 31 | 29, 30 | sylanb 581 | . . 3 ⊢ ((((𝑦 + 1) ∈ ℕ0 ∧ ([𝑣 / 𝑎][𝑒 / 𝑏]〈𝑎, 𝑏〉 ∈ 𝐺 ∧ (♯‘𝑣) = (𝑦 + 1) ∧ 𝑛 ∈ 𝑣)) ∧ 𝜒) → 𝜓) |
| 32 | 9, 10, 11, 12, 24, 25, 27, 31 | fi1uzind 14448 | . 2 ⊢ (([𝑉 / 𝑎][𝐸 / 𝑏]〈𝑎, 𝑏〉 ∈ 𝐺 ∧ 𝑉 ∈ Fin ∧ 𝐿 ≤ (♯‘𝑉)) → 𝜑) |
| 33 | 8, 32 | syld3an1 1412 | 1 ⊢ ((〈𝑉, 𝐸〉 ∈ 𝐺 ∧ 𝑉 ∈ Fin ∧ 𝐿 ≤ (♯‘𝑉)) → 𝜑) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 Vcvv 3444 [wsbc 3750 ∖ cdif 3908 {csn 4585 〈cop 4591 class class class wbr 5102 ‘cfv 6499 (class class class)co 7369 Fincfn 8895 1c1 11045 + caddc 11047 ≤ cle 11185 ℕ0cn0 12418 ♯chash 14271 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 ax-cnex 11100 ax-resscn 11101 ax-1cn 11102 ax-icn 11103 ax-addcl 11104 ax-addrcl 11105 ax-mulcl 11106 ax-mulrcl 11107 ax-mulcom 11108 ax-addass 11109 ax-mulass 11110 ax-distr 11111 ax-i2m1 11112 ax-1ne0 11113 ax-1rid 11114 ax-rnegex 11115 ax-rrecex 11116 ax-cnre 11117 ax-pre-lttri 11118 ax-pre-lttrn 11119 ax-pre-ltadd 11120 ax-pre-mulgt0 11121 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-reu 3352 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-pss 3931 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-int 4907 df-iun 4953 df-br 5103 df-opab 5165 df-mpt 5184 df-tr 5210 df-id 5526 df-eprel 5531 df-po 5539 df-so 5540 df-fr 5584 df-we 5586 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-pred 6262 df-ord 6323 df-on 6324 df-lim 6325 df-suc 6326 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-riota 7326 df-ov 7372 df-oprab 7373 df-mpo 7374 df-om 7823 df-1st 7947 df-2nd 7948 df-frecs 8237 df-wrecs 8268 df-recs 8317 df-rdg 8355 df-1o 8411 df-oadd 8415 df-er 8648 df-en 8896 df-dom 8897 df-sdom 8898 df-fin 8899 df-dju 9830 df-card 9868 df-pnf 11186 df-mnf 11187 df-xr 11188 df-ltxr 11189 df-le 11190 df-sub 11383 df-neg 11384 df-nn 12163 df-n0 12419 df-xnn0 12492 df-z 12506 df-uz 12770 df-fz 13445 df-hash 14272 |
| This theorem is referenced by: opfi1ind 14453 |
| Copyright terms: Public domain | W3C validator |