MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rrx0el Structured version   Visualization version   GIF version

Theorem rrx0el 23573
Description: The zero ("origin") in a generalized real Euclidean space is an element of its base set. (Contributed by AV, 11-Feb-2023.)
Hypotheses
Ref Expression
rrx0el.0 0 = (𝐼 × {0})
rrx0el.p 𝑃 = (ℝ ↑𝑚 𝐼)
Assertion
Ref Expression
rrx0el (𝐼𝑉0𝑃)

Proof of Theorem rrx0el
StepHypRef Expression
1 c0ex 10357 . . . . . 6 0 ∈ V
21fconst 6332 . . . . 5 (𝐼 × {0}):𝐼⟶{0}
32a1i 11 . . . 4 (𝐼𝑉 → (𝐼 × {0}):𝐼⟶{0})
4 0re 10365 . . . . . 6 0 ∈ ℝ
5 snssg 4536 . . . . . . 7 (0 ∈ ℝ → (0 ∈ ℝ ↔ {0} ⊆ ℝ))
64, 5ax-mp 5 . . . . . 6 (0 ∈ ℝ ↔ {0} ⊆ ℝ)
74, 6mpbi 222 . . . . 5 {0} ⊆ ℝ
87a1i 11 . . . 4 (𝐼𝑉 → {0} ⊆ ℝ)
93, 8fssd 6296 . . 3 (𝐼𝑉 → (𝐼 × {0}):𝐼⟶ℝ)
10 reex 10350 . . . . 5 ℝ ∈ V
1110a1i 11 . . . 4 (𝐼𝑉 → ℝ ∈ V)
12 id 22 . . . 4 (𝐼𝑉𝐼𝑉)
1311, 12elmapd 8141 . . 3 (𝐼𝑉 → ((𝐼 × {0}) ∈ (ℝ ↑𝑚 𝐼) ↔ (𝐼 × {0}):𝐼⟶ℝ))
149, 13mpbird 249 . 2 (𝐼𝑉 → (𝐼 × {0}) ∈ (ℝ ↑𝑚 𝐼))
15 rrx0el.0 . 2 0 = (𝐼 × {0})
16 rrx0el.p . 2 𝑃 = (ℝ ↑𝑚 𝐼)
1714, 15, 163eltr4g 2923 1 (𝐼𝑉0𝑃)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 198   = wceq 1656  wcel 2164  Vcvv 3414  wss 3798  {csn 4399   × cxp 5344  wf 6123  (class class class)co 6910  𝑚 cmap 8127  cr 10258  0cc0 10259
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1894  ax-4 1908  ax-5 2009  ax-6 2075  ax-7 2112  ax-8 2166  ax-9 2173  ax-10 2192  ax-11 2207  ax-12 2220  ax-13 2389  ax-ext 2803  ax-sep 5007  ax-nul 5015  ax-pow 5067  ax-pr 5129  ax-un 7214  ax-cnex 10315  ax-resscn 10316  ax-1cn 10317  ax-icn 10318  ax-addcl 10319  ax-addrcl 10320  ax-mulcl 10321  ax-i2m1 10327  ax-rnegex 10330  ax-cnre 10332
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 879  df-3an 1113  df-tru 1660  df-ex 1879  df-nf 1883  df-sb 2068  df-mo 2605  df-eu 2640  df-clab 2812  df-cleq 2818  df-clel 2821  df-nfc 2958  df-ne 3000  df-ral 3122  df-rex 3123  df-rab 3126  df-v 3416  df-sbc 3663  df-dif 3801  df-un 3803  df-in 3805  df-ss 3812  df-nul 4147  df-if 4309  df-pw 4382  df-sn 4400  df-pr 4402  df-op 4406  df-uni 4661  df-br 4876  df-opab 4938  df-mpt 4955  df-id 5252  df-xp 5352  df-rel 5353  df-cnv 5354  df-co 5355  df-dm 5356  df-rn 5357  df-iota 6090  df-fun 6129  df-fn 6130  df-f 6131  df-fv 6135  df-ov 6913  df-oprab 6914  df-mpt2 6915  df-map 8129
This theorem is referenced by:  2sphere0  43312
  Copyright terms: Public domain W3C validator