![]() |
Mathbox for Steven Nguyen |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > 0prjspnlem | Structured version Visualization version GIF version |
Description: Lemma for 0prjspn 42583. The given unit vector is a nonzero vector. (Contributed by Steven Nguyen, 16-Jul-2023.) |
Ref | Expression |
---|---|
0prjspnlem.b | ⊢ 𝐵 = ((Base‘𝑊) ∖ {(0g‘𝑊)}) |
0prjspnlem.w | ⊢ 𝑊 = (𝐾 freeLMod (0...0)) |
0prjspnlem.1 | ⊢ 1 = ((𝐾 unitVec (0...0))‘0) |
Ref | Expression |
---|---|
0prjspnlem | ⊢ (𝐾 ∈ DivRing → 1 ∈ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | drngnzr 20770 | . . 3 ⊢ (𝐾 ∈ DivRing → 𝐾 ∈ NzRing) | |
2 | ovex 7481 | . . . 4 ⊢ (0...0) ∈ V | |
3 | c0ex 11284 | . . . . . 6 ⊢ 0 ∈ V | |
4 | 3 | snid 4684 | . . . . 5 ⊢ 0 ∈ {0} |
5 | fz0sn 13684 | . . . . 5 ⊢ (0...0) = {0} | |
6 | 4, 5 | eleqtrri 2843 | . . . 4 ⊢ 0 ∈ (0...0) |
7 | nzrring 20542 | . . . . . 6 ⊢ (𝐾 ∈ NzRing → 𝐾 ∈ Ring) | |
8 | eqid 2740 | . . . . . . 7 ⊢ (𝐾 unitVec (0...0)) = (𝐾 unitVec (0...0)) | |
9 | 0prjspnlem.w | . . . . . . 7 ⊢ 𝑊 = (𝐾 freeLMod (0...0)) | |
10 | eqid 2740 | . . . . . . 7 ⊢ (Base‘𝑊) = (Base‘𝑊) | |
11 | 8, 9, 10 | uvccl 42496 | . . . . . 6 ⊢ ((𝐾 ∈ Ring ∧ (0...0) ∈ V ∧ 0 ∈ (0...0)) → ((𝐾 unitVec (0...0))‘0) ∈ (Base‘𝑊)) |
12 | 7, 11 | syl3an1 1163 | . . . . 5 ⊢ ((𝐾 ∈ NzRing ∧ (0...0) ∈ V ∧ 0 ∈ (0...0)) → ((𝐾 unitVec (0...0))‘0) ∈ (Base‘𝑊)) |
13 | eqid 2740 | . . . . . 6 ⊢ (0g‘𝑊) = (0g‘𝑊) | |
14 | 8, 9, 10, 13 | uvcn0 42497 | . . . . 5 ⊢ ((𝐾 ∈ NzRing ∧ (0...0) ∈ V ∧ 0 ∈ (0...0)) → ((𝐾 unitVec (0...0))‘0) ≠ (0g‘𝑊)) |
15 | eldifsn 4811 | . . . . 5 ⊢ (((𝐾 unitVec (0...0))‘0) ∈ ((Base‘𝑊) ∖ {(0g‘𝑊)}) ↔ (((𝐾 unitVec (0...0))‘0) ∈ (Base‘𝑊) ∧ ((𝐾 unitVec (0...0))‘0) ≠ (0g‘𝑊))) | |
16 | 12, 14, 15 | sylanbrc 582 | . . . 4 ⊢ ((𝐾 ∈ NzRing ∧ (0...0) ∈ V ∧ 0 ∈ (0...0)) → ((𝐾 unitVec (0...0))‘0) ∈ ((Base‘𝑊) ∖ {(0g‘𝑊)})) |
17 | 2, 6, 16 | mp3an23 1453 | . . 3 ⊢ (𝐾 ∈ NzRing → ((𝐾 unitVec (0...0))‘0) ∈ ((Base‘𝑊) ∖ {(0g‘𝑊)})) |
18 | 1, 17 | syl 17 | . 2 ⊢ (𝐾 ∈ DivRing → ((𝐾 unitVec (0...0))‘0) ∈ ((Base‘𝑊) ∖ {(0g‘𝑊)})) |
19 | 0prjspnlem.1 | . 2 ⊢ 1 = ((𝐾 unitVec (0...0))‘0) | |
20 | 0prjspnlem.b | . 2 ⊢ 𝐵 = ((Base‘𝑊) ∖ {(0g‘𝑊)}) | |
21 | 18, 19, 20 | 3eltr4g 2861 | 1 ⊢ (𝐾 ∈ DivRing → 1 ∈ 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 1087 = wceq 1537 ∈ wcel 2108 ≠ wne 2946 Vcvv 3488 ∖ cdif 3973 {csn 4648 ‘cfv 6573 (class class class)co 7448 0cc0 11184 ...cfz 13567 Basecbs 17258 0gc0g 17499 Ringcrg 20260 NzRingcnzr 20538 DivRingcdr 20751 freeLMod cfrlm 21789 unitVec cuvc 21825 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-rep 5303 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 ax-cnex 11240 ax-resscn 11241 ax-1cn 11242 ax-icn 11243 ax-addcl 11244 ax-addrcl 11245 ax-mulcl 11246 ax-mulrcl 11247 ax-mulcom 11248 ax-addass 11249 ax-mulass 11250 ax-distr 11251 ax-i2m1 11252 ax-1ne0 11253 ax-1rid 11254 ax-rnegex 11255 ax-rrecex 11256 ax-cnre 11257 ax-pre-lttri 11258 ax-pre-lttrn 11259 ax-pre-ltadd 11260 ax-pre-mulgt0 11261 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-nel 3053 df-ral 3068 df-rex 3077 df-rmo 3388 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-pss 3996 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-tp 4653 df-op 4655 df-uni 4932 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-tr 5284 df-id 5593 df-eprel 5599 df-po 5607 df-so 5608 df-fr 5652 df-we 5654 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-pred 6332 df-ord 6398 df-on 6399 df-lim 6400 df-suc 6401 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-riota 7404 df-ov 7451 df-oprab 7452 df-mpo 7453 df-om 7904 df-1st 8030 df-2nd 8031 df-supp 8202 df-tpos 8267 df-frecs 8322 df-wrecs 8353 df-recs 8427 df-rdg 8466 df-1o 8522 df-er 8763 df-map 8886 df-ixp 8956 df-en 9004 df-dom 9005 df-sdom 9006 df-fin 9007 df-fsupp 9432 df-sup 9511 df-pnf 11326 df-mnf 11327 df-xr 11328 df-ltxr 11329 df-le 11330 df-sub 11522 df-neg 11523 df-nn 12294 df-2 12356 df-3 12357 df-4 12358 df-5 12359 df-6 12360 df-7 12361 df-8 12362 df-9 12363 df-n0 12554 df-z 12640 df-dec 12759 df-uz 12904 df-fz 13568 df-struct 17194 df-sets 17211 df-slot 17229 df-ndx 17241 df-base 17259 df-ress 17288 df-plusg 17324 df-mulr 17325 df-sca 17327 df-vsca 17328 df-ip 17329 df-tset 17330 df-ple 17331 df-ds 17333 df-hom 17335 df-cco 17336 df-0g 17501 df-prds 17507 df-pws 17509 df-mgm 18678 df-sgrp 18757 df-mnd 18773 df-grp 18976 df-minusg 18977 df-sbg 18978 df-subg 19163 df-cmn 19824 df-abl 19825 df-mgp 20162 df-rng 20180 df-ur 20209 df-ring 20262 df-oppr 20360 df-dvdsr 20383 df-unit 20384 df-nzr 20539 df-subrg 20597 df-drng 20753 df-lmod 20882 df-lss 20953 df-sra 21195 df-rgmod 21196 df-dsmm 21775 df-frlm 21790 df-uvc 21826 |
This theorem is referenced by: 0prjspnrel 42582 0prjspn 42583 |
Copyright terms: Public domain | W3C validator |