| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > mirauto | Structured version Visualization version GIF version | ||
| Description: Point inversion preserves point inversion. (Contributed by Thierry Arnoux, 30-Jul-2019.) |
| Ref | Expression |
|---|---|
| mirval.p | ⊢ 𝑃 = (Base‘𝐺) |
| mirval.d | ⊢ − = (dist‘𝐺) |
| mirval.i | ⊢ 𝐼 = (Itv‘𝐺) |
| mirval.l | ⊢ 𝐿 = (LineG‘𝐺) |
| mirval.s | ⊢ 𝑆 = (pInvG‘𝐺) |
| mirval.g | ⊢ (𝜑 → 𝐺 ∈ TarskiG) |
| mirauto.m | ⊢ 𝑀 = (𝑆‘𝑇) |
| mirauto.x | ⊢ 𝑋 = (𝑀‘𝐴) |
| mirauto.y | ⊢ 𝑌 = (𝑀‘𝐵) |
| mirauto.z | ⊢ 𝑍 = (𝑀‘𝐶) |
| mirauto.0 | ⊢ (𝜑 → 𝑇 ∈ 𝑃) |
| mirauto.1 | ⊢ (𝜑 → 𝐴 ∈ 𝑃) |
| mirauto.2 | ⊢ (𝜑 → 𝐵 ∈ 𝑃) |
| mirauto.3 | ⊢ (𝜑 → 𝐶 ∈ 𝑃) |
| mirauto.4 | ⊢ (𝜑 → ((𝑆‘𝐴)‘𝐵) = 𝐶) |
| Ref | Expression |
|---|---|
| mirauto | ⊢ (𝜑 → ((𝑆‘𝑋)‘𝑌) = 𝑍) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mirval.p | . . 3 ⊢ 𝑃 = (Base‘𝐺) | |
| 2 | mirval.d | . . 3 ⊢ − = (dist‘𝐺) | |
| 3 | mirval.i | . . 3 ⊢ 𝐼 = (Itv‘𝐺) | |
| 4 | mirval.l | . . 3 ⊢ 𝐿 = (LineG‘𝐺) | |
| 5 | mirval.s | . . 3 ⊢ 𝑆 = (pInvG‘𝐺) | |
| 6 | mirval.g | . . 3 ⊢ (𝜑 → 𝐺 ∈ TarskiG) | |
| 7 | mirauto.x | . . . 4 ⊢ 𝑋 = (𝑀‘𝐴) | |
| 8 | mirauto.0 | . . . . . 6 ⊢ (𝜑 → 𝑇 ∈ 𝑃) | |
| 9 | mirauto.m | . . . . . 6 ⊢ 𝑀 = (𝑆‘𝑇) | |
| 10 | 1, 2, 3, 4, 5, 6, 8, 9 | mirf 28587 | . . . . 5 ⊢ (𝜑 → 𝑀:𝑃⟶𝑃) |
| 11 | mirauto.1 | . . . . 5 ⊢ (𝜑 → 𝐴 ∈ 𝑃) | |
| 12 | 10, 11 | ffvelcdmd 7057 | . . . 4 ⊢ (𝜑 → (𝑀‘𝐴) ∈ 𝑃) |
| 13 | 7, 12 | eqeltrid 2832 | . . 3 ⊢ (𝜑 → 𝑋 ∈ 𝑃) |
| 14 | eqid 2729 | . . 3 ⊢ (𝑆‘𝑋) = (𝑆‘𝑋) | |
| 15 | mirauto.y | . . . 4 ⊢ 𝑌 = (𝑀‘𝐵) | |
| 16 | mirauto.2 | . . . . 5 ⊢ (𝜑 → 𝐵 ∈ 𝑃) | |
| 17 | 10, 16 | ffvelcdmd 7057 | . . . 4 ⊢ (𝜑 → (𝑀‘𝐵) ∈ 𝑃) |
| 18 | 15, 17 | eqeltrid 2832 | . . 3 ⊢ (𝜑 → 𝑌 ∈ 𝑃) |
| 19 | mirauto.z | . . . 4 ⊢ 𝑍 = (𝑀‘𝐶) | |
| 20 | mirauto.3 | . . . . 5 ⊢ (𝜑 → 𝐶 ∈ 𝑃) | |
| 21 | 10, 20 | ffvelcdmd 7057 | . . . 4 ⊢ (𝜑 → (𝑀‘𝐶) ∈ 𝑃) |
| 22 | 19, 21 | eqeltrid 2832 | . . 3 ⊢ (𝜑 → 𝑍 ∈ 𝑃) |
| 23 | mirauto.4 | . . . . . 6 ⊢ (𝜑 → ((𝑆‘𝐴)‘𝐵) = 𝐶) | |
| 24 | 23, 20 | eqeltrd 2828 | . . . . 5 ⊢ (𝜑 → ((𝑆‘𝐴)‘𝐵) ∈ 𝑃) |
| 25 | eqid 2729 | . . . . . 6 ⊢ (𝑆‘𝐴) = (𝑆‘𝐴) | |
| 26 | 1, 2, 3, 4, 5, 6, 11, 25, 16 | mircgr 28584 | . . . . 5 ⊢ (𝜑 → (𝐴 − ((𝑆‘𝐴)‘𝐵)) = (𝐴 − 𝐵)) |
| 27 | 1, 2, 3, 4, 5, 6, 8, 9, 11, 24, 11, 16, 26 | mircgrs 28600 | . . . 4 ⊢ (𝜑 → ((𝑀‘𝐴) − (𝑀‘((𝑆‘𝐴)‘𝐵))) = ((𝑀‘𝐴) − (𝑀‘𝐵))) |
| 28 | 7 | a1i 11 | . . . . 5 ⊢ (𝜑 → 𝑋 = (𝑀‘𝐴)) |
| 29 | 23 | fveq2d 6862 | . . . . . 6 ⊢ (𝜑 → (𝑀‘((𝑆‘𝐴)‘𝐵)) = (𝑀‘𝐶)) |
| 30 | 19, 29 | eqtr4id 2783 | . . . . 5 ⊢ (𝜑 → 𝑍 = (𝑀‘((𝑆‘𝐴)‘𝐵))) |
| 31 | 28, 30 | oveq12d 7405 | . . . 4 ⊢ (𝜑 → (𝑋 − 𝑍) = ((𝑀‘𝐴) − (𝑀‘((𝑆‘𝐴)‘𝐵)))) |
| 32 | 7, 15 | oveq12i 7399 | . . . . 5 ⊢ (𝑋 − 𝑌) = ((𝑀‘𝐴) − (𝑀‘𝐵)) |
| 33 | 32 | a1i 11 | . . . 4 ⊢ (𝜑 → (𝑋 − 𝑌) = ((𝑀‘𝐴) − (𝑀‘𝐵))) |
| 34 | 27, 31, 33 | 3eqtr4d 2774 | . . 3 ⊢ (𝜑 → (𝑋 − 𝑍) = (𝑋 − 𝑌)) |
| 35 | 1, 2, 3, 4, 5, 6, 11, 25, 16 | mirbtwn 28585 | . . . . . 6 ⊢ (𝜑 → 𝐴 ∈ (((𝑆‘𝐴)‘𝐵)𝐼𝐵)) |
| 36 | 23 | oveq1d 7402 | . . . . . 6 ⊢ (𝜑 → (((𝑆‘𝐴)‘𝐵)𝐼𝐵) = (𝐶𝐼𝐵)) |
| 37 | 35, 36 | eleqtrd 2830 | . . . . 5 ⊢ (𝜑 → 𝐴 ∈ (𝐶𝐼𝐵)) |
| 38 | 1, 2, 3, 4, 5, 6, 8, 9, 20, 11, 16, 37 | mirbtwni 28598 | . . . 4 ⊢ (𝜑 → (𝑀‘𝐴) ∈ ((𝑀‘𝐶)𝐼(𝑀‘𝐵))) |
| 39 | 19, 15 | oveq12i 7399 | . . . 4 ⊢ (𝑍𝐼𝑌) = ((𝑀‘𝐶)𝐼(𝑀‘𝐵)) |
| 40 | 38, 7, 39 | 3eltr4g 2845 | . . 3 ⊢ (𝜑 → 𝑋 ∈ (𝑍𝐼𝑌)) |
| 41 | 1, 2, 3, 4, 5, 6, 13, 14, 18, 22, 34, 40 | ismir 28586 | . 2 ⊢ (𝜑 → 𝑍 = ((𝑆‘𝑋)‘𝑌)) |
| 42 | 41 | eqcomd 2735 | 1 ⊢ (𝜑 → ((𝑆‘𝑋)‘𝑌) = 𝑍) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 ‘cfv 6511 (class class class)co 7387 Basecbs 17179 distcds 17229 TarskiGcstrkg 28354 Itvcitv 28360 LineGclng 28361 pInvGcmir 28579 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5234 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 ax-cnex 11124 ax-resscn 11125 ax-1cn 11126 ax-icn 11127 ax-addcl 11128 ax-addrcl 11129 ax-mulcl 11130 ax-mulrcl 11131 ax-mulcom 11132 ax-addass 11133 ax-mulass 11134 ax-distr 11135 ax-i2m1 11136 ax-1ne0 11137 ax-1rid 11138 ax-rnegex 11139 ax-rrecex 11140 ax-cnre 11141 ax-pre-lttri 11142 ax-pre-lttrn 11143 ax-pre-ltadd 11144 ax-pre-mulgt0 11145 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3354 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3934 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-tp 4594 df-op 4596 df-uni 4872 df-int 4911 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-tr 5215 df-id 5533 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5591 df-we 5593 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-pred 6274 df-ord 6335 df-on 6336 df-lim 6337 df-suc 6338 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-riota 7344 df-ov 7390 df-oprab 7391 df-mpo 7392 df-om 7843 df-1st 7968 df-2nd 7969 df-frecs 8260 df-wrecs 8291 df-recs 8340 df-rdg 8378 df-1o 8434 df-oadd 8438 df-er 8671 df-pm 8802 df-en 8919 df-dom 8920 df-sdom 8921 df-fin 8922 df-dju 9854 df-card 9892 df-pnf 11210 df-mnf 11211 df-xr 11212 df-ltxr 11213 df-le 11214 df-sub 11407 df-neg 11408 df-nn 12187 df-2 12249 df-3 12250 df-n0 12443 df-xnn0 12516 df-z 12530 df-uz 12794 df-fz 13469 df-fzo 13616 df-hash 14296 df-word 14479 df-concat 14536 df-s1 14561 df-s2 14814 df-s3 14815 df-trkgc 28375 df-trkgb 28376 df-trkgcb 28377 df-trkg 28380 df-cgrg 28438 df-mir 28580 |
| This theorem is referenced by: miduniq2 28614 krippenlem 28617 |
| Copyright terms: Public domain | W3C validator |