| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > mirauto | Structured version Visualization version GIF version | ||
| Description: Point inversion preserves point inversion. (Contributed by Thierry Arnoux, 30-Jul-2019.) |
| Ref | Expression |
|---|---|
| mirval.p | ⊢ 𝑃 = (Base‘𝐺) |
| mirval.d | ⊢ − = (dist‘𝐺) |
| mirval.i | ⊢ 𝐼 = (Itv‘𝐺) |
| mirval.l | ⊢ 𝐿 = (LineG‘𝐺) |
| mirval.s | ⊢ 𝑆 = (pInvG‘𝐺) |
| mirval.g | ⊢ (𝜑 → 𝐺 ∈ TarskiG) |
| mirauto.m | ⊢ 𝑀 = (𝑆‘𝑇) |
| mirauto.x | ⊢ 𝑋 = (𝑀‘𝐴) |
| mirauto.y | ⊢ 𝑌 = (𝑀‘𝐵) |
| mirauto.z | ⊢ 𝑍 = (𝑀‘𝐶) |
| mirauto.0 | ⊢ (𝜑 → 𝑇 ∈ 𝑃) |
| mirauto.1 | ⊢ (𝜑 → 𝐴 ∈ 𝑃) |
| mirauto.2 | ⊢ (𝜑 → 𝐵 ∈ 𝑃) |
| mirauto.3 | ⊢ (𝜑 → 𝐶 ∈ 𝑃) |
| mirauto.4 | ⊢ (𝜑 → ((𝑆‘𝐴)‘𝐵) = 𝐶) |
| Ref | Expression |
|---|---|
| mirauto | ⊢ (𝜑 → ((𝑆‘𝑋)‘𝑌) = 𝑍) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mirval.p | . . 3 ⊢ 𝑃 = (Base‘𝐺) | |
| 2 | mirval.d | . . 3 ⊢ − = (dist‘𝐺) | |
| 3 | mirval.i | . . 3 ⊢ 𝐼 = (Itv‘𝐺) | |
| 4 | mirval.l | . . 3 ⊢ 𝐿 = (LineG‘𝐺) | |
| 5 | mirval.s | . . 3 ⊢ 𝑆 = (pInvG‘𝐺) | |
| 6 | mirval.g | . . 3 ⊢ (𝜑 → 𝐺 ∈ TarskiG) | |
| 7 | mirauto.x | . . . 4 ⊢ 𝑋 = (𝑀‘𝐴) | |
| 8 | mirauto.0 | . . . . . 6 ⊢ (𝜑 → 𝑇 ∈ 𝑃) | |
| 9 | mirauto.m | . . . . . 6 ⊢ 𝑀 = (𝑆‘𝑇) | |
| 10 | 1, 2, 3, 4, 5, 6, 8, 9 | mirf 28644 | . . . . 5 ⊢ (𝜑 → 𝑀:𝑃⟶𝑃) |
| 11 | mirauto.1 | . . . . 5 ⊢ (𝜑 → 𝐴 ∈ 𝑃) | |
| 12 | 10, 11 | ffvelcdmd 7080 | . . . 4 ⊢ (𝜑 → (𝑀‘𝐴) ∈ 𝑃) |
| 13 | 7, 12 | eqeltrid 2839 | . . 3 ⊢ (𝜑 → 𝑋 ∈ 𝑃) |
| 14 | eqid 2736 | . . 3 ⊢ (𝑆‘𝑋) = (𝑆‘𝑋) | |
| 15 | mirauto.y | . . . 4 ⊢ 𝑌 = (𝑀‘𝐵) | |
| 16 | mirauto.2 | . . . . 5 ⊢ (𝜑 → 𝐵 ∈ 𝑃) | |
| 17 | 10, 16 | ffvelcdmd 7080 | . . . 4 ⊢ (𝜑 → (𝑀‘𝐵) ∈ 𝑃) |
| 18 | 15, 17 | eqeltrid 2839 | . . 3 ⊢ (𝜑 → 𝑌 ∈ 𝑃) |
| 19 | mirauto.z | . . . 4 ⊢ 𝑍 = (𝑀‘𝐶) | |
| 20 | mirauto.3 | . . . . 5 ⊢ (𝜑 → 𝐶 ∈ 𝑃) | |
| 21 | 10, 20 | ffvelcdmd 7080 | . . . 4 ⊢ (𝜑 → (𝑀‘𝐶) ∈ 𝑃) |
| 22 | 19, 21 | eqeltrid 2839 | . . 3 ⊢ (𝜑 → 𝑍 ∈ 𝑃) |
| 23 | mirauto.4 | . . . . . 6 ⊢ (𝜑 → ((𝑆‘𝐴)‘𝐵) = 𝐶) | |
| 24 | 23, 20 | eqeltrd 2835 | . . . . 5 ⊢ (𝜑 → ((𝑆‘𝐴)‘𝐵) ∈ 𝑃) |
| 25 | eqid 2736 | . . . . . 6 ⊢ (𝑆‘𝐴) = (𝑆‘𝐴) | |
| 26 | 1, 2, 3, 4, 5, 6, 11, 25, 16 | mircgr 28641 | . . . . 5 ⊢ (𝜑 → (𝐴 − ((𝑆‘𝐴)‘𝐵)) = (𝐴 − 𝐵)) |
| 27 | 1, 2, 3, 4, 5, 6, 8, 9, 11, 24, 11, 16, 26 | mircgrs 28657 | . . . 4 ⊢ (𝜑 → ((𝑀‘𝐴) − (𝑀‘((𝑆‘𝐴)‘𝐵))) = ((𝑀‘𝐴) − (𝑀‘𝐵))) |
| 28 | 7 | a1i 11 | . . . . 5 ⊢ (𝜑 → 𝑋 = (𝑀‘𝐴)) |
| 29 | 23 | fveq2d 6885 | . . . . . 6 ⊢ (𝜑 → (𝑀‘((𝑆‘𝐴)‘𝐵)) = (𝑀‘𝐶)) |
| 30 | 19, 29 | eqtr4id 2790 | . . . . 5 ⊢ (𝜑 → 𝑍 = (𝑀‘((𝑆‘𝐴)‘𝐵))) |
| 31 | 28, 30 | oveq12d 7428 | . . . 4 ⊢ (𝜑 → (𝑋 − 𝑍) = ((𝑀‘𝐴) − (𝑀‘((𝑆‘𝐴)‘𝐵)))) |
| 32 | 7, 15 | oveq12i 7422 | . . . . 5 ⊢ (𝑋 − 𝑌) = ((𝑀‘𝐴) − (𝑀‘𝐵)) |
| 33 | 32 | a1i 11 | . . . 4 ⊢ (𝜑 → (𝑋 − 𝑌) = ((𝑀‘𝐴) − (𝑀‘𝐵))) |
| 34 | 27, 31, 33 | 3eqtr4d 2781 | . . 3 ⊢ (𝜑 → (𝑋 − 𝑍) = (𝑋 − 𝑌)) |
| 35 | 1, 2, 3, 4, 5, 6, 11, 25, 16 | mirbtwn 28642 | . . . . . 6 ⊢ (𝜑 → 𝐴 ∈ (((𝑆‘𝐴)‘𝐵)𝐼𝐵)) |
| 36 | 23 | oveq1d 7425 | . . . . . 6 ⊢ (𝜑 → (((𝑆‘𝐴)‘𝐵)𝐼𝐵) = (𝐶𝐼𝐵)) |
| 37 | 35, 36 | eleqtrd 2837 | . . . . 5 ⊢ (𝜑 → 𝐴 ∈ (𝐶𝐼𝐵)) |
| 38 | 1, 2, 3, 4, 5, 6, 8, 9, 20, 11, 16, 37 | mirbtwni 28655 | . . . 4 ⊢ (𝜑 → (𝑀‘𝐴) ∈ ((𝑀‘𝐶)𝐼(𝑀‘𝐵))) |
| 39 | 19, 15 | oveq12i 7422 | . . . 4 ⊢ (𝑍𝐼𝑌) = ((𝑀‘𝐶)𝐼(𝑀‘𝐵)) |
| 40 | 38, 7, 39 | 3eltr4g 2852 | . . 3 ⊢ (𝜑 → 𝑋 ∈ (𝑍𝐼𝑌)) |
| 41 | 1, 2, 3, 4, 5, 6, 13, 14, 18, 22, 34, 40 | ismir 28643 | . 2 ⊢ (𝜑 → 𝑍 = ((𝑆‘𝑋)‘𝑌)) |
| 42 | 41 | eqcomd 2742 | 1 ⊢ (𝜑 → ((𝑆‘𝑋)‘𝑌) = 𝑍) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 ‘cfv 6536 (class class class)co 7410 Basecbs 17233 distcds 17285 TarskiGcstrkg 28411 Itvcitv 28417 LineGclng 28418 pInvGcmir 28636 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-rep 5254 ax-sep 5271 ax-nul 5281 ax-pow 5340 ax-pr 5407 ax-un 7734 ax-cnex 11190 ax-resscn 11191 ax-1cn 11192 ax-icn 11193 ax-addcl 11194 ax-addrcl 11195 ax-mulcl 11196 ax-mulrcl 11197 ax-mulcom 11198 ax-addass 11199 ax-mulass 11200 ax-distr 11201 ax-i2m1 11202 ax-1ne0 11203 ax-1rid 11204 ax-rnegex 11205 ax-rrecex 11206 ax-cnre 11207 ax-pre-lttri 11208 ax-pre-lttrn 11209 ax-pre-ltadd 11210 ax-pre-mulgt0 11211 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-ne 2934 df-nel 3038 df-ral 3053 df-rex 3062 df-rmo 3364 df-reu 3365 df-rab 3421 df-v 3466 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-pss 3951 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-tp 4611 df-op 4613 df-uni 4889 df-int 4928 df-iun 4974 df-br 5125 df-opab 5187 df-mpt 5207 df-tr 5235 df-id 5553 df-eprel 5558 df-po 5566 df-so 5567 df-fr 5611 df-we 5613 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-rn 5670 df-res 5671 df-ima 5672 df-pred 6295 df-ord 6360 df-on 6361 df-lim 6362 df-suc 6363 df-iota 6489 df-fun 6538 df-fn 6539 df-f 6540 df-f1 6541 df-fo 6542 df-f1o 6543 df-fv 6544 df-riota 7367 df-ov 7413 df-oprab 7414 df-mpo 7415 df-om 7867 df-1st 7993 df-2nd 7994 df-frecs 8285 df-wrecs 8316 df-recs 8390 df-rdg 8429 df-1o 8485 df-oadd 8489 df-er 8724 df-pm 8848 df-en 8965 df-dom 8966 df-sdom 8967 df-fin 8968 df-dju 9920 df-card 9958 df-pnf 11276 df-mnf 11277 df-xr 11278 df-ltxr 11279 df-le 11280 df-sub 11473 df-neg 11474 df-nn 12246 df-2 12308 df-3 12309 df-n0 12507 df-xnn0 12580 df-z 12594 df-uz 12858 df-fz 13530 df-fzo 13677 df-hash 14354 df-word 14537 df-concat 14594 df-s1 14619 df-s2 14872 df-s3 14873 df-trkgc 28432 df-trkgb 28433 df-trkgcb 28434 df-trkg 28437 df-cgrg 28495 df-mir 28637 |
| This theorem is referenced by: miduniq2 28671 krippenlem 28674 |
| Copyright terms: Public domain | W3C validator |