Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > rrx0el | Structured version Visualization version GIF version |
Description: The zero ("origin") in a generalized real Euclidean space is an element of its base set. (Contributed by AV, 11-Feb-2023.) |
Ref | Expression |
---|---|
rrx0el.0 | ⊢ 0 = (𝐼 × {0}) |
rrx0el.p | ⊢ 𝑃 = (ℝ ↑m 𝐼) |
Ref | Expression |
---|---|
rrx0el | ⊢ (𝐼 ∈ 𝑉 → 0 ∈ 𝑃) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | c0ex 10969 | . . . . . 6 ⊢ 0 ∈ V | |
2 | 1 | fconst 6660 | . . . . 5 ⊢ (𝐼 × {0}):𝐼⟶{0} |
3 | 2 | a1i 11 | . . . 4 ⊢ (𝐼 ∈ 𝑉 → (𝐼 × {0}):𝐼⟶{0}) |
4 | 0re 10977 | . . . . . 6 ⊢ 0 ∈ ℝ | |
5 | snssg 4718 | . . . . . . 7 ⊢ (0 ∈ ℝ → (0 ∈ ℝ ↔ {0} ⊆ ℝ)) | |
6 | 4, 5 | ax-mp 5 | . . . . . 6 ⊢ (0 ∈ ℝ ↔ {0} ⊆ ℝ) |
7 | 4, 6 | mpbi 229 | . . . . 5 ⊢ {0} ⊆ ℝ |
8 | 7 | a1i 11 | . . . 4 ⊢ (𝐼 ∈ 𝑉 → {0} ⊆ ℝ) |
9 | 3, 8 | fssd 6618 | . . 3 ⊢ (𝐼 ∈ 𝑉 → (𝐼 × {0}):𝐼⟶ℝ) |
10 | reex 10962 | . . . . 5 ⊢ ℝ ∈ V | |
11 | 10 | a1i 11 | . . . 4 ⊢ (𝐼 ∈ 𝑉 → ℝ ∈ V) |
12 | id 22 | . . . 4 ⊢ (𝐼 ∈ 𝑉 → 𝐼 ∈ 𝑉) | |
13 | 11, 12 | elmapd 8629 | . . 3 ⊢ (𝐼 ∈ 𝑉 → ((𝐼 × {0}) ∈ (ℝ ↑m 𝐼) ↔ (𝐼 × {0}):𝐼⟶ℝ)) |
14 | 9, 13 | mpbird 256 | . 2 ⊢ (𝐼 ∈ 𝑉 → (𝐼 × {0}) ∈ (ℝ ↑m 𝐼)) |
15 | rrx0el.0 | . 2 ⊢ 0 = (𝐼 × {0}) | |
16 | rrx0el.p | . 2 ⊢ 𝑃 = (ℝ ↑m 𝐼) | |
17 | 14, 15, 16 | 3eltr4g 2856 | 1 ⊢ (𝐼 ∈ 𝑉 → 0 ∈ 𝑃) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 = wceq 1539 ∈ wcel 2106 Vcvv 3432 ⊆ wss 3887 {csn 4561 × cxp 5587 ⟶wf 6429 (class class class)co 7275 ↑m cmap 8615 ℝcr 10870 0cc0 10871 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 ax-cnex 10927 ax-resscn 10928 ax-1cn 10929 ax-icn 10930 ax-addcl 10931 ax-addrcl 10932 ax-mulcl 10933 ax-i2m1 10939 ax-rnegex 10942 ax-cnre 10944 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3434 df-sbc 3717 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-br 5075 df-opab 5137 df-mpt 5158 df-id 5489 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-fv 6441 df-ov 7278 df-oprab 7279 df-mpo 7280 df-map 8617 |
This theorem is referenced by: ehl2eudisval0 46071 2sphere0 46096 |
Copyright terms: Public domain | W3C validator |