MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rrx0el Structured version   Visualization version   GIF version

Theorem rrx0el 25331
Description: The zero ("origin") in a generalized real Euclidean space is an element of its base set. (Contributed by AV, 11-Feb-2023.)
Hypotheses
Ref Expression
rrx0el.0 0 = (𝐼 × {0})
rrx0el.p 𝑃 = (ℝ ↑m 𝐼)
Assertion
Ref Expression
rrx0el (𝐼𝑉0𝑃)

Proof of Theorem rrx0el
StepHypRef Expression
1 c0ex 11144 . . . . . 6 0 ∈ V
21fconst 6728 . . . . 5 (𝐼 × {0}):𝐼⟶{0}
32a1i 11 . . . 4 (𝐼𝑉 → (𝐼 × {0}):𝐼⟶{0})
4 0re 11152 . . . . . 6 0 ∈ ℝ
5 snssg 4743 . . . . . . 7 (0 ∈ ℝ → (0 ∈ ℝ ↔ {0} ⊆ ℝ))
64, 5ax-mp 5 . . . . . 6 (0 ∈ ℝ ↔ {0} ⊆ ℝ)
74, 6mpbi 230 . . . . 5 {0} ⊆ ℝ
87a1i 11 . . . 4 (𝐼𝑉 → {0} ⊆ ℝ)
93, 8fssd 6687 . . 3 (𝐼𝑉 → (𝐼 × {0}):𝐼⟶ℝ)
10 reex 11135 . . . . 5 ℝ ∈ V
1110a1i 11 . . . 4 (𝐼𝑉 → ℝ ∈ V)
12 id 22 . . . 4 (𝐼𝑉𝐼𝑉)
1311, 12elmapd 8790 . . 3 (𝐼𝑉 → ((𝐼 × {0}) ∈ (ℝ ↑m 𝐼) ↔ (𝐼 × {0}):𝐼⟶ℝ))
149, 13mpbird 257 . 2 (𝐼𝑉 → (𝐼 × {0}) ∈ (ℝ ↑m 𝐼))
15 rrx0el.0 . 2 0 = (𝐼 × {0})
16 rrx0el.p . 2 𝑃 = (ℝ ↑m 𝐼)
1714, 15, 163eltr4g 2845 1 (𝐼𝑉0𝑃)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206   = wceq 1540  wcel 2109  Vcvv 3444  wss 3911  {csn 4585   × cxp 5629  wf 6495  (class class class)co 7369  m cmap 8776  cr 11043  0cc0 11044
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691  ax-cnex 11100  ax-resscn 11101  ax-1cn 11102  ax-icn 11103  ax-addcl 11104  ax-addrcl 11105  ax-mulcl 11106  ax-i2m1 11112  ax-rnegex 11115  ax-cnre 11117
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3403  df-v 3446  df-sbc 3751  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-br 5103  df-opab 5165  df-mpt 5184  df-id 5526  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-fv 6507  df-ov 7372  df-oprab 7373  df-mpo 7374  df-map 8778
This theorem is referenced by:  ehl2eudisval0  48707  2sphere0  48732
  Copyright terms: Public domain W3C validator