Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mapfzcons Structured version   Visualization version   GIF version

Theorem mapfzcons 41536
Description: Extending a one-based mapping by adding a tuple at the end results in another mapping. (Contributed by Stefan O'Rear, 10-Oct-2014.) (Revised by Stefan O'Rear, 5-May-2015.)
Hypothesis
Ref Expression
mapfzcons.1 𝑀 = (𝑁 + 1)
Assertion
Ref Expression
mapfzcons ((𝑁 ∈ ℕ0𝐴 ∈ (𝐵m (1...𝑁)) ∧ 𝐶𝐵) → (𝐴 ∪ {⟨𝑀, 𝐶⟩}) ∈ (𝐵m (1...𝑀)))

Proof of Theorem mapfzcons
StepHypRef Expression
1 simp2 1137 . . . . . 6 ((𝑁 ∈ ℕ0𝐴 ∈ (𝐵m (1...𝑁)) ∧ 𝐶𝐵) → 𝐴 ∈ (𝐵m (1...𝑁)))
2 elmapex 8844 . . . . . . . . 9 (𝐴 ∈ (𝐵m (1...𝑁)) → (𝐵 ∈ V ∧ (1...𝑁) ∈ V))
32simpld 495 . . . . . . . 8 (𝐴 ∈ (𝐵m (1...𝑁)) → 𝐵 ∈ V)
433ad2ant2 1134 . . . . . . 7 ((𝑁 ∈ ℕ0𝐴 ∈ (𝐵m (1...𝑁)) ∧ 𝐶𝐵) → 𝐵 ∈ V)
5 ovex 7444 . . . . . . 7 (1...𝑁) ∈ V
6 elmapg 8835 . . . . . . 7 ((𝐵 ∈ V ∧ (1...𝑁) ∈ V) → (𝐴 ∈ (𝐵m (1...𝑁)) ↔ 𝐴:(1...𝑁)⟶𝐵))
74, 5, 6sylancl 586 . . . . . 6 ((𝑁 ∈ ℕ0𝐴 ∈ (𝐵m (1...𝑁)) ∧ 𝐶𝐵) → (𝐴 ∈ (𝐵m (1...𝑁)) ↔ 𝐴:(1...𝑁)⟶𝐵))
81, 7mpbid 231 . . . . 5 ((𝑁 ∈ ℕ0𝐴 ∈ (𝐵m (1...𝑁)) ∧ 𝐶𝐵) → 𝐴:(1...𝑁)⟶𝐵)
9 ovex 7444 . . . . . . . 8 (𝑁 + 1) ∈ V
10 simp3 1138 . . . . . . . 8 ((𝑁 ∈ ℕ0𝐴 ∈ (𝐵m (1...𝑁)) ∧ 𝐶𝐵) → 𝐶𝐵)
11 f1osng 6874 . . . . . . . 8 (((𝑁 + 1) ∈ V ∧ 𝐶𝐵) → {⟨(𝑁 + 1), 𝐶⟩}:{(𝑁 + 1)}–1-1-onto→{𝐶})
129, 10, 11sylancr 587 . . . . . . 7 ((𝑁 ∈ ℕ0𝐴 ∈ (𝐵m (1...𝑁)) ∧ 𝐶𝐵) → {⟨(𝑁 + 1), 𝐶⟩}:{(𝑁 + 1)}–1-1-onto→{𝐶})
13 f1of 6833 . . . . . . 7 ({⟨(𝑁 + 1), 𝐶⟩}:{(𝑁 + 1)}–1-1-onto→{𝐶} → {⟨(𝑁 + 1), 𝐶⟩}:{(𝑁 + 1)}⟶{𝐶})
1412, 13syl 17 . . . . . 6 ((𝑁 ∈ ℕ0𝐴 ∈ (𝐵m (1...𝑁)) ∧ 𝐶𝐵) → {⟨(𝑁 + 1), 𝐶⟩}:{(𝑁 + 1)}⟶{𝐶})
15 snssi 4811 . . . . . . 7 (𝐶𝐵 → {𝐶} ⊆ 𝐵)
16153ad2ant3 1135 . . . . . 6 ((𝑁 ∈ ℕ0𝐴 ∈ (𝐵m (1...𝑁)) ∧ 𝐶𝐵) → {𝐶} ⊆ 𝐵)
1714, 16fssd 6735 . . . . 5 ((𝑁 ∈ ℕ0𝐴 ∈ (𝐵m (1...𝑁)) ∧ 𝐶𝐵) → {⟨(𝑁 + 1), 𝐶⟩}:{(𝑁 + 1)}⟶𝐵)
18 fzp1disj 13562 . . . . . 6 ((1...𝑁) ∩ {(𝑁 + 1)}) = ∅
1918a1i 11 . . . . 5 ((𝑁 ∈ ℕ0𝐴 ∈ (𝐵m (1...𝑁)) ∧ 𝐶𝐵) → ((1...𝑁) ∩ {(𝑁 + 1)}) = ∅)
20 fun 6753 . . . . 5 (((𝐴:(1...𝑁)⟶𝐵 ∧ {⟨(𝑁 + 1), 𝐶⟩}:{(𝑁 + 1)}⟶𝐵) ∧ ((1...𝑁) ∩ {(𝑁 + 1)}) = ∅) → (𝐴 ∪ {⟨(𝑁 + 1), 𝐶⟩}):((1...𝑁) ∪ {(𝑁 + 1)})⟶(𝐵𝐵))
218, 17, 19, 20syl21anc 836 . . . 4 ((𝑁 ∈ ℕ0𝐴 ∈ (𝐵m (1...𝑁)) ∧ 𝐶𝐵) → (𝐴 ∪ {⟨(𝑁 + 1), 𝐶⟩}):((1...𝑁) ∪ {(𝑁 + 1)})⟶(𝐵𝐵))
22 1z 12594 . . . . . . 7 1 ∈ ℤ
23 simp1 1136 . . . . . . . 8 ((𝑁 ∈ ℕ0𝐴 ∈ (𝐵m (1...𝑁)) ∧ 𝐶𝐵) → 𝑁 ∈ ℕ0)
24 nn0uz 12866 . . . . . . . . 9 0 = (ℤ‘0)
25 1m1e0 12286 . . . . . . . . . 10 (1 − 1) = 0
2625fveq2i 6894 . . . . . . . . 9 (ℤ‘(1 − 1)) = (ℤ‘0)
2724, 26eqtr4i 2763 . . . . . . . 8 0 = (ℤ‘(1 − 1))
2823, 27eleqtrdi 2843 . . . . . . 7 ((𝑁 ∈ ℕ0𝐴 ∈ (𝐵m (1...𝑁)) ∧ 𝐶𝐵) → 𝑁 ∈ (ℤ‘(1 − 1)))
29 fzsuc2 13561 . . . . . . 7 ((1 ∈ ℤ ∧ 𝑁 ∈ (ℤ‘(1 − 1))) → (1...(𝑁 + 1)) = ((1...𝑁) ∪ {(𝑁 + 1)}))
3022, 28, 29sylancr 587 . . . . . 6 ((𝑁 ∈ ℕ0𝐴 ∈ (𝐵m (1...𝑁)) ∧ 𝐶𝐵) → (1...(𝑁 + 1)) = ((1...𝑁) ∪ {(𝑁 + 1)}))
3130eqcomd 2738 . . . . 5 ((𝑁 ∈ ℕ0𝐴 ∈ (𝐵m (1...𝑁)) ∧ 𝐶𝐵) → ((1...𝑁) ∪ {(𝑁 + 1)}) = (1...(𝑁 + 1)))
32 unidm 4152 . . . . . 6 (𝐵𝐵) = 𝐵
3332a1i 11 . . . . 5 ((𝑁 ∈ ℕ0𝐴 ∈ (𝐵m (1...𝑁)) ∧ 𝐶𝐵) → (𝐵𝐵) = 𝐵)
3431, 33feq23d 6712 . . . 4 ((𝑁 ∈ ℕ0𝐴 ∈ (𝐵m (1...𝑁)) ∧ 𝐶𝐵) → ((𝐴 ∪ {⟨(𝑁 + 1), 𝐶⟩}):((1...𝑁) ∪ {(𝑁 + 1)})⟶(𝐵𝐵) ↔ (𝐴 ∪ {⟨(𝑁 + 1), 𝐶⟩}):(1...(𝑁 + 1))⟶𝐵))
3521, 34mpbid 231 . . 3 ((𝑁 ∈ ℕ0𝐴 ∈ (𝐵m (1...𝑁)) ∧ 𝐶𝐵) → (𝐴 ∪ {⟨(𝑁 + 1), 𝐶⟩}):(1...(𝑁 + 1))⟶𝐵)
36 ovex 7444 . . . 4 (1...(𝑁 + 1)) ∈ V
37 elmapg 8835 . . . 4 ((𝐵 ∈ V ∧ (1...(𝑁 + 1)) ∈ V) → ((𝐴 ∪ {⟨(𝑁 + 1), 𝐶⟩}) ∈ (𝐵m (1...(𝑁 + 1))) ↔ (𝐴 ∪ {⟨(𝑁 + 1), 𝐶⟩}):(1...(𝑁 + 1))⟶𝐵))
384, 36, 37sylancl 586 . . 3 ((𝑁 ∈ ℕ0𝐴 ∈ (𝐵m (1...𝑁)) ∧ 𝐶𝐵) → ((𝐴 ∪ {⟨(𝑁 + 1), 𝐶⟩}) ∈ (𝐵m (1...(𝑁 + 1))) ↔ (𝐴 ∪ {⟨(𝑁 + 1), 𝐶⟩}):(1...(𝑁 + 1))⟶𝐵))
3935, 38mpbird 256 . 2 ((𝑁 ∈ ℕ0𝐴 ∈ (𝐵m (1...𝑁)) ∧ 𝐶𝐵) → (𝐴 ∪ {⟨(𝑁 + 1), 𝐶⟩}) ∈ (𝐵m (1...(𝑁 + 1))))
40 mapfzcons.1 . . . . 5 𝑀 = (𝑁 + 1)
4140opeq1i 4876 . . . 4 𝑀, 𝐶⟩ = ⟨(𝑁 + 1), 𝐶
4241sneqi 4639 . . 3 {⟨𝑀, 𝐶⟩} = {⟨(𝑁 + 1), 𝐶⟩}
4342uneq2i 4160 . 2 (𝐴 ∪ {⟨𝑀, 𝐶⟩}) = (𝐴 ∪ {⟨(𝑁 + 1), 𝐶⟩})
4440oveq2i 7422 . . 3 (1...𝑀) = (1...(𝑁 + 1))
4544oveq2i 7422 . 2 (𝐵m (1...𝑀)) = (𝐵m (1...(𝑁 + 1)))
4639, 43, 453eltr4g 2850 1 ((𝑁 ∈ ℕ0𝐴 ∈ (𝐵m (1...𝑁)) ∧ 𝐶𝐵) → (𝐴 ∪ {⟨𝑀, 𝐶⟩}) ∈ (𝐵m (1...𝑀)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  w3a 1087   = wceq 1541  wcel 2106  Vcvv 3474  cun 3946  cin 3947  wss 3948  c0 4322  {csn 4628  cop 4634  wf 6539  1-1-ontowf1o 6542  cfv 6543  (class class class)co 7411  m cmap 8822  0cc0 11112  1c1 11113   + caddc 11115  cmin 11446  0cn0 12474  cz 12560  cuz 12824  ...cfz 13486
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7727  ax-cnex 11168  ax-resscn 11169  ax-1cn 11170  ax-icn 11171  ax-addcl 11172  ax-addrcl 11173  ax-mulcl 11174  ax-mulrcl 11175  ax-mulcom 11176  ax-addass 11177  ax-mulass 11178  ax-distr 11179  ax-i2m1 11180  ax-1ne0 11181  ax-1rid 11182  ax-rnegex 11183  ax-rrecex 11184  ax-cnre 11185  ax-pre-lttri 11186  ax-pre-lttrn 11187  ax-pre-ltadd 11188  ax-pre-mulgt0 11189
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-pss 3967  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-iun 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5574  df-eprel 5580  df-po 5588  df-so 5589  df-fr 5631  df-we 5633  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-pred 6300  df-ord 6367  df-on 6368  df-lim 6369  df-suc 6370  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-riota 7367  df-ov 7414  df-oprab 7415  df-mpo 7416  df-om 7858  df-1st 7977  df-2nd 7978  df-frecs 8268  df-wrecs 8299  df-recs 8373  df-rdg 8412  df-er 8705  df-map 8824  df-en 8942  df-dom 8943  df-sdom 8944  df-pnf 11252  df-mnf 11253  df-xr 11254  df-ltxr 11255  df-le 11256  df-sub 11448  df-neg 11449  df-nn 12215  df-n0 12475  df-z 12561  df-uz 12825  df-fz 13487
This theorem is referenced by:  rexrabdioph  41614
  Copyright terms: Public domain W3C validator