![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 01sqrexlem5 | Structured version Visualization version GIF version |
Description: Lemma for 01sqrex 15285. (Contributed by Mario Carneiro, 10-Jul-2013.) |
Ref | Expression |
---|---|
01sqrexlem1.1 | ⊢ 𝑆 = {𝑥 ∈ ℝ+ ∣ (𝑥↑2) ≤ 𝐴} |
01sqrexlem1.2 | ⊢ 𝐵 = sup(𝑆, ℝ, < ) |
01sqrexlem5.3 | ⊢ 𝑇 = {𝑦 ∣ ∃𝑎 ∈ 𝑆 ∃𝑏 ∈ 𝑆 𝑦 = (𝑎 · 𝑏)} |
Ref | Expression |
---|---|
01sqrexlem5 | ⊢ ((𝐴 ∈ ℝ+ ∧ 𝐴 ≤ 1) → ((𝑇 ⊆ ℝ ∧ 𝑇 ≠ ∅ ∧ ∃𝑣 ∈ ℝ ∀𝑢 ∈ 𝑇 𝑢 ≤ 𝑣) ∧ (𝐵↑2) = sup(𝑇, ℝ, < ))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 01sqrexlem1.1 | . . . . . . 7 ⊢ 𝑆 = {𝑥 ∈ ℝ+ ∣ (𝑥↑2) ≤ 𝐴} | |
2 | 1 | ssrab3 4092 | . . . . . 6 ⊢ 𝑆 ⊆ ℝ+ |
3 | 2 | sseli 3991 | . . . . 5 ⊢ (𝑣 ∈ 𝑆 → 𝑣 ∈ ℝ+) |
4 | 3 | rpge0d 13079 | . . . 4 ⊢ (𝑣 ∈ 𝑆 → 0 ≤ 𝑣) |
5 | 4 | rgen 3061 | . . 3 ⊢ ∀𝑣 ∈ 𝑆 0 ≤ 𝑣 |
6 | 01sqrexlem1.2 | . . . 4 ⊢ 𝐵 = sup(𝑆, ℝ, < ) | |
7 | 1, 6 | 01sqrexlem3 15280 | . . 3 ⊢ ((𝐴 ∈ ℝ+ ∧ 𝐴 ≤ 1) → (𝑆 ⊆ ℝ ∧ 𝑆 ≠ ∅ ∧ ∃𝑣 ∈ ℝ ∀𝑧 ∈ 𝑆 𝑧 ≤ 𝑣)) |
8 | 01sqrexlem5.3 | . . . 4 ⊢ 𝑇 = {𝑦 ∣ ∃𝑎 ∈ 𝑆 ∃𝑏 ∈ 𝑆 𝑦 = (𝑎 · 𝑏)} | |
9 | pm4.24 563 | . . . . 5 ⊢ (∀𝑣 ∈ 𝑆 0 ≤ 𝑣 ↔ (∀𝑣 ∈ 𝑆 0 ≤ 𝑣 ∧ ∀𝑣 ∈ 𝑆 0 ≤ 𝑣)) | |
10 | 9 | 3anbi1i 1156 | . . . 4 ⊢ ((∀𝑣 ∈ 𝑆 0 ≤ 𝑣 ∧ (𝑆 ⊆ ℝ ∧ 𝑆 ≠ ∅ ∧ ∃𝑣 ∈ ℝ ∀𝑧 ∈ 𝑆 𝑧 ≤ 𝑣) ∧ (𝑆 ⊆ ℝ ∧ 𝑆 ≠ ∅ ∧ ∃𝑣 ∈ ℝ ∀𝑧 ∈ 𝑆 𝑧 ≤ 𝑣)) ↔ ((∀𝑣 ∈ 𝑆 0 ≤ 𝑣 ∧ ∀𝑣 ∈ 𝑆 0 ≤ 𝑣) ∧ (𝑆 ⊆ ℝ ∧ 𝑆 ≠ ∅ ∧ ∃𝑣 ∈ ℝ ∀𝑧 ∈ 𝑆 𝑧 ≤ 𝑣) ∧ (𝑆 ⊆ ℝ ∧ 𝑆 ≠ ∅ ∧ ∃𝑣 ∈ ℝ ∀𝑧 ∈ 𝑆 𝑧 ≤ 𝑣))) |
11 | 8, 10 | supmullem2 12237 | . . 3 ⊢ ((∀𝑣 ∈ 𝑆 0 ≤ 𝑣 ∧ (𝑆 ⊆ ℝ ∧ 𝑆 ≠ ∅ ∧ ∃𝑣 ∈ ℝ ∀𝑧 ∈ 𝑆 𝑧 ≤ 𝑣) ∧ (𝑆 ⊆ ℝ ∧ 𝑆 ≠ ∅ ∧ ∃𝑣 ∈ ℝ ∀𝑧 ∈ 𝑆 𝑧 ≤ 𝑣)) → (𝑇 ⊆ ℝ ∧ 𝑇 ≠ ∅ ∧ ∃𝑣 ∈ ℝ ∀𝑢 ∈ 𝑇 𝑢 ≤ 𝑣)) |
12 | 5, 7, 7, 11 | mp3an2i 1465 | . 2 ⊢ ((𝐴 ∈ ℝ+ ∧ 𝐴 ≤ 1) → (𝑇 ⊆ ℝ ∧ 𝑇 ≠ ∅ ∧ ∃𝑣 ∈ ℝ ∀𝑢 ∈ 𝑇 𝑢 ≤ 𝑣)) |
13 | 1, 6 | 01sqrexlem4 15281 | . . . . . 6 ⊢ ((𝐴 ∈ ℝ+ ∧ 𝐴 ≤ 1) → (𝐵 ∈ ℝ+ ∧ 𝐵 ≤ 1)) |
14 | rpre 13041 | . . . . . . 7 ⊢ (𝐵 ∈ ℝ+ → 𝐵 ∈ ℝ) | |
15 | 14 | adantr 480 | . . . . . 6 ⊢ ((𝐵 ∈ ℝ+ ∧ 𝐵 ≤ 1) → 𝐵 ∈ ℝ) |
16 | 13, 15 | syl 17 | . . . . 5 ⊢ ((𝐴 ∈ ℝ+ ∧ 𝐴 ≤ 1) → 𝐵 ∈ ℝ) |
17 | 16 | recnd 11287 | . . . 4 ⊢ ((𝐴 ∈ ℝ+ ∧ 𝐴 ≤ 1) → 𝐵 ∈ ℂ) |
18 | 17 | sqvald 14180 | . . 3 ⊢ ((𝐴 ∈ ℝ+ ∧ 𝐴 ≤ 1) → (𝐵↑2) = (𝐵 · 𝐵)) |
19 | 6, 6 | oveq12i 7443 | . . . 4 ⊢ (𝐵 · 𝐵) = (sup(𝑆, ℝ, < ) · sup(𝑆, ℝ, < )) |
20 | 8, 10 | supmul 12238 | . . . . 5 ⊢ ((∀𝑣 ∈ 𝑆 0 ≤ 𝑣 ∧ (𝑆 ⊆ ℝ ∧ 𝑆 ≠ ∅ ∧ ∃𝑣 ∈ ℝ ∀𝑧 ∈ 𝑆 𝑧 ≤ 𝑣) ∧ (𝑆 ⊆ ℝ ∧ 𝑆 ≠ ∅ ∧ ∃𝑣 ∈ ℝ ∀𝑧 ∈ 𝑆 𝑧 ≤ 𝑣)) → (sup(𝑆, ℝ, < ) · sup(𝑆, ℝ, < )) = sup(𝑇, ℝ, < )) |
21 | 5, 7, 7, 20 | mp3an2i 1465 | . . . 4 ⊢ ((𝐴 ∈ ℝ+ ∧ 𝐴 ≤ 1) → (sup(𝑆, ℝ, < ) · sup(𝑆, ℝ, < )) = sup(𝑇, ℝ, < )) |
22 | 19, 21 | eqtrid 2787 | . . 3 ⊢ ((𝐴 ∈ ℝ+ ∧ 𝐴 ≤ 1) → (𝐵 · 𝐵) = sup(𝑇, ℝ, < )) |
23 | 18, 22 | eqtrd 2775 | . 2 ⊢ ((𝐴 ∈ ℝ+ ∧ 𝐴 ≤ 1) → (𝐵↑2) = sup(𝑇, ℝ, < )) |
24 | 12, 23 | jca 511 | 1 ⊢ ((𝐴 ∈ ℝ+ ∧ 𝐴 ≤ 1) → ((𝑇 ⊆ ℝ ∧ 𝑇 ≠ ∅ ∧ ∃𝑣 ∈ ℝ ∀𝑢 ∈ 𝑇 𝑢 ≤ 𝑣) ∧ (𝐵↑2) = sup(𝑇, ℝ, < ))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1537 ∈ wcel 2106 {cab 2712 ≠ wne 2938 ∀wral 3059 ∃wrex 3068 {crab 3433 ⊆ wss 3963 ∅c0 4339 class class class wbr 5148 (class class class)co 7431 supcsup 9478 ℝcr 11152 0cc0 11153 1c1 11154 · cmul 11158 < clt 11293 ≤ cle 11294 2c2 12319 ℝ+crp 13032 ↑cexp 14099 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-sep 5302 ax-nul 5312 ax-pow 5371 ax-pr 5438 ax-un 7754 ax-cnex 11209 ax-resscn 11210 ax-1cn 11211 ax-icn 11212 ax-addcl 11213 ax-addrcl 11214 ax-mulcl 11215 ax-mulrcl 11216 ax-mulcom 11217 ax-addass 11218 ax-mulass 11219 ax-distr 11220 ax-i2m1 11221 ax-1ne0 11222 ax-1rid 11223 ax-rnegex 11224 ax-rrecex 11225 ax-cnre 11226 ax-pre-lttri 11227 ax-pre-lttrn 11228 ax-pre-ltadd 11229 ax-pre-mulgt0 11230 ax-pre-sup 11231 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ne 2939 df-nel 3045 df-ral 3060 df-rex 3069 df-rmo 3378 df-reu 3379 df-rab 3434 df-v 3480 df-sbc 3792 df-csb 3909 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-pss 3983 df-nul 4340 df-if 4532 df-pw 4607 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-iun 4998 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5583 df-eprel 5589 df-po 5597 df-so 5598 df-fr 5641 df-we 5643 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-rn 5700 df-res 5701 df-ima 5702 df-pred 6323 df-ord 6389 df-on 6390 df-lim 6391 df-suc 6392 df-iota 6516 df-fun 6565 df-fn 6566 df-f 6567 df-f1 6568 df-fo 6569 df-f1o 6570 df-fv 6571 df-riota 7388 df-ov 7434 df-oprab 7435 df-mpo 7436 df-om 7888 df-2nd 8014 df-frecs 8305 df-wrecs 8336 df-recs 8410 df-rdg 8449 df-er 8744 df-en 8985 df-dom 8986 df-sdom 8987 df-sup 9480 df-pnf 11295 df-mnf 11296 df-xr 11297 df-ltxr 11298 df-le 11299 df-sub 11492 df-neg 11493 df-div 11919 df-nn 12265 df-2 12327 df-n0 12525 df-z 12612 df-uz 12877 df-rp 13033 df-seq 14040 df-exp 14100 |
This theorem is referenced by: 01sqrexlem6 15283 |
Copyright terms: Public domain | W3C validator |