![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > nosepdm | Structured version Visualization version GIF version |
Description: The first place two surreals differ is an element of the larger of their domains. (Contributed by Scott Fenton, 24-Nov-2021.) |
Ref | Expression |
---|---|
nosepdm | ⊢ ((𝐴 ∈ No ∧ 𝐵 ∈ No ∧ 𝐴 ≠ 𝐵) → ∩ {𝑥 ∈ On ∣ (𝐴‘𝑥) ≠ (𝐵‘𝑥)} ∈ (dom 𝐴 ∪ dom 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sltso 27528 | . . . 4 ⊢ <s Or No | |
2 | sotrine 5617 | . . . 4 ⊢ (( <s Or No ∧ (𝐴 ∈ No ∧ 𝐵 ∈ No )) → (𝐴 ≠ 𝐵 ↔ (𝐴 <s 𝐵 ∨ 𝐵 <s 𝐴))) | |
3 | 1, 2 | mpan 687 | . . 3 ⊢ ((𝐴 ∈ No ∧ 𝐵 ∈ No ) → (𝐴 ≠ 𝐵 ↔ (𝐴 <s 𝐵 ∨ 𝐵 <s 𝐴))) |
4 | nosepdmlem 27535 | . . . . . 6 ⊢ ((𝐴 ∈ No ∧ 𝐵 ∈ No ∧ 𝐴 <s 𝐵) → ∩ {𝑥 ∈ On ∣ (𝐴‘𝑥) ≠ (𝐵‘𝑥)} ∈ (dom 𝐴 ∪ dom 𝐵)) | |
5 | 4 | 3expa 1115 | . . . . 5 ⊢ (((𝐴 ∈ No ∧ 𝐵 ∈ No ) ∧ 𝐴 <s 𝐵) → ∩ {𝑥 ∈ On ∣ (𝐴‘𝑥) ≠ (𝐵‘𝑥)} ∈ (dom 𝐴 ∪ dom 𝐵)) |
6 | simplr 766 | . . . . . . 7 ⊢ (((𝐴 ∈ No ∧ 𝐵 ∈ No ) ∧ 𝐵 <s 𝐴) → 𝐵 ∈ No ) | |
7 | simpll 764 | . . . . . . 7 ⊢ (((𝐴 ∈ No ∧ 𝐵 ∈ No ) ∧ 𝐵 <s 𝐴) → 𝐴 ∈ No ) | |
8 | simpr 484 | . . . . . . 7 ⊢ (((𝐴 ∈ No ∧ 𝐵 ∈ No ) ∧ 𝐵 <s 𝐴) → 𝐵 <s 𝐴) | |
9 | nosepdmlem 27535 | . . . . . . 7 ⊢ ((𝐵 ∈ No ∧ 𝐴 ∈ No ∧ 𝐵 <s 𝐴) → ∩ {𝑥 ∈ On ∣ (𝐵‘𝑥) ≠ (𝐴‘𝑥)} ∈ (dom 𝐵 ∪ dom 𝐴)) | |
10 | 6, 7, 8, 9 | syl3anc 1368 | . . . . . 6 ⊢ (((𝐴 ∈ No ∧ 𝐵 ∈ No ) ∧ 𝐵 <s 𝐴) → ∩ {𝑥 ∈ On ∣ (𝐵‘𝑥) ≠ (𝐴‘𝑥)} ∈ (dom 𝐵 ∪ dom 𝐴)) |
11 | necom 2986 | . . . . . . . 8 ⊢ ((𝐴‘𝑥) ≠ (𝐵‘𝑥) ↔ (𝐵‘𝑥) ≠ (𝐴‘𝑥)) | |
12 | 11 | rabbii 3430 | . . . . . . 7 ⊢ {𝑥 ∈ On ∣ (𝐴‘𝑥) ≠ (𝐵‘𝑥)} = {𝑥 ∈ On ∣ (𝐵‘𝑥) ≠ (𝐴‘𝑥)} |
13 | 12 | inteqi 4945 | . . . . . 6 ⊢ ∩ {𝑥 ∈ On ∣ (𝐴‘𝑥) ≠ (𝐵‘𝑥)} = ∩ {𝑥 ∈ On ∣ (𝐵‘𝑥) ≠ (𝐴‘𝑥)} |
14 | uncom 4146 | . . . . . 6 ⊢ (dom 𝐴 ∪ dom 𝐵) = (dom 𝐵 ∪ dom 𝐴) | |
15 | 10, 13, 14 | 3eltr4g 2842 | . . . . 5 ⊢ (((𝐴 ∈ No ∧ 𝐵 ∈ No ) ∧ 𝐵 <s 𝐴) → ∩ {𝑥 ∈ On ∣ (𝐴‘𝑥) ≠ (𝐵‘𝑥)} ∈ (dom 𝐴 ∪ dom 𝐵)) |
16 | 5, 15 | jaodan 954 | . . . 4 ⊢ (((𝐴 ∈ No ∧ 𝐵 ∈ No ) ∧ (𝐴 <s 𝐵 ∨ 𝐵 <s 𝐴)) → ∩ {𝑥 ∈ On ∣ (𝐴‘𝑥) ≠ (𝐵‘𝑥)} ∈ (dom 𝐴 ∪ dom 𝐵)) |
17 | 16 | ex 412 | . . 3 ⊢ ((𝐴 ∈ No ∧ 𝐵 ∈ No ) → ((𝐴 <s 𝐵 ∨ 𝐵 <s 𝐴) → ∩ {𝑥 ∈ On ∣ (𝐴‘𝑥) ≠ (𝐵‘𝑥)} ∈ (dom 𝐴 ∪ dom 𝐵))) |
18 | 3, 17 | sylbid 239 | . 2 ⊢ ((𝐴 ∈ No ∧ 𝐵 ∈ No ) → (𝐴 ≠ 𝐵 → ∩ {𝑥 ∈ On ∣ (𝐴‘𝑥) ≠ (𝐵‘𝑥)} ∈ (dom 𝐴 ∪ dom 𝐵))) |
19 | 18 | 3impia 1114 | 1 ⊢ ((𝐴 ∈ No ∧ 𝐵 ∈ No ∧ 𝐴 ≠ 𝐵) → ∩ {𝑥 ∈ On ∣ (𝐴‘𝑥) ≠ (𝐵‘𝑥)} ∈ (dom 𝐴 ∪ dom 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 ∨ wo 844 ∧ w3a 1084 ∈ wcel 2098 ≠ wne 2932 {crab 3424 ∪ cun 3939 ∩ cint 4941 class class class wbr 5139 Or wor 5578 dom cdm 5667 Oncon0 6355 ‘cfv 6534 No csur 27492 <s cslt 27493 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2695 ax-sep 5290 ax-nul 5297 ax-pr 5418 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2526 df-eu 2555 df-clab 2702 df-cleq 2716 df-clel 2802 df-nfc 2877 df-ne 2933 df-ral 3054 df-rex 3063 df-rab 3425 df-v 3468 df-sbc 3771 df-csb 3887 df-dif 3944 df-un 3946 df-in 3948 df-ss 3958 df-pss 3960 df-nul 4316 df-if 4522 df-pw 4597 df-sn 4622 df-pr 4624 df-tp 4626 df-op 4628 df-uni 4901 df-int 4942 df-br 5140 df-opab 5202 df-mpt 5223 df-tr 5257 df-id 5565 df-eprel 5571 df-po 5579 df-so 5580 df-fr 5622 df-we 5624 df-xp 5673 df-rel 5674 df-cnv 5675 df-co 5676 df-dm 5677 df-rn 5678 df-res 5679 df-ima 5680 df-ord 6358 df-on 6359 df-suc 6361 df-iota 6486 df-fun 6536 df-fn 6537 df-f 6538 df-fv 6542 df-1o 8462 df-2o 8463 df-no 27495 df-slt 27496 |
This theorem is referenced by: nodenselem5 27540 noresle 27549 |
Copyright terms: Public domain | W3C validator |