| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > rankelun | Structured version Visualization version GIF version | ||
| Description: Rank membership is inherited by union. (Contributed by NM, 18-Sep-2006.) (Proof shortened by Mario Carneiro, 17-Nov-2014.) |
| Ref | Expression |
|---|---|
| rankelun.1 | ⊢ 𝐴 ∈ V |
| rankelun.2 | ⊢ 𝐵 ∈ V |
| rankelun.3 | ⊢ 𝐶 ∈ V |
| rankelun.4 | ⊢ 𝐷 ∈ V |
| Ref | Expression |
|---|---|
| rankelun | ⊢ (((rank‘𝐴) ∈ (rank‘𝐶) ∧ (rank‘𝐵) ∈ (rank‘𝐷)) → (rank‘(𝐴 ∪ 𝐵)) ∈ (rank‘(𝐶 ∪ 𝐷))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rankon 9809 | . . . . 5 ⊢ (rank‘𝐶) ∈ On | |
| 2 | rankon 9809 | . . . . 5 ⊢ (rank‘𝐷) ∈ On | |
| 3 | 1, 2 | onun2i 6476 | . . . 4 ⊢ ((rank‘𝐶) ∪ (rank‘𝐷)) ∈ On |
| 4 | 3 | onordi 6465 | . . 3 ⊢ Ord ((rank‘𝐶) ∪ (rank‘𝐷)) |
| 5 | elun1 4157 | . . 3 ⊢ ((rank‘𝐴) ∈ (rank‘𝐶) → (rank‘𝐴) ∈ ((rank‘𝐶) ∪ (rank‘𝐷))) | |
| 6 | elun2 4158 | . . 3 ⊢ ((rank‘𝐵) ∈ (rank‘𝐷) → (rank‘𝐵) ∈ ((rank‘𝐶) ∪ (rank‘𝐷))) | |
| 7 | ordunel 7821 | . . 3 ⊢ ((Ord ((rank‘𝐶) ∪ (rank‘𝐷)) ∧ (rank‘𝐴) ∈ ((rank‘𝐶) ∪ (rank‘𝐷)) ∧ (rank‘𝐵) ∈ ((rank‘𝐶) ∪ (rank‘𝐷))) → ((rank‘𝐴) ∪ (rank‘𝐵)) ∈ ((rank‘𝐶) ∪ (rank‘𝐷))) | |
| 8 | 4, 5, 6, 7 | mp3an3an 1469 | . 2 ⊢ (((rank‘𝐴) ∈ (rank‘𝐶) ∧ (rank‘𝐵) ∈ (rank‘𝐷)) → ((rank‘𝐴) ∪ (rank‘𝐵)) ∈ ((rank‘𝐶) ∪ (rank‘𝐷))) |
| 9 | rankelun.1 | . . 3 ⊢ 𝐴 ∈ V | |
| 10 | rankelun.2 | . . 3 ⊢ 𝐵 ∈ V | |
| 11 | 9, 10 | rankun 9870 | . 2 ⊢ (rank‘(𝐴 ∪ 𝐵)) = ((rank‘𝐴) ∪ (rank‘𝐵)) |
| 12 | rankelun.3 | . . 3 ⊢ 𝐶 ∈ V | |
| 13 | rankelun.4 | . . 3 ⊢ 𝐷 ∈ V | |
| 14 | 12, 13 | rankun 9870 | . 2 ⊢ (rank‘(𝐶 ∪ 𝐷)) = ((rank‘𝐶) ∪ (rank‘𝐷)) |
| 15 | 8, 11, 14 | 3eltr4g 2851 | 1 ⊢ (((rank‘𝐴) ∈ (rank‘𝐶) ∧ (rank‘𝐵) ∈ (rank‘𝐷)) → (rank‘(𝐴 ∪ 𝐵)) ∈ (rank‘(𝐶 ∪ 𝐷))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2108 Vcvv 3459 ∪ cun 3924 Ord word 6351 ‘cfv 6531 rankcrnk 9777 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-rep 5249 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7729 ax-reg 9606 ax-inf2 9655 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-ral 3052 df-rex 3061 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-pss 3946 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-int 4923 df-iun 4969 df-br 5120 df-opab 5182 df-mpt 5202 df-tr 5230 df-id 5548 df-eprel 5553 df-po 5561 df-so 5562 df-fr 5606 df-we 5608 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-pred 6290 df-ord 6355 df-on 6356 df-lim 6357 df-suc 6358 df-iota 6484 df-fun 6533 df-fn 6534 df-f 6535 df-f1 6536 df-fo 6537 df-f1o 6538 df-fv 6539 df-ov 7408 df-om 7862 df-2nd 7989 df-frecs 8280 df-wrecs 8311 df-recs 8385 df-rdg 8424 df-r1 9778 df-rank 9779 |
| This theorem is referenced by: rankelpr 9887 rankxplim 9893 |
| Copyright terms: Public domain | W3C validator |