Mathbox for Steven Nguyen |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > 0prjspnlem | Structured version Visualization version GIF version |
Description: Lemma for 0prjspn 40735. The given unit vector is a nonzero vector. (Contributed by Steven Nguyen, 16-Jul-2023.) |
Ref | Expression |
---|---|
0prjspnlem.b | ⊢ 𝐵 = ((Base‘𝑊) ∖ {(0g‘𝑊)}) |
0prjspnlem.w | ⊢ 𝑊 = (𝐾 freeLMod (0...0)) |
0prjspnlem.1 | ⊢ 1 = ((𝐾 unitVec (0...0))‘0) |
Ref | Expression |
---|---|
0prjspnlem | ⊢ (𝐾 ∈ DivRing → 1 ∈ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | drngnzr 20639 | . . 3 ⊢ (𝐾 ∈ DivRing → 𝐾 ∈ NzRing) | |
2 | ovex 7370 | . . . 4 ⊢ (0...0) ∈ V | |
3 | c0ex 11070 | . . . . . 6 ⊢ 0 ∈ V | |
4 | 3 | snid 4609 | . . . . 5 ⊢ 0 ∈ {0} |
5 | fz0sn 13457 | . . . . 5 ⊢ (0...0) = {0} | |
6 | 4, 5 | eleqtrri 2836 | . . . 4 ⊢ 0 ∈ (0...0) |
7 | nzrring 20638 | . . . . . 6 ⊢ (𝐾 ∈ NzRing → 𝐾 ∈ Ring) | |
8 | eqid 2736 | . . . . . . 7 ⊢ (𝐾 unitVec (0...0)) = (𝐾 unitVec (0...0)) | |
9 | 0prjspnlem.w | . . . . . . 7 ⊢ 𝑊 = (𝐾 freeLMod (0...0)) | |
10 | eqid 2736 | . . . . . . 7 ⊢ (Base‘𝑊) = (Base‘𝑊) | |
11 | 8, 9, 10 | uvccl 40532 | . . . . . 6 ⊢ ((𝐾 ∈ Ring ∧ (0...0) ∈ V ∧ 0 ∈ (0...0)) → ((𝐾 unitVec (0...0))‘0) ∈ (Base‘𝑊)) |
12 | 7, 11 | syl3an1 1162 | . . . . 5 ⊢ ((𝐾 ∈ NzRing ∧ (0...0) ∈ V ∧ 0 ∈ (0...0)) → ((𝐾 unitVec (0...0))‘0) ∈ (Base‘𝑊)) |
13 | eqid 2736 | . . . . . 6 ⊢ (0g‘𝑊) = (0g‘𝑊) | |
14 | 8, 9, 10, 13 | uvcn0 40533 | . . . . 5 ⊢ ((𝐾 ∈ NzRing ∧ (0...0) ∈ V ∧ 0 ∈ (0...0)) → ((𝐾 unitVec (0...0))‘0) ≠ (0g‘𝑊)) |
15 | eldifsn 4734 | . . . . 5 ⊢ (((𝐾 unitVec (0...0))‘0) ∈ ((Base‘𝑊) ∖ {(0g‘𝑊)}) ↔ (((𝐾 unitVec (0...0))‘0) ∈ (Base‘𝑊) ∧ ((𝐾 unitVec (0...0))‘0) ≠ (0g‘𝑊))) | |
16 | 12, 14, 15 | sylanbrc 583 | . . . 4 ⊢ ((𝐾 ∈ NzRing ∧ (0...0) ∈ V ∧ 0 ∈ (0...0)) → ((𝐾 unitVec (0...0))‘0) ∈ ((Base‘𝑊) ∖ {(0g‘𝑊)})) |
17 | 2, 6, 16 | mp3an23 1452 | . . 3 ⊢ (𝐾 ∈ NzRing → ((𝐾 unitVec (0...0))‘0) ∈ ((Base‘𝑊) ∖ {(0g‘𝑊)})) |
18 | 1, 17 | syl 17 | . 2 ⊢ (𝐾 ∈ DivRing → ((𝐾 unitVec (0...0))‘0) ∈ ((Base‘𝑊) ∖ {(0g‘𝑊)})) |
19 | 0prjspnlem.1 | . 2 ⊢ 1 = ((𝐾 unitVec (0...0))‘0) | |
20 | 0prjspnlem.b | . 2 ⊢ 𝐵 = ((Base‘𝑊) ∖ {(0g‘𝑊)}) | |
21 | 18, 19, 20 | 3eltr4g 2854 | 1 ⊢ (𝐾 ∈ DivRing → 1 ∈ 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 1086 = wceq 1540 ∈ wcel 2105 ≠ wne 2940 Vcvv 3441 ∖ cdif 3895 {csn 4573 ‘cfv 6479 (class class class)co 7337 0cc0 10972 ...cfz 13340 Basecbs 17009 0gc0g 17247 Ringcrg 19878 DivRingcdr 20093 NzRingcnzr 20634 freeLMod cfrlm 21059 unitVec cuvc 21095 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2707 ax-rep 5229 ax-sep 5243 ax-nul 5250 ax-pow 5308 ax-pr 5372 ax-un 7650 ax-cnex 11028 ax-resscn 11029 ax-1cn 11030 ax-icn 11031 ax-addcl 11032 ax-addrcl 11033 ax-mulcl 11034 ax-mulrcl 11035 ax-mulcom 11036 ax-addass 11037 ax-mulass 11038 ax-distr 11039 ax-i2m1 11040 ax-1ne0 11041 ax-1rid 11042 ax-rnegex 11043 ax-rrecex 11044 ax-cnre 11045 ax-pre-lttri 11046 ax-pre-lttrn 11047 ax-pre-ltadd 11048 ax-pre-mulgt0 11049 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2886 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3349 df-reu 3350 df-rab 3404 df-v 3443 df-sbc 3728 df-csb 3844 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3917 df-nul 4270 df-if 4474 df-pw 4549 df-sn 4574 df-pr 4576 df-tp 4578 df-op 4580 df-uni 4853 df-iun 4943 df-br 5093 df-opab 5155 df-mpt 5176 df-tr 5210 df-id 5518 df-eprel 5524 df-po 5532 df-so 5533 df-fr 5575 df-we 5577 df-xp 5626 df-rel 5627 df-cnv 5628 df-co 5629 df-dm 5630 df-rn 5631 df-res 5632 df-ima 5633 df-pred 6238 df-ord 6305 df-on 6306 df-lim 6307 df-suc 6308 df-iota 6431 df-fun 6481 df-fn 6482 df-f 6483 df-f1 6484 df-fo 6485 df-f1o 6486 df-fv 6487 df-riota 7293 df-ov 7340 df-oprab 7341 df-mpo 7342 df-om 7781 df-1st 7899 df-2nd 7900 df-supp 8048 df-tpos 8112 df-frecs 8167 df-wrecs 8198 df-recs 8272 df-rdg 8311 df-1o 8367 df-er 8569 df-map 8688 df-ixp 8757 df-en 8805 df-dom 8806 df-sdom 8807 df-fin 8808 df-fsupp 9227 df-sup 9299 df-pnf 11112 df-mnf 11113 df-xr 11114 df-ltxr 11115 df-le 11116 df-sub 11308 df-neg 11309 df-nn 12075 df-2 12137 df-3 12138 df-4 12139 df-5 12140 df-6 12141 df-7 12142 df-8 12143 df-9 12144 df-n0 12335 df-z 12421 df-dec 12539 df-uz 12684 df-fz 13341 df-struct 16945 df-sets 16962 df-slot 16980 df-ndx 16992 df-base 17010 df-ress 17039 df-plusg 17072 df-mulr 17073 df-sca 17075 df-vsca 17076 df-ip 17077 df-tset 17078 df-ple 17079 df-ds 17081 df-hom 17083 df-cco 17084 df-0g 17249 df-prds 17255 df-pws 17257 df-mgm 18423 df-sgrp 18472 df-mnd 18483 df-grp 18676 df-minusg 18677 df-sbg 18678 df-subg 18848 df-mgp 19816 df-ur 19833 df-ring 19880 df-oppr 19957 df-dvdsr 19978 df-unit 19979 df-drng 20095 df-subrg 20127 df-lmod 20231 df-lss 20300 df-sra 20540 df-rgmod 20541 df-nzr 20635 df-dsmm 21045 df-frlm 21060 df-uvc 21096 |
This theorem is referenced by: 0prjspnrel 40734 0prjspn 40735 |
Copyright terms: Public domain | W3C validator |