MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mirauto Structured version   Visualization version   GIF version

Theorem mirauto 26035
Description: Point inversion preserves point inversion. (Contributed by Thierry Arnoux, 30-Jul-2019.)
Hypotheses
Ref Expression
mirval.p 𝑃 = (Base‘𝐺)
mirval.d = (dist‘𝐺)
mirval.i 𝐼 = (Itv‘𝐺)
mirval.l 𝐿 = (LineG‘𝐺)
mirval.s 𝑆 = (pInvG‘𝐺)
mirval.g (𝜑𝐺 ∈ TarskiG)
mirauto.m 𝑀 = (𝑆𝑇)
mirauto.x 𝑋 = (𝑀𝐴)
mirauto.y 𝑌 = (𝑀𝐵)
mirauto.z 𝑍 = (𝑀𝐶)
mirauto.0 (𝜑𝑇𝑃)
mirauto.1 (𝜑𝐴𝑃)
mirauto.2 (𝜑𝐵𝑃)
mirauto.3 (𝜑𝐶𝑃)
mirauto.4 (𝜑 → ((𝑆𝐴)‘𝐵) = 𝐶)
Assertion
Ref Expression
mirauto (𝜑 → ((𝑆𝑋)‘𝑌) = 𝑍)

Proof of Theorem mirauto
StepHypRef Expression
1 mirval.p . . 3 𝑃 = (Base‘𝐺)
2 mirval.d . . 3 = (dist‘𝐺)
3 mirval.i . . 3 𝐼 = (Itv‘𝐺)
4 mirval.l . . 3 𝐿 = (LineG‘𝐺)
5 mirval.s . . 3 𝑆 = (pInvG‘𝐺)
6 mirval.g . . 3 (𝜑𝐺 ∈ TarskiG)
7 mirauto.x . . . 4 𝑋 = (𝑀𝐴)
8 mirauto.0 . . . . . 6 (𝜑𝑇𝑃)
9 mirauto.m . . . . . 6 𝑀 = (𝑆𝑇)
101, 2, 3, 4, 5, 6, 8, 9mirf 26011 . . . . 5 (𝜑𝑀:𝑃𝑃)
11 mirauto.1 . . . . 5 (𝜑𝐴𝑃)
1210, 11ffvelrnd 6624 . . . 4 (𝜑 → (𝑀𝐴) ∈ 𝑃)
137, 12syl5eqel 2862 . . 3 (𝜑𝑋𝑃)
14 eqid 2777 . . 3 (𝑆𝑋) = (𝑆𝑋)
15 mirauto.y . . . 4 𝑌 = (𝑀𝐵)
16 mirauto.2 . . . . 5 (𝜑𝐵𝑃)
1710, 16ffvelrnd 6624 . . . 4 (𝜑 → (𝑀𝐵) ∈ 𝑃)
1815, 17syl5eqel 2862 . . 3 (𝜑𝑌𝑃)
19 mirauto.z . . . 4 𝑍 = (𝑀𝐶)
20 mirauto.3 . . . . 5 (𝜑𝐶𝑃)
2110, 20ffvelrnd 6624 . . . 4 (𝜑 → (𝑀𝐶) ∈ 𝑃)
2219, 21syl5eqel 2862 . . 3 (𝜑𝑍𝑃)
23 mirauto.4 . . . . . 6 (𝜑 → ((𝑆𝐴)‘𝐵) = 𝐶)
2423, 20eqeltrd 2858 . . . . 5 (𝜑 → ((𝑆𝐴)‘𝐵) ∈ 𝑃)
25 eqid 2777 . . . . . 6 (𝑆𝐴) = (𝑆𝐴)
261, 2, 3, 4, 5, 6, 11, 25, 16mircgr 26008 . . . . 5 (𝜑 → (𝐴 ((𝑆𝐴)‘𝐵)) = (𝐴 𝐵))
271, 2, 3, 4, 5, 6, 8, 9, 11, 24, 11, 16, 26mircgrs 26024 . . . 4 (𝜑 → ((𝑀𝐴) (𝑀‘((𝑆𝐴)‘𝐵))) = ((𝑀𝐴) (𝑀𝐵)))
287a1i 11 . . . . 5 (𝜑𝑋 = (𝑀𝐴))
2923fveq2d 6450 . . . . . 6 (𝜑 → (𝑀‘((𝑆𝐴)‘𝐵)) = (𝑀𝐶))
3029, 19syl6reqr 2832 . . . . 5 (𝜑𝑍 = (𝑀‘((𝑆𝐴)‘𝐵)))
3128, 30oveq12d 6940 . . . 4 (𝜑 → (𝑋 𝑍) = ((𝑀𝐴) (𝑀‘((𝑆𝐴)‘𝐵))))
327, 15oveq12i 6934 . . . . 5 (𝑋 𝑌) = ((𝑀𝐴) (𝑀𝐵))
3332a1i 11 . . . 4 (𝜑 → (𝑋 𝑌) = ((𝑀𝐴) (𝑀𝐵)))
3427, 31, 333eqtr4d 2823 . . 3 (𝜑 → (𝑋 𝑍) = (𝑋 𝑌))
351, 2, 3, 4, 5, 6, 11, 25, 16mirbtwn 26009 . . . . . 6 (𝜑𝐴 ∈ (((𝑆𝐴)‘𝐵)𝐼𝐵))
3623oveq1d 6937 . . . . . 6 (𝜑 → (((𝑆𝐴)‘𝐵)𝐼𝐵) = (𝐶𝐼𝐵))
3735, 36eleqtrd 2860 . . . . 5 (𝜑𝐴 ∈ (𝐶𝐼𝐵))
381, 2, 3, 4, 5, 6, 8, 9, 20, 11, 16, 37mirbtwni 26022 . . . 4 (𝜑 → (𝑀𝐴) ∈ ((𝑀𝐶)𝐼(𝑀𝐵)))
3919, 15oveq12i 6934 . . . 4 (𝑍𝐼𝑌) = ((𝑀𝐶)𝐼(𝑀𝐵))
4038, 7, 393eltr4g 2875 . . 3 (𝜑𝑋 ∈ (𝑍𝐼𝑌))
411, 2, 3, 4, 5, 6, 13, 14, 18, 22, 34, 40ismir 26010 . 2 (𝜑𝑍 = ((𝑆𝑋)‘𝑌))
4241eqcomd 2783 1 (𝜑 → ((𝑆𝑋)‘𝑌) = 𝑍)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1601  wcel 2106  cfv 6135  (class class class)co 6922  Basecbs 16255  distcds 16347  TarskiGcstrkg 25781  Itvcitv 25787  LineGclng 25788  pInvGcmir 26003
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1839  ax-4 1853  ax-5 1953  ax-6 2021  ax-7 2054  ax-8 2108  ax-9 2115  ax-10 2134  ax-11 2149  ax-12 2162  ax-13 2333  ax-ext 2753  ax-rep 5006  ax-sep 5017  ax-nul 5025  ax-pow 5077  ax-pr 5138  ax-un 7226  ax-cnex 10328  ax-resscn 10329  ax-1cn 10330  ax-icn 10331  ax-addcl 10332  ax-addrcl 10333  ax-mulcl 10334  ax-mulrcl 10335  ax-mulcom 10336  ax-addass 10337  ax-mulass 10338  ax-distr 10339  ax-i2m1 10340  ax-1ne0 10341  ax-1rid 10342  ax-rnegex 10343  ax-rrecex 10344  ax-cnre 10345  ax-pre-lttri 10346  ax-pre-lttrn 10347  ax-pre-ltadd 10348  ax-pre-mulgt0 10349
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 837  df-3or 1072  df-3an 1073  df-tru 1605  df-ex 1824  df-nf 1828  df-sb 2012  df-mo 2550  df-eu 2586  df-clab 2763  df-cleq 2769  df-clel 2773  df-nfc 2920  df-ne 2969  df-nel 3075  df-ral 3094  df-rex 3095  df-reu 3096  df-rmo 3097  df-rab 3098  df-v 3399  df-sbc 3652  df-csb 3751  df-dif 3794  df-un 3796  df-in 3798  df-ss 3805  df-pss 3807  df-nul 4141  df-if 4307  df-pw 4380  df-sn 4398  df-pr 4400  df-tp 4402  df-op 4404  df-uni 4672  df-int 4711  df-iun 4755  df-br 4887  df-opab 4949  df-mpt 4966  df-tr 4988  df-id 5261  df-eprel 5266  df-po 5274  df-so 5275  df-fr 5314  df-we 5316  df-xp 5361  df-rel 5362  df-cnv 5363  df-co 5364  df-dm 5365  df-rn 5366  df-res 5367  df-ima 5368  df-pred 5933  df-ord 5979  df-on 5980  df-lim 5981  df-suc 5982  df-iota 6099  df-fun 6137  df-fn 6138  df-f 6139  df-f1 6140  df-fo 6141  df-f1o 6142  df-fv 6143  df-riota 6883  df-ov 6925  df-oprab 6926  df-mpt2 6927  df-om 7344  df-1st 7445  df-2nd 7446  df-wrecs 7689  df-recs 7751  df-rdg 7789  df-1o 7843  df-oadd 7847  df-er 8026  df-pm 8143  df-en 8242  df-dom 8243  df-sdom 8244  df-fin 8245  df-card 9098  df-cda 9325  df-pnf 10413  df-mnf 10414  df-xr 10415  df-ltxr 10416  df-le 10417  df-sub 10608  df-neg 10609  df-nn 11375  df-2 11438  df-3 11439  df-n0 11643  df-xnn0 11715  df-z 11729  df-uz 11993  df-fz 12644  df-fzo 12785  df-hash 13436  df-word 13600  df-concat 13661  df-s1 13686  df-s2 13999  df-s3 14000  df-trkgc 25799  df-trkgb 25800  df-trkgcb 25801  df-trkg 25804  df-cgrg 25862  df-mir 26004
This theorem is referenced by:  miduniq2  26038  krippenlem  26041
  Copyright terms: Public domain W3C validator