Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > mirauto | Structured version Visualization version GIF version |
Description: Point inversion preserves point inversion. (Contributed by Thierry Arnoux, 30-Jul-2019.) |
Ref | Expression |
---|---|
mirval.p | ⊢ 𝑃 = (Base‘𝐺) |
mirval.d | ⊢ − = (dist‘𝐺) |
mirval.i | ⊢ 𝐼 = (Itv‘𝐺) |
mirval.l | ⊢ 𝐿 = (LineG‘𝐺) |
mirval.s | ⊢ 𝑆 = (pInvG‘𝐺) |
mirval.g | ⊢ (𝜑 → 𝐺 ∈ TarskiG) |
mirauto.m | ⊢ 𝑀 = (𝑆‘𝑇) |
mirauto.x | ⊢ 𝑋 = (𝑀‘𝐴) |
mirauto.y | ⊢ 𝑌 = (𝑀‘𝐵) |
mirauto.z | ⊢ 𝑍 = (𝑀‘𝐶) |
mirauto.0 | ⊢ (𝜑 → 𝑇 ∈ 𝑃) |
mirauto.1 | ⊢ (𝜑 → 𝐴 ∈ 𝑃) |
mirauto.2 | ⊢ (𝜑 → 𝐵 ∈ 𝑃) |
mirauto.3 | ⊢ (𝜑 → 𝐶 ∈ 𝑃) |
mirauto.4 | ⊢ (𝜑 → ((𝑆‘𝐴)‘𝐵) = 𝐶) |
Ref | Expression |
---|---|
mirauto | ⊢ (𝜑 → ((𝑆‘𝑋)‘𝑌) = 𝑍) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mirval.p | . . 3 ⊢ 𝑃 = (Base‘𝐺) | |
2 | mirval.d | . . 3 ⊢ − = (dist‘𝐺) | |
3 | mirval.i | . . 3 ⊢ 𝐼 = (Itv‘𝐺) | |
4 | mirval.l | . . 3 ⊢ 𝐿 = (LineG‘𝐺) | |
5 | mirval.s | . . 3 ⊢ 𝑆 = (pInvG‘𝐺) | |
6 | mirval.g | . . 3 ⊢ (𝜑 → 𝐺 ∈ TarskiG) | |
7 | mirauto.x | . . . 4 ⊢ 𝑋 = (𝑀‘𝐴) | |
8 | mirauto.0 | . . . . . 6 ⊢ (𝜑 → 𝑇 ∈ 𝑃) | |
9 | mirauto.m | . . . . . 6 ⊢ 𝑀 = (𝑆‘𝑇) | |
10 | 1, 2, 3, 4, 5, 6, 8, 9 | mirf 27021 | . . . . 5 ⊢ (𝜑 → 𝑀:𝑃⟶𝑃) |
11 | mirauto.1 | . . . . 5 ⊢ (𝜑 → 𝐴 ∈ 𝑃) | |
12 | 10, 11 | ffvelrnd 6962 | . . . 4 ⊢ (𝜑 → (𝑀‘𝐴) ∈ 𝑃) |
13 | 7, 12 | eqeltrid 2843 | . . 3 ⊢ (𝜑 → 𝑋 ∈ 𝑃) |
14 | eqid 2738 | . . 3 ⊢ (𝑆‘𝑋) = (𝑆‘𝑋) | |
15 | mirauto.y | . . . 4 ⊢ 𝑌 = (𝑀‘𝐵) | |
16 | mirauto.2 | . . . . 5 ⊢ (𝜑 → 𝐵 ∈ 𝑃) | |
17 | 10, 16 | ffvelrnd 6962 | . . . 4 ⊢ (𝜑 → (𝑀‘𝐵) ∈ 𝑃) |
18 | 15, 17 | eqeltrid 2843 | . . 3 ⊢ (𝜑 → 𝑌 ∈ 𝑃) |
19 | mirauto.z | . . . 4 ⊢ 𝑍 = (𝑀‘𝐶) | |
20 | mirauto.3 | . . . . 5 ⊢ (𝜑 → 𝐶 ∈ 𝑃) | |
21 | 10, 20 | ffvelrnd 6962 | . . . 4 ⊢ (𝜑 → (𝑀‘𝐶) ∈ 𝑃) |
22 | 19, 21 | eqeltrid 2843 | . . 3 ⊢ (𝜑 → 𝑍 ∈ 𝑃) |
23 | mirauto.4 | . . . . . 6 ⊢ (𝜑 → ((𝑆‘𝐴)‘𝐵) = 𝐶) | |
24 | 23, 20 | eqeltrd 2839 | . . . . 5 ⊢ (𝜑 → ((𝑆‘𝐴)‘𝐵) ∈ 𝑃) |
25 | eqid 2738 | . . . . . 6 ⊢ (𝑆‘𝐴) = (𝑆‘𝐴) | |
26 | 1, 2, 3, 4, 5, 6, 11, 25, 16 | mircgr 27018 | . . . . 5 ⊢ (𝜑 → (𝐴 − ((𝑆‘𝐴)‘𝐵)) = (𝐴 − 𝐵)) |
27 | 1, 2, 3, 4, 5, 6, 8, 9, 11, 24, 11, 16, 26 | mircgrs 27034 | . . . 4 ⊢ (𝜑 → ((𝑀‘𝐴) − (𝑀‘((𝑆‘𝐴)‘𝐵))) = ((𝑀‘𝐴) − (𝑀‘𝐵))) |
28 | 7 | a1i 11 | . . . . 5 ⊢ (𝜑 → 𝑋 = (𝑀‘𝐴)) |
29 | 23 | fveq2d 6778 | . . . . . 6 ⊢ (𝜑 → (𝑀‘((𝑆‘𝐴)‘𝐵)) = (𝑀‘𝐶)) |
30 | 19, 29 | eqtr4id 2797 | . . . . 5 ⊢ (𝜑 → 𝑍 = (𝑀‘((𝑆‘𝐴)‘𝐵))) |
31 | 28, 30 | oveq12d 7293 | . . . 4 ⊢ (𝜑 → (𝑋 − 𝑍) = ((𝑀‘𝐴) − (𝑀‘((𝑆‘𝐴)‘𝐵)))) |
32 | 7, 15 | oveq12i 7287 | . . . . 5 ⊢ (𝑋 − 𝑌) = ((𝑀‘𝐴) − (𝑀‘𝐵)) |
33 | 32 | a1i 11 | . . . 4 ⊢ (𝜑 → (𝑋 − 𝑌) = ((𝑀‘𝐴) − (𝑀‘𝐵))) |
34 | 27, 31, 33 | 3eqtr4d 2788 | . . 3 ⊢ (𝜑 → (𝑋 − 𝑍) = (𝑋 − 𝑌)) |
35 | 1, 2, 3, 4, 5, 6, 11, 25, 16 | mirbtwn 27019 | . . . . . 6 ⊢ (𝜑 → 𝐴 ∈ (((𝑆‘𝐴)‘𝐵)𝐼𝐵)) |
36 | 23 | oveq1d 7290 | . . . . . 6 ⊢ (𝜑 → (((𝑆‘𝐴)‘𝐵)𝐼𝐵) = (𝐶𝐼𝐵)) |
37 | 35, 36 | eleqtrd 2841 | . . . . 5 ⊢ (𝜑 → 𝐴 ∈ (𝐶𝐼𝐵)) |
38 | 1, 2, 3, 4, 5, 6, 8, 9, 20, 11, 16, 37 | mirbtwni 27032 | . . . 4 ⊢ (𝜑 → (𝑀‘𝐴) ∈ ((𝑀‘𝐶)𝐼(𝑀‘𝐵))) |
39 | 19, 15 | oveq12i 7287 | . . . 4 ⊢ (𝑍𝐼𝑌) = ((𝑀‘𝐶)𝐼(𝑀‘𝐵)) |
40 | 38, 7, 39 | 3eltr4g 2856 | . . 3 ⊢ (𝜑 → 𝑋 ∈ (𝑍𝐼𝑌)) |
41 | 1, 2, 3, 4, 5, 6, 13, 14, 18, 22, 34, 40 | ismir 27020 | . 2 ⊢ (𝜑 → 𝑍 = ((𝑆‘𝑋)‘𝑌)) |
42 | 41 | eqcomd 2744 | 1 ⊢ (𝜑 → ((𝑆‘𝑋)‘𝑌) = 𝑍) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2106 ‘cfv 6433 (class class class)co 7275 Basecbs 16912 distcds 16971 TarskiGcstrkg 26788 Itvcitv 26794 LineGclng 26795 pInvGcmir 27013 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-rep 5209 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 ax-cnex 10927 ax-resscn 10928 ax-1cn 10929 ax-icn 10930 ax-addcl 10931 ax-addrcl 10932 ax-mulcl 10933 ax-mulrcl 10934 ax-mulcom 10935 ax-addass 10936 ax-mulass 10937 ax-distr 10938 ax-i2m1 10939 ax-1ne0 10940 ax-1rid 10941 ax-rnegex 10942 ax-rrecex 10943 ax-cnre 10944 ax-pre-lttri 10945 ax-pre-lttrn 10946 ax-pre-ltadd 10947 ax-pre-mulgt0 10948 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-nel 3050 df-ral 3069 df-rex 3070 df-rmo 3071 df-reu 3072 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-pss 3906 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-tp 4566 df-op 4568 df-uni 4840 df-int 4880 df-iun 4926 df-br 5075 df-opab 5137 df-mpt 5158 df-tr 5192 df-id 5489 df-eprel 5495 df-po 5503 df-so 5504 df-fr 5544 df-we 5546 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-pred 6202 df-ord 6269 df-on 6270 df-lim 6271 df-suc 6272 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-riota 7232 df-ov 7278 df-oprab 7279 df-mpo 7280 df-om 7713 df-1st 7831 df-2nd 7832 df-frecs 8097 df-wrecs 8128 df-recs 8202 df-rdg 8241 df-1o 8297 df-oadd 8301 df-er 8498 df-pm 8618 df-en 8734 df-dom 8735 df-sdom 8736 df-fin 8737 df-dju 9659 df-card 9697 df-pnf 11011 df-mnf 11012 df-xr 11013 df-ltxr 11014 df-le 11015 df-sub 11207 df-neg 11208 df-nn 11974 df-2 12036 df-3 12037 df-n0 12234 df-xnn0 12306 df-z 12320 df-uz 12583 df-fz 13240 df-fzo 13383 df-hash 14045 df-word 14218 df-concat 14274 df-s1 14301 df-s2 14561 df-s3 14562 df-trkgc 26809 df-trkgb 26810 df-trkgcb 26811 df-trkg 26814 df-cgrg 26872 df-mir 27014 |
This theorem is referenced by: miduniq2 27048 krippenlem 27051 |
Copyright terms: Public domain | W3C validator |