| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > rrx0el | Structured version Visualization version GIF version | ||
| Description: The zero ("origin") in a generalized real Euclidean space is an element of its base set. (Contributed by AV, 11-Feb-2023.) |
| Ref | Expression |
|---|---|
| rrx0el.0 | ⊢ 0 = (𝐼 × {0}) |
| rrx0el.p | ⊢ 𝑃 = (ℝ ↑m 𝐼) |
| Ref | Expression |
|---|---|
| rrx0el | ⊢ (𝐼 ∈ 𝑉 → 0 ∈ 𝑃) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | c0ex 11256 | . . . . . 6 ⊢ 0 ∈ V | |
| 2 | 1 | fconst 6793 | . . . . 5 ⊢ (𝐼 × {0}):𝐼⟶{0} |
| 3 | 2 | a1i 11 | . . . 4 ⊢ (𝐼 ∈ 𝑉 → (𝐼 × {0}):𝐼⟶{0}) |
| 4 | 0re 11264 | . . . . . 6 ⊢ 0 ∈ ℝ | |
| 5 | snssg 4782 | . . . . . . 7 ⊢ (0 ∈ ℝ → (0 ∈ ℝ ↔ {0} ⊆ ℝ)) | |
| 6 | 4, 5 | ax-mp 5 | . . . . . 6 ⊢ (0 ∈ ℝ ↔ {0} ⊆ ℝ) |
| 7 | 4, 6 | mpbi 230 | . . . . 5 ⊢ {0} ⊆ ℝ |
| 8 | 7 | a1i 11 | . . . 4 ⊢ (𝐼 ∈ 𝑉 → {0} ⊆ ℝ) |
| 9 | 3, 8 | fssd 6752 | . . 3 ⊢ (𝐼 ∈ 𝑉 → (𝐼 × {0}):𝐼⟶ℝ) |
| 10 | reex 11247 | . . . . 5 ⊢ ℝ ∈ V | |
| 11 | 10 | a1i 11 | . . . 4 ⊢ (𝐼 ∈ 𝑉 → ℝ ∈ V) |
| 12 | id 22 | . . . 4 ⊢ (𝐼 ∈ 𝑉 → 𝐼 ∈ 𝑉) | |
| 13 | 11, 12 | elmapd 8881 | . . 3 ⊢ (𝐼 ∈ 𝑉 → ((𝐼 × {0}) ∈ (ℝ ↑m 𝐼) ↔ (𝐼 × {0}):𝐼⟶ℝ)) |
| 14 | 9, 13 | mpbird 257 | . 2 ⊢ (𝐼 ∈ 𝑉 → (𝐼 × {0}) ∈ (ℝ ↑m 𝐼)) |
| 15 | rrx0el.0 | . 2 ⊢ 0 = (𝐼 × {0}) | |
| 16 | rrx0el.p | . 2 ⊢ 𝑃 = (ℝ ↑m 𝐼) | |
| 17 | 14, 15, 16 | 3eltr4g 2857 | 1 ⊢ (𝐼 ∈ 𝑉 → 0 ∈ 𝑃) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 = wceq 1539 ∈ wcel 2107 Vcvv 3479 ⊆ wss 3950 {csn 4625 × cxp 5682 ⟶wf 6556 (class class class)co 7432 ↑m cmap 8867 ℝcr 11155 0cc0 11156 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2707 ax-sep 5295 ax-nul 5305 ax-pow 5364 ax-pr 5431 ax-un 7756 ax-cnex 11212 ax-resscn 11213 ax-1cn 11214 ax-icn 11215 ax-addcl 11216 ax-addrcl 11217 ax-mulcl 11218 ax-i2m1 11224 ax-rnegex 11227 ax-cnre 11229 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2728 df-clel 2815 df-nfc 2891 df-ne 2940 df-ral 3061 df-rex 3070 df-rab 3436 df-v 3481 df-sbc 3788 df-dif 3953 df-un 3955 df-in 3957 df-ss 3967 df-nul 4333 df-if 4525 df-pw 4601 df-sn 4626 df-pr 4628 df-op 4632 df-uni 4907 df-br 5143 df-opab 5205 df-mpt 5225 df-id 5577 df-xp 5690 df-rel 5691 df-cnv 5692 df-co 5693 df-dm 5694 df-rn 5695 df-iota 6513 df-fun 6562 df-fn 6563 df-f 6564 df-fv 6568 df-ov 7435 df-oprab 7436 df-mpo 7437 df-map 8869 |
| This theorem is referenced by: ehl2eudisval0 48651 2sphere0 48676 |
| Copyright terms: Public domain | W3C validator |