![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > rrx0el | Structured version Visualization version GIF version |
Description: The zero ("origin") in a generalized real Euclidean space is an element of its base set. (Contributed by AV, 11-Feb-2023.) |
Ref | Expression |
---|---|
rrx0el.0 | β’ 0 = (πΌ Γ {0}) |
rrx0el.p | β’ π = (β βm πΌ) |
Ref | Expression |
---|---|
rrx0el | β’ (πΌ β π β 0 β π) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | c0ex 11207 | . . . . . 6 β’ 0 β V | |
2 | 1 | fconst 6777 | . . . . 5 β’ (πΌ Γ {0}):πΌβΆ{0} |
3 | 2 | a1i 11 | . . . 4 β’ (πΌ β π β (πΌ Γ {0}):πΌβΆ{0}) |
4 | 0re 11215 | . . . . . 6 β’ 0 β β | |
5 | snssg 4787 | . . . . . . 7 β’ (0 β β β (0 β β β {0} β β)) | |
6 | 4, 5 | ax-mp 5 | . . . . . 6 β’ (0 β β β {0} β β) |
7 | 4, 6 | mpbi 229 | . . . . 5 β’ {0} β β |
8 | 7 | a1i 11 | . . . 4 β’ (πΌ β π β {0} β β) |
9 | 3, 8 | fssd 6735 | . . 3 β’ (πΌ β π β (πΌ Γ {0}):πΌβΆβ) |
10 | reex 11200 | . . . . 5 β’ β β V | |
11 | 10 | a1i 11 | . . . 4 β’ (πΌ β π β β β V) |
12 | id 22 | . . . 4 β’ (πΌ β π β πΌ β π) | |
13 | 11, 12 | elmapd 8833 | . . 3 β’ (πΌ β π β ((πΌ Γ {0}) β (β βm πΌ) β (πΌ Γ {0}):πΌβΆβ)) |
14 | 9, 13 | mpbird 256 | . 2 β’ (πΌ β π β (πΌ Γ {0}) β (β βm πΌ)) |
15 | rrx0el.0 | . 2 β’ 0 = (πΌ Γ {0}) | |
16 | rrx0el.p | . 2 β’ π = (β βm πΌ) | |
17 | 14, 15, 16 | 3eltr4g 2850 | 1 β’ (πΌ β π β 0 β π) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β wb 205 = wceq 1541 β wcel 2106 Vcvv 3474 β wss 3948 {csn 4628 Γ cxp 5674 βΆwf 6539 (class class class)co 7408 βm cmap 8819 βcr 11108 0cc0 11109 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7724 ax-cnex 11165 ax-resscn 11166 ax-1cn 11167 ax-icn 11168 ax-addcl 11169 ax-addrcl 11170 ax-mulcl 11171 ax-i2m1 11177 ax-rnegex 11180 ax-cnre 11182 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-ral 3062 df-rex 3071 df-rab 3433 df-v 3476 df-sbc 3778 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5574 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-fv 6551 df-ov 7411 df-oprab 7412 df-mpo 7413 df-map 8821 |
This theorem is referenced by: ehl2eudisval0 47401 2sphere0 47426 |
Copyright terms: Public domain | W3C validator |