MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rrx0el Structured version   Visualization version   GIF version

Theorem rrx0el 24562
Description: The zero ("origin") in a generalized real Euclidean space is an element of its base set. (Contributed by AV, 11-Feb-2023.)
Hypotheses
Ref Expression
rrx0el.0 0 = (𝐼 × {0})
rrx0el.p 𝑃 = (ℝ ↑m 𝐼)
Assertion
Ref Expression
rrx0el (𝐼𝑉0𝑃)

Proof of Theorem rrx0el
StepHypRef Expression
1 c0ex 10969 . . . . . 6 0 ∈ V
21fconst 6660 . . . . 5 (𝐼 × {0}):𝐼⟶{0}
32a1i 11 . . . 4 (𝐼𝑉 → (𝐼 × {0}):𝐼⟶{0})
4 0re 10977 . . . . . 6 0 ∈ ℝ
5 snssg 4718 . . . . . . 7 (0 ∈ ℝ → (0 ∈ ℝ ↔ {0} ⊆ ℝ))
64, 5ax-mp 5 . . . . . 6 (0 ∈ ℝ ↔ {0} ⊆ ℝ)
74, 6mpbi 229 . . . . 5 {0} ⊆ ℝ
87a1i 11 . . . 4 (𝐼𝑉 → {0} ⊆ ℝ)
93, 8fssd 6618 . . 3 (𝐼𝑉 → (𝐼 × {0}):𝐼⟶ℝ)
10 reex 10962 . . . . 5 ℝ ∈ V
1110a1i 11 . . . 4 (𝐼𝑉 → ℝ ∈ V)
12 id 22 . . . 4 (𝐼𝑉𝐼𝑉)
1311, 12elmapd 8629 . . 3 (𝐼𝑉 → ((𝐼 × {0}) ∈ (ℝ ↑m 𝐼) ↔ (𝐼 × {0}):𝐼⟶ℝ))
149, 13mpbird 256 . 2 (𝐼𝑉 → (𝐼 × {0}) ∈ (ℝ ↑m 𝐼))
15 rrx0el.0 . 2 0 = (𝐼 × {0})
16 rrx0el.p . 2 𝑃 = (ℝ ↑m 𝐼)
1714, 15, 163eltr4g 2856 1 (𝐼𝑉0𝑃)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205   = wceq 1539  wcel 2106  Vcvv 3432  wss 3887  {csn 4561   × cxp 5587  wf 6429  (class class class)co 7275  m cmap 8615  cr 10870  0cc0 10871
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-i2m1 10939  ax-rnegex 10942  ax-cnre 10944
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-ral 3069  df-rex 3070  df-rab 3073  df-v 3434  df-sbc 3717  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-br 5075  df-opab 5137  df-mpt 5158  df-id 5489  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-fv 6441  df-ov 7278  df-oprab 7279  df-mpo 7280  df-map 8617
This theorem is referenced by:  ehl2eudisval0  46071  2sphere0  46096
  Copyright terms: Public domain W3C validator