| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > mirauto | Structured version Visualization version GIF version | ||
| Description: Point inversion preserves point inversion. (Contributed by Thierry Arnoux, 30-Jul-2019.) |
| Ref | Expression |
|---|---|
| mirval.p | ⊢ 𝑃 = (Base‘𝐺) |
| mirval.d | ⊢ − = (dist‘𝐺) |
| mirval.i | ⊢ 𝐼 = (Itv‘𝐺) |
| mirval.l | ⊢ 𝐿 = (LineG‘𝐺) |
| mirval.s | ⊢ 𝑆 = (pInvG‘𝐺) |
| mirval.g | ⊢ (𝜑 → 𝐺 ∈ TarskiG) |
| mirauto.m | ⊢ 𝑀 = (𝑆‘𝑇) |
| mirauto.x | ⊢ 𝑋 = (𝑀‘𝐴) |
| mirauto.y | ⊢ 𝑌 = (𝑀‘𝐵) |
| mirauto.z | ⊢ 𝑍 = (𝑀‘𝐶) |
| mirauto.0 | ⊢ (𝜑 → 𝑇 ∈ 𝑃) |
| mirauto.1 | ⊢ (𝜑 → 𝐴 ∈ 𝑃) |
| mirauto.2 | ⊢ (𝜑 → 𝐵 ∈ 𝑃) |
| mirauto.3 | ⊢ (𝜑 → 𝐶 ∈ 𝑃) |
| mirauto.4 | ⊢ (𝜑 → ((𝑆‘𝐴)‘𝐵) = 𝐶) |
| Ref | Expression |
|---|---|
| mirauto | ⊢ (𝜑 → ((𝑆‘𝑋)‘𝑌) = 𝑍) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mirval.p | . . 3 ⊢ 𝑃 = (Base‘𝐺) | |
| 2 | mirval.d | . . 3 ⊢ − = (dist‘𝐺) | |
| 3 | mirval.i | . . 3 ⊢ 𝐼 = (Itv‘𝐺) | |
| 4 | mirval.l | . . 3 ⊢ 𝐿 = (LineG‘𝐺) | |
| 5 | mirval.s | . . 3 ⊢ 𝑆 = (pInvG‘𝐺) | |
| 6 | mirval.g | . . 3 ⊢ (𝜑 → 𝐺 ∈ TarskiG) | |
| 7 | mirauto.x | . . . 4 ⊢ 𝑋 = (𝑀‘𝐴) | |
| 8 | mirauto.0 | . . . . . 6 ⊢ (𝜑 → 𝑇 ∈ 𝑃) | |
| 9 | mirauto.m | . . . . . 6 ⊢ 𝑀 = (𝑆‘𝑇) | |
| 10 | 1, 2, 3, 4, 5, 6, 8, 9 | mirf 28640 | . . . . 5 ⊢ (𝜑 → 𝑀:𝑃⟶𝑃) |
| 11 | mirauto.1 | . . . . 5 ⊢ (𝜑 → 𝐴 ∈ 𝑃) | |
| 12 | 10, 11 | ffvelcdmd 7039 | . . . 4 ⊢ (𝜑 → (𝑀‘𝐴) ∈ 𝑃) |
| 13 | 7, 12 | eqeltrid 2832 | . . 3 ⊢ (𝜑 → 𝑋 ∈ 𝑃) |
| 14 | eqid 2729 | . . 3 ⊢ (𝑆‘𝑋) = (𝑆‘𝑋) | |
| 15 | mirauto.y | . . . 4 ⊢ 𝑌 = (𝑀‘𝐵) | |
| 16 | mirauto.2 | . . . . 5 ⊢ (𝜑 → 𝐵 ∈ 𝑃) | |
| 17 | 10, 16 | ffvelcdmd 7039 | . . . 4 ⊢ (𝜑 → (𝑀‘𝐵) ∈ 𝑃) |
| 18 | 15, 17 | eqeltrid 2832 | . . 3 ⊢ (𝜑 → 𝑌 ∈ 𝑃) |
| 19 | mirauto.z | . . . 4 ⊢ 𝑍 = (𝑀‘𝐶) | |
| 20 | mirauto.3 | . . . . 5 ⊢ (𝜑 → 𝐶 ∈ 𝑃) | |
| 21 | 10, 20 | ffvelcdmd 7039 | . . . 4 ⊢ (𝜑 → (𝑀‘𝐶) ∈ 𝑃) |
| 22 | 19, 21 | eqeltrid 2832 | . . 3 ⊢ (𝜑 → 𝑍 ∈ 𝑃) |
| 23 | mirauto.4 | . . . . . 6 ⊢ (𝜑 → ((𝑆‘𝐴)‘𝐵) = 𝐶) | |
| 24 | 23, 20 | eqeltrd 2828 | . . . . 5 ⊢ (𝜑 → ((𝑆‘𝐴)‘𝐵) ∈ 𝑃) |
| 25 | eqid 2729 | . . . . . 6 ⊢ (𝑆‘𝐴) = (𝑆‘𝐴) | |
| 26 | 1, 2, 3, 4, 5, 6, 11, 25, 16 | mircgr 28637 | . . . . 5 ⊢ (𝜑 → (𝐴 − ((𝑆‘𝐴)‘𝐵)) = (𝐴 − 𝐵)) |
| 27 | 1, 2, 3, 4, 5, 6, 8, 9, 11, 24, 11, 16, 26 | mircgrs 28653 | . . . 4 ⊢ (𝜑 → ((𝑀‘𝐴) − (𝑀‘((𝑆‘𝐴)‘𝐵))) = ((𝑀‘𝐴) − (𝑀‘𝐵))) |
| 28 | 7 | a1i 11 | . . . . 5 ⊢ (𝜑 → 𝑋 = (𝑀‘𝐴)) |
| 29 | 23 | fveq2d 6844 | . . . . . 6 ⊢ (𝜑 → (𝑀‘((𝑆‘𝐴)‘𝐵)) = (𝑀‘𝐶)) |
| 30 | 19, 29 | eqtr4id 2783 | . . . . 5 ⊢ (𝜑 → 𝑍 = (𝑀‘((𝑆‘𝐴)‘𝐵))) |
| 31 | 28, 30 | oveq12d 7387 | . . . 4 ⊢ (𝜑 → (𝑋 − 𝑍) = ((𝑀‘𝐴) − (𝑀‘((𝑆‘𝐴)‘𝐵)))) |
| 32 | 7, 15 | oveq12i 7381 | . . . . 5 ⊢ (𝑋 − 𝑌) = ((𝑀‘𝐴) − (𝑀‘𝐵)) |
| 33 | 32 | a1i 11 | . . . 4 ⊢ (𝜑 → (𝑋 − 𝑌) = ((𝑀‘𝐴) − (𝑀‘𝐵))) |
| 34 | 27, 31, 33 | 3eqtr4d 2774 | . . 3 ⊢ (𝜑 → (𝑋 − 𝑍) = (𝑋 − 𝑌)) |
| 35 | 1, 2, 3, 4, 5, 6, 11, 25, 16 | mirbtwn 28638 | . . . . . 6 ⊢ (𝜑 → 𝐴 ∈ (((𝑆‘𝐴)‘𝐵)𝐼𝐵)) |
| 36 | 23 | oveq1d 7384 | . . . . . 6 ⊢ (𝜑 → (((𝑆‘𝐴)‘𝐵)𝐼𝐵) = (𝐶𝐼𝐵)) |
| 37 | 35, 36 | eleqtrd 2830 | . . . . 5 ⊢ (𝜑 → 𝐴 ∈ (𝐶𝐼𝐵)) |
| 38 | 1, 2, 3, 4, 5, 6, 8, 9, 20, 11, 16, 37 | mirbtwni 28651 | . . . 4 ⊢ (𝜑 → (𝑀‘𝐴) ∈ ((𝑀‘𝐶)𝐼(𝑀‘𝐵))) |
| 39 | 19, 15 | oveq12i 7381 | . . . 4 ⊢ (𝑍𝐼𝑌) = ((𝑀‘𝐶)𝐼(𝑀‘𝐵)) |
| 40 | 38, 7, 39 | 3eltr4g 2845 | . . 3 ⊢ (𝜑 → 𝑋 ∈ (𝑍𝐼𝑌)) |
| 41 | 1, 2, 3, 4, 5, 6, 13, 14, 18, 22, 34, 40 | ismir 28639 | . 2 ⊢ (𝜑 → 𝑍 = ((𝑆‘𝑋)‘𝑌)) |
| 42 | 41 | eqcomd 2735 | 1 ⊢ (𝜑 → ((𝑆‘𝑋)‘𝑌) = 𝑍) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 ‘cfv 6499 (class class class)co 7369 Basecbs 17155 distcds 17205 TarskiGcstrkg 28407 Itvcitv 28413 LineGclng 28414 pInvGcmir 28632 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5229 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 ax-cnex 11100 ax-resscn 11101 ax-1cn 11102 ax-icn 11103 ax-addcl 11104 ax-addrcl 11105 ax-mulcl 11106 ax-mulrcl 11107 ax-mulcom 11108 ax-addass 11109 ax-mulass 11110 ax-distr 11111 ax-i2m1 11112 ax-1ne0 11113 ax-1rid 11114 ax-rnegex 11115 ax-rrecex 11116 ax-cnre 11117 ax-pre-lttri 11118 ax-pre-lttrn 11119 ax-pre-ltadd 11120 ax-pre-mulgt0 11121 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3351 df-reu 3352 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-pss 3931 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-tp 4590 df-op 4592 df-uni 4868 df-int 4907 df-iun 4953 df-br 5103 df-opab 5165 df-mpt 5184 df-tr 5210 df-id 5526 df-eprel 5531 df-po 5539 df-so 5540 df-fr 5584 df-we 5586 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-pred 6262 df-ord 6323 df-on 6324 df-lim 6325 df-suc 6326 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-riota 7326 df-ov 7372 df-oprab 7373 df-mpo 7374 df-om 7823 df-1st 7947 df-2nd 7948 df-frecs 8237 df-wrecs 8268 df-recs 8317 df-rdg 8355 df-1o 8411 df-oadd 8415 df-er 8648 df-pm 8779 df-en 8896 df-dom 8897 df-sdom 8898 df-fin 8899 df-dju 9830 df-card 9868 df-pnf 11186 df-mnf 11187 df-xr 11188 df-ltxr 11189 df-le 11190 df-sub 11383 df-neg 11384 df-nn 12163 df-2 12225 df-3 12226 df-n0 12419 df-xnn0 12492 df-z 12506 df-uz 12770 df-fz 13445 df-fzo 13592 df-hash 14272 df-word 14455 df-concat 14512 df-s1 14537 df-s2 14790 df-s3 14791 df-trkgc 28428 df-trkgb 28429 df-trkgcb 28430 df-trkg 28433 df-cgrg 28491 df-mir 28633 |
| This theorem is referenced by: miduniq2 28667 krippenlem 28670 |
| Copyright terms: Public domain | W3C validator |