![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > mirauto | Structured version Visualization version GIF version |
Description: Point inversion preserves point inversion. (Contributed by Thierry Arnoux, 30-Jul-2019.) |
Ref | Expression |
---|---|
mirval.p | β’ π = (BaseβπΊ) |
mirval.d | β’ β = (distβπΊ) |
mirval.i | β’ πΌ = (ItvβπΊ) |
mirval.l | β’ πΏ = (LineGβπΊ) |
mirval.s | β’ π = (pInvGβπΊ) |
mirval.g | β’ (π β πΊ β TarskiG) |
mirauto.m | β’ π = (πβπ) |
mirauto.x | β’ π = (πβπ΄) |
mirauto.y | β’ π = (πβπ΅) |
mirauto.z | β’ π = (πβπΆ) |
mirauto.0 | β’ (π β π β π) |
mirauto.1 | β’ (π β π΄ β π) |
mirauto.2 | β’ (π β π΅ β π) |
mirauto.3 | β’ (π β πΆ β π) |
mirauto.4 | β’ (π β ((πβπ΄)βπ΅) = πΆ) |
Ref | Expression |
---|---|
mirauto | β’ (π β ((πβπ)βπ) = π) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mirval.p | . . 3 β’ π = (BaseβπΊ) | |
2 | mirval.d | . . 3 β’ β = (distβπΊ) | |
3 | mirval.i | . . 3 β’ πΌ = (ItvβπΊ) | |
4 | mirval.l | . . 3 β’ πΏ = (LineGβπΊ) | |
5 | mirval.s | . . 3 β’ π = (pInvGβπΊ) | |
6 | mirval.g | . . 3 β’ (π β πΊ β TarskiG) | |
7 | mirauto.x | . . . 4 β’ π = (πβπ΄) | |
8 | mirauto.0 | . . . . . 6 β’ (π β π β π) | |
9 | mirauto.m | . . . . . 6 β’ π = (πβπ) | |
10 | 1, 2, 3, 4, 5, 6, 8, 9 | mirf 28166 | . . . . 5 β’ (π β π:πβΆπ) |
11 | mirauto.1 | . . . . 5 β’ (π β π΄ β π) | |
12 | 10, 11 | ffvelcdmd 7087 | . . . 4 β’ (π β (πβπ΄) β π) |
13 | 7, 12 | eqeltrid 2837 | . . 3 β’ (π β π β π) |
14 | eqid 2732 | . . 3 β’ (πβπ) = (πβπ) | |
15 | mirauto.y | . . . 4 β’ π = (πβπ΅) | |
16 | mirauto.2 | . . . . 5 β’ (π β π΅ β π) | |
17 | 10, 16 | ffvelcdmd 7087 | . . . 4 β’ (π β (πβπ΅) β π) |
18 | 15, 17 | eqeltrid 2837 | . . 3 β’ (π β π β π) |
19 | mirauto.z | . . . 4 β’ π = (πβπΆ) | |
20 | mirauto.3 | . . . . 5 β’ (π β πΆ β π) | |
21 | 10, 20 | ffvelcdmd 7087 | . . . 4 β’ (π β (πβπΆ) β π) |
22 | 19, 21 | eqeltrid 2837 | . . 3 β’ (π β π β π) |
23 | mirauto.4 | . . . . . 6 β’ (π β ((πβπ΄)βπ΅) = πΆ) | |
24 | 23, 20 | eqeltrd 2833 | . . . . 5 β’ (π β ((πβπ΄)βπ΅) β π) |
25 | eqid 2732 | . . . . . 6 β’ (πβπ΄) = (πβπ΄) | |
26 | 1, 2, 3, 4, 5, 6, 11, 25, 16 | mircgr 28163 | . . . . 5 β’ (π β (π΄ β ((πβπ΄)βπ΅)) = (π΄ β π΅)) |
27 | 1, 2, 3, 4, 5, 6, 8, 9, 11, 24, 11, 16, 26 | mircgrs 28179 | . . . 4 β’ (π β ((πβπ΄) β (πβ((πβπ΄)βπ΅))) = ((πβπ΄) β (πβπ΅))) |
28 | 7 | a1i 11 | . . . . 5 β’ (π β π = (πβπ΄)) |
29 | 23 | fveq2d 6895 | . . . . . 6 β’ (π β (πβ((πβπ΄)βπ΅)) = (πβπΆ)) |
30 | 19, 29 | eqtr4id 2791 | . . . . 5 β’ (π β π = (πβ((πβπ΄)βπ΅))) |
31 | 28, 30 | oveq12d 7429 | . . . 4 β’ (π β (π β π) = ((πβπ΄) β (πβ((πβπ΄)βπ΅)))) |
32 | 7, 15 | oveq12i 7423 | . . . . 5 β’ (π β π) = ((πβπ΄) β (πβπ΅)) |
33 | 32 | a1i 11 | . . . 4 β’ (π β (π β π) = ((πβπ΄) β (πβπ΅))) |
34 | 27, 31, 33 | 3eqtr4d 2782 | . . 3 β’ (π β (π β π) = (π β π)) |
35 | 1, 2, 3, 4, 5, 6, 11, 25, 16 | mirbtwn 28164 | . . . . . 6 β’ (π β π΄ β (((πβπ΄)βπ΅)πΌπ΅)) |
36 | 23 | oveq1d 7426 | . . . . . 6 β’ (π β (((πβπ΄)βπ΅)πΌπ΅) = (πΆπΌπ΅)) |
37 | 35, 36 | eleqtrd 2835 | . . . . 5 β’ (π β π΄ β (πΆπΌπ΅)) |
38 | 1, 2, 3, 4, 5, 6, 8, 9, 20, 11, 16, 37 | mirbtwni 28177 | . . . 4 β’ (π β (πβπ΄) β ((πβπΆ)πΌ(πβπ΅))) |
39 | 19, 15 | oveq12i 7423 | . . . 4 β’ (ππΌπ) = ((πβπΆ)πΌ(πβπ΅)) |
40 | 38, 7, 39 | 3eltr4g 2850 | . . 3 β’ (π β π β (ππΌπ)) |
41 | 1, 2, 3, 4, 5, 6, 13, 14, 18, 22, 34, 40 | ismir 28165 | . 2 β’ (π β π = ((πβπ)βπ)) |
42 | 41 | eqcomd 2738 | 1 β’ (π β ((πβπ)βπ) = π) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 = wceq 1541 β wcel 2106 βcfv 6543 (class class class)co 7411 Basecbs 17148 distcds 17210 TarskiGcstrkg 27933 Itvcitv 27939 LineGclng 27940 pInvGcmir 28158 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-rep 5285 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7727 ax-cnex 11168 ax-resscn 11169 ax-1cn 11170 ax-icn 11171 ax-addcl 11172 ax-addrcl 11173 ax-mulcl 11174 ax-mulrcl 11175 ax-mulcom 11176 ax-addass 11177 ax-mulass 11178 ax-distr 11179 ax-i2m1 11180 ax-1ne0 11181 ax-1rid 11182 ax-rnegex 11183 ax-rrecex 11184 ax-cnre 11185 ax-pre-lttri 11186 ax-pre-lttrn 11187 ax-pre-ltadd 11188 ax-pre-mulgt0 11189 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3376 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-pss 3967 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-tp 4633 df-op 4635 df-uni 4909 df-int 4951 df-iun 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5574 df-eprel 5580 df-po 5588 df-so 5589 df-fr 5631 df-we 5633 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-pred 6300 df-ord 6367 df-on 6368 df-lim 6369 df-suc 6370 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-riota 7367 df-ov 7414 df-oprab 7415 df-mpo 7416 df-om 7858 df-1st 7977 df-2nd 7978 df-frecs 8268 df-wrecs 8299 df-recs 8373 df-rdg 8412 df-1o 8468 df-oadd 8472 df-er 8705 df-pm 8825 df-en 8942 df-dom 8943 df-sdom 8944 df-fin 8945 df-dju 9898 df-card 9936 df-pnf 11254 df-mnf 11255 df-xr 11256 df-ltxr 11257 df-le 11258 df-sub 11450 df-neg 11451 df-nn 12217 df-2 12279 df-3 12280 df-n0 12477 df-xnn0 12549 df-z 12563 df-uz 12827 df-fz 13489 df-fzo 13632 df-hash 14295 df-word 14469 df-concat 14525 df-s1 14550 df-s2 14803 df-s3 14804 df-trkgc 27954 df-trkgb 27955 df-trkgcb 27956 df-trkg 27959 df-cgrg 28017 df-mir 28159 |
This theorem is referenced by: miduniq2 28193 krippenlem 28196 |
Copyright terms: Public domain | W3C validator |