MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  01sqrexlem5 Structured version   Visualization version   GIF version

Theorem 01sqrexlem5 15157
Description: Lemma for 01sqrex 15160. (Contributed by Mario Carneiro, 10-Jul-2013.)
Hypotheses
Ref Expression
01sqrexlem1.1 𝑆 = {𝑥 ∈ ℝ+ ∣ (𝑥↑2) ≤ 𝐴}
01sqrexlem1.2 𝐵 = sup(𝑆, ℝ, < )
01sqrexlem5.3 𝑇 = {𝑦 ∣ ∃𝑎𝑆𝑏𝑆 𝑦 = (𝑎 · 𝑏)}
Assertion
Ref Expression
01sqrexlem5 ((𝐴 ∈ ℝ+𝐴 ≤ 1) → ((𝑇 ⊆ ℝ ∧ 𝑇 ≠ ∅ ∧ ∃𝑣 ∈ ℝ ∀𝑢𝑇 𝑢𝑣) ∧ (𝐵↑2) = sup(𝑇, ℝ, < )))
Distinct variable groups:   𝑎,𝑏,𝑢,𝑣,𝑦,𝑆   𝑥,𝑎,𝐴,𝑏,𝑣,𝑦   𝑣,𝐵,𝑦   𝑢,𝑇,𝑣
Allowed substitution hints:   𝐴(𝑢)   𝐵(𝑥,𝑢,𝑎,𝑏)   𝑆(𝑥)   𝑇(𝑥,𝑦,𝑎,𝑏)

Proof of Theorem 01sqrexlem5
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 01sqrexlem1.1 . . . . . . 7 𝑆 = {𝑥 ∈ ℝ+ ∣ (𝑥↑2) ≤ 𝐴}
21ssrab3 4031 . . . . . 6 𝑆 ⊆ ℝ+
32sseli 3926 . . . . 5 (𝑣𝑆𝑣 ∈ ℝ+)
43rpge0d 12942 . . . 4 (𝑣𝑆 → 0 ≤ 𝑣)
54rgen 3050 . . 3 𝑣𝑆 0 ≤ 𝑣
6 01sqrexlem1.2 . . . 4 𝐵 = sup(𝑆, ℝ, < )
71, 601sqrexlem3 15155 . . 3 ((𝐴 ∈ ℝ+𝐴 ≤ 1) → (𝑆 ⊆ ℝ ∧ 𝑆 ≠ ∅ ∧ ∃𝑣 ∈ ℝ ∀𝑧𝑆 𝑧𝑣))
8 01sqrexlem5.3 . . . 4 𝑇 = {𝑦 ∣ ∃𝑎𝑆𝑏𝑆 𝑦 = (𝑎 · 𝑏)}
9 pm4.24 563 . . . . 5 (∀𝑣𝑆 0 ≤ 𝑣 ↔ (∀𝑣𝑆 0 ≤ 𝑣 ∧ ∀𝑣𝑆 0 ≤ 𝑣))
1093anbi1i 1157 . . . 4 ((∀𝑣𝑆 0 ≤ 𝑣 ∧ (𝑆 ⊆ ℝ ∧ 𝑆 ≠ ∅ ∧ ∃𝑣 ∈ ℝ ∀𝑧𝑆 𝑧𝑣) ∧ (𝑆 ⊆ ℝ ∧ 𝑆 ≠ ∅ ∧ ∃𝑣 ∈ ℝ ∀𝑧𝑆 𝑧𝑣)) ↔ ((∀𝑣𝑆 0 ≤ 𝑣 ∧ ∀𝑣𝑆 0 ≤ 𝑣) ∧ (𝑆 ⊆ ℝ ∧ 𝑆 ≠ ∅ ∧ ∃𝑣 ∈ ℝ ∀𝑧𝑆 𝑧𝑣) ∧ (𝑆 ⊆ ℝ ∧ 𝑆 ≠ ∅ ∧ ∃𝑣 ∈ ℝ ∀𝑧𝑆 𝑧𝑣)))
118, 10supmullem2 12102 . . 3 ((∀𝑣𝑆 0 ≤ 𝑣 ∧ (𝑆 ⊆ ℝ ∧ 𝑆 ≠ ∅ ∧ ∃𝑣 ∈ ℝ ∀𝑧𝑆 𝑧𝑣) ∧ (𝑆 ⊆ ℝ ∧ 𝑆 ≠ ∅ ∧ ∃𝑣 ∈ ℝ ∀𝑧𝑆 𝑧𝑣)) → (𝑇 ⊆ ℝ ∧ 𝑇 ≠ ∅ ∧ ∃𝑣 ∈ ℝ ∀𝑢𝑇 𝑢𝑣))
125, 7, 7, 11mp3an2i 1468 . 2 ((𝐴 ∈ ℝ+𝐴 ≤ 1) → (𝑇 ⊆ ℝ ∧ 𝑇 ≠ ∅ ∧ ∃𝑣 ∈ ℝ ∀𝑢𝑇 𝑢𝑣))
131, 601sqrexlem4 15156 . . . . . 6 ((𝐴 ∈ ℝ+𝐴 ≤ 1) → (𝐵 ∈ ℝ+𝐵 ≤ 1))
14 rpre 12903 . . . . . . 7 (𝐵 ∈ ℝ+𝐵 ∈ ℝ)
1514adantr 480 . . . . . 6 ((𝐵 ∈ ℝ+𝐵 ≤ 1) → 𝐵 ∈ ℝ)
1613, 15syl 17 . . . . 5 ((𝐴 ∈ ℝ+𝐴 ≤ 1) → 𝐵 ∈ ℝ)
1716recnd 11149 . . . 4 ((𝐴 ∈ ℝ+𝐴 ≤ 1) → 𝐵 ∈ ℂ)
1817sqvald 14054 . . 3 ((𝐴 ∈ ℝ+𝐴 ≤ 1) → (𝐵↑2) = (𝐵 · 𝐵))
196, 6oveq12i 7366 . . . 4 (𝐵 · 𝐵) = (sup(𝑆, ℝ, < ) · sup(𝑆, ℝ, < ))
208, 10supmul 12103 . . . . 5 ((∀𝑣𝑆 0 ≤ 𝑣 ∧ (𝑆 ⊆ ℝ ∧ 𝑆 ≠ ∅ ∧ ∃𝑣 ∈ ℝ ∀𝑧𝑆 𝑧𝑣) ∧ (𝑆 ⊆ ℝ ∧ 𝑆 ≠ ∅ ∧ ∃𝑣 ∈ ℝ ∀𝑧𝑆 𝑧𝑣)) → (sup(𝑆, ℝ, < ) · sup(𝑆, ℝ, < )) = sup(𝑇, ℝ, < ))
215, 7, 7, 20mp3an2i 1468 . . . 4 ((𝐴 ∈ ℝ+𝐴 ≤ 1) → (sup(𝑆, ℝ, < ) · sup(𝑆, ℝ, < )) = sup(𝑇, ℝ, < ))
2219, 21eqtrid 2780 . . 3 ((𝐴 ∈ ℝ+𝐴 ≤ 1) → (𝐵 · 𝐵) = sup(𝑇, ℝ, < ))
2318, 22eqtrd 2768 . 2 ((𝐴 ∈ ℝ+𝐴 ≤ 1) → (𝐵↑2) = sup(𝑇, ℝ, < ))
2412, 23jca 511 1 ((𝐴 ∈ ℝ+𝐴 ≤ 1) → ((𝑇 ⊆ ℝ ∧ 𝑇 ≠ ∅ ∧ ∃𝑣 ∈ ℝ ∀𝑢𝑇 𝑢𝑣) ∧ (𝐵↑2) = sup(𝑇, ℝ, < )))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1541  wcel 2113  {cab 2711  wne 2929  wral 3048  wrex 3057  {crab 3396  wss 3898  c0 4282   class class class wbr 5095  (class class class)co 7354  supcsup 9333  cr 11014  0cc0 11015  1c1 11016   · cmul 11020   < clt 11155  cle 11156  2c2 12189  +crp 12894  cexp 13972
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7676  ax-cnex 11071  ax-resscn 11072  ax-1cn 11073  ax-icn 11074  ax-addcl 11075  ax-addrcl 11076  ax-mulcl 11077  ax-mulrcl 11078  ax-mulcom 11079  ax-addass 11080  ax-mulass 11081  ax-distr 11082  ax-i2m1 11083  ax-1ne0 11084  ax-1rid 11085  ax-rnegex 11086  ax-rrecex 11087  ax-cnre 11088  ax-pre-lttri 11089  ax-pre-lttrn 11090  ax-pre-ltadd 11091  ax-pre-mulgt0 11092  ax-pre-sup 11093
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-nel 3034  df-ral 3049  df-rex 3058  df-rmo 3347  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-pss 3918  df-nul 4283  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4861  df-iun 4945  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5516  df-eprel 5521  df-po 5529  df-so 5530  df-fr 5574  df-we 5576  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-rn 5632  df-res 5633  df-ima 5634  df-pred 6255  df-ord 6316  df-on 6317  df-lim 6318  df-suc 6319  df-iota 6444  df-fun 6490  df-fn 6491  df-f 6492  df-f1 6493  df-fo 6494  df-f1o 6495  df-fv 6496  df-riota 7311  df-ov 7357  df-oprab 7358  df-mpo 7359  df-om 7805  df-2nd 7930  df-frecs 8219  df-wrecs 8250  df-recs 8299  df-rdg 8337  df-er 8630  df-en 8878  df-dom 8879  df-sdom 8880  df-sup 9335  df-pnf 11157  df-mnf 11158  df-xr 11159  df-ltxr 11160  df-le 11161  df-sub 11355  df-neg 11356  df-div 11784  df-nn 12135  df-2 12197  df-n0 12391  df-z 12478  df-uz 12741  df-rp 12895  df-seq 13913  df-exp 13973
This theorem is referenced by:  01sqrexlem6  15158
  Copyright terms: Public domain W3C validator