Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mapfzcons Structured version   Visualization version   GIF version

Theorem mapfzcons 40538
Description: Extending a one-based mapping by adding a tuple at the end results in another mapping. (Contributed by Stefan O'Rear, 10-Oct-2014.) (Revised by Stefan O'Rear, 5-May-2015.)
Hypothesis
Ref Expression
mapfzcons.1 𝑀 = (𝑁 + 1)
Assertion
Ref Expression
mapfzcons ((𝑁 ∈ ℕ0𝐴 ∈ (𝐵m (1...𝑁)) ∧ 𝐶𝐵) → (𝐴 ∪ {⟨𝑀, 𝐶⟩}) ∈ (𝐵m (1...𝑀)))

Proof of Theorem mapfzcons
StepHypRef Expression
1 simp2 1136 . . . . . 6 ((𝑁 ∈ ℕ0𝐴 ∈ (𝐵m (1...𝑁)) ∧ 𝐶𝐵) → 𝐴 ∈ (𝐵m (1...𝑁)))
2 elmapex 8636 . . . . . . . . 9 (𝐴 ∈ (𝐵m (1...𝑁)) → (𝐵 ∈ V ∧ (1...𝑁) ∈ V))
32simpld 495 . . . . . . . 8 (𝐴 ∈ (𝐵m (1...𝑁)) → 𝐵 ∈ V)
433ad2ant2 1133 . . . . . . 7 ((𝑁 ∈ ℕ0𝐴 ∈ (𝐵m (1...𝑁)) ∧ 𝐶𝐵) → 𝐵 ∈ V)
5 ovex 7308 . . . . . . 7 (1...𝑁) ∈ V
6 elmapg 8628 . . . . . . 7 ((𝐵 ∈ V ∧ (1...𝑁) ∈ V) → (𝐴 ∈ (𝐵m (1...𝑁)) ↔ 𝐴:(1...𝑁)⟶𝐵))
74, 5, 6sylancl 586 . . . . . 6 ((𝑁 ∈ ℕ0𝐴 ∈ (𝐵m (1...𝑁)) ∧ 𝐶𝐵) → (𝐴 ∈ (𝐵m (1...𝑁)) ↔ 𝐴:(1...𝑁)⟶𝐵))
81, 7mpbid 231 . . . . 5 ((𝑁 ∈ ℕ0𝐴 ∈ (𝐵m (1...𝑁)) ∧ 𝐶𝐵) → 𝐴:(1...𝑁)⟶𝐵)
9 ovex 7308 . . . . . . . 8 (𝑁 + 1) ∈ V
10 simp3 1137 . . . . . . . 8 ((𝑁 ∈ ℕ0𝐴 ∈ (𝐵m (1...𝑁)) ∧ 𝐶𝐵) → 𝐶𝐵)
11 f1osng 6757 . . . . . . . 8 (((𝑁 + 1) ∈ V ∧ 𝐶𝐵) → {⟨(𝑁 + 1), 𝐶⟩}:{(𝑁 + 1)}–1-1-onto→{𝐶})
129, 10, 11sylancr 587 . . . . . . 7 ((𝑁 ∈ ℕ0𝐴 ∈ (𝐵m (1...𝑁)) ∧ 𝐶𝐵) → {⟨(𝑁 + 1), 𝐶⟩}:{(𝑁 + 1)}–1-1-onto→{𝐶})
13 f1of 6716 . . . . . . 7 ({⟨(𝑁 + 1), 𝐶⟩}:{(𝑁 + 1)}–1-1-onto→{𝐶} → {⟨(𝑁 + 1), 𝐶⟩}:{(𝑁 + 1)}⟶{𝐶})
1412, 13syl 17 . . . . . 6 ((𝑁 ∈ ℕ0𝐴 ∈ (𝐵m (1...𝑁)) ∧ 𝐶𝐵) → {⟨(𝑁 + 1), 𝐶⟩}:{(𝑁 + 1)}⟶{𝐶})
15 snssi 4741 . . . . . . 7 (𝐶𝐵 → {𝐶} ⊆ 𝐵)
16153ad2ant3 1134 . . . . . 6 ((𝑁 ∈ ℕ0𝐴 ∈ (𝐵m (1...𝑁)) ∧ 𝐶𝐵) → {𝐶} ⊆ 𝐵)
1714, 16fssd 6618 . . . . 5 ((𝑁 ∈ ℕ0𝐴 ∈ (𝐵m (1...𝑁)) ∧ 𝐶𝐵) → {⟨(𝑁 + 1), 𝐶⟩}:{(𝑁 + 1)}⟶𝐵)
18 fzp1disj 13315 . . . . . 6 ((1...𝑁) ∩ {(𝑁 + 1)}) = ∅
1918a1i 11 . . . . 5 ((𝑁 ∈ ℕ0𝐴 ∈ (𝐵m (1...𝑁)) ∧ 𝐶𝐵) → ((1...𝑁) ∩ {(𝑁 + 1)}) = ∅)
20 fun 6636 . . . . 5 (((𝐴:(1...𝑁)⟶𝐵 ∧ {⟨(𝑁 + 1), 𝐶⟩}:{(𝑁 + 1)}⟶𝐵) ∧ ((1...𝑁) ∩ {(𝑁 + 1)}) = ∅) → (𝐴 ∪ {⟨(𝑁 + 1), 𝐶⟩}):((1...𝑁) ∪ {(𝑁 + 1)})⟶(𝐵𝐵))
218, 17, 19, 20syl21anc 835 . . . 4 ((𝑁 ∈ ℕ0𝐴 ∈ (𝐵m (1...𝑁)) ∧ 𝐶𝐵) → (𝐴 ∪ {⟨(𝑁 + 1), 𝐶⟩}):((1...𝑁) ∪ {(𝑁 + 1)})⟶(𝐵𝐵))
22 1z 12350 . . . . . . 7 1 ∈ ℤ
23 simp1 1135 . . . . . . . 8 ((𝑁 ∈ ℕ0𝐴 ∈ (𝐵m (1...𝑁)) ∧ 𝐶𝐵) → 𝑁 ∈ ℕ0)
24 nn0uz 12620 . . . . . . . . 9 0 = (ℤ‘0)
25 1m1e0 12045 . . . . . . . . . 10 (1 − 1) = 0
2625fveq2i 6777 . . . . . . . . 9 (ℤ‘(1 − 1)) = (ℤ‘0)
2724, 26eqtr4i 2769 . . . . . . . 8 0 = (ℤ‘(1 − 1))
2823, 27eleqtrdi 2849 . . . . . . 7 ((𝑁 ∈ ℕ0𝐴 ∈ (𝐵m (1...𝑁)) ∧ 𝐶𝐵) → 𝑁 ∈ (ℤ‘(1 − 1)))
29 fzsuc2 13314 . . . . . . 7 ((1 ∈ ℤ ∧ 𝑁 ∈ (ℤ‘(1 − 1))) → (1...(𝑁 + 1)) = ((1...𝑁) ∪ {(𝑁 + 1)}))
3022, 28, 29sylancr 587 . . . . . 6 ((𝑁 ∈ ℕ0𝐴 ∈ (𝐵m (1...𝑁)) ∧ 𝐶𝐵) → (1...(𝑁 + 1)) = ((1...𝑁) ∪ {(𝑁 + 1)}))
3130eqcomd 2744 . . . . 5 ((𝑁 ∈ ℕ0𝐴 ∈ (𝐵m (1...𝑁)) ∧ 𝐶𝐵) → ((1...𝑁) ∪ {(𝑁 + 1)}) = (1...(𝑁 + 1)))
32 unidm 4086 . . . . . 6 (𝐵𝐵) = 𝐵
3332a1i 11 . . . . 5 ((𝑁 ∈ ℕ0𝐴 ∈ (𝐵m (1...𝑁)) ∧ 𝐶𝐵) → (𝐵𝐵) = 𝐵)
3431, 33feq23d 6595 . . . 4 ((𝑁 ∈ ℕ0𝐴 ∈ (𝐵m (1...𝑁)) ∧ 𝐶𝐵) → ((𝐴 ∪ {⟨(𝑁 + 1), 𝐶⟩}):((1...𝑁) ∪ {(𝑁 + 1)})⟶(𝐵𝐵) ↔ (𝐴 ∪ {⟨(𝑁 + 1), 𝐶⟩}):(1...(𝑁 + 1))⟶𝐵))
3521, 34mpbid 231 . . 3 ((𝑁 ∈ ℕ0𝐴 ∈ (𝐵m (1...𝑁)) ∧ 𝐶𝐵) → (𝐴 ∪ {⟨(𝑁 + 1), 𝐶⟩}):(1...(𝑁 + 1))⟶𝐵)
36 ovex 7308 . . . 4 (1...(𝑁 + 1)) ∈ V
37 elmapg 8628 . . . 4 ((𝐵 ∈ V ∧ (1...(𝑁 + 1)) ∈ V) → ((𝐴 ∪ {⟨(𝑁 + 1), 𝐶⟩}) ∈ (𝐵m (1...(𝑁 + 1))) ↔ (𝐴 ∪ {⟨(𝑁 + 1), 𝐶⟩}):(1...(𝑁 + 1))⟶𝐵))
384, 36, 37sylancl 586 . . 3 ((𝑁 ∈ ℕ0𝐴 ∈ (𝐵m (1...𝑁)) ∧ 𝐶𝐵) → ((𝐴 ∪ {⟨(𝑁 + 1), 𝐶⟩}) ∈ (𝐵m (1...(𝑁 + 1))) ↔ (𝐴 ∪ {⟨(𝑁 + 1), 𝐶⟩}):(1...(𝑁 + 1))⟶𝐵))
3935, 38mpbird 256 . 2 ((𝑁 ∈ ℕ0𝐴 ∈ (𝐵m (1...𝑁)) ∧ 𝐶𝐵) → (𝐴 ∪ {⟨(𝑁 + 1), 𝐶⟩}) ∈ (𝐵m (1...(𝑁 + 1))))
40 mapfzcons.1 . . . . 5 𝑀 = (𝑁 + 1)
4140opeq1i 4807 . . . 4 𝑀, 𝐶⟩ = ⟨(𝑁 + 1), 𝐶
4241sneqi 4572 . . 3 {⟨𝑀, 𝐶⟩} = {⟨(𝑁 + 1), 𝐶⟩}
4342uneq2i 4094 . 2 (𝐴 ∪ {⟨𝑀, 𝐶⟩}) = (𝐴 ∪ {⟨(𝑁 + 1), 𝐶⟩})
4440oveq2i 7286 . . 3 (1...𝑀) = (1...(𝑁 + 1))
4544oveq2i 7286 . 2 (𝐵m (1...𝑀)) = (𝐵m (1...(𝑁 + 1)))
4639, 43, 453eltr4g 2856 1 ((𝑁 ∈ ℕ0𝐴 ∈ (𝐵m (1...𝑁)) ∧ 𝐶𝐵) → (𝐴 ∪ {⟨𝑀, 𝐶⟩}) ∈ (𝐵m (1...𝑀)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  w3a 1086   = wceq 1539  wcel 2106  Vcvv 3432  cun 3885  cin 3886  wss 3887  c0 4256  {csn 4561  cop 4567  wf 6429  1-1-ontowf1o 6432  cfv 6433  (class class class)co 7275  m cmap 8615  0cc0 10871  1c1 10872   + caddc 10874  cmin 11205  0cn0 12233  cz 12319  cuz 12582  ...cfz 13239
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-om 7713  df-1st 7831  df-2nd 7832  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-er 8498  df-map 8617  df-en 8734  df-dom 8735  df-sdom 8736  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-nn 11974  df-n0 12234  df-z 12320  df-uz 12583  df-fz 13240
This theorem is referenced by:  rexrabdioph  40616
  Copyright terms: Public domain W3C validator