Mathbox for Scott Fenton |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > nosepdm | Structured version Visualization version GIF version |
Description: The first place two surreals differ is an element of the larger of their domains. (Contributed by Scott Fenton, 24-Nov-2021.) |
Ref | Expression |
---|---|
nosepdm | ⊢ ((𝐴 ∈ No ∧ 𝐵 ∈ No ∧ 𝐴 ≠ 𝐵) → ∩ {𝑥 ∈ On ∣ (𝐴‘𝑥) ≠ (𝐵‘𝑥)} ∈ (dom 𝐴 ∪ dom 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sltso 26895 | . . . 4 ⊢ <s Or No | |
2 | sotrine 33837 | . . . 4 ⊢ (( <s Or No ∧ (𝐴 ∈ No ∧ 𝐵 ∈ No )) → (𝐴 ≠ 𝐵 ↔ (𝐴 <s 𝐵 ∨ 𝐵 <s 𝐴))) | |
3 | 1, 2 | mpan 687 | . . 3 ⊢ ((𝐴 ∈ No ∧ 𝐵 ∈ No ) → (𝐴 ≠ 𝐵 ↔ (𝐴 <s 𝐵 ∨ 𝐵 <s 𝐴))) |
4 | nosepdmlem 33947 | . . . . . 6 ⊢ ((𝐴 ∈ No ∧ 𝐵 ∈ No ∧ 𝐴 <s 𝐵) → ∩ {𝑥 ∈ On ∣ (𝐴‘𝑥) ≠ (𝐵‘𝑥)} ∈ (dom 𝐴 ∪ dom 𝐵)) | |
5 | 4 | 3expa 1117 | . . . . 5 ⊢ (((𝐴 ∈ No ∧ 𝐵 ∈ No ) ∧ 𝐴 <s 𝐵) → ∩ {𝑥 ∈ On ∣ (𝐴‘𝑥) ≠ (𝐵‘𝑥)} ∈ (dom 𝐴 ∪ dom 𝐵)) |
6 | simplr 766 | . . . . . . 7 ⊢ (((𝐴 ∈ No ∧ 𝐵 ∈ No ) ∧ 𝐵 <s 𝐴) → 𝐵 ∈ No ) | |
7 | simpll 764 | . . . . . . 7 ⊢ (((𝐴 ∈ No ∧ 𝐵 ∈ No ) ∧ 𝐵 <s 𝐴) → 𝐴 ∈ No ) | |
8 | simpr 485 | . . . . . . 7 ⊢ (((𝐴 ∈ No ∧ 𝐵 ∈ No ) ∧ 𝐵 <s 𝐴) → 𝐵 <s 𝐴) | |
9 | nosepdmlem 33947 | . . . . . . 7 ⊢ ((𝐵 ∈ No ∧ 𝐴 ∈ No ∧ 𝐵 <s 𝐴) → ∩ {𝑥 ∈ On ∣ (𝐵‘𝑥) ≠ (𝐴‘𝑥)} ∈ (dom 𝐵 ∪ dom 𝐴)) | |
10 | 6, 7, 8, 9 | syl3anc 1370 | . . . . . 6 ⊢ (((𝐴 ∈ No ∧ 𝐵 ∈ No ) ∧ 𝐵 <s 𝐴) → ∩ {𝑥 ∈ On ∣ (𝐵‘𝑥) ≠ (𝐴‘𝑥)} ∈ (dom 𝐵 ∪ dom 𝐴)) |
11 | necom 2995 | . . . . . . . 8 ⊢ ((𝐴‘𝑥) ≠ (𝐵‘𝑥) ↔ (𝐵‘𝑥) ≠ (𝐴‘𝑥)) | |
12 | 11 | rabbii 3410 | . . . . . . 7 ⊢ {𝑥 ∈ On ∣ (𝐴‘𝑥) ≠ (𝐵‘𝑥)} = {𝑥 ∈ On ∣ (𝐵‘𝑥) ≠ (𝐴‘𝑥)} |
13 | 12 | inteqi 4894 | . . . . . 6 ⊢ ∩ {𝑥 ∈ On ∣ (𝐴‘𝑥) ≠ (𝐵‘𝑥)} = ∩ {𝑥 ∈ On ∣ (𝐵‘𝑥) ≠ (𝐴‘𝑥)} |
14 | uncom 4097 | . . . . . 6 ⊢ (dom 𝐴 ∪ dom 𝐵) = (dom 𝐵 ∪ dom 𝐴) | |
15 | 10, 13, 14 | 3eltr4g 2855 | . . . . 5 ⊢ (((𝐴 ∈ No ∧ 𝐵 ∈ No ) ∧ 𝐵 <s 𝐴) → ∩ {𝑥 ∈ On ∣ (𝐴‘𝑥) ≠ (𝐵‘𝑥)} ∈ (dom 𝐴 ∪ dom 𝐵)) |
16 | 5, 15 | jaodan 955 | . . . 4 ⊢ (((𝐴 ∈ No ∧ 𝐵 ∈ No ) ∧ (𝐴 <s 𝐵 ∨ 𝐵 <s 𝐴)) → ∩ {𝑥 ∈ On ∣ (𝐴‘𝑥) ≠ (𝐵‘𝑥)} ∈ (dom 𝐴 ∪ dom 𝐵)) |
17 | 16 | ex 413 | . . 3 ⊢ ((𝐴 ∈ No ∧ 𝐵 ∈ No ) → ((𝐴 <s 𝐵 ∨ 𝐵 <s 𝐴) → ∩ {𝑥 ∈ On ∣ (𝐴‘𝑥) ≠ (𝐵‘𝑥)} ∈ (dom 𝐴 ∪ dom 𝐵))) |
18 | 3, 17 | sylbid 239 | . 2 ⊢ ((𝐴 ∈ No ∧ 𝐵 ∈ No ) → (𝐴 ≠ 𝐵 → ∩ {𝑥 ∈ On ∣ (𝐴‘𝑥) ≠ (𝐵‘𝑥)} ∈ (dom 𝐴 ∪ dom 𝐵))) |
19 | 18 | 3impia 1116 | 1 ⊢ ((𝐴 ∈ No ∧ 𝐵 ∈ No ∧ 𝐴 ≠ 𝐵) → ∩ {𝑥 ∈ On ∣ (𝐴‘𝑥) ≠ (𝐵‘𝑥)} ∈ (dom 𝐴 ∪ dom 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 ∨ wo 844 ∧ w3a 1086 ∈ wcel 2105 ≠ wne 2941 {crab 3404 ∪ cun 3894 ∩ cint 4890 class class class wbr 5085 Or wor 5518 dom cdm 5605 Oncon0 6286 ‘cfv 6463 No csur 26859 <s cslt 26860 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2708 ax-sep 5236 ax-nul 5243 ax-pr 5365 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2815 df-nfc 2887 df-ne 2942 df-ral 3063 df-rex 3072 df-rab 3405 df-v 3443 df-sbc 3726 df-csb 3842 df-dif 3899 df-un 3901 df-in 3903 df-ss 3913 df-pss 3915 df-nul 4267 df-if 4470 df-pw 4545 df-sn 4570 df-pr 4572 df-tp 4574 df-op 4576 df-uni 4849 df-int 4891 df-br 5086 df-opab 5148 df-mpt 5169 df-tr 5203 df-id 5505 df-eprel 5511 df-po 5519 df-so 5520 df-fr 5560 df-we 5562 df-xp 5611 df-rel 5612 df-cnv 5613 df-co 5614 df-dm 5615 df-rn 5616 df-res 5617 df-ima 5618 df-ord 6289 df-on 6290 df-suc 6292 df-iota 6415 df-fun 6465 df-fn 6466 df-f 6467 df-fv 6471 df-1o 8342 df-2o 8343 df-no 26862 df-slt 26863 |
This theorem is referenced by: nodenselem5 33952 noresle 33961 |
Copyright terms: Public domain | W3C validator |