| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > rankelun | Structured version Visualization version GIF version | ||
| Description: Rank membership is inherited by union. (Contributed by NM, 18-Sep-2006.) (Proof shortened by Mario Carneiro, 17-Nov-2014.) |
| Ref | Expression |
|---|---|
| rankelun.1 | ⊢ 𝐴 ∈ V |
| rankelun.2 | ⊢ 𝐵 ∈ V |
| rankelun.3 | ⊢ 𝐶 ∈ V |
| rankelun.4 | ⊢ 𝐷 ∈ V |
| Ref | Expression |
|---|---|
| rankelun | ⊢ (((rank‘𝐴) ∈ (rank‘𝐶) ∧ (rank‘𝐵) ∈ (rank‘𝐷)) → (rank‘(𝐴 ∪ 𝐵)) ∈ (rank‘(𝐶 ∪ 𝐷))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rankon 9688 | . . . . 5 ⊢ (rank‘𝐶) ∈ On | |
| 2 | rankon 9688 | . . . . 5 ⊢ (rank‘𝐷) ∈ On | |
| 3 | 1, 2 | onun2i 6429 | . . . 4 ⊢ ((rank‘𝐶) ∪ (rank‘𝐷)) ∈ On |
| 4 | 3 | onordi 6419 | . . 3 ⊢ Ord ((rank‘𝐶) ∪ (rank‘𝐷)) |
| 5 | elun1 4129 | . . 3 ⊢ ((rank‘𝐴) ∈ (rank‘𝐶) → (rank‘𝐴) ∈ ((rank‘𝐶) ∪ (rank‘𝐷))) | |
| 6 | elun2 4130 | . . 3 ⊢ ((rank‘𝐵) ∈ (rank‘𝐷) → (rank‘𝐵) ∈ ((rank‘𝐶) ∪ (rank‘𝐷))) | |
| 7 | ordunel 7757 | . . 3 ⊢ ((Ord ((rank‘𝐶) ∪ (rank‘𝐷)) ∧ (rank‘𝐴) ∈ ((rank‘𝐶) ∪ (rank‘𝐷)) ∧ (rank‘𝐵) ∈ ((rank‘𝐶) ∪ (rank‘𝐷))) → ((rank‘𝐴) ∪ (rank‘𝐵)) ∈ ((rank‘𝐶) ∪ (rank‘𝐷))) | |
| 8 | 4, 5, 6, 7 | mp3an3an 1469 | . 2 ⊢ (((rank‘𝐴) ∈ (rank‘𝐶) ∧ (rank‘𝐵) ∈ (rank‘𝐷)) → ((rank‘𝐴) ∪ (rank‘𝐵)) ∈ ((rank‘𝐶) ∪ (rank‘𝐷))) |
| 9 | rankelun.1 | . . 3 ⊢ 𝐴 ∈ V | |
| 10 | rankelun.2 | . . 3 ⊢ 𝐵 ∈ V | |
| 11 | 9, 10 | rankun 9749 | . 2 ⊢ (rank‘(𝐴 ∪ 𝐵)) = ((rank‘𝐴) ∪ (rank‘𝐵)) |
| 12 | rankelun.3 | . . 3 ⊢ 𝐶 ∈ V | |
| 13 | rankelun.4 | . . 3 ⊢ 𝐷 ∈ V | |
| 14 | 12, 13 | rankun 9749 | . 2 ⊢ (rank‘(𝐶 ∪ 𝐷)) = ((rank‘𝐶) ∪ (rank‘𝐷)) |
| 15 | 8, 11, 14 | 3eltr4g 2848 | 1 ⊢ (((rank‘𝐴) ∈ (rank‘𝐶) ∧ (rank‘𝐵) ∈ (rank‘𝐷)) → (rank‘(𝐴 ∪ 𝐵)) ∈ (rank‘(𝐶 ∪ 𝐷))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2111 Vcvv 3436 ∪ cun 3895 Ord word 6305 ‘cfv 6481 rankcrnk 9656 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5215 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7668 ax-reg 9478 ax-inf2 9531 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-int 4896 df-iun 4941 df-br 5090 df-opab 5152 df-mpt 5171 df-tr 5197 df-id 5509 df-eprel 5514 df-po 5522 df-so 5523 df-fr 5567 df-we 5569 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-pred 6248 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-ov 7349 df-om 7797 df-2nd 7922 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-rdg 8329 df-r1 9657 df-rank 9658 |
| This theorem is referenced by: rankelpr 9766 rankxplim 9772 |
| Copyright terms: Public domain | W3C validator |