Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mapfzcons Structured version   Visualization version   GIF version

Theorem mapfzcons 41439
Description: Extending a one-based mapping by adding a tuple at the end results in another mapping. (Contributed by Stefan O'Rear, 10-Oct-2014.) (Revised by Stefan O'Rear, 5-May-2015.)
Hypothesis
Ref Expression
mapfzcons.1 𝑀 = (𝑁 + 1)
Assertion
Ref Expression
mapfzcons ((𝑁 ∈ ℕ0𝐴 ∈ (𝐵m (1...𝑁)) ∧ 𝐶𝐵) → (𝐴 ∪ {⟨𝑀, 𝐶⟩}) ∈ (𝐵m (1...𝑀)))

Proof of Theorem mapfzcons
StepHypRef Expression
1 simp2 1137 . . . . . 6 ((𝑁 ∈ ℕ0𝐴 ∈ (𝐵m (1...𝑁)) ∧ 𝐶𝐵) → 𝐴 ∈ (𝐵m (1...𝑁)))
2 elmapex 8838 . . . . . . . . 9 (𝐴 ∈ (𝐵m (1...𝑁)) → (𝐵 ∈ V ∧ (1...𝑁) ∈ V))
32simpld 495 . . . . . . . 8 (𝐴 ∈ (𝐵m (1...𝑁)) → 𝐵 ∈ V)
433ad2ant2 1134 . . . . . . 7 ((𝑁 ∈ ℕ0𝐴 ∈ (𝐵m (1...𝑁)) ∧ 𝐶𝐵) → 𝐵 ∈ V)
5 ovex 7438 . . . . . . 7 (1...𝑁) ∈ V
6 elmapg 8829 . . . . . . 7 ((𝐵 ∈ V ∧ (1...𝑁) ∈ V) → (𝐴 ∈ (𝐵m (1...𝑁)) ↔ 𝐴:(1...𝑁)⟶𝐵))
74, 5, 6sylancl 586 . . . . . 6 ((𝑁 ∈ ℕ0𝐴 ∈ (𝐵m (1...𝑁)) ∧ 𝐶𝐵) → (𝐴 ∈ (𝐵m (1...𝑁)) ↔ 𝐴:(1...𝑁)⟶𝐵))
81, 7mpbid 231 . . . . 5 ((𝑁 ∈ ℕ0𝐴 ∈ (𝐵m (1...𝑁)) ∧ 𝐶𝐵) → 𝐴:(1...𝑁)⟶𝐵)
9 ovex 7438 . . . . . . . 8 (𝑁 + 1) ∈ V
10 simp3 1138 . . . . . . . 8 ((𝑁 ∈ ℕ0𝐴 ∈ (𝐵m (1...𝑁)) ∧ 𝐶𝐵) → 𝐶𝐵)
11 f1osng 6871 . . . . . . . 8 (((𝑁 + 1) ∈ V ∧ 𝐶𝐵) → {⟨(𝑁 + 1), 𝐶⟩}:{(𝑁 + 1)}–1-1-onto→{𝐶})
129, 10, 11sylancr 587 . . . . . . 7 ((𝑁 ∈ ℕ0𝐴 ∈ (𝐵m (1...𝑁)) ∧ 𝐶𝐵) → {⟨(𝑁 + 1), 𝐶⟩}:{(𝑁 + 1)}–1-1-onto→{𝐶})
13 f1of 6830 . . . . . . 7 ({⟨(𝑁 + 1), 𝐶⟩}:{(𝑁 + 1)}–1-1-onto→{𝐶} → {⟨(𝑁 + 1), 𝐶⟩}:{(𝑁 + 1)}⟶{𝐶})
1412, 13syl 17 . . . . . 6 ((𝑁 ∈ ℕ0𝐴 ∈ (𝐵m (1...𝑁)) ∧ 𝐶𝐵) → {⟨(𝑁 + 1), 𝐶⟩}:{(𝑁 + 1)}⟶{𝐶})
15 snssi 4810 . . . . . . 7 (𝐶𝐵 → {𝐶} ⊆ 𝐵)
16153ad2ant3 1135 . . . . . 6 ((𝑁 ∈ ℕ0𝐴 ∈ (𝐵m (1...𝑁)) ∧ 𝐶𝐵) → {𝐶} ⊆ 𝐵)
1714, 16fssd 6732 . . . . 5 ((𝑁 ∈ ℕ0𝐴 ∈ (𝐵m (1...𝑁)) ∧ 𝐶𝐵) → {⟨(𝑁 + 1), 𝐶⟩}:{(𝑁 + 1)}⟶𝐵)
18 fzp1disj 13556 . . . . . 6 ((1...𝑁) ∩ {(𝑁 + 1)}) = ∅
1918a1i 11 . . . . 5 ((𝑁 ∈ ℕ0𝐴 ∈ (𝐵m (1...𝑁)) ∧ 𝐶𝐵) → ((1...𝑁) ∩ {(𝑁 + 1)}) = ∅)
20 fun 6750 . . . . 5 (((𝐴:(1...𝑁)⟶𝐵 ∧ {⟨(𝑁 + 1), 𝐶⟩}:{(𝑁 + 1)}⟶𝐵) ∧ ((1...𝑁) ∩ {(𝑁 + 1)}) = ∅) → (𝐴 ∪ {⟨(𝑁 + 1), 𝐶⟩}):((1...𝑁) ∪ {(𝑁 + 1)})⟶(𝐵𝐵))
218, 17, 19, 20syl21anc 836 . . . 4 ((𝑁 ∈ ℕ0𝐴 ∈ (𝐵m (1...𝑁)) ∧ 𝐶𝐵) → (𝐴 ∪ {⟨(𝑁 + 1), 𝐶⟩}):((1...𝑁) ∪ {(𝑁 + 1)})⟶(𝐵𝐵))
22 1z 12588 . . . . . . 7 1 ∈ ℤ
23 simp1 1136 . . . . . . . 8 ((𝑁 ∈ ℕ0𝐴 ∈ (𝐵m (1...𝑁)) ∧ 𝐶𝐵) → 𝑁 ∈ ℕ0)
24 nn0uz 12860 . . . . . . . . 9 0 = (ℤ‘0)
25 1m1e0 12280 . . . . . . . . . 10 (1 − 1) = 0
2625fveq2i 6891 . . . . . . . . 9 (ℤ‘(1 − 1)) = (ℤ‘0)
2724, 26eqtr4i 2763 . . . . . . . 8 0 = (ℤ‘(1 − 1))
2823, 27eleqtrdi 2843 . . . . . . 7 ((𝑁 ∈ ℕ0𝐴 ∈ (𝐵m (1...𝑁)) ∧ 𝐶𝐵) → 𝑁 ∈ (ℤ‘(1 − 1)))
29 fzsuc2 13555 . . . . . . 7 ((1 ∈ ℤ ∧ 𝑁 ∈ (ℤ‘(1 − 1))) → (1...(𝑁 + 1)) = ((1...𝑁) ∪ {(𝑁 + 1)}))
3022, 28, 29sylancr 587 . . . . . 6 ((𝑁 ∈ ℕ0𝐴 ∈ (𝐵m (1...𝑁)) ∧ 𝐶𝐵) → (1...(𝑁 + 1)) = ((1...𝑁) ∪ {(𝑁 + 1)}))
3130eqcomd 2738 . . . . 5 ((𝑁 ∈ ℕ0𝐴 ∈ (𝐵m (1...𝑁)) ∧ 𝐶𝐵) → ((1...𝑁) ∪ {(𝑁 + 1)}) = (1...(𝑁 + 1)))
32 unidm 4151 . . . . . 6 (𝐵𝐵) = 𝐵
3332a1i 11 . . . . 5 ((𝑁 ∈ ℕ0𝐴 ∈ (𝐵m (1...𝑁)) ∧ 𝐶𝐵) → (𝐵𝐵) = 𝐵)
3431, 33feq23d 6709 . . . 4 ((𝑁 ∈ ℕ0𝐴 ∈ (𝐵m (1...𝑁)) ∧ 𝐶𝐵) → ((𝐴 ∪ {⟨(𝑁 + 1), 𝐶⟩}):((1...𝑁) ∪ {(𝑁 + 1)})⟶(𝐵𝐵) ↔ (𝐴 ∪ {⟨(𝑁 + 1), 𝐶⟩}):(1...(𝑁 + 1))⟶𝐵))
3521, 34mpbid 231 . . 3 ((𝑁 ∈ ℕ0𝐴 ∈ (𝐵m (1...𝑁)) ∧ 𝐶𝐵) → (𝐴 ∪ {⟨(𝑁 + 1), 𝐶⟩}):(1...(𝑁 + 1))⟶𝐵)
36 ovex 7438 . . . 4 (1...(𝑁 + 1)) ∈ V
37 elmapg 8829 . . . 4 ((𝐵 ∈ V ∧ (1...(𝑁 + 1)) ∈ V) → ((𝐴 ∪ {⟨(𝑁 + 1), 𝐶⟩}) ∈ (𝐵m (1...(𝑁 + 1))) ↔ (𝐴 ∪ {⟨(𝑁 + 1), 𝐶⟩}):(1...(𝑁 + 1))⟶𝐵))
384, 36, 37sylancl 586 . . 3 ((𝑁 ∈ ℕ0𝐴 ∈ (𝐵m (1...𝑁)) ∧ 𝐶𝐵) → ((𝐴 ∪ {⟨(𝑁 + 1), 𝐶⟩}) ∈ (𝐵m (1...(𝑁 + 1))) ↔ (𝐴 ∪ {⟨(𝑁 + 1), 𝐶⟩}):(1...(𝑁 + 1))⟶𝐵))
3935, 38mpbird 256 . 2 ((𝑁 ∈ ℕ0𝐴 ∈ (𝐵m (1...𝑁)) ∧ 𝐶𝐵) → (𝐴 ∪ {⟨(𝑁 + 1), 𝐶⟩}) ∈ (𝐵m (1...(𝑁 + 1))))
40 mapfzcons.1 . . . . 5 𝑀 = (𝑁 + 1)
4140opeq1i 4875 . . . 4 𝑀, 𝐶⟩ = ⟨(𝑁 + 1), 𝐶
4241sneqi 4638 . . 3 {⟨𝑀, 𝐶⟩} = {⟨(𝑁 + 1), 𝐶⟩}
4342uneq2i 4159 . 2 (𝐴 ∪ {⟨𝑀, 𝐶⟩}) = (𝐴 ∪ {⟨(𝑁 + 1), 𝐶⟩})
4440oveq2i 7416 . . 3 (1...𝑀) = (1...(𝑁 + 1))
4544oveq2i 7416 . 2 (𝐵m (1...𝑀)) = (𝐵m (1...(𝑁 + 1)))
4639, 43, 453eltr4g 2850 1 ((𝑁 ∈ ℕ0𝐴 ∈ (𝐵m (1...𝑁)) ∧ 𝐶𝐵) → (𝐴 ∪ {⟨𝑀, 𝐶⟩}) ∈ (𝐵m (1...𝑀)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  w3a 1087   = wceq 1541  wcel 2106  Vcvv 3474  cun 3945  cin 3946  wss 3947  c0 4321  {csn 4627  cop 4633  wf 6536  1-1-ontowf1o 6539  cfv 6540  (class class class)co 7405  m cmap 8816  0cc0 11106  1c1 11107   + caddc 11109  cmin 11440  0cn0 12468  cz 12554  cuz 12818  ...cfz 13480
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-sep 5298  ax-nul 5305  ax-pow 5362  ax-pr 5426  ax-un 7721  ax-cnex 11162  ax-resscn 11163  ax-1cn 11164  ax-icn 11165  ax-addcl 11166  ax-addrcl 11167  ax-mulcl 11168  ax-mulrcl 11169  ax-mulcom 11170  ax-addass 11171  ax-mulass 11172  ax-distr 11173  ax-i2m1 11174  ax-1ne0 11175  ax-1rid 11176  ax-rnegex 11177  ax-rrecex 11178  ax-cnre 11179  ax-pre-lttri 11180  ax-pre-lttrn 11181  ax-pre-ltadd 11182  ax-pre-mulgt0 11183
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3966  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-iun 4998  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5573  df-eprel 5579  df-po 5587  df-so 5588  df-fr 5630  df-we 5632  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-pred 6297  df-ord 6364  df-on 6365  df-lim 6366  df-suc 6367  df-iota 6492  df-fun 6542  df-fn 6543  df-f 6544  df-f1 6545  df-fo 6546  df-f1o 6547  df-fv 6548  df-riota 7361  df-ov 7408  df-oprab 7409  df-mpo 7410  df-om 7852  df-1st 7971  df-2nd 7972  df-frecs 8262  df-wrecs 8293  df-recs 8367  df-rdg 8406  df-er 8699  df-map 8818  df-en 8936  df-dom 8937  df-sdom 8938  df-pnf 11246  df-mnf 11247  df-xr 11248  df-ltxr 11249  df-le 11250  df-sub 11442  df-neg 11443  df-nn 12209  df-n0 12469  df-z 12555  df-uz 12819  df-fz 13481
This theorem is referenced by:  rexrabdioph  41517
  Copyright terms: Public domain W3C validator