Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > rankelun | Structured version Visualization version GIF version |
Description: Rank membership is inherited by union. (Contributed by NM, 18-Sep-2006.) (Proof shortened by Mario Carneiro, 17-Nov-2014.) |
Ref | Expression |
---|---|
rankelun.1 | ⊢ 𝐴 ∈ V |
rankelun.2 | ⊢ 𝐵 ∈ V |
rankelun.3 | ⊢ 𝐶 ∈ V |
rankelun.4 | ⊢ 𝐷 ∈ V |
Ref | Expression |
---|---|
rankelun | ⊢ (((rank‘𝐴) ∈ (rank‘𝐶) ∧ (rank‘𝐵) ∈ (rank‘𝐷)) → (rank‘(𝐴 ∪ 𝐵)) ∈ (rank‘(𝐶 ∪ 𝐷))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rankon 9554 | . . . . 5 ⊢ (rank‘𝐶) ∈ On | |
2 | rankon 9554 | . . . . 5 ⊢ (rank‘𝐷) ∈ On | |
3 | 1, 2 | onun2i 6381 | . . . 4 ⊢ ((rank‘𝐶) ∪ (rank‘𝐷)) ∈ On |
4 | 3 | onordi 6370 | . . 3 ⊢ Ord ((rank‘𝐶) ∪ (rank‘𝐷)) |
5 | elun1 4115 | . . 3 ⊢ ((rank‘𝐴) ∈ (rank‘𝐶) → (rank‘𝐴) ∈ ((rank‘𝐶) ∪ (rank‘𝐷))) | |
6 | elun2 4116 | . . 3 ⊢ ((rank‘𝐵) ∈ (rank‘𝐷) → (rank‘𝐵) ∈ ((rank‘𝐶) ∪ (rank‘𝐷))) | |
7 | ordunel 7668 | . . 3 ⊢ ((Ord ((rank‘𝐶) ∪ (rank‘𝐷)) ∧ (rank‘𝐴) ∈ ((rank‘𝐶) ∪ (rank‘𝐷)) ∧ (rank‘𝐵) ∈ ((rank‘𝐶) ∪ (rank‘𝐷))) → ((rank‘𝐴) ∪ (rank‘𝐵)) ∈ ((rank‘𝐶) ∪ (rank‘𝐷))) | |
8 | 4, 5, 6, 7 | mp3an3an 1466 | . 2 ⊢ (((rank‘𝐴) ∈ (rank‘𝐶) ∧ (rank‘𝐵) ∈ (rank‘𝐷)) → ((rank‘𝐴) ∪ (rank‘𝐵)) ∈ ((rank‘𝐶) ∪ (rank‘𝐷))) |
9 | rankelun.1 | . . 3 ⊢ 𝐴 ∈ V | |
10 | rankelun.2 | . . 3 ⊢ 𝐵 ∈ V | |
11 | 9, 10 | rankun 9615 | . 2 ⊢ (rank‘(𝐴 ∪ 𝐵)) = ((rank‘𝐴) ∪ (rank‘𝐵)) |
12 | rankelun.3 | . . 3 ⊢ 𝐶 ∈ V | |
13 | rankelun.4 | . . 3 ⊢ 𝐷 ∈ V | |
14 | 12, 13 | rankun 9615 | . 2 ⊢ (rank‘(𝐶 ∪ 𝐷)) = ((rank‘𝐶) ∪ (rank‘𝐷)) |
15 | 8, 11, 14 | 3eltr4g 2858 | 1 ⊢ (((rank‘𝐴) ∈ (rank‘𝐶) ∧ (rank‘𝐵) ∈ (rank‘𝐷)) → (rank‘(𝐴 ∪ 𝐵)) ∈ (rank‘(𝐶 ∪ 𝐷))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 ∈ wcel 2110 Vcvv 3431 ∪ cun 3890 Ord word 6264 ‘cfv 6432 rankcrnk 9522 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2015 ax-8 2112 ax-9 2120 ax-10 2141 ax-11 2158 ax-12 2175 ax-ext 2711 ax-rep 5214 ax-sep 5227 ax-nul 5234 ax-pow 5292 ax-pr 5356 ax-un 7582 ax-reg 9329 ax-inf2 9377 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1545 df-fal 1555 df-ex 1787 df-nf 1791 df-sb 2072 df-mo 2542 df-eu 2571 df-clab 2718 df-cleq 2732 df-clel 2818 df-nfc 2891 df-ne 2946 df-ral 3071 df-rex 3072 df-reu 3073 df-rab 3075 df-v 3433 df-sbc 3721 df-csb 3838 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-pss 3911 df-nul 4263 df-if 4466 df-pw 4541 df-sn 4568 df-pr 4570 df-op 4574 df-uni 4846 df-int 4886 df-iun 4932 df-br 5080 df-opab 5142 df-mpt 5163 df-tr 5197 df-id 5490 df-eprel 5496 df-po 5504 df-so 5505 df-fr 5545 df-we 5547 df-xp 5596 df-rel 5597 df-cnv 5598 df-co 5599 df-dm 5600 df-rn 5601 df-res 5602 df-ima 5603 df-pred 6201 df-ord 6268 df-on 6269 df-lim 6270 df-suc 6271 df-iota 6390 df-fun 6434 df-fn 6435 df-f 6436 df-f1 6437 df-fo 6438 df-f1o 6439 df-fv 6440 df-ov 7274 df-om 7707 df-2nd 7825 df-frecs 8088 df-wrecs 8119 df-recs 8193 df-rdg 8232 df-r1 9523 df-rank 9524 |
This theorem is referenced by: rankelpr 9632 rankxplim 9638 |
Copyright terms: Public domain | W3C validator |