| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nosepdm | Structured version Visualization version GIF version | ||
| Description: The first place two surreals differ is an element of the larger of their domains. (Contributed by Scott Fenton, 24-Nov-2021.) |
| Ref | Expression |
|---|---|
| nosepdm | ⊢ ((𝐴 ∈ No ∧ 𝐵 ∈ No ∧ 𝐴 ≠ 𝐵) → ∩ {𝑥 ∈ On ∣ (𝐴‘𝑥) ≠ (𝐵‘𝑥)} ∈ (dom 𝐴 ∪ dom 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sltso 27640 | . . . 4 ⊢ <s Or No | |
| 2 | sotrine 5601 | . . . 4 ⊢ (( <s Or No ∧ (𝐴 ∈ No ∧ 𝐵 ∈ No )) → (𝐴 ≠ 𝐵 ↔ (𝐴 <s 𝐵 ∨ 𝐵 <s 𝐴))) | |
| 3 | 1, 2 | mpan 690 | . . 3 ⊢ ((𝐴 ∈ No ∧ 𝐵 ∈ No ) → (𝐴 ≠ 𝐵 ↔ (𝐴 <s 𝐵 ∨ 𝐵 <s 𝐴))) |
| 4 | nosepdmlem 27647 | . . . . . 6 ⊢ ((𝐴 ∈ No ∧ 𝐵 ∈ No ∧ 𝐴 <s 𝐵) → ∩ {𝑥 ∈ On ∣ (𝐴‘𝑥) ≠ (𝐵‘𝑥)} ∈ (dom 𝐴 ∪ dom 𝐵)) | |
| 5 | 4 | 3expa 1118 | . . . . 5 ⊢ (((𝐴 ∈ No ∧ 𝐵 ∈ No ) ∧ 𝐴 <s 𝐵) → ∩ {𝑥 ∈ On ∣ (𝐴‘𝑥) ≠ (𝐵‘𝑥)} ∈ (dom 𝐴 ∪ dom 𝐵)) |
| 6 | simplr 768 | . . . . . . 7 ⊢ (((𝐴 ∈ No ∧ 𝐵 ∈ No ) ∧ 𝐵 <s 𝐴) → 𝐵 ∈ No ) | |
| 7 | simpll 766 | . . . . . . 7 ⊢ (((𝐴 ∈ No ∧ 𝐵 ∈ No ) ∧ 𝐵 <s 𝐴) → 𝐴 ∈ No ) | |
| 8 | simpr 484 | . . . . . . 7 ⊢ (((𝐴 ∈ No ∧ 𝐵 ∈ No ) ∧ 𝐵 <s 𝐴) → 𝐵 <s 𝐴) | |
| 9 | nosepdmlem 27647 | . . . . . . 7 ⊢ ((𝐵 ∈ No ∧ 𝐴 ∈ No ∧ 𝐵 <s 𝐴) → ∩ {𝑥 ∈ On ∣ (𝐵‘𝑥) ≠ (𝐴‘𝑥)} ∈ (dom 𝐵 ∪ dom 𝐴)) | |
| 10 | 6, 7, 8, 9 | syl3anc 1373 | . . . . . 6 ⊢ (((𝐴 ∈ No ∧ 𝐵 ∈ No ) ∧ 𝐵 <s 𝐴) → ∩ {𝑥 ∈ On ∣ (𝐵‘𝑥) ≠ (𝐴‘𝑥)} ∈ (dom 𝐵 ∪ dom 𝐴)) |
| 11 | necom 2985 | . . . . . . . 8 ⊢ ((𝐴‘𝑥) ≠ (𝐵‘𝑥) ↔ (𝐵‘𝑥) ≠ (𝐴‘𝑥)) | |
| 12 | 11 | rabbii 3421 | . . . . . . 7 ⊢ {𝑥 ∈ On ∣ (𝐴‘𝑥) ≠ (𝐵‘𝑥)} = {𝑥 ∈ On ∣ (𝐵‘𝑥) ≠ (𝐴‘𝑥)} |
| 13 | 12 | inteqi 4926 | . . . . . 6 ⊢ ∩ {𝑥 ∈ On ∣ (𝐴‘𝑥) ≠ (𝐵‘𝑥)} = ∩ {𝑥 ∈ On ∣ (𝐵‘𝑥) ≠ (𝐴‘𝑥)} |
| 14 | uncom 4133 | . . . . . 6 ⊢ (dom 𝐴 ∪ dom 𝐵) = (dom 𝐵 ∪ dom 𝐴) | |
| 15 | 10, 13, 14 | 3eltr4g 2851 | . . . . 5 ⊢ (((𝐴 ∈ No ∧ 𝐵 ∈ No ) ∧ 𝐵 <s 𝐴) → ∩ {𝑥 ∈ On ∣ (𝐴‘𝑥) ≠ (𝐵‘𝑥)} ∈ (dom 𝐴 ∪ dom 𝐵)) |
| 16 | 5, 15 | jaodan 959 | . . . 4 ⊢ (((𝐴 ∈ No ∧ 𝐵 ∈ No ) ∧ (𝐴 <s 𝐵 ∨ 𝐵 <s 𝐴)) → ∩ {𝑥 ∈ On ∣ (𝐴‘𝑥) ≠ (𝐵‘𝑥)} ∈ (dom 𝐴 ∪ dom 𝐵)) |
| 17 | 16 | ex 412 | . . 3 ⊢ ((𝐴 ∈ No ∧ 𝐵 ∈ No ) → ((𝐴 <s 𝐵 ∨ 𝐵 <s 𝐴) → ∩ {𝑥 ∈ On ∣ (𝐴‘𝑥) ≠ (𝐵‘𝑥)} ∈ (dom 𝐴 ∪ dom 𝐵))) |
| 18 | 3, 17 | sylbid 240 | . 2 ⊢ ((𝐴 ∈ No ∧ 𝐵 ∈ No ) → (𝐴 ≠ 𝐵 → ∩ {𝑥 ∈ On ∣ (𝐴‘𝑥) ≠ (𝐵‘𝑥)} ∈ (dom 𝐴 ∪ dom 𝐵))) |
| 19 | 18 | 3impia 1117 | 1 ⊢ ((𝐴 ∈ No ∧ 𝐵 ∈ No ∧ 𝐴 ≠ 𝐵) → ∩ {𝑥 ∈ On ∣ (𝐴‘𝑥) ≠ (𝐵‘𝑥)} ∈ (dom 𝐴 ∪ dom 𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∨ wo 847 ∧ w3a 1086 ∈ wcel 2108 ≠ wne 2932 {crab 3415 ∪ cun 3924 ∩ cint 4922 class class class wbr 5119 Or wor 5560 dom cdm 5654 Oncon0 6352 ‘cfv 6531 No csur 27603 <s cslt 27604 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pr 5402 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-ral 3052 df-rex 3061 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-pss 3946 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-tp 4606 df-op 4608 df-uni 4884 df-int 4923 df-br 5120 df-opab 5182 df-mpt 5202 df-tr 5230 df-id 5548 df-eprel 5553 df-po 5561 df-so 5562 df-fr 5606 df-we 5608 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-ord 6355 df-on 6356 df-suc 6358 df-iota 6484 df-fun 6533 df-fn 6534 df-f 6535 df-fv 6539 df-1o 8480 df-2o 8481 df-no 27606 df-slt 27607 |
| This theorem is referenced by: nodenselem5 27652 noresle 27661 |
| Copyright terms: Public domain | W3C validator |