| Mathbox for Steven Nguyen |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > 0prjspnlem | Structured version Visualization version GIF version | ||
| Description: Lemma for 0prjspn 42786. The given unit vector is a nonzero vector. (Contributed by Steven Nguyen, 16-Jul-2023.) |
| Ref | Expression |
|---|---|
| 0prjspnlem.b | ⊢ 𝐵 = ((Base‘𝑊) ∖ {(0g‘𝑊)}) |
| 0prjspnlem.w | ⊢ 𝑊 = (𝐾 freeLMod (0...0)) |
| 0prjspnlem.1 | ⊢ 1 = ((𝐾 unitVec (0...0))‘0) |
| Ref | Expression |
|---|---|
| 0prjspnlem | ⊢ (𝐾 ∈ DivRing → 1 ∈ 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | drngnzr 20672 | . . 3 ⊢ (𝐾 ∈ DivRing → 𝐾 ∈ NzRing) | |
| 2 | ovex 7388 | . . . 4 ⊢ (0...0) ∈ V | |
| 3 | c0ex 11117 | . . . . . 6 ⊢ 0 ∈ V | |
| 4 | 3 | snid 4616 | . . . . 5 ⊢ 0 ∈ {0} |
| 5 | fz0sn 13534 | . . . . 5 ⊢ (0...0) = {0} | |
| 6 | 4, 5 | eleqtrri 2832 | . . . 4 ⊢ 0 ∈ (0...0) |
| 7 | nzrring 20440 | . . . . . 6 ⊢ (𝐾 ∈ NzRing → 𝐾 ∈ Ring) | |
| 8 | eqid 2733 | . . . . . . 7 ⊢ (𝐾 unitVec (0...0)) = (𝐾 unitVec (0...0)) | |
| 9 | 0prjspnlem.w | . . . . . . 7 ⊢ 𝑊 = (𝐾 freeLMod (0...0)) | |
| 10 | eqid 2733 | . . . . . . 7 ⊢ (Base‘𝑊) = (Base‘𝑊) | |
| 11 | 8, 9, 10 | uvccl 42711 | . . . . . 6 ⊢ ((𝐾 ∈ Ring ∧ (0...0) ∈ V ∧ 0 ∈ (0...0)) → ((𝐾 unitVec (0...0))‘0) ∈ (Base‘𝑊)) |
| 12 | 7, 11 | syl3an1 1163 | . . . . 5 ⊢ ((𝐾 ∈ NzRing ∧ (0...0) ∈ V ∧ 0 ∈ (0...0)) → ((𝐾 unitVec (0...0))‘0) ∈ (Base‘𝑊)) |
| 13 | eqid 2733 | . . . . . 6 ⊢ (0g‘𝑊) = (0g‘𝑊) | |
| 14 | 8, 9, 10, 13 | uvcn0 42712 | . . . . 5 ⊢ ((𝐾 ∈ NzRing ∧ (0...0) ∈ V ∧ 0 ∈ (0...0)) → ((𝐾 unitVec (0...0))‘0) ≠ (0g‘𝑊)) |
| 15 | eldifsn 4739 | . . . . 5 ⊢ (((𝐾 unitVec (0...0))‘0) ∈ ((Base‘𝑊) ∖ {(0g‘𝑊)}) ↔ (((𝐾 unitVec (0...0))‘0) ∈ (Base‘𝑊) ∧ ((𝐾 unitVec (0...0))‘0) ≠ (0g‘𝑊))) | |
| 16 | 12, 14, 15 | sylanbrc 583 | . . . 4 ⊢ ((𝐾 ∈ NzRing ∧ (0...0) ∈ V ∧ 0 ∈ (0...0)) → ((𝐾 unitVec (0...0))‘0) ∈ ((Base‘𝑊) ∖ {(0g‘𝑊)})) |
| 17 | 2, 6, 16 | mp3an23 1455 | . . 3 ⊢ (𝐾 ∈ NzRing → ((𝐾 unitVec (0...0))‘0) ∈ ((Base‘𝑊) ∖ {(0g‘𝑊)})) |
| 18 | 1, 17 | syl 17 | . 2 ⊢ (𝐾 ∈ DivRing → ((𝐾 unitVec (0...0))‘0) ∈ ((Base‘𝑊) ∖ {(0g‘𝑊)})) |
| 19 | 0prjspnlem.1 | . 2 ⊢ 1 = ((𝐾 unitVec (0...0))‘0) | |
| 20 | 0prjspnlem.b | . 2 ⊢ 𝐵 = ((Base‘𝑊) ∖ {(0g‘𝑊)}) | |
| 21 | 18, 19, 20 | 3eltr4g 2850 | 1 ⊢ (𝐾 ∈ DivRing → 1 ∈ 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ w3a 1086 = wceq 1541 ∈ wcel 2113 ≠ wne 2929 Vcvv 3437 ∖ cdif 3895 {csn 4577 ‘cfv 6489 (class class class)co 7355 0cc0 11017 ...cfz 13414 Basecbs 17127 0gc0g 17350 Ringcrg 20159 NzRingcnzr 20436 DivRingcdr 20653 freeLMod cfrlm 21692 unitVec cuvc 21728 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7677 ax-cnex 11073 ax-resscn 11074 ax-1cn 11075 ax-icn 11076 ax-addcl 11077 ax-addrcl 11078 ax-mulcl 11079 ax-mulrcl 11080 ax-mulcom 11081 ax-addass 11082 ax-mulass 11083 ax-distr 11084 ax-i2m1 11085 ax-1ne0 11086 ax-1rid 11087 ax-rnegex 11088 ax-rrecex 11089 ax-cnre 11090 ax-pre-lttri 11091 ax-pre-lttrn 11092 ax-pre-ltadd 11093 ax-pre-mulgt0 11094 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-nel 3034 df-ral 3049 df-rex 3058 df-rmo 3347 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3918 df-nul 4283 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-tp 4582 df-op 4584 df-uni 4861 df-iun 4945 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5516 df-eprel 5521 df-po 5529 df-so 5530 df-fr 5574 df-we 5576 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-res 5633 df-ima 5634 df-pred 6256 df-ord 6317 df-on 6318 df-lim 6319 df-suc 6320 df-iota 6445 df-fun 6491 df-fn 6492 df-f 6493 df-f1 6494 df-fo 6495 df-f1o 6496 df-fv 6497 df-riota 7312 df-ov 7358 df-oprab 7359 df-mpo 7360 df-om 7806 df-1st 7930 df-2nd 7931 df-supp 8100 df-tpos 8165 df-frecs 8220 df-wrecs 8251 df-recs 8300 df-rdg 8338 df-1o 8394 df-er 8631 df-map 8761 df-ixp 8832 df-en 8880 df-dom 8881 df-sdom 8882 df-fin 8883 df-fsupp 9257 df-sup 9337 df-pnf 11159 df-mnf 11160 df-xr 11161 df-ltxr 11162 df-le 11163 df-sub 11357 df-neg 11358 df-nn 12137 df-2 12199 df-3 12200 df-4 12201 df-5 12202 df-6 12203 df-7 12204 df-8 12205 df-9 12206 df-n0 12393 df-z 12480 df-dec 12599 df-uz 12743 df-fz 13415 df-struct 17065 df-sets 17082 df-slot 17100 df-ndx 17112 df-base 17128 df-ress 17149 df-plusg 17181 df-mulr 17182 df-sca 17184 df-vsca 17185 df-ip 17186 df-tset 17187 df-ple 17188 df-ds 17190 df-hom 17192 df-cco 17193 df-0g 17352 df-prds 17358 df-pws 17360 df-mgm 18556 df-sgrp 18635 df-mnd 18651 df-grp 18857 df-minusg 18858 df-sbg 18859 df-subg 19044 df-cmn 19702 df-abl 19703 df-mgp 20067 df-rng 20079 df-ur 20108 df-ring 20161 df-oppr 20264 df-dvdsr 20284 df-unit 20285 df-nzr 20437 df-subrg 20494 df-drng 20655 df-lmod 20804 df-lss 20874 df-sra 21116 df-rgmod 21117 df-dsmm 21678 df-frlm 21693 df-uvc 21729 |
| This theorem is referenced by: 0prjspnrel 42785 0prjspn 42786 |
| Copyright terms: Public domain | W3C validator |