| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > rrx0el | Structured version Visualization version GIF version | ||
| Description: The zero ("origin") in a generalized real Euclidean space is an element of its base set. (Contributed by AV, 11-Feb-2023.) |
| Ref | Expression |
|---|---|
| rrx0el.0 | ⊢ 0 = (𝐼 × {0}) |
| rrx0el.p | ⊢ 𝑃 = (ℝ ↑m 𝐼) |
| Ref | Expression |
|---|---|
| rrx0el | ⊢ (𝐼 ∈ 𝑉 → 0 ∈ 𝑃) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | c0ex 11109 | . . . . . 6 ⊢ 0 ∈ V | |
| 2 | 1 | fconst 6710 | . . . . 5 ⊢ (𝐼 × {0}):𝐼⟶{0} |
| 3 | 2 | a1i 11 | . . . 4 ⊢ (𝐼 ∈ 𝑉 → (𝐼 × {0}):𝐼⟶{0}) |
| 4 | 0re 11117 | . . . . . 6 ⊢ 0 ∈ ℝ | |
| 5 | snssg 4735 | . . . . . . 7 ⊢ (0 ∈ ℝ → (0 ∈ ℝ ↔ {0} ⊆ ℝ)) | |
| 6 | 4, 5 | ax-mp 5 | . . . . . 6 ⊢ (0 ∈ ℝ ↔ {0} ⊆ ℝ) |
| 7 | 4, 6 | mpbi 230 | . . . . 5 ⊢ {0} ⊆ ℝ |
| 8 | 7 | a1i 11 | . . . 4 ⊢ (𝐼 ∈ 𝑉 → {0} ⊆ ℝ) |
| 9 | 3, 8 | fssd 6669 | . . 3 ⊢ (𝐼 ∈ 𝑉 → (𝐼 × {0}):𝐼⟶ℝ) |
| 10 | reex 11100 | . . . . 5 ⊢ ℝ ∈ V | |
| 11 | 10 | a1i 11 | . . . 4 ⊢ (𝐼 ∈ 𝑉 → ℝ ∈ V) |
| 12 | id 22 | . . . 4 ⊢ (𝐼 ∈ 𝑉 → 𝐼 ∈ 𝑉) | |
| 13 | 11, 12 | elmapd 8767 | . . 3 ⊢ (𝐼 ∈ 𝑉 → ((𝐼 × {0}) ∈ (ℝ ↑m 𝐼) ↔ (𝐼 × {0}):𝐼⟶ℝ)) |
| 14 | 9, 13 | mpbird 257 | . 2 ⊢ (𝐼 ∈ 𝑉 → (𝐼 × {0}) ∈ (ℝ ↑m 𝐼)) |
| 15 | rrx0el.0 | . 2 ⊢ 0 = (𝐼 × {0}) | |
| 16 | rrx0el.p | . 2 ⊢ 𝑃 = (ℝ ↑m 𝐼) | |
| 17 | 14, 15, 16 | 3eltr4g 2845 | 1 ⊢ (𝐼 ∈ 𝑉 → 0 ∈ 𝑃) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 = wceq 1540 ∈ wcel 2109 Vcvv 3436 ⊆ wss 3903 {csn 4577 × cxp 5617 ⟶wf 6478 (class class class)co 7349 ↑m cmap 8753 ℝcr 11008 0cc0 11009 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5235 ax-nul 5245 ax-pow 5304 ax-pr 5371 ax-un 7671 ax-cnex 11065 ax-resscn 11066 ax-1cn 11067 ax-icn 11068 ax-addcl 11069 ax-addrcl 11070 ax-mulcl 11071 ax-i2m1 11077 ax-rnegex 11080 ax-cnre 11082 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3395 df-v 3438 df-sbc 3743 df-dif 3906 df-un 3908 df-in 3910 df-ss 3920 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4859 df-br 5093 df-opab 5155 df-mpt 5174 df-id 5514 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-iota 6438 df-fun 6484 df-fn 6485 df-f 6486 df-fv 6490 df-ov 7352 df-oprab 7353 df-mpo 7354 df-map 8755 |
| This theorem is referenced by: ehl2eudisval0 48714 2sphere0 48739 |
| Copyright terms: Public domain | W3C validator |