MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mirauto Structured version   Visualization version   GIF version

Theorem mirauto 28693
Description: Point inversion preserves point inversion. (Contributed by Thierry Arnoux, 30-Jul-2019.)
Hypotheses
Ref Expression
mirval.p 𝑃 = (Base‘𝐺)
mirval.d = (dist‘𝐺)
mirval.i 𝐼 = (Itv‘𝐺)
mirval.l 𝐿 = (LineG‘𝐺)
mirval.s 𝑆 = (pInvG‘𝐺)
mirval.g (𝜑𝐺 ∈ TarskiG)
mirauto.m 𝑀 = (𝑆𝑇)
mirauto.x 𝑋 = (𝑀𝐴)
mirauto.y 𝑌 = (𝑀𝐵)
mirauto.z 𝑍 = (𝑀𝐶)
mirauto.0 (𝜑𝑇𝑃)
mirauto.1 (𝜑𝐴𝑃)
mirauto.2 (𝜑𝐵𝑃)
mirauto.3 (𝜑𝐶𝑃)
mirauto.4 (𝜑 → ((𝑆𝐴)‘𝐵) = 𝐶)
Assertion
Ref Expression
mirauto (𝜑 → ((𝑆𝑋)‘𝑌) = 𝑍)

Proof of Theorem mirauto
StepHypRef Expression
1 mirval.p . . 3 𝑃 = (Base‘𝐺)
2 mirval.d . . 3 = (dist‘𝐺)
3 mirval.i . . 3 𝐼 = (Itv‘𝐺)
4 mirval.l . . 3 𝐿 = (LineG‘𝐺)
5 mirval.s . . 3 𝑆 = (pInvG‘𝐺)
6 mirval.g . . 3 (𝜑𝐺 ∈ TarskiG)
7 mirauto.x . . . 4 𝑋 = (𝑀𝐴)
8 mirauto.0 . . . . . 6 (𝜑𝑇𝑃)
9 mirauto.m . . . . . 6 𝑀 = (𝑆𝑇)
101, 2, 3, 4, 5, 6, 8, 9mirf 28669 . . . . 5 (𝜑𝑀:𝑃𝑃)
11 mirauto.1 . . . . 5 (𝜑𝐴𝑃)
1210, 11ffvelcdmd 7104 . . . 4 (𝜑 → (𝑀𝐴) ∈ 𝑃)
137, 12eqeltrid 2844 . . 3 (𝜑𝑋𝑃)
14 eqid 2736 . . 3 (𝑆𝑋) = (𝑆𝑋)
15 mirauto.y . . . 4 𝑌 = (𝑀𝐵)
16 mirauto.2 . . . . 5 (𝜑𝐵𝑃)
1710, 16ffvelcdmd 7104 . . . 4 (𝜑 → (𝑀𝐵) ∈ 𝑃)
1815, 17eqeltrid 2844 . . 3 (𝜑𝑌𝑃)
19 mirauto.z . . . 4 𝑍 = (𝑀𝐶)
20 mirauto.3 . . . . 5 (𝜑𝐶𝑃)
2110, 20ffvelcdmd 7104 . . . 4 (𝜑 → (𝑀𝐶) ∈ 𝑃)
2219, 21eqeltrid 2844 . . 3 (𝜑𝑍𝑃)
23 mirauto.4 . . . . . 6 (𝜑 → ((𝑆𝐴)‘𝐵) = 𝐶)
2423, 20eqeltrd 2840 . . . . 5 (𝜑 → ((𝑆𝐴)‘𝐵) ∈ 𝑃)
25 eqid 2736 . . . . . 6 (𝑆𝐴) = (𝑆𝐴)
261, 2, 3, 4, 5, 6, 11, 25, 16mircgr 28666 . . . . 5 (𝜑 → (𝐴 ((𝑆𝐴)‘𝐵)) = (𝐴 𝐵))
271, 2, 3, 4, 5, 6, 8, 9, 11, 24, 11, 16, 26mircgrs 28682 . . . 4 (𝜑 → ((𝑀𝐴) (𝑀‘((𝑆𝐴)‘𝐵))) = ((𝑀𝐴) (𝑀𝐵)))
287a1i 11 . . . . 5 (𝜑𝑋 = (𝑀𝐴))
2923fveq2d 6909 . . . . . 6 (𝜑 → (𝑀‘((𝑆𝐴)‘𝐵)) = (𝑀𝐶))
3019, 29eqtr4id 2795 . . . . 5 (𝜑𝑍 = (𝑀‘((𝑆𝐴)‘𝐵)))
3128, 30oveq12d 7450 . . . 4 (𝜑 → (𝑋 𝑍) = ((𝑀𝐴) (𝑀‘((𝑆𝐴)‘𝐵))))
327, 15oveq12i 7444 . . . . 5 (𝑋 𝑌) = ((𝑀𝐴) (𝑀𝐵))
3332a1i 11 . . . 4 (𝜑 → (𝑋 𝑌) = ((𝑀𝐴) (𝑀𝐵)))
3427, 31, 333eqtr4d 2786 . . 3 (𝜑 → (𝑋 𝑍) = (𝑋 𝑌))
351, 2, 3, 4, 5, 6, 11, 25, 16mirbtwn 28667 . . . . . 6 (𝜑𝐴 ∈ (((𝑆𝐴)‘𝐵)𝐼𝐵))
3623oveq1d 7447 . . . . . 6 (𝜑 → (((𝑆𝐴)‘𝐵)𝐼𝐵) = (𝐶𝐼𝐵))
3735, 36eleqtrd 2842 . . . . 5 (𝜑𝐴 ∈ (𝐶𝐼𝐵))
381, 2, 3, 4, 5, 6, 8, 9, 20, 11, 16, 37mirbtwni 28680 . . . 4 (𝜑 → (𝑀𝐴) ∈ ((𝑀𝐶)𝐼(𝑀𝐵)))
3919, 15oveq12i 7444 . . . 4 (𝑍𝐼𝑌) = ((𝑀𝐶)𝐼(𝑀𝐵))
4038, 7, 393eltr4g 2857 . . 3 (𝜑𝑋 ∈ (𝑍𝐼𝑌))
411, 2, 3, 4, 5, 6, 13, 14, 18, 22, 34, 40ismir 28668 . 2 (𝜑𝑍 = ((𝑆𝑋)‘𝑌))
4241eqcomd 2742 1 (𝜑 → ((𝑆𝑋)‘𝑌) = 𝑍)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1539  wcel 2107  cfv 6560  (class class class)co 7432  Basecbs 17248  distcds 17307  TarskiGcstrkg 28436  Itvcitv 28442  LineGclng 28443  pInvGcmir 28661
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2707  ax-rep 5278  ax-sep 5295  ax-nul 5305  ax-pow 5364  ax-pr 5431  ax-un 7756  ax-cnex 11212  ax-resscn 11213  ax-1cn 11214  ax-icn 11215  ax-addcl 11216  ax-addrcl 11217  ax-mulcl 11218  ax-mulrcl 11219  ax-mulcom 11220  ax-addass 11221  ax-mulass 11222  ax-distr 11223  ax-i2m1 11224  ax-1ne0 11225  ax-1rid 11226  ax-rnegex 11227  ax-rrecex 11228  ax-cnre 11229  ax-pre-lttri 11230  ax-pre-lttrn 11231  ax-pre-ltadd 11232  ax-pre-mulgt0 11233
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2728  df-clel 2815  df-nfc 2891  df-ne 2940  df-nel 3046  df-ral 3061  df-rex 3070  df-rmo 3379  df-reu 3380  df-rab 3436  df-v 3481  df-sbc 3788  df-csb 3899  df-dif 3953  df-un 3955  df-in 3957  df-ss 3967  df-pss 3970  df-nul 4333  df-if 4525  df-pw 4601  df-sn 4626  df-pr 4628  df-tp 4630  df-op 4632  df-uni 4907  df-int 4946  df-iun 4992  df-br 5143  df-opab 5205  df-mpt 5225  df-tr 5259  df-id 5577  df-eprel 5583  df-po 5591  df-so 5592  df-fr 5636  df-we 5638  df-xp 5690  df-rel 5691  df-cnv 5692  df-co 5693  df-dm 5694  df-rn 5695  df-res 5696  df-ima 5697  df-pred 6320  df-ord 6386  df-on 6387  df-lim 6388  df-suc 6389  df-iota 6513  df-fun 6562  df-fn 6563  df-f 6564  df-f1 6565  df-fo 6566  df-f1o 6567  df-fv 6568  df-riota 7389  df-ov 7435  df-oprab 7436  df-mpo 7437  df-om 7889  df-1st 8015  df-2nd 8016  df-frecs 8307  df-wrecs 8338  df-recs 8412  df-rdg 8451  df-1o 8507  df-oadd 8511  df-er 8746  df-pm 8870  df-en 8987  df-dom 8988  df-sdom 8989  df-fin 8990  df-dju 9942  df-card 9980  df-pnf 11298  df-mnf 11299  df-xr 11300  df-ltxr 11301  df-le 11302  df-sub 11495  df-neg 11496  df-nn 12268  df-2 12330  df-3 12331  df-n0 12529  df-xnn0 12602  df-z 12616  df-uz 12880  df-fz 13549  df-fzo 13696  df-hash 14371  df-word 14554  df-concat 14610  df-s1 14635  df-s2 14888  df-s3 14889  df-trkgc 28457  df-trkgb 28458  df-trkgcb 28459  df-trkg 28462  df-cgrg 28520  df-mir 28662
This theorem is referenced by:  miduniq2  28696  krippenlem  28699
  Copyright terms: Public domain W3C validator