Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  nosepdm Structured version   Visualization version   GIF version

Theorem nosepdm 33948
Description: The first place two surreals differ is an element of the larger of their domains. (Contributed by Scott Fenton, 24-Nov-2021.)
Assertion
Ref Expression
nosepdm ((𝐴 No 𝐵 No 𝐴𝐵) → {𝑥 ∈ On ∣ (𝐴𝑥) ≠ (𝐵𝑥)} ∈ (dom 𝐴 ∪ dom 𝐵))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵

Proof of Theorem nosepdm
StepHypRef Expression
1 sltso 26895 . . . 4 <s Or No
2 sotrine 33837 . . . 4 (( <s Or No ∧ (𝐴 No 𝐵 No )) → (𝐴𝐵 ↔ (𝐴 <s 𝐵𝐵 <s 𝐴)))
31, 2mpan 687 . . 3 ((𝐴 No 𝐵 No ) → (𝐴𝐵 ↔ (𝐴 <s 𝐵𝐵 <s 𝐴)))
4 nosepdmlem 33947 . . . . . 6 ((𝐴 No 𝐵 No 𝐴 <s 𝐵) → {𝑥 ∈ On ∣ (𝐴𝑥) ≠ (𝐵𝑥)} ∈ (dom 𝐴 ∪ dom 𝐵))
543expa 1117 . . . . 5 (((𝐴 No 𝐵 No ) ∧ 𝐴 <s 𝐵) → {𝑥 ∈ On ∣ (𝐴𝑥) ≠ (𝐵𝑥)} ∈ (dom 𝐴 ∪ dom 𝐵))
6 simplr 766 . . . . . . 7 (((𝐴 No 𝐵 No ) ∧ 𝐵 <s 𝐴) → 𝐵 No )
7 simpll 764 . . . . . . 7 (((𝐴 No 𝐵 No ) ∧ 𝐵 <s 𝐴) → 𝐴 No )
8 simpr 485 . . . . . . 7 (((𝐴 No 𝐵 No ) ∧ 𝐵 <s 𝐴) → 𝐵 <s 𝐴)
9 nosepdmlem 33947 . . . . . . 7 ((𝐵 No 𝐴 No 𝐵 <s 𝐴) → {𝑥 ∈ On ∣ (𝐵𝑥) ≠ (𝐴𝑥)} ∈ (dom 𝐵 ∪ dom 𝐴))
106, 7, 8, 9syl3anc 1370 . . . . . 6 (((𝐴 No 𝐵 No ) ∧ 𝐵 <s 𝐴) → {𝑥 ∈ On ∣ (𝐵𝑥) ≠ (𝐴𝑥)} ∈ (dom 𝐵 ∪ dom 𝐴))
11 necom 2995 . . . . . . . 8 ((𝐴𝑥) ≠ (𝐵𝑥) ↔ (𝐵𝑥) ≠ (𝐴𝑥))
1211rabbii 3410 . . . . . . 7 {𝑥 ∈ On ∣ (𝐴𝑥) ≠ (𝐵𝑥)} = {𝑥 ∈ On ∣ (𝐵𝑥) ≠ (𝐴𝑥)}
1312inteqi 4894 . . . . . 6 {𝑥 ∈ On ∣ (𝐴𝑥) ≠ (𝐵𝑥)} = {𝑥 ∈ On ∣ (𝐵𝑥) ≠ (𝐴𝑥)}
14 uncom 4097 . . . . . 6 (dom 𝐴 ∪ dom 𝐵) = (dom 𝐵 ∪ dom 𝐴)
1510, 13, 143eltr4g 2855 . . . . 5 (((𝐴 No 𝐵 No ) ∧ 𝐵 <s 𝐴) → {𝑥 ∈ On ∣ (𝐴𝑥) ≠ (𝐵𝑥)} ∈ (dom 𝐴 ∪ dom 𝐵))
165, 15jaodan 955 . . . 4 (((𝐴 No 𝐵 No ) ∧ (𝐴 <s 𝐵𝐵 <s 𝐴)) → {𝑥 ∈ On ∣ (𝐴𝑥) ≠ (𝐵𝑥)} ∈ (dom 𝐴 ∪ dom 𝐵))
1716ex 413 . . 3 ((𝐴 No 𝐵 No ) → ((𝐴 <s 𝐵𝐵 <s 𝐴) → {𝑥 ∈ On ∣ (𝐴𝑥) ≠ (𝐵𝑥)} ∈ (dom 𝐴 ∪ dom 𝐵)))
183, 17sylbid 239 . 2 ((𝐴 No 𝐵 No ) → (𝐴𝐵 {𝑥 ∈ On ∣ (𝐴𝑥) ≠ (𝐵𝑥)} ∈ (dom 𝐴 ∪ dom 𝐵)))
19183impia 1116 1 ((𝐴 No 𝐵 No 𝐴𝐵) → {𝑥 ∈ On ∣ (𝐴𝑥) ≠ (𝐵𝑥)} ∈ (dom 𝐴 ∪ dom 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  wo 844  w3a 1086  wcel 2105  wne 2941  {crab 3404  cun 3894   cint 4890   class class class wbr 5085   Or wor 5518  dom cdm 5605  Oncon0 6286  cfv 6463   No csur 26859   <s cslt 26860
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2708  ax-sep 5236  ax-nul 5243  ax-pr 5365
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2815  df-nfc 2887  df-ne 2942  df-ral 3063  df-rex 3072  df-rab 3405  df-v 3443  df-sbc 3726  df-csb 3842  df-dif 3899  df-un 3901  df-in 3903  df-ss 3913  df-pss 3915  df-nul 4267  df-if 4470  df-pw 4545  df-sn 4570  df-pr 4572  df-tp 4574  df-op 4576  df-uni 4849  df-int 4891  df-br 5086  df-opab 5148  df-mpt 5169  df-tr 5203  df-id 5505  df-eprel 5511  df-po 5519  df-so 5520  df-fr 5560  df-we 5562  df-xp 5611  df-rel 5612  df-cnv 5613  df-co 5614  df-dm 5615  df-rn 5616  df-res 5617  df-ima 5618  df-ord 6289  df-on 6290  df-suc 6292  df-iota 6415  df-fun 6465  df-fn 6466  df-f 6467  df-fv 6471  df-1o 8342  df-2o 8343  df-no 26862  df-slt 26863
This theorem is referenced by:  nodenselem5  33952  noresle  33961
  Copyright terms: Public domain W3C validator