MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rrx0el Structured version   Visualization version   GIF version

Theorem rrx0el 25446
Description: The zero ("origin") in a generalized real Euclidean space is an element of its base set. (Contributed by AV, 11-Feb-2023.)
Hypotheses
Ref Expression
rrx0el.0 0 = (𝐼 × {0})
rrx0el.p 𝑃 = (ℝ ↑m 𝐼)
Assertion
Ref Expression
rrx0el (𝐼𝑉0𝑃)

Proof of Theorem rrx0el
StepHypRef Expression
1 c0ex 11253 . . . . . 6 0 ∈ V
21fconst 6795 . . . . 5 (𝐼 × {0}):𝐼⟶{0}
32a1i 11 . . . 4 (𝐼𝑉 → (𝐼 × {0}):𝐼⟶{0})
4 0re 11261 . . . . . 6 0 ∈ ℝ
5 snssg 4788 . . . . . . 7 (0 ∈ ℝ → (0 ∈ ℝ ↔ {0} ⊆ ℝ))
64, 5ax-mp 5 . . . . . 6 (0 ∈ ℝ ↔ {0} ⊆ ℝ)
74, 6mpbi 230 . . . . 5 {0} ⊆ ℝ
87a1i 11 . . . 4 (𝐼𝑉 → {0} ⊆ ℝ)
93, 8fssd 6754 . . 3 (𝐼𝑉 → (𝐼 × {0}):𝐼⟶ℝ)
10 reex 11244 . . . . 5 ℝ ∈ V
1110a1i 11 . . . 4 (𝐼𝑉 → ℝ ∈ V)
12 id 22 . . . 4 (𝐼𝑉𝐼𝑉)
1311, 12elmapd 8879 . . 3 (𝐼𝑉 → ((𝐼 × {0}) ∈ (ℝ ↑m 𝐼) ↔ (𝐼 × {0}):𝐼⟶ℝ))
149, 13mpbird 257 . 2 (𝐼𝑉 → (𝐼 × {0}) ∈ (ℝ ↑m 𝐼))
15 rrx0el.0 . 2 0 = (𝐼 × {0})
16 rrx0el.p . 2 𝑃 = (ℝ ↑m 𝐼)
1714, 15, 163eltr4g 2856 1 (𝐼𝑉0𝑃)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206   = wceq 1537  wcel 2106  Vcvv 3478  wss 3963  {csn 4631   × cxp 5687  wf 6559  (class class class)co 7431  m cmap 8865  cr 11152  0cc0 11153
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754  ax-cnex 11209  ax-resscn 11210  ax-1cn 11211  ax-icn 11212  ax-addcl 11213  ax-addrcl 11214  ax-mulcl 11215  ax-i2m1 11221  ax-rnegex 11224  ax-cnre 11226
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-ral 3060  df-rex 3069  df-rab 3434  df-v 3480  df-sbc 3792  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5583  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-fv 6571  df-ov 7434  df-oprab 7435  df-mpo 7436  df-map 8867
This theorem is referenced by:  ehl2eudisval0  48575  2sphere0  48600
  Copyright terms: Public domain W3C validator