| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 01sqrexlem5 | Structured version Visualization version GIF version | ||
| Description: Lemma for 01sqrex 15215. (Contributed by Mario Carneiro, 10-Jul-2013.) |
| Ref | Expression |
|---|---|
| 01sqrexlem1.1 | ⊢ 𝑆 = {𝑥 ∈ ℝ+ ∣ (𝑥↑2) ≤ 𝐴} |
| 01sqrexlem1.2 | ⊢ 𝐵 = sup(𝑆, ℝ, < ) |
| 01sqrexlem5.3 | ⊢ 𝑇 = {𝑦 ∣ ∃𝑎 ∈ 𝑆 ∃𝑏 ∈ 𝑆 𝑦 = (𝑎 · 𝑏)} |
| Ref | Expression |
|---|---|
| 01sqrexlem5 | ⊢ ((𝐴 ∈ ℝ+ ∧ 𝐴 ≤ 1) → ((𝑇 ⊆ ℝ ∧ 𝑇 ≠ ∅ ∧ ∃𝑣 ∈ ℝ ∀𝑢 ∈ 𝑇 𝑢 ≤ 𝑣) ∧ (𝐵↑2) = sup(𝑇, ℝ, < ))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 01sqrexlem1.1 | . . . . . . 7 ⊢ 𝑆 = {𝑥 ∈ ℝ+ ∣ (𝑥↑2) ≤ 𝐴} | |
| 2 | 1 | ssrab3 4045 | . . . . . 6 ⊢ 𝑆 ⊆ ℝ+ |
| 3 | 2 | sseli 3942 | . . . . 5 ⊢ (𝑣 ∈ 𝑆 → 𝑣 ∈ ℝ+) |
| 4 | 3 | rpge0d 12999 | . . . 4 ⊢ (𝑣 ∈ 𝑆 → 0 ≤ 𝑣) |
| 5 | 4 | rgen 3046 | . . 3 ⊢ ∀𝑣 ∈ 𝑆 0 ≤ 𝑣 |
| 6 | 01sqrexlem1.2 | . . . 4 ⊢ 𝐵 = sup(𝑆, ℝ, < ) | |
| 7 | 1, 6 | 01sqrexlem3 15210 | . . 3 ⊢ ((𝐴 ∈ ℝ+ ∧ 𝐴 ≤ 1) → (𝑆 ⊆ ℝ ∧ 𝑆 ≠ ∅ ∧ ∃𝑣 ∈ ℝ ∀𝑧 ∈ 𝑆 𝑧 ≤ 𝑣)) |
| 8 | 01sqrexlem5.3 | . . . 4 ⊢ 𝑇 = {𝑦 ∣ ∃𝑎 ∈ 𝑆 ∃𝑏 ∈ 𝑆 𝑦 = (𝑎 · 𝑏)} | |
| 9 | pm4.24 563 | . . . . 5 ⊢ (∀𝑣 ∈ 𝑆 0 ≤ 𝑣 ↔ (∀𝑣 ∈ 𝑆 0 ≤ 𝑣 ∧ ∀𝑣 ∈ 𝑆 0 ≤ 𝑣)) | |
| 10 | 9 | 3anbi1i 1157 | . . . 4 ⊢ ((∀𝑣 ∈ 𝑆 0 ≤ 𝑣 ∧ (𝑆 ⊆ ℝ ∧ 𝑆 ≠ ∅ ∧ ∃𝑣 ∈ ℝ ∀𝑧 ∈ 𝑆 𝑧 ≤ 𝑣) ∧ (𝑆 ⊆ ℝ ∧ 𝑆 ≠ ∅ ∧ ∃𝑣 ∈ ℝ ∀𝑧 ∈ 𝑆 𝑧 ≤ 𝑣)) ↔ ((∀𝑣 ∈ 𝑆 0 ≤ 𝑣 ∧ ∀𝑣 ∈ 𝑆 0 ≤ 𝑣) ∧ (𝑆 ⊆ ℝ ∧ 𝑆 ≠ ∅ ∧ ∃𝑣 ∈ ℝ ∀𝑧 ∈ 𝑆 𝑧 ≤ 𝑣) ∧ (𝑆 ⊆ ℝ ∧ 𝑆 ≠ ∅ ∧ ∃𝑣 ∈ ℝ ∀𝑧 ∈ 𝑆 𝑧 ≤ 𝑣))) |
| 11 | 8, 10 | supmullem2 12154 | . . 3 ⊢ ((∀𝑣 ∈ 𝑆 0 ≤ 𝑣 ∧ (𝑆 ⊆ ℝ ∧ 𝑆 ≠ ∅ ∧ ∃𝑣 ∈ ℝ ∀𝑧 ∈ 𝑆 𝑧 ≤ 𝑣) ∧ (𝑆 ⊆ ℝ ∧ 𝑆 ≠ ∅ ∧ ∃𝑣 ∈ ℝ ∀𝑧 ∈ 𝑆 𝑧 ≤ 𝑣)) → (𝑇 ⊆ ℝ ∧ 𝑇 ≠ ∅ ∧ ∃𝑣 ∈ ℝ ∀𝑢 ∈ 𝑇 𝑢 ≤ 𝑣)) |
| 12 | 5, 7, 7, 11 | mp3an2i 1468 | . 2 ⊢ ((𝐴 ∈ ℝ+ ∧ 𝐴 ≤ 1) → (𝑇 ⊆ ℝ ∧ 𝑇 ≠ ∅ ∧ ∃𝑣 ∈ ℝ ∀𝑢 ∈ 𝑇 𝑢 ≤ 𝑣)) |
| 13 | 1, 6 | 01sqrexlem4 15211 | . . . . . 6 ⊢ ((𝐴 ∈ ℝ+ ∧ 𝐴 ≤ 1) → (𝐵 ∈ ℝ+ ∧ 𝐵 ≤ 1)) |
| 14 | rpre 12960 | . . . . . . 7 ⊢ (𝐵 ∈ ℝ+ → 𝐵 ∈ ℝ) | |
| 15 | 14 | adantr 480 | . . . . . 6 ⊢ ((𝐵 ∈ ℝ+ ∧ 𝐵 ≤ 1) → 𝐵 ∈ ℝ) |
| 16 | 13, 15 | syl 17 | . . . . 5 ⊢ ((𝐴 ∈ ℝ+ ∧ 𝐴 ≤ 1) → 𝐵 ∈ ℝ) |
| 17 | 16 | recnd 11202 | . . . 4 ⊢ ((𝐴 ∈ ℝ+ ∧ 𝐴 ≤ 1) → 𝐵 ∈ ℂ) |
| 18 | 17 | sqvald 14108 | . . 3 ⊢ ((𝐴 ∈ ℝ+ ∧ 𝐴 ≤ 1) → (𝐵↑2) = (𝐵 · 𝐵)) |
| 19 | 6, 6 | oveq12i 7399 | . . . 4 ⊢ (𝐵 · 𝐵) = (sup(𝑆, ℝ, < ) · sup(𝑆, ℝ, < )) |
| 20 | 8, 10 | supmul 12155 | . . . . 5 ⊢ ((∀𝑣 ∈ 𝑆 0 ≤ 𝑣 ∧ (𝑆 ⊆ ℝ ∧ 𝑆 ≠ ∅ ∧ ∃𝑣 ∈ ℝ ∀𝑧 ∈ 𝑆 𝑧 ≤ 𝑣) ∧ (𝑆 ⊆ ℝ ∧ 𝑆 ≠ ∅ ∧ ∃𝑣 ∈ ℝ ∀𝑧 ∈ 𝑆 𝑧 ≤ 𝑣)) → (sup(𝑆, ℝ, < ) · sup(𝑆, ℝ, < )) = sup(𝑇, ℝ, < )) |
| 21 | 5, 7, 7, 20 | mp3an2i 1468 | . . . 4 ⊢ ((𝐴 ∈ ℝ+ ∧ 𝐴 ≤ 1) → (sup(𝑆, ℝ, < ) · sup(𝑆, ℝ, < )) = sup(𝑇, ℝ, < )) |
| 22 | 19, 21 | eqtrid 2776 | . . 3 ⊢ ((𝐴 ∈ ℝ+ ∧ 𝐴 ≤ 1) → (𝐵 · 𝐵) = sup(𝑇, ℝ, < )) |
| 23 | 18, 22 | eqtrd 2764 | . 2 ⊢ ((𝐴 ∈ ℝ+ ∧ 𝐴 ≤ 1) → (𝐵↑2) = sup(𝑇, ℝ, < )) |
| 24 | 12, 23 | jca 511 | 1 ⊢ ((𝐴 ∈ ℝ+ ∧ 𝐴 ≤ 1) → ((𝑇 ⊆ ℝ ∧ 𝑇 ≠ ∅ ∧ ∃𝑣 ∈ ℝ ∀𝑢 ∈ 𝑇 𝑢 ≤ 𝑣) ∧ (𝐵↑2) = sup(𝑇, ℝ, < ))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 {cab 2707 ≠ wne 2925 ∀wral 3044 ∃wrex 3053 {crab 3405 ⊆ wss 3914 ∅c0 4296 class class class wbr 5107 (class class class)co 7387 supcsup 9391 ℝcr 11067 0cc0 11068 1c1 11069 · cmul 11073 < clt 11208 ≤ cle 11209 2c2 12241 ℝ+crp 12951 ↑cexp 14026 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 ax-cnex 11124 ax-resscn 11125 ax-1cn 11126 ax-icn 11127 ax-addcl 11128 ax-addrcl 11129 ax-mulcl 11130 ax-mulrcl 11131 ax-mulcom 11132 ax-addass 11133 ax-mulass 11134 ax-distr 11135 ax-i2m1 11136 ax-1ne0 11137 ax-1rid 11138 ax-rnegex 11139 ax-rrecex 11140 ax-cnre 11141 ax-pre-lttri 11142 ax-pre-lttrn 11143 ax-pre-ltadd 11144 ax-pre-mulgt0 11145 ax-pre-sup 11146 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3354 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3934 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-tr 5215 df-id 5533 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5591 df-we 5593 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-pred 6274 df-ord 6335 df-on 6336 df-lim 6337 df-suc 6338 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-riota 7344 df-ov 7390 df-oprab 7391 df-mpo 7392 df-om 7843 df-2nd 7969 df-frecs 8260 df-wrecs 8291 df-recs 8340 df-rdg 8378 df-er 8671 df-en 8919 df-dom 8920 df-sdom 8921 df-sup 9393 df-pnf 11210 df-mnf 11211 df-xr 11212 df-ltxr 11213 df-le 11214 df-sub 11407 df-neg 11408 df-div 11836 df-nn 12187 df-2 12249 df-n0 12443 df-z 12530 df-uz 12794 df-rp 12952 df-seq 13967 df-exp 14027 |
| This theorem is referenced by: 01sqrexlem6 15213 |
| Copyright terms: Public domain | W3C validator |