Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mapfzcons Structured version   Visualization version   GIF version

Theorem mapfzcons 42278
Description: Extending a one-based mapping by adding a tuple at the end results in another mapping. (Contributed by Stefan O'Rear, 10-Oct-2014.) (Revised by Stefan O'Rear, 5-May-2015.)
Hypothesis
Ref Expression
mapfzcons.1 𝑀 = (𝑁 + 1)
Assertion
Ref Expression
mapfzcons ((𝑁 ∈ ℕ0𝐴 ∈ (𝐵m (1...𝑁)) ∧ 𝐶𝐵) → (𝐴 ∪ {⟨𝑀, 𝐶⟩}) ∈ (𝐵m (1...𝑀)))

Proof of Theorem mapfzcons
StepHypRef Expression
1 simp2 1134 . . . . . 6 ((𝑁 ∈ ℕ0𝐴 ∈ (𝐵m (1...𝑁)) ∧ 𝐶𝐵) → 𝐴 ∈ (𝐵m (1...𝑁)))
2 elmapex 8867 . . . . . . . . 9 (𝐴 ∈ (𝐵m (1...𝑁)) → (𝐵 ∈ V ∧ (1...𝑁) ∈ V))
32simpld 493 . . . . . . . 8 (𝐴 ∈ (𝐵m (1...𝑁)) → 𝐵 ∈ V)
433ad2ant2 1131 . . . . . . 7 ((𝑁 ∈ ℕ0𝐴 ∈ (𝐵m (1...𝑁)) ∧ 𝐶𝐵) → 𝐵 ∈ V)
5 ovex 7452 . . . . . . 7 (1...𝑁) ∈ V
6 elmapg 8858 . . . . . . 7 ((𝐵 ∈ V ∧ (1...𝑁) ∈ V) → (𝐴 ∈ (𝐵m (1...𝑁)) ↔ 𝐴:(1...𝑁)⟶𝐵))
74, 5, 6sylancl 584 . . . . . 6 ((𝑁 ∈ ℕ0𝐴 ∈ (𝐵m (1...𝑁)) ∧ 𝐶𝐵) → (𝐴 ∈ (𝐵m (1...𝑁)) ↔ 𝐴:(1...𝑁)⟶𝐵))
81, 7mpbid 231 . . . . 5 ((𝑁 ∈ ℕ0𝐴 ∈ (𝐵m (1...𝑁)) ∧ 𝐶𝐵) → 𝐴:(1...𝑁)⟶𝐵)
9 ovex 7452 . . . . . . . 8 (𝑁 + 1) ∈ V
10 simp3 1135 . . . . . . . 8 ((𝑁 ∈ ℕ0𝐴 ∈ (𝐵m (1...𝑁)) ∧ 𝐶𝐵) → 𝐶𝐵)
11 f1osng 6879 . . . . . . . 8 (((𝑁 + 1) ∈ V ∧ 𝐶𝐵) → {⟨(𝑁 + 1), 𝐶⟩}:{(𝑁 + 1)}–1-1-onto→{𝐶})
129, 10, 11sylancr 585 . . . . . . 7 ((𝑁 ∈ ℕ0𝐴 ∈ (𝐵m (1...𝑁)) ∧ 𝐶𝐵) → {⟨(𝑁 + 1), 𝐶⟩}:{(𝑁 + 1)}–1-1-onto→{𝐶})
13 f1of 6838 . . . . . . 7 ({⟨(𝑁 + 1), 𝐶⟩}:{(𝑁 + 1)}–1-1-onto→{𝐶} → {⟨(𝑁 + 1), 𝐶⟩}:{(𝑁 + 1)}⟶{𝐶})
1412, 13syl 17 . . . . . 6 ((𝑁 ∈ ℕ0𝐴 ∈ (𝐵m (1...𝑁)) ∧ 𝐶𝐵) → {⟨(𝑁 + 1), 𝐶⟩}:{(𝑁 + 1)}⟶{𝐶})
15 snssi 4813 . . . . . . 7 (𝐶𝐵 → {𝐶} ⊆ 𝐵)
16153ad2ant3 1132 . . . . . 6 ((𝑁 ∈ ℕ0𝐴 ∈ (𝐵m (1...𝑁)) ∧ 𝐶𝐵) → {𝐶} ⊆ 𝐵)
1714, 16fssd 6740 . . . . 5 ((𝑁 ∈ ℕ0𝐴 ∈ (𝐵m (1...𝑁)) ∧ 𝐶𝐵) → {⟨(𝑁 + 1), 𝐶⟩}:{(𝑁 + 1)}⟶𝐵)
18 fzp1disj 13595 . . . . . 6 ((1...𝑁) ∩ {(𝑁 + 1)}) = ∅
1918a1i 11 . . . . 5 ((𝑁 ∈ ℕ0𝐴 ∈ (𝐵m (1...𝑁)) ∧ 𝐶𝐵) → ((1...𝑁) ∩ {(𝑁 + 1)}) = ∅)
20 fun 6759 . . . . 5 (((𝐴:(1...𝑁)⟶𝐵 ∧ {⟨(𝑁 + 1), 𝐶⟩}:{(𝑁 + 1)}⟶𝐵) ∧ ((1...𝑁) ∩ {(𝑁 + 1)}) = ∅) → (𝐴 ∪ {⟨(𝑁 + 1), 𝐶⟩}):((1...𝑁) ∪ {(𝑁 + 1)})⟶(𝐵𝐵))
218, 17, 19, 20syl21anc 836 . . . 4 ((𝑁 ∈ ℕ0𝐴 ∈ (𝐵m (1...𝑁)) ∧ 𝐶𝐵) → (𝐴 ∪ {⟨(𝑁 + 1), 𝐶⟩}):((1...𝑁) ∪ {(𝑁 + 1)})⟶(𝐵𝐵))
22 1z 12625 . . . . . . 7 1 ∈ ℤ
23 simp1 1133 . . . . . . . 8 ((𝑁 ∈ ℕ0𝐴 ∈ (𝐵m (1...𝑁)) ∧ 𝐶𝐵) → 𝑁 ∈ ℕ0)
24 nn0uz 12897 . . . . . . . . 9 0 = (ℤ‘0)
25 1m1e0 12317 . . . . . . . . . 10 (1 − 1) = 0
2625fveq2i 6899 . . . . . . . . 9 (ℤ‘(1 − 1)) = (ℤ‘0)
2724, 26eqtr4i 2756 . . . . . . . 8 0 = (ℤ‘(1 − 1))
2823, 27eleqtrdi 2835 . . . . . . 7 ((𝑁 ∈ ℕ0𝐴 ∈ (𝐵m (1...𝑁)) ∧ 𝐶𝐵) → 𝑁 ∈ (ℤ‘(1 − 1)))
29 fzsuc2 13594 . . . . . . 7 ((1 ∈ ℤ ∧ 𝑁 ∈ (ℤ‘(1 − 1))) → (1...(𝑁 + 1)) = ((1...𝑁) ∪ {(𝑁 + 1)}))
3022, 28, 29sylancr 585 . . . . . 6 ((𝑁 ∈ ℕ0𝐴 ∈ (𝐵m (1...𝑁)) ∧ 𝐶𝐵) → (1...(𝑁 + 1)) = ((1...𝑁) ∪ {(𝑁 + 1)}))
3130eqcomd 2731 . . . . 5 ((𝑁 ∈ ℕ0𝐴 ∈ (𝐵m (1...𝑁)) ∧ 𝐶𝐵) → ((1...𝑁) ∪ {(𝑁 + 1)}) = (1...(𝑁 + 1)))
32 unidm 4149 . . . . . 6 (𝐵𝐵) = 𝐵
3332a1i 11 . . . . 5 ((𝑁 ∈ ℕ0𝐴 ∈ (𝐵m (1...𝑁)) ∧ 𝐶𝐵) → (𝐵𝐵) = 𝐵)
3431, 33feq23d 6718 . . . 4 ((𝑁 ∈ ℕ0𝐴 ∈ (𝐵m (1...𝑁)) ∧ 𝐶𝐵) → ((𝐴 ∪ {⟨(𝑁 + 1), 𝐶⟩}):((1...𝑁) ∪ {(𝑁 + 1)})⟶(𝐵𝐵) ↔ (𝐴 ∪ {⟨(𝑁 + 1), 𝐶⟩}):(1...(𝑁 + 1))⟶𝐵))
3521, 34mpbid 231 . . 3 ((𝑁 ∈ ℕ0𝐴 ∈ (𝐵m (1...𝑁)) ∧ 𝐶𝐵) → (𝐴 ∪ {⟨(𝑁 + 1), 𝐶⟩}):(1...(𝑁 + 1))⟶𝐵)
36 ovex 7452 . . . 4 (1...(𝑁 + 1)) ∈ V
37 elmapg 8858 . . . 4 ((𝐵 ∈ V ∧ (1...(𝑁 + 1)) ∈ V) → ((𝐴 ∪ {⟨(𝑁 + 1), 𝐶⟩}) ∈ (𝐵m (1...(𝑁 + 1))) ↔ (𝐴 ∪ {⟨(𝑁 + 1), 𝐶⟩}):(1...(𝑁 + 1))⟶𝐵))
384, 36, 37sylancl 584 . . 3 ((𝑁 ∈ ℕ0𝐴 ∈ (𝐵m (1...𝑁)) ∧ 𝐶𝐵) → ((𝐴 ∪ {⟨(𝑁 + 1), 𝐶⟩}) ∈ (𝐵m (1...(𝑁 + 1))) ↔ (𝐴 ∪ {⟨(𝑁 + 1), 𝐶⟩}):(1...(𝑁 + 1))⟶𝐵))
3935, 38mpbird 256 . 2 ((𝑁 ∈ ℕ0𝐴 ∈ (𝐵m (1...𝑁)) ∧ 𝐶𝐵) → (𝐴 ∪ {⟨(𝑁 + 1), 𝐶⟩}) ∈ (𝐵m (1...(𝑁 + 1))))
40 mapfzcons.1 . . . . 5 𝑀 = (𝑁 + 1)
4140opeq1i 4878 . . . 4 𝑀, 𝐶⟩ = ⟨(𝑁 + 1), 𝐶
4241sneqi 4641 . . 3 {⟨𝑀, 𝐶⟩} = {⟨(𝑁 + 1), 𝐶⟩}
4342uneq2i 4157 . 2 (𝐴 ∪ {⟨𝑀, 𝐶⟩}) = (𝐴 ∪ {⟨(𝑁 + 1), 𝐶⟩})
4440oveq2i 7430 . . 3 (1...𝑀) = (1...(𝑁 + 1))
4544oveq2i 7430 . 2 (𝐵m (1...𝑀)) = (𝐵m (1...(𝑁 + 1)))
4639, 43, 453eltr4g 2842 1 ((𝑁 ∈ ℕ0𝐴 ∈ (𝐵m (1...𝑁)) ∧ 𝐶𝐵) → (𝐴 ∪ {⟨𝑀, 𝐶⟩}) ∈ (𝐵m (1...𝑀)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  w3a 1084   = wceq 1533  wcel 2098  Vcvv 3461  cun 3942  cin 3943  wss 3944  c0 4322  {csn 4630  cop 4636  wf 6545  1-1-ontowf1o 6548  cfv 6549  (class class class)co 7419  m cmap 8845  0cc0 11140  1c1 11141   + caddc 11143  cmin 11476  0cn0 12505  cz 12591  cuz 12855  ...cfz 13519
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2696  ax-sep 5300  ax-nul 5307  ax-pow 5365  ax-pr 5429  ax-un 7741  ax-cnex 11196  ax-resscn 11197  ax-1cn 11198  ax-icn 11199  ax-addcl 11200  ax-addrcl 11201  ax-mulcl 11202  ax-mulrcl 11203  ax-mulcom 11204  ax-addass 11205  ax-mulass 11206  ax-distr 11207  ax-i2m1 11208  ax-1ne0 11209  ax-1rid 11210  ax-rnegex 11211  ax-rrecex 11212  ax-cnre 11213  ax-pre-lttri 11214  ax-pre-lttrn 11215  ax-pre-ltadd 11216  ax-pre-mulgt0 11217
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2703  df-cleq 2717  df-clel 2802  df-nfc 2877  df-ne 2930  df-nel 3036  df-ral 3051  df-rex 3060  df-reu 3364  df-rab 3419  df-v 3463  df-sbc 3774  df-csb 3890  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-pss 3964  df-nul 4323  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-op 4637  df-uni 4910  df-iun 4999  df-br 5150  df-opab 5212  df-mpt 5233  df-tr 5267  df-id 5576  df-eprel 5582  df-po 5590  df-so 5591  df-fr 5633  df-we 5635  df-xp 5684  df-rel 5685  df-cnv 5686  df-co 5687  df-dm 5688  df-rn 5689  df-res 5690  df-ima 5691  df-pred 6307  df-ord 6374  df-on 6375  df-lim 6376  df-suc 6377  df-iota 6501  df-fun 6551  df-fn 6552  df-f 6553  df-f1 6554  df-fo 6555  df-f1o 6556  df-fv 6557  df-riota 7375  df-ov 7422  df-oprab 7423  df-mpo 7424  df-om 7872  df-1st 7994  df-2nd 7995  df-frecs 8287  df-wrecs 8318  df-recs 8392  df-rdg 8431  df-er 8725  df-map 8847  df-en 8965  df-dom 8966  df-sdom 8967  df-pnf 11282  df-mnf 11283  df-xr 11284  df-ltxr 11285  df-le 11286  df-sub 11478  df-neg 11479  df-nn 12246  df-n0 12506  df-z 12592  df-uz 12856  df-fz 13520
This theorem is referenced by:  rexrabdioph  42356
  Copyright terms: Public domain W3C validator