| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nosepdm | Structured version Visualization version GIF version | ||
| Description: The first place two surreals differ is an element of the larger of their domains. (Contributed by Scott Fenton, 24-Nov-2021.) |
| Ref | Expression |
|---|---|
| nosepdm | ⊢ ((𝐴 ∈ No ∧ 𝐵 ∈ No ∧ 𝐴 ≠ 𝐵) → ∩ {𝑥 ∈ On ∣ (𝐴‘𝑥) ≠ (𝐵‘𝑥)} ∈ (dom 𝐴 ∪ dom 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sltso 27610 | . . . 4 ⊢ <s Or No | |
| 2 | sotrine 5559 | . . . 4 ⊢ (( <s Or No ∧ (𝐴 ∈ No ∧ 𝐵 ∈ No )) → (𝐴 ≠ 𝐵 ↔ (𝐴 <s 𝐵 ∨ 𝐵 <s 𝐴))) | |
| 3 | 1, 2 | mpan 690 | . . 3 ⊢ ((𝐴 ∈ No ∧ 𝐵 ∈ No ) → (𝐴 ≠ 𝐵 ↔ (𝐴 <s 𝐵 ∨ 𝐵 <s 𝐴))) |
| 4 | nosepdmlem 27617 | . . . . . 6 ⊢ ((𝐴 ∈ No ∧ 𝐵 ∈ No ∧ 𝐴 <s 𝐵) → ∩ {𝑥 ∈ On ∣ (𝐴‘𝑥) ≠ (𝐵‘𝑥)} ∈ (dom 𝐴 ∪ dom 𝐵)) | |
| 5 | 4 | 3expa 1118 | . . . . 5 ⊢ (((𝐴 ∈ No ∧ 𝐵 ∈ No ) ∧ 𝐴 <s 𝐵) → ∩ {𝑥 ∈ On ∣ (𝐴‘𝑥) ≠ (𝐵‘𝑥)} ∈ (dom 𝐴 ∪ dom 𝐵)) |
| 6 | simplr 768 | . . . . . . 7 ⊢ (((𝐴 ∈ No ∧ 𝐵 ∈ No ) ∧ 𝐵 <s 𝐴) → 𝐵 ∈ No ) | |
| 7 | simpll 766 | . . . . . . 7 ⊢ (((𝐴 ∈ No ∧ 𝐵 ∈ No ) ∧ 𝐵 <s 𝐴) → 𝐴 ∈ No ) | |
| 8 | simpr 484 | . . . . . . 7 ⊢ (((𝐴 ∈ No ∧ 𝐵 ∈ No ) ∧ 𝐵 <s 𝐴) → 𝐵 <s 𝐴) | |
| 9 | nosepdmlem 27617 | . . . . . . 7 ⊢ ((𝐵 ∈ No ∧ 𝐴 ∈ No ∧ 𝐵 <s 𝐴) → ∩ {𝑥 ∈ On ∣ (𝐵‘𝑥) ≠ (𝐴‘𝑥)} ∈ (dom 𝐵 ∪ dom 𝐴)) | |
| 10 | 6, 7, 8, 9 | syl3anc 1373 | . . . . . 6 ⊢ (((𝐴 ∈ No ∧ 𝐵 ∈ No ) ∧ 𝐵 <s 𝐴) → ∩ {𝑥 ∈ On ∣ (𝐵‘𝑥) ≠ (𝐴‘𝑥)} ∈ (dom 𝐵 ∪ dom 𝐴)) |
| 11 | necom 2981 | . . . . . . . 8 ⊢ ((𝐴‘𝑥) ≠ (𝐵‘𝑥) ↔ (𝐵‘𝑥) ≠ (𝐴‘𝑥)) | |
| 12 | 11 | rabbii 3400 | . . . . . . 7 ⊢ {𝑥 ∈ On ∣ (𝐴‘𝑥) ≠ (𝐵‘𝑥)} = {𝑥 ∈ On ∣ (𝐵‘𝑥) ≠ (𝐴‘𝑥)} |
| 13 | 12 | inteqi 4896 | . . . . . 6 ⊢ ∩ {𝑥 ∈ On ∣ (𝐴‘𝑥) ≠ (𝐵‘𝑥)} = ∩ {𝑥 ∈ On ∣ (𝐵‘𝑥) ≠ (𝐴‘𝑥)} |
| 14 | uncom 4103 | . . . . . 6 ⊢ (dom 𝐴 ∪ dom 𝐵) = (dom 𝐵 ∪ dom 𝐴) | |
| 15 | 10, 13, 14 | 3eltr4g 2848 | . . . . 5 ⊢ (((𝐴 ∈ No ∧ 𝐵 ∈ No ) ∧ 𝐵 <s 𝐴) → ∩ {𝑥 ∈ On ∣ (𝐴‘𝑥) ≠ (𝐵‘𝑥)} ∈ (dom 𝐴 ∪ dom 𝐵)) |
| 16 | 5, 15 | jaodan 959 | . . . 4 ⊢ (((𝐴 ∈ No ∧ 𝐵 ∈ No ) ∧ (𝐴 <s 𝐵 ∨ 𝐵 <s 𝐴)) → ∩ {𝑥 ∈ On ∣ (𝐴‘𝑥) ≠ (𝐵‘𝑥)} ∈ (dom 𝐴 ∪ dom 𝐵)) |
| 17 | 16 | ex 412 | . . 3 ⊢ ((𝐴 ∈ No ∧ 𝐵 ∈ No ) → ((𝐴 <s 𝐵 ∨ 𝐵 <s 𝐴) → ∩ {𝑥 ∈ On ∣ (𝐴‘𝑥) ≠ (𝐵‘𝑥)} ∈ (dom 𝐴 ∪ dom 𝐵))) |
| 18 | 3, 17 | sylbid 240 | . 2 ⊢ ((𝐴 ∈ No ∧ 𝐵 ∈ No ) → (𝐴 ≠ 𝐵 → ∩ {𝑥 ∈ On ∣ (𝐴‘𝑥) ≠ (𝐵‘𝑥)} ∈ (dom 𝐴 ∪ dom 𝐵))) |
| 19 | 18 | 3impia 1117 | 1 ⊢ ((𝐴 ∈ No ∧ 𝐵 ∈ No ∧ 𝐴 ≠ 𝐵) → ∩ {𝑥 ∈ On ∣ (𝐴‘𝑥) ≠ (𝐵‘𝑥)} ∈ (dom 𝐴 ∪ dom 𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∨ wo 847 ∧ w3a 1086 ∈ wcel 2111 ≠ wne 2928 {crab 3395 ∪ cun 3895 ∩ cint 4892 class class class wbr 5086 Or wor 5518 dom cdm 5611 Oncon0 6301 ‘cfv 6476 No csur 27573 <s cslt 27574 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5229 ax-nul 5239 ax-pr 5365 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4279 df-if 4471 df-pw 4547 df-sn 4572 df-pr 4574 df-tp 4576 df-op 4578 df-uni 4855 df-int 4893 df-br 5087 df-opab 5149 df-mpt 5168 df-tr 5194 df-id 5506 df-eprel 5511 df-po 5519 df-so 5520 df-fr 5564 df-we 5566 df-xp 5617 df-rel 5618 df-cnv 5619 df-co 5620 df-dm 5621 df-rn 5622 df-res 5623 df-ima 5624 df-ord 6304 df-on 6305 df-suc 6307 df-iota 6432 df-fun 6478 df-fn 6479 df-f 6480 df-fv 6484 df-1o 8380 df-2o 8381 df-no 27576 df-slt 27577 |
| This theorem is referenced by: nodenselem5 27622 noresle 27631 |
| Copyright terms: Public domain | W3C validator |