Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > rrx0el | Structured version Visualization version GIF version |
Description: The zero ("origin") in a generalized real Euclidean space is an element of its base set. (Contributed by AV, 11-Feb-2023.) |
Ref | Expression |
---|---|
rrx0el.0 | ⊢ 0 = (𝐼 × {0}) |
rrx0el.p | ⊢ 𝑃 = (ℝ ↑m 𝐼) |
Ref | Expression |
---|---|
rrx0el | ⊢ (𝐼 ∈ 𝑉 → 0 ∈ 𝑃) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | c0ex 10980 | . . . . . 6 ⊢ 0 ∈ V | |
2 | 1 | fconst 6658 | . . . . 5 ⊢ (𝐼 × {0}):𝐼⟶{0} |
3 | 2 | a1i 11 | . . . 4 ⊢ (𝐼 ∈ 𝑉 → (𝐼 × {0}):𝐼⟶{0}) |
4 | 0re 10988 | . . . . . 6 ⊢ 0 ∈ ℝ | |
5 | snssg 4724 | . . . . . . 7 ⊢ (0 ∈ ℝ → (0 ∈ ℝ ↔ {0} ⊆ ℝ)) | |
6 | 4, 5 | ax-mp 5 | . . . . . 6 ⊢ (0 ∈ ℝ ↔ {0} ⊆ ℝ) |
7 | 4, 6 | mpbi 229 | . . . . 5 ⊢ {0} ⊆ ℝ |
8 | 7 | a1i 11 | . . . 4 ⊢ (𝐼 ∈ 𝑉 → {0} ⊆ ℝ) |
9 | 3, 8 | fssd 6616 | . . 3 ⊢ (𝐼 ∈ 𝑉 → (𝐼 × {0}):𝐼⟶ℝ) |
10 | reex 10973 | . . . . 5 ⊢ ℝ ∈ V | |
11 | 10 | a1i 11 | . . . 4 ⊢ (𝐼 ∈ 𝑉 → ℝ ∈ V) |
12 | id 22 | . . . 4 ⊢ (𝐼 ∈ 𝑉 → 𝐼 ∈ 𝑉) | |
13 | 11, 12 | elmapd 8621 | . . 3 ⊢ (𝐼 ∈ 𝑉 → ((𝐼 × {0}) ∈ (ℝ ↑m 𝐼) ↔ (𝐼 × {0}):𝐼⟶ℝ)) |
14 | 9, 13 | mpbird 256 | . 2 ⊢ (𝐼 ∈ 𝑉 → (𝐼 × {0}) ∈ (ℝ ↑m 𝐼)) |
15 | rrx0el.0 | . 2 ⊢ 0 = (𝐼 × {0}) | |
16 | rrx0el.p | . 2 ⊢ 𝑃 = (ℝ ↑m 𝐼) | |
17 | 14, 15, 16 | 3eltr4g 2858 | 1 ⊢ (𝐼 ∈ 𝑉 → 0 ∈ 𝑃) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 = wceq 1542 ∈ wcel 2110 Vcvv 3431 ⊆ wss 3892 {csn 4567 × cxp 5588 ⟶wf 6428 (class class class)co 7272 ↑m cmap 8607 ℝcr 10881 0cc0 10882 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2015 ax-8 2112 ax-9 2120 ax-10 2141 ax-11 2158 ax-12 2175 ax-ext 2711 ax-sep 5227 ax-nul 5234 ax-pow 5292 ax-pr 5356 ax-un 7583 ax-cnex 10938 ax-resscn 10939 ax-1cn 10940 ax-icn 10941 ax-addcl 10942 ax-addrcl 10943 ax-mulcl 10944 ax-i2m1 10950 ax-rnegex 10953 ax-cnre 10955 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1545 df-fal 1555 df-ex 1787 df-nf 1791 df-sb 2072 df-mo 2542 df-eu 2571 df-clab 2718 df-cleq 2732 df-clel 2818 df-nfc 2891 df-ne 2946 df-ral 3071 df-rex 3072 df-rab 3075 df-v 3433 df-sbc 3721 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-nul 4263 df-if 4466 df-pw 4541 df-sn 4568 df-pr 4570 df-op 4574 df-uni 4846 df-br 5080 df-opab 5142 df-mpt 5163 df-id 5490 df-xp 5596 df-rel 5597 df-cnv 5598 df-co 5599 df-dm 5600 df-rn 5601 df-iota 6390 df-fun 6434 df-fn 6435 df-f 6436 df-fv 6440 df-ov 7275 df-oprab 7276 df-mpo 7277 df-map 8609 |
This theorem is referenced by: ehl2eudisval0 46050 2sphere0 46075 |
Copyright terms: Public domain | W3C validator |