MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rankelun Structured version   Visualization version   GIF version

Theorem rankelun 9801
Description: Rank membership is inherited by union. (Contributed by NM, 18-Sep-2006.) (Proof shortened by Mario Carneiro, 17-Nov-2014.)
Hypotheses
Ref Expression
rankelun.1 𝐴 ∈ V
rankelun.2 𝐵 ∈ V
rankelun.3 𝐶 ∈ V
rankelun.4 𝐷 ∈ V
Assertion
Ref Expression
rankelun (((rank‘𝐴) ∈ (rank‘𝐶) ∧ (rank‘𝐵) ∈ (rank‘𝐷)) → (rank‘(𝐴𝐵)) ∈ (rank‘(𝐶𝐷)))

Proof of Theorem rankelun
StepHypRef Expression
1 rankon 9724 . . . . 5 (rank‘𝐶) ∈ On
2 rankon 9724 . . . . 5 (rank‘𝐷) ∈ On
31, 2onun2i 6444 . . . 4 ((rank‘𝐶) ∪ (rank‘𝐷)) ∈ On
43onordi 6433 . . 3 Ord ((rank‘𝐶) ∪ (rank‘𝐷))
5 elun1 4141 . . 3 ((rank‘𝐴) ∈ (rank‘𝐶) → (rank‘𝐴) ∈ ((rank‘𝐶) ∪ (rank‘𝐷)))
6 elun2 4142 . . 3 ((rank‘𝐵) ∈ (rank‘𝐷) → (rank‘𝐵) ∈ ((rank‘𝐶) ∪ (rank‘𝐷)))
7 ordunel 7782 . . 3 ((Ord ((rank‘𝐶) ∪ (rank‘𝐷)) ∧ (rank‘𝐴) ∈ ((rank‘𝐶) ∪ (rank‘𝐷)) ∧ (rank‘𝐵) ∈ ((rank‘𝐶) ∪ (rank‘𝐷))) → ((rank‘𝐴) ∪ (rank‘𝐵)) ∈ ((rank‘𝐶) ∪ (rank‘𝐷)))
84, 5, 6, 7mp3an3an 1469 . 2 (((rank‘𝐴) ∈ (rank‘𝐶) ∧ (rank‘𝐵) ∈ (rank‘𝐷)) → ((rank‘𝐴) ∪ (rank‘𝐵)) ∈ ((rank‘𝐶) ∪ (rank‘𝐷)))
9 rankelun.1 . . 3 𝐴 ∈ V
10 rankelun.2 . . 3 𝐵 ∈ V
119, 10rankun 9785 . 2 (rank‘(𝐴𝐵)) = ((rank‘𝐴) ∪ (rank‘𝐵))
12 rankelun.3 . . 3 𝐶 ∈ V
13 rankelun.4 . . 3 𝐷 ∈ V
1412, 13rankun 9785 . 2 (rank‘(𝐶𝐷)) = ((rank‘𝐶) ∪ (rank‘𝐷))
158, 11, 143eltr4g 2845 1 (((rank‘𝐴) ∈ (rank‘𝐶) ∧ (rank‘𝐵) ∈ (rank‘𝐷)) → (rank‘(𝐴𝐵)) ∈ (rank‘(𝐶𝐷)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wcel 2109  Vcvv 3444  cun 3909  Ord word 6319  cfv 6499  rankcrnk 9692
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691  ax-reg 9521  ax-inf2 9570
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-int 4907  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-ov 7372  df-om 7823  df-2nd 7948  df-frecs 8237  df-wrecs 8268  df-recs 8317  df-rdg 8355  df-r1 9693  df-rank 9694
This theorem is referenced by:  rankelpr  9802  rankxplim  9808
  Copyright terms: Public domain W3C validator