MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mirauto Structured version   Visualization version   GIF version

Theorem mirauto 28707
Description: Point inversion preserves point inversion. (Contributed by Thierry Arnoux, 30-Jul-2019.)
Hypotheses
Ref Expression
mirval.p 𝑃 = (Base‘𝐺)
mirval.d = (dist‘𝐺)
mirval.i 𝐼 = (Itv‘𝐺)
mirval.l 𝐿 = (LineG‘𝐺)
mirval.s 𝑆 = (pInvG‘𝐺)
mirval.g (𝜑𝐺 ∈ TarskiG)
mirauto.m 𝑀 = (𝑆𝑇)
mirauto.x 𝑋 = (𝑀𝐴)
mirauto.y 𝑌 = (𝑀𝐵)
mirauto.z 𝑍 = (𝑀𝐶)
mirauto.0 (𝜑𝑇𝑃)
mirauto.1 (𝜑𝐴𝑃)
mirauto.2 (𝜑𝐵𝑃)
mirauto.3 (𝜑𝐶𝑃)
mirauto.4 (𝜑 → ((𝑆𝐴)‘𝐵) = 𝐶)
Assertion
Ref Expression
mirauto (𝜑 → ((𝑆𝑋)‘𝑌) = 𝑍)

Proof of Theorem mirauto
StepHypRef Expression
1 mirval.p . . 3 𝑃 = (Base‘𝐺)
2 mirval.d . . 3 = (dist‘𝐺)
3 mirval.i . . 3 𝐼 = (Itv‘𝐺)
4 mirval.l . . 3 𝐿 = (LineG‘𝐺)
5 mirval.s . . 3 𝑆 = (pInvG‘𝐺)
6 mirval.g . . 3 (𝜑𝐺 ∈ TarskiG)
7 mirauto.x . . . 4 𝑋 = (𝑀𝐴)
8 mirauto.0 . . . . . 6 (𝜑𝑇𝑃)
9 mirauto.m . . . . . 6 𝑀 = (𝑆𝑇)
101, 2, 3, 4, 5, 6, 8, 9mirf 28683 . . . . 5 (𝜑𝑀:𝑃𝑃)
11 mirauto.1 . . . . 5 (𝜑𝐴𝑃)
1210, 11ffvelcdmd 7105 . . . 4 (𝜑 → (𝑀𝐴) ∈ 𝑃)
137, 12eqeltrid 2843 . . 3 (𝜑𝑋𝑃)
14 eqid 2735 . . 3 (𝑆𝑋) = (𝑆𝑋)
15 mirauto.y . . . 4 𝑌 = (𝑀𝐵)
16 mirauto.2 . . . . 5 (𝜑𝐵𝑃)
1710, 16ffvelcdmd 7105 . . . 4 (𝜑 → (𝑀𝐵) ∈ 𝑃)
1815, 17eqeltrid 2843 . . 3 (𝜑𝑌𝑃)
19 mirauto.z . . . 4 𝑍 = (𝑀𝐶)
20 mirauto.3 . . . . 5 (𝜑𝐶𝑃)
2110, 20ffvelcdmd 7105 . . . 4 (𝜑 → (𝑀𝐶) ∈ 𝑃)
2219, 21eqeltrid 2843 . . 3 (𝜑𝑍𝑃)
23 mirauto.4 . . . . . 6 (𝜑 → ((𝑆𝐴)‘𝐵) = 𝐶)
2423, 20eqeltrd 2839 . . . . 5 (𝜑 → ((𝑆𝐴)‘𝐵) ∈ 𝑃)
25 eqid 2735 . . . . . 6 (𝑆𝐴) = (𝑆𝐴)
261, 2, 3, 4, 5, 6, 11, 25, 16mircgr 28680 . . . . 5 (𝜑 → (𝐴 ((𝑆𝐴)‘𝐵)) = (𝐴 𝐵))
271, 2, 3, 4, 5, 6, 8, 9, 11, 24, 11, 16, 26mircgrs 28696 . . . 4 (𝜑 → ((𝑀𝐴) (𝑀‘((𝑆𝐴)‘𝐵))) = ((𝑀𝐴) (𝑀𝐵)))
287a1i 11 . . . . 5 (𝜑𝑋 = (𝑀𝐴))
2923fveq2d 6911 . . . . . 6 (𝜑 → (𝑀‘((𝑆𝐴)‘𝐵)) = (𝑀𝐶))
3019, 29eqtr4id 2794 . . . . 5 (𝜑𝑍 = (𝑀‘((𝑆𝐴)‘𝐵)))
3128, 30oveq12d 7449 . . . 4 (𝜑 → (𝑋 𝑍) = ((𝑀𝐴) (𝑀‘((𝑆𝐴)‘𝐵))))
327, 15oveq12i 7443 . . . . 5 (𝑋 𝑌) = ((𝑀𝐴) (𝑀𝐵))
3332a1i 11 . . . 4 (𝜑 → (𝑋 𝑌) = ((𝑀𝐴) (𝑀𝐵)))
3427, 31, 333eqtr4d 2785 . . 3 (𝜑 → (𝑋 𝑍) = (𝑋 𝑌))
351, 2, 3, 4, 5, 6, 11, 25, 16mirbtwn 28681 . . . . . 6 (𝜑𝐴 ∈ (((𝑆𝐴)‘𝐵)𝐼𝐵))
3623oveq1d 7446 . . . . . 6 (𝜑 → (((𝑆𝐴)‘𝐵)𝐼𝐵) = (𝐶𝐼𝐵))
3735, 36eleqtrd 2841 . . . . 5 (𝜑𝐴 ∈ (𝐶𝐼𝐵))
381, 2, 3, 4, 5, 6, 8, 9, 20, 11, 16, 37mirbtwni 28694 . . . 4 (𝜑 → (𝑀𝐴) ∈ ((𝑀𝐶)𝐼(𝑀𝐵)))
3919, 15oveq12i 7443 . . . 4 (𝑍𝐼𝑌) = ((𝑀𝐶)𝐼(𝑀𝐵))
4038, 7, 393eltr4g 2856 . . 3 (𝜑𝑋 ∈ (𝑍𝐼𝑌))
411, 2, 3, 4, 5, 6, 13, 14, 18, 22, 34, 40ismir 28682 . 2 (𝜑𝑍 = ((𝑆𝑋)‘𝑌))
4241eqcomd 2741 1 (𝜑 → ((𝑆𝑋)‘𝑌) = 𝑍)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1537  wcel 2106  cfv 6563  (class class class)co 7431  Basecbs 17245  distcds 17307  TarskiGcstrkg 28450  Itvcitv 28456  LineGclng 28457  pInvGcmir 28675
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-rep 5285  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754  ax-cnex 11209  ax-resscn 11210  ax-1cn 11211  ax-icn 11212  ax-addcl 11213  ax-addrcl 11214  ax-mulcl 11215  ax-mulrcl 11216  ax-mulcom 11217  ax-addass 11218  ax-mulass 11219  ax-distr 11220  ax-i2m1 11221  ax-1ne0 11222  ax-1rid 11223  ax-rnegex 11224  ax-rrecex 11225  ax-cnre 11226  ax-pre-lttri 11227  ax-pre-lttrn 11228  ax-pre-ltadd 11229  ax-pre-mulgt0 11230
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-rmo 3378  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-tp 4636  df-op 4638  df-uni 4913  df-int 4952  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5583  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-we 5643  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-pred 6323  df-ord 6389  df-on 6390  df-lim 6391  df-suc 6392  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8013  df-2nd 8014  df-frecs 8305  df-wrecs 8336  df-recs 8410  df-rdg 8449  df-1o 8505  df-oadd 8509  df-er 8744  df-pm 8868  df-en 8985  df-dom 8986  df-sdom 8987  df-fin 8988  df-dju 9939  df-card 9977  df-pnf 11295  df-mnf 11296  df-xr 11297  df-ltxr 11298  df-le 11299  df-sub 11492  df-neg 11493  df-nn 12265  df-2 12327  df-3 12328  df-n0 12525  df-xnn0 12598  df-z 12612  df-uz 12877  df-fz 13545  df-fzo 13692  df-hash 14367  df-word 14550  df-concat 14606  df-s1 14631  df-s2 14884  df-s3 14885  df-trkgc 28471  df-trkgb 28472  df-trkgcb 28473  df-trkg 28476  df-cgrg 28534  df-mir 28676
This theorem is referenced by:  miduniq2  28710  krippenlem  28713
  Copyright terms: Public domain W3C validator