| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > mirauto | Structured version Visualization version GIF version | ||
| Description: Point inversion preserves point inversion. (Contributed by Thierry Arnoux, 30-Jul-2019.) |
| Ref | Expression |
|---|---|
| mirval.p | ⊢ 𝑃 = (Base‘𝐺) |
| mirval.d | ⊢ − = (dist‘𝐺) |
| mirval.i | ⊢ 𝐼 = (Itv‘𝐺) |
| mirval.l | ⊢ 𝐿 = (LineG‘𝐺) |
| mirval.s | ⊢ 𝑆 = (pInvG‘𝐺) |
| mirval.g | ⊢ (𝜑 → 𝐺 ∈ TarskiG) |
| mirauto.m | ⊢ 𝑀 = (𝑆‘𝑇) |
| mirauto.x | ⊢ 𝑋 = (𝑀‘𝐴) |
| mirauto.y | ⊢ 𝑌 = (𝑀‘𝐵) |
| mirauto.z | ⊢ 𝑍 = (𝑀‘𝐶) |
| mirauto.0 | ⊢ (𝜑 → 𝑇 ∈ 𝑃) |
| mirauto.1 | ⊢ (𝜑 → 𝐴 ∈ 𝑃) |
| mirauto.2 | ⊢ (𝜑 → 𝐵 ∈ 𝑃) |
| mirauto.3 | ⊢ (𝜑 → 𝐶 ∈ 𝑃) |
| mirauto.4 | ⊢ (𝜑 → ((𝑆‘𝐴)‘𝐵) = 𝐶) |
| Ref | Expression |
|---|---|
| mirauto | ⊢ (𝜑 → ((𝑆‘𝑋)‘𝑌) = 𝑍) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mirval.p | . . 3 ⊢ 𝑃 = (Base‘𝐺) | |
| 2 | mirval.d | . . 3 ⊢ − = (dist‘𝐺) | |
| 3 | mirval.i | . . 3 ⊢ 𝐼 = (Itv‘𝐺) | |
| 4 | mirval.l | . . 3 ⊢ 𝐿 = (LineG‘𝐺) | |
| 5 | mirval.s | . . 3 ⊢ 𝑆 = (pInvG‘𝐺) | |
| 6 | mirval.g | . . 3 ⊢ (𝜑 → 𝐺 ∈ TarskiG) | |
| 7 | mirauto.x | . . . 4 ⊢ 𝑋 = (𝑀‘𝐴) | |
| 8 | mirauto.0 | . . . . . 6 ⊢ (𝜑 → 𝑇 ∈ 𝑃) | |
| 9 | mirauto.m | . . . . . 6 ⊢ 𝑀 = (𝑆‘𝑇) | |
| 10 | 1, 2, 3, 4, 5, 6, 8, 9 | mirf 28605 | . . . . 5 ⊢ (𝜑 → 𝑀:𝑃⟶𝑃) |
| 11 | mirauto.1 | . . . . 5 ⊢ (𝜑 → 𝐴 ∈ 𝑃) | |
| 12 | 10, 11 | ffvelcdmd 7019 | . . . 4 ⊢ (𝜑 → (𝑀‘𝐴) ∈ 𝑃) |
| 13 | 7, 12 | eqeltrid 2832 | . . 3 ⊢ (𝜑 → 𝑋 ∈ 𝑃) |
| 14 | eqid 2729 | . . 3 ⊢ (𝑆‘𝑋) = (𝑆‘𝑋) | |
| 15 | mirauto.y | . . . 4 ⊢ 𝑌 = (𝑀‘𝐵) | |
| 16 | mirauto.2 | . . . . 5 ⊢ (𝜑 → 𝐵 ∈ 𝑃) | |
| 17 | 10, 16 | ffvelcdmd 7019 | . . . 4 ⊢ (𝜑 → (𝑀‘𝐵) ∈ 𝑃) |
| 18 | 15, 17 | eqeltrid 2832 | . . 3 ⊢ (𝜑 → 𝑌 ∈ 𝑃) |
| 19 | mirauto.z | . . . 4 ⊢ 𝑍 = (𝑀‘𝐶) | |
| 20 | mirauto.3 | . . . . 5 ⊢ (𝜑 → 𝐶 ∈ 𝑃) | |
| 21 | 10, 20 | ffvelcdmd 7019 | . . . 4 ⊢ (𝜑 → (𝑀‘𝐶) ∈ 𝑃) |
| 22 | 19, 21 | eqeltrid 2832 | . . 3 ⊢ (𝜑 → 𝑍 ∈ 𝑃) |
| 23 | mirauto.4 | . . . . . 6 ⊢ (𝜑 → ((𝑆‘𝐴)‘𝐵) = 𝐶) | |
| 24 | 23, 20 | eqeltrd 2828 | . . . . 5 ⊢ (𝜑 → ((𝑆‘𝐴)‘𝐵) ∈ 𝑃) |
| 25 | eqid 2729 | . . . . . 6 ⊢ (𝑆‘𝐴) = (𝑆‘𝐴) | |
| 26 | 1, 2, 3, 4, 5, 6, 11, 25, 16 | mircgr 28602 | . . . . 5 ⊢ (𝜑 → (𝐴 − ((𝑆‘𝐴)‘𝐵)) = (𝐴 − 𝐵)) |
| 27 | 1, 2, 3, 4, 5, 6, 8, 9, 11, 24, 11, 16, 26 | mircgrs 28618 | . . . 4 ⊢ (𝜑 → ((𝑀‘𝐴) − (𝑀‘((𝑆‘𝐴)‘𝐵))) = ((𝑀‘𝐴) − (𝑀‘𝐵))) |
| 28 | 7 | a1i 11 | . . . . 5 ⊢ (𝜑 → 𝑋 = (𝑀‘𝐴)) |
| 29 | 23 | fveq2d 6826 | . . . . . 6 ⊢ (𝜑 → (𝑀‘((𝑆‘𝐴)‘𝐵)) = (𝑀‘𝐶)) |
| 30 | 19, 29 | eqtr4id 2783 | . . . . 5 ⊢ (𝜑 → 𝑍 = (𝑀‘((𝑆‘𝐴)‘𝐵))) |
| 31 | 28, 30 | oveq12d 7367 | . . . 4 ⊢ (𝜑 → (𝑋 − 𝑍) = ((𝑀‘𝐴) − (𝑀‘((𝑆‘𝐴)‘𝐵)))) |
| 32 | 7, 15 | oveq12i 7361 | . . . . 5 ⊢ (𝑋 − 𝑌) = ((𝑀‘𝐴) − (𝑀‘𝐵)) |
| 33 | 32 | a1i 11 | . . . 4 ⊢ (𝜑 → (𝑋 − 𝑌) = ((𝑀‘𝐴) − (𝑀‘𝐵))) |
| 34 | 27, 31, 33 | 3eqtr4d 2774 | . . 3 ⊢ (𝜑 → (𝑋 − 𝑍) = (𝑋 − 𝑌)) |
| 35 | 1, 2, 3, 4, 5, 6, 11, 25, 16 | mirbtwn 28603 | . . . . . 6 ⊢ (𝜑 → 𝐴 ∈ (((𝑆‘𝐴)‘𝐵)𝐼𝐵)) |
| 36 | 23 | oveq1d 7364 | . . . . . 6 ⊢ (𝜑 → (((𝑆‘𝐴)‘𝐵)𝐼𝐵) = (𝐶𝐼𝐵)) |
| 37 | 35, 36 | eleqtrd 2830 | . . . . 5 ⊢ (𝜑 → 𝐴 ∈ (𝐶𝐼𝐵)) |
| 38 | 1, 2, 3, 4, 5, 6, 8, 9, 20, 11, 16, 37 | mirbtwni 28616 | . . . 4 ⊢ (𝜑 → (𝑀‘𝐴) ∈ ((𝑀‘𝐶)𝐼(𝑀‘𝐵))) |
| 39 | 19, 15 | oveq12i 7361 | . . . 4 ⊢ (𝑍𝐼𝑌) = ((𝑀‘𝐶)𝐼(𝑀‘𝐵)) |
| 40 | 38, 7, 39 | 3eltr4g 2845 | . . 3 ⊢ (𝜑 → 𝑋 ∈ (𝑍𝐼𝑌)) |
| 41 | 1, 2, 3, 4, 5, 6, 13, 14, 18, 22, 34, 40 | ismir 28604 | . 2 ⊢ (𝜑 → 𝑍 = ((𝑆‘𝑋)‘𝑌)) |
| 42 | 41 | eqcomd 2735 | 1 ⊢ (𝜑 → ((𝑆‘𝑋)‘𝑌) = 𝑍) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 ‘cfv 6482 (class class class)co 7349 Basecbs 17120 distcds 17170 TarskiGcstrkg 28372 Itvcitv 28378 LineGclng 28379 pInvGcmir 28597 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5218 ax-sep 5235 ax-nul 5245 ax-pow 5304 ax-pr 5371 ax-un 7671 ax-cnex 11065 ax-resscn 11066 ax-1cn 11067 ax-icn 11068 ax-addcl 11069 ax-addrcl 11070 ax-mulcl 11071 ax-mulrcl 11072 ax-mulcom 11073 ax-addass 11074 ax-mulass 11075 ax-distr 11076 ax-i2m1 11077 ax-1ne0 11078 ax-1rid 11079 ax-rnegex 11080 ax-rrecex 11081 ax-cnre 11082 ax-pre-lttri 11083 ax-pre-lttrn 11084 ax-pre-ltadd 11085 ax-pre-mulgt0 11086 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3343 df-reu 3344 df-rab 3395 df-v 3438 df-sbc 3743 df-csb 3852 df-dif 3906 df-un 3908 df-in 3910 df-ss 3920 df-pss 3923 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-tp 4582 df-op 4584 df-uni 4859 df-int 4897 df-iun 4943 df-br 5093 df-opab 5155 df-mpt 5174 df-tr 5200 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-pred 6249 df-ord 6310 df-on 6311 df-lim 6312 df-suc 6313 df-iota 6438 df-fun 6484 df-fn 6485 df-f 6486 df-f1 6487 df-fo 6488 df-f1o 6489 df-fv 6490 df-riota 7306 df-ov 7352 df-oprab 7353 df-mpo 7354 df-om 7800 df-1st 7924 df-2nd 7925 df-frecs 8214 df-wrecs 8245 df-recs 8294 df-rdg 8332 df-1o 8388 df-oadd 8392 df-er 8625 df-pm 8756 df-en 8873 df-dom 8874 df-sdom 8875 df-fin 8876 df-dju 9797 df-card 9835 df-pnf 11151 df-mnf 11152 df-xr 11153 df-ltxr 11154 df-le 11155 df-sub 11349 df-neg 11350 df-nn 12129 df-2 12191 df-3 12192 df-n0 12385 df-xnn0 12458 df-z 12472 df-uz 12736 df-fz 13411 df-fzo 13558 df-hash 14238 df-word 14421 df-concat 14478 df-s1 14503 df-s2 14755 df-s3 14756 df-trkgc 28393 df-trkgb 28394 df-trkgcb 28395 df-trkg 28398 df-cgrg 28456 df-mir 28598 |
| This theorem is referenced by: miduniq2 28632 krippenlem 28635 |
| Copyright terms: Public domain | W3C validator |