MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cxpcn3 Structured version   Visualization version   GIF version

Theorem cxpcn3 26658
Description: Extend continuity of the complex power function to a base of zero, as long as the exponent has strictly positive real part. (Contributed by Mario Carneiro, 2-May-2016.)
Hypotheses
Ref Expression
cxpcn3.d 𝐷 = (ℜ “ ℝ+)
cxpcn3.j 𝐽 = (TopOpen‘ℂfld)
cxpcn3.k 𝐾 = (𝐽t (0[,)+∞))
cxpcn3.l 𝐿 = (𝐽t 𝐷)
Assertion
Ref Expression
cxpcn3 (𝑥 ∈ (0[,)+∞), 𝑦𝐷 ↦ (𝑥𝑐𝑦)) ∈ ((𝐾 ×t 𝐿) Cn 𝐽)
Distinct variable groups:   𝑥,𝑦,𝐽   𝑥,𝐷,𝑦
Allowed substitution hints:   𝐾(𝑥,𝑦)   𝐿(𝑥,𝑦)

Proof of Theorem cxpcn3
Dummy variables 𝑎 𝑏 𝑑 𝑒 𝑢 𝑣 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 rge0ssre 13417 . . . . . . 7 (0[,)+∞) ⊆ ℝ
2 ax-resscn 11125 . . . . . . 7 ℝ ⊆ ℂ
31, 2sstri 3956 . . . . . 6 (0[,)+∞) ⊆ ℂ
43sseli 3942 . . . . 5 (𝑥 ∈ (0[,)+∞) → 𝑥 ∈ ℂ)
5 cxpcn3.d . . . . . . 7 𝐷 = (ℜ “ ℝ+)
6 cnvimass 6053 . . . . . . . 8 (ℜ “ ℝ+) ⊆ dom ℜ
7 ref 15078 . . . . . . . . 9 ℜ:ℂ⟶ℝ
87fdmi 6699 . . . . . . . 8 dom ℜ = ℂ
96, 8sseqtri 3995 . . . . . . 7 (ℜ “ ℝ+) ⊆ ℂ
105, 9eqsstri 3993 . . . . . 6 𝐷 ⊆ ℂ
1110sseli 3942 . . . . 5 (𝑦𝐷𝑦 ∈ ℂ)
12 cxpcl 26583 . . . . 5 ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (𝑥𝑐𝑦) ∈ ℂ)
134, 11, 12syl2an 596 . . . 4 ((𝑥 ∈ (0[,)+∞) ∧ 𝑦𝐷) → (𝑥𝑐𝑦) ∈ ℂ)
1413rgen2 3177 . . 3 𝑥 ∈ (0[,)+∞)∀𝑦𝐷 (𝑥𝑐𝑦) ∈ ℂ
15 eqid 2729 . . . 4 (𝑥 ∈ (0[,)+∞), 𝑦𝐷 ↦ (𝑥𝑐𝑦)) = (𝑥 ∈ (0[,)+∞), 𝑦𝐷 ↦ (𝑥𝑐𝑦))
1615fmpo 8047 . . 3 (∀𝑥 ∈ (0[,)+∞)∀𝑦𝐷 (𝑥𝑐𝑦) ∈ ℂ ↔ (𝑥 ∈ (0[,)+∞), 𝑦𝐷 ↦ (𝑥𝑐𝑦)):((0[,)+∞) × 𝐷)⟶ℂ)
1714, 16mpbi 230 . 2 (𝑥 ∈ (0[,)+∞), 𝑦𝐷 ↦ (𝑥𝑐𝑦)):((0[,)+∞) × 𝐷)⟶ℂ
18 cxpcn3.j . . . . . . . . . . . 12 𝐽 = (TopOpen‘ℂfld)
1918cnfldtopon 24670 . . . . . . . . . . 11 𝐽 ∈ (TopOn‘ℂ)
20 rpre 12960 . . . . . . . . . . . . . 14 (𝑥 ∈ ℝ+𝑥 ∈ ℝ)
21 rpge0 12965 . . . . . . . . . . . . . 14 (𝑥 ∈ ℝ+ → 0 ≤ 𝑥)
22 elrege0 13415 . . . . . . . . . . . . . 14 (𝑥 ∈ (0[,)+∞) ↔ (𝑥 ∈ ℝ ∧ 0 ≤ 𝑥))
2320, 21, 22sylanbrc 583 . . . . . . . . . . . . 13 (𝑥 ∈ ℝ+𝑥 ∈ (0[,)+∞))
2423ssriv 3950 . . . . . . . . . . . 12 + ⊆ (0[,)+∞)
2524, 3sstri 3956 . . . . . . . . . . 11 + ⊆ ℂ
26 resttopon 23048 . . . . . . . . . . 11 ((𝐽 ∈ (TopOn‘ℂ) ∧ ℝ+ ⊆ ℂ) → (𝐽t+) ∈ (TopOn‘ℝ+))
2719, 25, 26mp2an 692 . . . . . . . . . 10 (𝐽t+) ∈ (TopOn‘ℝ+)
2827toponrestid 22808 . . . . . . . . 9 (𝐽t+) = ((𝐽t+) ↾t+)
2927a1i 11 . . . . . . . . 9 (((𝑢 ∈ (0[,)+∞) ∧ 𝑣𝐷) ∧ 0 < 𝑢) → (𝐽t+) ∈ (TopOn‘ℝ+))
30 ssid 3969 . . . . . . . . . 10 + ⊆ ℝ+
3130a1i 11 . . . . . . . . 9 (((𝑢 ∈ (0[,)+∞) ∧ 𝑣𝐷) ∧ 0 < 𝑢) → ℝ+ ⊆ ℝ+)
32 cxpcn3.l . . . . . . . . 9 𝐿 = (𝐽t 𝐷)
3319a1i 11 . . . . . . . . 9 (((𝑢 ∈ (0[,)+∞) ∧ 𝑣𝐷) ∧ 0 < 𝑢) → 𝐽 ∈ (TopOn‘ℂ))
3410a1i 11 . . . . . . . . 9 (((𝑢 ∈ (0[,)+∞) ∧ 𝑣𝐷) ∧ 0 < 𝑢) → 𝐷 ⊆ ℂ)
35 eqid 2729 . . . . . . . . . . 11 (𝐽t+) = (𝐽t+)
3618, 35cxpcn2 26656 . . . . . . . . . 10 (𝑥 ∈ ℝ+, 𝑦 ∈ ℂ ↦ (𝑥𝑐𝑦)) ∈ (((𝐽t+) ×t 𝐽) Cn 𝐽)
3736a1i 11 . . . . . . . . 9 (((𝑢 ∈ (0[,)+∞) ∧ 𝑣𝐷) ∧ 0 < 𝑢) → (𝑥 ∈ ℝ+, 𝑦 ∈ ℂ ↦ (𝑥𝑐𝑦)) ∈ (((𝐽t+) ×t 𝐽) Cn 𝐽))
3828, 29, 31, 32, 33, 34, 37cnmpt2res 23564 . . . . . . . 8 (((𝑢 ∈ (0[,)+∞) ∧ 𝑣𝐷) ∧ 0 < 𝑢) → (𝑥 ∈ ℝ+, 𝑦𝐷 ↦ (𝑥𝑐𝑦)) ∈ (((𝐽t+) ×t 𝐿) Cn 𝐽))
39 elrege0 13415 . . . . . . . . . . . . 13 (𝑢 ∈ (0[,)+∞) ↔ (𝑢 ∈ ℝ ∧ 0 ≤ 𝑢))
4039simplbi 497 . . . . . . . . . . . 12 (𝑢 ∈ (0[,)+∞) → 𝑢 ∈ ℝ)
4140adantr 480 . . . . . . . . . . 11 ((𝑢 ∈ (0[,)+∞) ∧ 𝑣𝐷) → 𝑢 ∈ ℝ)
4241adantr 480 . . . . . . . . . 10 (((𝑢 ∈ (0[,)+∞) ∧ 𝑣𝐷) ∧ 0 < 𝑢) → 𝑢 ∈ ℝ)
43 simpr 484 . . . . . . . . . 10 (((𝑢 ∈ (0[,)+∞) ∧ 𝑣𝐷) ∧ 0 < 𝑢) → 0 < 𝑢)
4442, 43elrpd 12992 . . . . . . . . 9 (((𝑢 ∈ (0[,)+∞) ∧ 𝑣𝐷) ∧ 0 < 𝑢) → 𝑢 ∈ ℝ+)
45 simplr 768 . . . . . . . . 9 (((𝑢 ∈ (0[,)+∞) ∧ 𝑣𝐷) ∧ 0 < 𝑢) → 𝑣𝐷)
4644, 45opelxpd 5677 . . . . . . . 8 (((𝑢 ∈ (0[,)+∞) ∧ 𝑣𝐷) ∧ 0 < 𝑢) → ⟨𝑢, 𝑣⟩ ∈ (ℝ+ × 𝐷))
47 resttopon 23048 . . . . . . . . . . . . 13 ((𝐽 ∈ (TopOn‘ℂ) ∧ 𝐷 ⊆ ℂ) → (𝐽t 𝐷) ∈ (TopOn‘𝐷))
4819, 10, 47mp2an 692 . . . . . . . . . . . 12 (𝐽t 𝐷) ∈ (TopOn‘𝐷)
4932, 48eqeltri 2824 . . . . . . . . . . 11 𝐿 ∈ (TopOn‘𝐷)
50 txtopon 23478 . . . . . . . . . . 11 (((𝐽t+) ∈ (TopOn‘ℝ+) ∧ 𝐿 ∈ (TopOn‘𝐷)) → ((𝐽t+) ×t 𝐿) ∈ (TopOn‘(ℝ+ × 𝐷)))
5127, 49, 50mp2an 692 . . . . . . . . . 10 ((𝐽t+) ×t 𝐿) ∈ (TopOn‘(ℝ+ × 𝐷))
5251toponunii 22803 . . . . . . . . 9 (ℝ+ × 𝐷) = ((𝐽t+) ×t 𝐿)
5352cncnpi 23165 . . . . . . . 8 (((𝑥 ∈ ℝ+, 𝑦𝐷 ↦ (𝑥𝑐𝑦)) ∈ (((𝐽t+) ×t 𝐿) Cn 𝐽) ∧ ⟨𝑢, 𝑣⟩ ∈ (ℝ+ × 𝐷)) → (𝑥 ∈ ℝ+, 𝑦𝐷 ↦ (𝑥𝑐𝑦)) ∈ ((((𝐽t+) ×t 𝐿) CnP 𝐽)‘⟨𝑢, 𝑣⟩))
5438, 46, 53syl2anc 584 . . . . . . 7 (((𝑢 ∈ (0[,)+∞) ∧ 𝑣𝐷) ∧ 0 < 𝑢) → (𝑥 ∈ ℝ+, 𝑦𝐷 ↦ (𝑥𝑐𝑦)) ∈ ((((𝐽t+) ×t 𝐿) CnP 𝐽)‘⟨𝑢, 𝑣⟩))
55 ssid 3969 . . . . . . . 8 𝐷𝐷
56 resmpo 7509 . . . . . . . 8 ((ℝ+ ⊆ (0[,)+∞) ∧ 𝐷𝐷) → ((𝑥 ∈ (0[,)+∞), 𝑦𝐷 ↦ (𝑥𝑐𝑦)) ↾ (ℝ+ × 𝐷)) = (𝑥 ∈ ℝ+, 𝑦𝐷 ↦ (𝑥𝑐𝑦)))
5724, 55, 56mp2an 692 . . . . . . 7 ((𝑥 ∈ (0[,)+∞), 𝑦𝐷 ↦ (𝑥𝑐𝑦)) ↾ (ℝ+ × 𝐷)) = (𝑥 ∈ ℝ+, 𝑦𝐷 ↦ (𝑥𝑐𝑦))
58 cxpcn3.k . . . . . . . . . . . 12 𝐾 = (𝐽t (0[,)+∞))
59 resttopon 23048 . . . . . . . . . . . . 13 ((𝐽 ∈ (TopOn‘ℂ) ∧ (0[,)+∞) ⊆ ℂ) → (𝐽t (0[,)+∞)) ∈ (TopOn‘(0[,)+∞)))
6019, 3, 59mp2an 692 . . . . . . . . . . . 12 (𝐽t (0[,)+∞)) ∈ (TopOn‘(0[,)+∞))
6158, 60eqeltri 2824 . . . . . . . . . . 11 𝐾 ∈ (TopOn‘(0[,)+∞))
62 ioorp 13386 . . . . . . . . . . . . . 14 (0(,)+∞) = ℝ+
63 iooretop 24653 . . . . . . . . . . . . . 14 (0(,)+∞) ∈ (topGen‘ran (,))
6462, 63eqeltrri 2825 . . . . . . . . . . . . 13 + ∈ (topGen‘ran (,))
65 retop 24649 . . . . . . . . . . . . . . 15 (topGen‘ran (,)) ∈ Top
66 ovex 7420 . . . . . . . . . . . . . . 15 (0[,)+∞) ∈ V
67 restopnb 23062 . . . . . . . . . . . . . . 15 ((((topGen‘ran (,)) ∈ Top ∧ (0[,)+∞) ∈ V) ∧ (ℝ+ ∈ (topGen‘ran (,)) ∧ ℝ+ ⊆ (0[,)+∞) ∧ ℝ+ ⊆ ℝ+)) → (ℝ+ ∈ (topGen‘ran (,)) ↔ ℝ+ ∈ ((topGen‘ran (,)) ↾t (0[,)+∞))))
6865, 66, 67mpanl12 702 . . . . . . . . . . . . . 14 ((ℝ+ ∈ (topGen‘ran (,)) ∧ ℝ+ ⊆ (0[,)+∞) ∧ ℝ+ ⊆ ℝ+) → (ℝ+ ∈ (topGen‘ran (,)) ↔ ℝ+ ∈ ((topGen‘ran (,)) ↾t (0[,)+∞))))
6964, 24, 30, 68mp3an 1463 . . . . . . . . . . . . 13 (ℝ+ ∈ (topGen‘ran (,)) ↔ ℝ+ ∈ ((topGen‘ran (,)) ↾t (0[,)+∞)))
7064, 69mpbi 230 . . . . . . . . . . . 12 + ∈ ((topGen‘ran (,)) ↾t (0[,)+∞))
71 eqid 2729 . . . . . . . . . . . . . . 15 (topGen‘ran (,)) = (topGen‘ran (,))
7218, 71rerest 24692 . . . . . . . . . . . . . 14 ((0[,)+∞) ⊆ ℝ → (𝐽t (0[,)+∞)) = ((topGen‘ran (,)) ↾t (0[,)+∞)))
731, 72ax-mp 5 . . . . . . . . . . . . 13 (𝐽t (0[,)+∞)) = ((topGen‘ran (,)) ↾t (0[,)+∞))
7458, 73eqtri 2752 . . . . . . . . . . . 12 𝐾 = ((topGen‘ran (,)) ↾t (0[,)+∞))
7570, 74eleqtrri 2827 . . . . . . . . . . 11 +𝐾
76 toponmax 22813 . . . . . . . . . . . 12 (𝐿 ∈ (TopOn‘𝐷) → 𝐷𝐿)
7749, 76ax-mp 5 . . . . . . . . . . 11 𝐷𝐿
78 txrest 23518 . . . . . . . . . . 11 (((𝐾 ∈ (TopOn‘(0[,)+∞)) ∧ 𝐿 ∈ (TopOn‘𝐷)) ∧ (ℝ+𝐾𝐷𝐿)) → ((𝐾 ×t 𝐿) ↾t (ℝ+ × 𝐷)) = ((𝐾t+) ×t (𝐿t 𝐷)))
7961, 49, 75, 77, 78mp4an 693 . . . . . . . . . 10 ((𝐾 ×t 𝐿) ↾t (ℝ+ × 𝐷)) = ((𝐾t+) ×t (𝐿t 𝐷))
8058oveq1i 7397 . . . . . . . . . . . 12 (𝐾t+) = ((𝐽t (0[,)+∞)) ↾t+)
81 restabs 23052 . . . . . . . . . . . . 13 ((𝐽 ∈ (TopOn‘ℂ) ∧ ℝ+ ⊆ (0[,)+∞) ∧ (0[,)+∞) ∈ V) → ((𝐽t (0[,)+∞)) ↾t+) = (𝐽t+))
8219, 24, 66, 81mp3an 1463 . . . . . . . . . . . 12 ((𝐽t (0[,)+∞)) ↾t+) = (𝐽t+)
8380, 82eqtri 2752 . . . . . . . . . . 11 (𝐾t+) = (𝐽t+)
8449toponunii 22803 . . . . . . . . . . . . 13 𝐷 = 𝐿
8584restid 17396 . . . . . . . . . . . 12 (𝐿 ∈ (TopOn‘𝐷) → (𝐿t 𝐷) = 𝐿)
8649, 85ax-mp 5 . . . . . . . . . . 11 (𝐿t 𝐷) = 𝐿
8783, 86oveq12i 7399 . . . . . . . . . 10 ((𝐾t+) ×t (𝐿t 𝐷)) = ((𝐽t+) ×t 𝐿)
8879, 87eqtri 2752 . . . . . . . . 9 ((𝐾 ×t 𝐿) ↾t (ℝ+ × 𝐷)) = ((𝐽t+) ×t 𝐿)
8988oveq1i 7397 . . . . . . . 8 (((𝐾 ×t 𝐿) ↾t (ℝ+ × 𝐷)) CnP 𝐽) = (((𝐽t+) ×t 𝐿) CnP 𝐽)
9089fveq1i 6859 . . . . . . 7 ((((𝐾 ×t 𝐿) ↾t (ℝ+ × 𝐷)) CnP 𝐽)‘⟨𝑢, 𝑣⟩) = ((((𝐽t+) ×t 𝐿) CnP 𝐽)‘⟨𝑢, 𝑣⟩)
9154, 57, 903eltr4g 2845 . . . . . 6 (((𝑢 ∈ (0[,)+∞) ∧ 𝑣𝐷) ∧ 0 < 𝑢) → ((𝑥 ∈ (0[,)+∞), 𝑦𝐷 ↦ (𝑥𝑐𝑦)) ↾ (ℝ+ × 𝐷)) ∈ ((((𝐾 ×t 𝐿) ↾t (ℝ+ × 𝐷)) CnP 𝐽)‘⟨𝑢, 𝑣⟩))
92 txtopon 23478 . . . . . . . . . 10 ((𝐾 ∈ (TopOn‘(0[,)+∞)) ∧ 𝐿 ∈ (TopOn‘𝐷)) → (𝐾 ×t 𝐿) ∈ (TopOn‘((0[,)+∞) × 𝐷)))
9361, 49, 92mp2an 692 . . . . . . . . 9 (𝐾 ×t 𝐿) ∈ (TopOn‘((0[,)+∞) × 𝐷))
9493topontopi 22802 . . . . . . . 8 (𝐾 ×t 𝐿) ∈ Top
9594a1i 11 . . . . . . 7 (((𝑢 ∈ (0[,)+∞) ∧ 𝑣𝐷) ∧ 0 < 𝑢) → (𝐾 ×t 𝐿) ∈ Top)
96 xpss1 5657 . . . . . . . 8 (ℝ+ ⊆ (0[,)+∞) → (ℝ+ × 𝐷) ⊆ ((0[,)+∞) × 𝐷))
9724, 96mp1i 13 . . . . . . 7 (((𝑢 ∈ (0[,)+∞) ∧ 𝑣𝐷) ∧ 0 < 𝑢) → (ℝ+ × 𝐷) ⊆ ((0[,)+∞) × 𝐷))
98 txopn 23489 . . . . . . . . . 10 (((𝐾 ∈ (TopOn‘(0[,)+∞)) ∧ 𝐿 ∈ (TopOn‘𝐷)) ∧ (ℝ+𝐾𝐷𝐿)) → (ℝ+ × 𝐷) ∈ (𝐾 ×t 𝐿))
9961, 49, 75, 77, 98mp4an 693 . . . . . . . . 9 (ℝ+ × 𝐷) ∈ (𝐾 ×t 𝐿)
100 isopn3i 22969 . . . . . . . . 9 (((𝐾 ×t 𝐿) ∈ Top ∧ (ℝ+ × 𝐷) ∈ (𝐾 ×t 𝐿)) → ((int‘(𝐾 ×t 𝐿))‘(ℝ+ × 𝐷)) = (ℝ+ × 𝐷))
10194, 99, 100mp2an 692 . . . . . . . 8 ((int‘(𝐾 ×t 𝐿))‘(ℝ+ × 𝐷)) = (ℝ+ × 𝐷)
10246, 101eleqtrrdi 2839 . . . . . . 7 (((𝑢 ∈ (0[,)+∞) ∧ 𝑣𝐷) ∧ 0 < 𝑢) → ⟨𝑢, 𝑣⟩ ∈ ((int‘(𝐾 ×t 𝐿))‘(ℝ+ × 𝐷)))
10317a1i 11 . . . . . . 7 (((𝑢 ∈ (0[,)+∞) ∧ 𝑣𝐷) ∧ 0 < 𝑢) → (𝑥 ∈ (0[,)+∞), 𝑦𝐷 ↦ (𝑥𝑐𝑦)):((0[,)+∞) × 𝐷)⟶ℂ)
10461topontopi 22802 . . . . . . . . 9 𝐾 ∈ Top
10549topontopi 22802 . . . . . . . . 9 𝐿 ∈ Top
10661toponunii 22803 . . . . . . . . 9 (0[,)+∞) = 𝐾
107104, 105, 106, 84txunii 23480 . . . . . . . 8 ((0[,)+∞) × 𝐷) = (𝐾 ×t 𝐿)
10819toponunii 22803 . . . . . . . 8 ℂ = 𝐽
109107, 108cnprest 23176 . . . . . . 7 ((((𝐾 ×t 𝐿) ∈ Top ∧ (ℝ+ × 𝐷) ⊆ ((0[,)+∞) × 𝐷)) ∧ (⟨𝑢, 𝑣⟩ ∈ ((int‘(𝐾 ×t 𝐿))‘(ℝ+ × 𝐷)) ∧ (𝑥 ∈ (0[,)+∞), 𝑦𝐷 ↦ (𝑥𝑐𝑦)):((0[,)+∞) × 𝐷)⟶ℂ)) → ((𝑥 ∈ (0[,)+∞), 𝑦𝐷 ↦ (𝑥𝑐𝑦)) ∈ (((𝐾 ×t 𝐿) CnP 𝐽)‘⟨𝑢, 𝑣⟩) ↔ ((𝑥 ∈ (0[,)+∞), 𝑦𝐷 ↦ (𝑥𝑐𝑦)) ↾ (ℝ+ × 𝐷)) ∈ ((((𝐾 ×t 𝐿) ↾t (ℝ+ × 𝐷)) CnP 𝐽)‘⟨𝑢, 𝑣⟩)))
11095, 97, 102, 103, 109syl22anc 838 . . . . . 6 (((𝑢 ∈ (0[,)+∞) ∧ 𝑣𝐷) ∧ 0 < 𝑢) → ((𝑥 ∈ (0[,)+∞), 𝑦𝐷 ↦ (𝑥𝑐𝑦)) ∈ (((𝐾 ×t 𝐿) CnP 𝐽)‘⟨𝑢, 𝑣⟩) ↔ ((𝑥 ∈ (0[,)+∞), 𝑦𝐷 ↦ (𝑥𝑐𝑦)) ↾ (ℝ+ × 𝐷)) ∈ ((((𝐾 ×t 𝐿) ↾t (ℝ+ × 𝐷)) CnP 𝐽)‘⟨𝑢, 𝑣⟩)))
11191, 110mpbird 257 . . . . 5 (((𝑢 ∈ (0[,)+∞) ∧ 𝑣𝐷) ∧ 0 < 𝑢) → (𝑥 ∈ (0[,)+∞), 𝑦𝐷 ↦ (𝑥𝑐𝑦)) ∈ (((𝐾 ×t 𝐿) CnP 𝐽)‘⟨𝑢, 𝑣⟩))
11217a1i 11 . . . . . . . 8 (𝑣𝐷 → (𝑥 ∈ (0[,)+∞), 𝑦𝐷 ↦ (𝑥𝑐𝑦)):((0[,)+∞) × 𝐷)⟶ℂ)
113 eqid 2729 . . . . . . . . . . 11 (if((ℜ‘𝑣) ≤ 1, (ℜ‘𝑣), 1) / 2) = (if((ℜ‘𝑣) ≤ 1, (ℜ‘𝑣), 1) / 2)
114 eqid 2729 . . . . . . . . . . 11 if((if((ℜ‘𝑣) ≤ 1, (ℜ‘𝑣), 1) / 2) ≤ (𝑒𝑐(1 / (if((ℜ‘𝑣) ≤ 1, (ℜ‘𝑣), 1) / 2))), (if((ℜ‘𝑣) ≤ 1, (ℜ‘𝑣), 1) / 2), (𝑒𝑐(1 / (if((ℜ‘𝑣) ≤ 1, (ℜ‘𝑣), 1) / 2)))) = if((if((ℜ‘𝑣) ≤ 1, (ℜ‘𝑣), 1) / 2) ≤ (𝑒𝑐(1 / (if((ℜ‘𝑣) ≤ 1, (ℜ‘𝑣), 1) / 2))), (if((ℜ‘𝑣) ≤ 1, (ℜ‘𝑣), 1) / 2), (𝑒𝑐(1 / (if((ℜ‘𝑣) ≤ 1, (ℜ‘𝑣), 1) / 2))))
1155, 18, 58, 32, 113, 114cxpcn3lem 26657 . . . . . . . . . 10 ((𝑣𝐷𝑒 ∈ ℝ+) → ∃𝑑 ∈ ℝ+𝑎 ∈ (0[,)+∞)∀𝑏𝐷 (((abs‘𝑎) < 𝑑 ∧ (abs‘(𝑣𝑏)) < 𝑑) → (abs‘(𝑎𝑐𝑏)) < 𝑒))
116115ralrimiva 3125 . . . . . . . . 9 (𝑣𝐷 → ∀𝑒 ∈ ℝ+𝑑 ∈ ℝ+𝑎 ∈ (0[,)+∞)∀𝑏𝐷 (((abs‘𝑎) < 𝑑 ∧ (abs‘(𝑣𝑏)) < 𝑑) → (abs‘(𝑎𝑐𝑏)) < 𝑒))
117 0e0icopnf 13419 . . . . . . . . . . . . . . . . . 18 0 ∈ (0[,)+∞)
118117a1i 11 . . . . . . . . . . . . . . . . 17 ((𝑣𝐷 ∧ (𝑎 ∈ (0[,)+∞) ∧ 𝑏𝐷)) → 0 ∈ (0[,)+∞))
119 simprl 770 . . . . . . . . . . . . . . . . 17 ((𝑣𝐷 ∧ (𝑎 ∈ (0[,)+∞) ∧ 𝑏𝐷)) → 𝑎 ∈ (0[,)+∞))
120118, 119ovresd 7556 . . . . . . . . . . . . . . . 16 ((𝑣𝐷 ∧ (𝑎 ∈ (0[,)+∞) ∧ 𝑏𝐷)) → (0((abs ∘ − ) ↾ ((0[,)+∞) × (0[,)+∞)))𝑎) = (0(abs ∘ − )𝑎))
121 0cn 11166 . . . . . . . . . . . . . . . . 17 0 ∈ ℂ
1223, 119sselid 3944 . . . . . . . . . . . . . . . . 17 ((𝑣𝐷 ∧ (𝑎 ∈ (0[,)+∞) ∧ 𝑏𝐷)) → 𝑎 ∈ ℂ)
123 eqid 2729 . . . . . . . . . . . . . . . . . 18 (abs ∘ − ) = (abs ∘ − )
124123cnmetdval 24658 . . . . . . . . . . . . . . . . 17 ((0 ∈ ℂ ∧ 𝑎 ∈ ℂ) → (0(abs ∘ − )𝑎) = (abs‘(0 − 𝑎)))
125121, 122, 124sylancr 587 . . . . . . . . . . . . . . . 16 ((𝑣𝐷 ∧ (𝑎 ∈ (0[,)+∞) ∧ 𝑏𝐷)) → (0(abs ∘ − )𝑎) = (abs‘(0 − 𝑎)))
126 df-neg 11408 . . . . . . . . . . . . . . . . . 18 -𝑎 = (0 − 𝑎)
127126fveq2i 6861 . . . . . . . . . . . . . . . . 17 (abs‘-𝑎) = (abs‘(0 − 𝑎))
128122absnegd 15418 . . . . . . . . . . . . . . . . 17 ((𝑣𝐷 ∧ (𝑎 ∈ (0[,)+∞) ∧ 𝑏𝐷)) → (abs‘-𝑎) = (abs‘𝑎))
129127, 128eqtr3id 2778 . . . . . . . . . . . . . . . 16 ((𝑣𝐷 ∧ (𝑎 ∈ (0[,)+∞) ∧ 𝑏𝐷)) → (abs‘(0 − 𝑎)) = (abs‘𝑎))
130120, 125, 1293eqtrd 2768 . . . . . . . . . . . . . . 15 ((𝑣𝐷 ∧ (𝑎 ∈ (0[,)+∞) ∧ 𝑏𝐷)) → (0((abs ∘ − ) ↾ ((0[,)+∞) × (0[,)+∞)))𝑎) = (abs‘𝑎))
131130breq1d 5117 . . . . . . . . . . . . . 14 ((𝑣𝐷 ∧ (𝑎 ∈ (0[,)+∞) ∧ 𝑏𝐷)) → ((0((abs ∘ − ) ↾ ((0[,)+∞) × (0[,)+∞)))𝑎) < 𝑑 ↔ (abs‘𝑎) < 𝑑))
132 simpl 482 . . . . . . . . . . . . . . . . 17 ((𝑣𝐷 ∧ (𝑎 ∈ (0[,)+∞) ∧ 𝑏𝐷)) → 𝑣𝐷)
133 simprr 772 . . . . . . . . . . . . . . . . 17 ((𝑣𝐷 ∧ (𝑎 ∈ (0[,)+∞) ∧ 𝑏𝐷)) → 𝑏𝐷)
134132, 133ovresd 7556 . . . . . . . . . . . . . . . 16 ((𝑣𝐷 ∧ (𝑎 ∈ (0[,)+∞) ∧ 𝑏𝐷)) → (𝑣((abs ∘ − ) ↾ (𝐷 × 𝐷))𝑏) = (𝑣(abs ∘ − )𝑏))
13510, 132sselid 3944 . . . . . . . . . . . . . . . . 17 ((𝑣𝐷 ∧ (𝑎 ∈ (0[,)+∞) ∧ 𝑏𝐷)) → 𝑣 ∈ ℂ)
13610, 133sselid 3944 . . . . . . . . . . . . . . . . 17 ((𝑣𝐷 ∧ (𝑎 ∈ (0[,)+∞) ∧ 𝑏𝐷)) → 𝑏 ∈ ℂ)
137123cnmetdval 24658 . . . . . . . . . . . . . . . . 17 ((𝑣 ∈ ℂ ∧ 𝑏 ∈ ℂ) → (𝑣(abs ∘ − )𝑏) = (abs‘(𝑣𝑏)))
138135, 136, 137syl2anc 584 . . . . . . . . . . . . . . . 16 ((𝑣𝐷 ∧ (𝑎 ∈ (0[,)+∞) ∧ 𝑏𝐷)) → (𝑣(abs ∘ − )𝑏) = (abs‘(𝑣𝑏)))
139134, 138eqtrd 2764 . . . . . . . . . . . . . . 15 ((𝑣𝐷 ∧ (𝑎 ∈ (0[,)+∞) ∧ 𝑏𝐷)) → (𝑣((abs ∘ − ) ↾ (𝐷 × 𝐷))𝑏) = (abs‘(𝑣𝑏)))
140139breq1d 5117 . . . . . . . . . . . . . 14 ((𝑣𝐷 ∧ (𝑎 ∈ (0[,)+∞) ∧ 𝑏𝐷)) → ((𝑣((abs ∘ − ) ↾ (𝐷 × 𝐷))𝑏) < 𝑑 ↔ (abs‘(𝑣𝑏)) < 𝑑))
141131, 140anbi12d 632 . . . . . . . . . . . . 13 ((𝑣𝐷 ∧ (𝑎 ∈ (0[,)+∞) ∧ 𝑏𝐷)) → (((0((abs ∘ − ) ↾ ((0[,)+∞) × (0[,)+∞)))𝑎) < 𝑑 ∧ (𝑣((abs ∘ − ) ↾ (𝐷 × 𝐷))𝑏) < 𝑑) ↔ ((abs‘𝑎) < 𝑑 ∧ (abs‘(𝑣𝑏)) < 𝑑)))
142 oveq12 7396 . . . . . . . . . . . . . . . . . . 19 ((𝑥 = 0 ∧ 𝑦 = 𝑣) → (𝑥𝑐𝑦) = (0↑𝑐𝑣))
143 ovex 7420 . . . . . . . . . . . . . . . . . . 19 (0↑𝑐𝑣) ∈ V
144142, 15, 143ovmpoa 7544 . . . . . . . . . . . . . . . . . 18 ((0 ∈ (0[,)+∞) ∧ 𝑣𝐷) → (0(𝑥 ∈ (0[,)+∞), 𝑦𝐷 ↦ (𝑥𝑐𝑦))𝑣) = (0↑𝑐𝑣))
145117, 132, 144sylancr 587 . . . . . . . . . . . . . . . . 17 ((𝑣𝐷 ∧ (𝑎 ∈ (0[,)+∞) ∧ 𝑏𝐷)) → (0(𝑥 ∈ (0[,)+∞), 𝑦𝐷 ↦ (𝑥𝑐𝑦))𝑣) = (0↑𝑐𝑣))
1465eleq2i 2820 . . . . . . . . . . . . . . . . . . . . 21 (𝑣𝐷𝑣 ∈ (ℜ “ ℝ+))
147 ffn 6688 . . . . . . . . . . . . . . . . . . . . . 22 (ℜ:ℂ⟶ℝ → ℜ Fn ℂ)
148 elpreima 7030 . . . . . . . . . . . . . . . . . . . . . 22 (ℜ Fn ℂ → (𝑣 ∈ (ℜ “ ℝ+) ↔ (𝑣 ∈ ℂ ∧ (ℜ‘𝑣) ∈ ℝ+)))
1497, 147, 148mp2b 10 . . . . . . . . . . . . . . . . . . . . 21 (𝑣 ∈ (ℜ “ ℝ+) ↔ (𝑣 ∈ ℂ ∧ (ℜ‘𝑣) ∈ ℝ+))
150146, 149bitri 275 . . . . . . . . . . . . . . . . . . . 20 (𝑣𝐷 ↔ (𝑣 ∈ ℂ ∧ (ℜ‘𝑣) ∈ ℝ+))
151150simplbi 497 . . . . . . . . . . . . . . . . . . 19 (𝑣𝐷𝑣 ∈ ℂ)
152150simprbi 496 . . . . . . . . . . . . . . . . . . . . 21 (𝑣𝐷 → (ℜ‘𝑣) ∈ ℝ+)
153152rpne0d 13000 . . . . . . . . . . . . . . . . . . . 20 (𝑣𝐷 → (ℜ‘𝑣) ≠ 0)
154 fveq2 6858 . . . . . . . . . . . . . . . . . . . . . 22 (𝑣 = 0 → (ℜ‘𝑣) = (ℜ‘0))
155 re0 15118 . . . . . . . . . . . . . . . . . . . . . 22 (ℜ‘0) = 0
156154, 155eqtrdi 2780 . . . . . . . . . . . . . . . . . . . . 21 (𝑣 = 0 → (ℜ‘𝑣) = 0)
157156necon3i 2957 . . . . . . . . . . . . . . . . . . . 20 ((ℜ‘𝑣) ≠ 0 → 𝑣 ≠ 0)
158153, 157syl 17 . . . . . . . . . . . . . . . . . . 19 (𝑣𝐷𝑣 ≠ 0)
159151, 1580cxpd 26619 . . . . . . . . . . . . . . . . . 18 (𝑣𝐷 → (0↑𝑐𝑣) = 0)
160159adantr 480 . . . . . . . . . . . . . . . . 17 ((𝑣𝐷 ∧ (𝑎 ∈ (0[,)+∞) ∧ 𝑏𝐷)) → (0↑𝑐𝑣) = 0)
161145, 160eqtrd 2764 . . . . . . . . . . . . . . . 16 ((𝑣𝐷 ∧ (𝑎 ∈ (0[,)+∞) ∧ 𝑏𝐷)) → (0(𝑥 ∈ (0[,)+∞), 𝑦𝐷 ↦ (𝑥𝑐𝑦))𝑣) = 0)
162 oveq12 7396 . . . . . . . . . . . . . . . . . 18 ((𝑥 = 𝑎𝑦 = 𝑏) → (𝑥𝑐𝑦) = (𝑎𝑐𝑏))
163 ovex 7420 . . . . . . . . . . . . . . . . . 18 (𝑎𝑐𝑏) ∈ V
164162, 15, 163ovmpoa 7544 . . . . . . . . . . . . . . . . 17 ((𝑎 ∈ (0[,)+∞) ∧ 𝑏𝐷) → (𝑎(𝑥 ∈ (0[,)+∞), 𝑦𝐷 ↦ (𝑥𝑐𝑦))𝑏) = (𝑎𝑐𝑏))
165164adantl 481 . . . . . . . . . . . . . . . 16 ((𝑣𝐷 ∧ (𝑎 ∈ (0[,)+∞) ∧ 𝑏𝐷)) → (𝑎(𝑥 ∈ (0[,)+∞), 𝑦𝐷 ↦ (𝑥𝑐𝑦))𝑏) = (𝑎𝑐𝑏))
166161, 165oveq12d 7405 . . . . . . . . . . . . . . 15 ((𝑣𝐷 ∧ (𝑎 ∈ (0[,)+∞) ∧ 𝑏𝐷)) → ((0(𝑥 ∈ (0[,)+∞), 𝑦𝐷 ↦ (𝑥𝑐𝑦))𝑣)(abs ∘ − )(𝑎(𝑥 ∈ (0[,)+∞), 𝑦𝐷 ↦ (𝑥𝑐𝑦))𝑏)) = (0(abs ∘ − )(𝑎𝑐𝑏)))
167122, 136cxpcld 26617 . . . . . . . . . . . . . . . 16 ((𝑣𝐷 ∧ (𝑎 ∈ (0[,)+∞) ∧ 𝑏𝐷)) → (𝑎𝑐𝑏) ∈ ℂ)
168123cnmetdval 24658 . . . . . . . . . . . . . . . 16 ((0 ∈ ℂ ∧ (𝑎𝑐𝑏) ∈ ℂ) → (0(abs ∘ − )(𝑎𝑐𝑏)) = (abs‘(0 − (𝑎𝑐𝑏))))
169121, 167, 168sylancr 587 . . . . . . . . . . . . . . 15 ((𝑣𝐷 ∧ (𝑎 ∈ (0[,)+∞) ∧ 𝑏𝐷)) → (0(abs ∘ − )(𝑎𝑐𝑏)) = (abs‘(0 − (𝑎𝑐𝑏))))
170 df-neg 11408 . . . . . . . . . . . . . . . . 17 -(𝑎𝑐𝑏) = (0 − (𝑎𝑐𝑏))
171170fveq2i 6861 . . . . . . . . . . . . . . . 16 (abs‘-(𝑎𝑐𝑏)) = (abs‘(0 − (𝑎𝑐𝑏)))
172167absnegd 15418 . . . . . . . . . . . . . . . 16 ((𝑣𝐷 ∧ (𝑎 ∈ (0[,)+∞) ∧ 𝑏𝐷)) → (abs‘-(𝑎𝑐𝑏)) = (abs‘(𝑎𝑐𝑏)))
173171, 172eqtr3id 2778 . . . . . . . . . . . . . . 15 ((𝑣𝐷 ∧ (𝑎 ∈ (0[,)+∞) ∧ 𝑏𝐷)) → (abs‘(0 − (𝑎𝑐𝑏))) = (abs‘(𝑎𝑐𝑏)))
174166, 169, 1733eqtrd 2768 . . . . . . . . . . . . . 14 ((𝑣𝐷 ∧ (𝑎 ∈ (0[,)+∞) ∧ 𝑏𝐷)) → ((0(𝑥 ∈ (0[,)+∞), 𝑦𝐷 ↦ (𝑥𝑐𝑦))𝑣)(abs ∘ − )(𝑎(𝑥 ∈ (0[,)+∞), 𝑦𝐷 ↦ (𝑥𝑐𝑦))𝑏)) = (abs‘(𝑎𝑐𝑏)))
175174breq1d 5117 . . . . . . . . . . . . 13 ((𝑣𝐷 ∧ (𝑎 ∈ (0[,)+∞) ∧ 𝑏𝐷)) → (((0(𝑥 ∈ (0[,)+∞), 𝑦𝐷 ↦ (𝑥𝑐𝑦))𝑣)(abs ∘ − )(𝑎(𝑥 ∈ (0[,)+∞), 𝑦𝐷 ↦ (𝑥𝑐𝑦))𝑏)) < 𝑒 ↔ (abs‘(𝑎𝑐𝑏)) < 𝑒))
176141, 175imbi12d 344 . . . . . . . . . . . 12 ((𝑣𝐷 ∧ (𝑎 ∈ (0[,)+∞) ∧ 𝑏𝐷)) → ((((0((abs ∘ − ) ↾ ((0[,)+∞) × (0[,)+∞)))𝑎) < 𝑑 ∧ (𝑣((abs ∘ − ) ↾ (𝐷 × 𝐷))𝑏) < 𝑑) → ((0(𝑥 ∈ (0[,)+∞), 𝑦𝐷 ↦ (𝑥𝑐𝑦))𝑣)(abs ∘ − )(𝑎(𝑥 ∈ (0[,)+∞), 𝑦𝐷 ↦ (𝑥𝑐𝑦))𝑏)) < 𝑒) ↔ (((abs‘𝑎) < 𝑑 ∧ (abs‘(𝑣𝑏)) < 𝑑) → (abs‘(𝑎𝑐𝑏)) < 𝑒)))
1771762ralbidva 3199 . . . . . . . . . . 11 (𝑣𝐷 → (∀𝑎 ∈ (0[,)+∞)∀𝑏𝐷 (((0((abs ∘ − ) ↾ ((0[,)+∞) × (0[,)+∞)))𝑎) < 𝑑 ∧ (𝑣((abs ∘ − ) ↾ (𝐷 × 𝐷))𝑏) < 𝑑) → ((0(𝑥 ∈ (0[,)+∞), 𝑦𝐷 ↦ (𝑥𝑐𝑦))𝑣)(abs ∘ − )(𝑎(𝑥 ∈ (0[,)+∞), 𝑦𝐷 ↦ (𝑥𝑐𝑦))𝑏)) < 𝑒) ↔ ∀𝑎 ∈ (0[,)+∞)∀𝑏𝐷 (((abs‘𝑎) < 𝑑 ∧ (abs‘(𝑣𝑏)) < 𝑑) → (abs‘(𝑎𝑐𝑏)) < 𝑒)))
178177rexbidv 3157 . . . . . . . . . 10 (𝑣𝐷 → (∃𝑑 ∈ ℝ+𝑎 ∈ (0[,)+∞)∀𝑏𝐷 (((0((abs ∘ − ) ↾ ((0[,)+∞) × (0[,)+∞)))𝑎) < 𝑑 ∧ (𝑣((abs ∘ − ) ↾ (𝐷 × 𝐷))𝑏) < 𝑑) → ((0(𝑥 ∈ (0[,)+∞), 𝑦𝐷 ↦ (𝑥𝑐𝑦))𝑣)(abs ∘ − )(𝑎(𝑥 ∈ (0[,)+∞), 𝑦𝐷 ↦ (𝑥𝑐𝑦))𝑏)) < 𝑒) ↔ ∃𝑑 ∈ ℝ+𝑎 ∈ (0[,)+∞)∀𝑏𝐷 (((abs‘𝑎) < 𝑑 ∧ (abs‘(𝑣𝑏)) < 𝑑) → (abs‘(𝑎𝑐𝑏)) < 𝑒)))
179178ralbidv 3156 . . . . . . . . 9 (𝑣𝐷 → (∀𝑒 ∈ ℝ+𝑑 ∈ ℝ+𝑎 ∈ (0[,)+∞)∀𝑏𝐷 (((0((abs ∘ − ) ↾ ((0[,)+∞) × (0[,)+∞)))𝑎) < 𝑑 ∧ (𝑣((abs ∘ − ) ↾ (𝐷 × 𝐷))𝑏) < 𝑑) → ((0(𝑥 ∈ (0[,)+∞), 𝑦𝐷 ↦ (𝑥𝑐𝑦))𝑣)(abs ∘ − )(𝑎(𝑥 ∈ (0[,)+∞), 𝑦𝐷 ↦ (𝑥𝑐𝑦))𝑏)) < 𝑒) ↔ ∀𝑒 ∈ ℝ+𝑑 ∈ ℝ+𝑎 ∈ (0[,)+∞)∀𝑏𝐷 (((abs‘𝑎) < 𝑑 ∧ (abs‘(𝑣𝑏)) < 𝑑) → (abs‘(𝑎𝑐𝑏)) < 𝑒)))
180116, 179mpbird 257 . . . . . . . 8 (𝑣𝐷 → ∀𝑒 ∈ ℝ+𝑑 ∈ ℝ+𝑎 ∈ (0[,)+∞)∀𝑏𝐷 (((0((abs ∘ − ) ↾ ((0[,)+∞) × (0[,)+∞)))𝑎) < 𝑑 ∧ (𝑣((abs ∘ − ) ↾ (𝐷 × 𝐷))𝑏) < 𝑑) → ((0(𝑥 ∈ (0[,)+∞), 𝑦𝐷 ↦ (𝑥𝑐𝑦))𝑣)(abs ∘ − )(𝑎(𝑥 ∈ (0[,)+∞), 𝑦𝐷 ↦ (𝑥𝑐𝑦))𝑏)) < 𝑒))
181 cnxmet 24660 . . . . . . . . . . 11 (abs ∘ − ) ∈ (∞Met‘ℂ)
182181a1i 11 . . . . . . . . . 10 (𝑣𝐷 → (abs ∘ − ) ∈ (∞Met‘ℂ))
183 xmetres2 24249 . . . . . . . . . 10 (((abs ∘ − ) ∈ (∞Met‘ℂ) ∧ (0[,)+∞) ⊆ ℂ) → ((abs ∘ − ) ↾ ((0[,)+∞) × (0[,)+∞))) ∈ (∞Met‘(0[,)+∞)))
184182, 3, 183sylancl 586 . . . . . . . . 9 (𝑣𝐷 → ((abs ∘ − ) ↾ ((0[,)+∞) × (0[,)+∞))) ∈ (∞Met‘(0[,)+∞)))
185 xmetres2 24249 . . . . . . . . . 10 (((abs ∘ − ) ∈ (∞Met‘ℂ) ∧ 𝐷 ⊆ ℂ) → ((abs ∘ − ) ↾ (𝐷 × 𝐷)) ∈ (∞Met‘𝐷))
186182, 10, 185sylancl 586 . . . . . . . . 9 (𝑣𝐷 → ((abs ∘ − ) ↾ (𝐷 × 𝐷)) ∈ (∞Met‘𝐷))
187117a1i 11 . . . . . . . . 9 (𝑣𝐷 → 0 ∈ (0[,)+∞))
188 id 22 . . . . . . . . 9 (𝑣𝐷𝑣𝐷)
189 eqid 2729 . . . . . . . . . . . . 13 ((abs ∘ − ) ↾ ((0[,)+∞) × (0[,)+∞))) = ((abs ∘ − ) ↾ ((0[,)+∞) × (0[,)+∞)))
19018cnfldtopn 24669 . . . . . . . . . . . . 13 𝐽 = (MetOpen‘(abs ∘ − ))
191 eqid 2729 . . . . . . . . . . . . 13 (MetOpen‘((abs ∘ − ) ↾ ((0[,)+∞) × (0[,)+∞)))) = (MetOpen‘((abs ∘ − ) ↾ ((0[,)+∞) × (0[,)+∞))))
192189, 190, 191metrest 24412 . . . . . . . . . . . 12 (((abs ∘ − ) ∈ (∞Met‘ℂ) ∧ (0[,)+∞) ⊆ ℂ) → (𝐽t (0[,)+∞)) = (MetOpen‘((abs ∘ − ) ↾ ((0[,)+∞) × (0[,)+∞)))))
193181, 3, 192mp2an 692 . . . . . . . . . . 11 (𝐽t (0[,)+∞)) = (MetOpen‘((abs ∘ − ) ↾ ((0[,)+∞) × (0[,)+∞))))
19458, 193eqtri 2752 . . . . . . . . . 10 𝐾 = (MetOpen‘((abs ∘ − ) ↾ ((0[,)+∞) × (0[,)+∞))))
195 eqid 2729 . . . . . . . . . . . . 13 ((abs ∘ − ) ↾ (𝐷 × 𝐷)) = ((abs ∘ − ) ↾ (𝐷 × 𝐷))
196 eqid 2729 . . . . . . . . . . . . 13 (MetOpen‘((abs ∘ − ) ↾ (𝐷 × 𝐷))) = (MetOpen‘((abs ∘ − ) ↾ (𝐷 × 𝐷)))
197195, 190, 196metrest 24412 . . . . . . . . . . . 12 (((abs ∘ − ) ∈ (∞Met‘ℂ) ∧ 𝐷 ⊆ ℂ) → (𝐽t 𝐷) = (MetOpen‘((abs ∘ − ) ↾ (𝐷 × 𝐷))))
198181, 10, 197mp2an 692 . . . . . . . . . . 11 (𝐽t 𝐷) = (MetOpen‘((abs ∘ − ) ↾ (𝐷 × 𝐷)))
19932, 198eqtri 2752 . . . . . . . . . 10 𝐿 = (MetOpen‘((abs ∘ − ) ↾ (𝐷 × 𝐷)))
200194, 199, 190txmetcnp 24435 . . . . . . . . 9 (((((abs ∘ − ) ↾ ((0[,)+∞) × (0[,)+∞))) ∈ (∞Met‘(0[,)+∞)) ∧ ((abs ∘ − ) ↾ (𝐷 × 𝐷)) ∈ (∞Met‘𝐷) ∧ (abs ∘ − ) ∈ (∞Met‘ℂ)) ∧ (0 ∈ (0[,)+∞) ∧ 𝑣𝐷)) → ((𝑥 ∈ (0[,)+∞), 𝑦𝐷 ↦ (𝑥𝑐𝑦)) ∈ (((𝐾 ×t 𝐿) CnP 𝐽)‘⟨0, 𝑣⟩) ↔ ((𝑥 ∈ (0[,)+∞), 𝑦𝐷 ↦ (𝑥𝑐𝑦)):((0[,)+∞) × 𝐷)⟶ℂ ∧ ∀𝑒 ∈ ℝ+𝑑 ∈ ℝ+𝑎 ∈ (0[,)+∞)∀𝑏𝐷 (((0((abs ∘ − ) ↾ ((0[,)+∞) × (0[,)+∞)))𝑎) < 𝑑 ∧ (𝑣((abs ∘ − ) ↾ (𝐷 × 𝐷))𝑏) < 𝑑) → ((0(𝑥 ∈ (0[,)+∞), 𝑦𝐷 ↦ (𝑥𝑐𝑦))𝑣)(abs ∘ − )(𝑎(𝑥 ∈ (0[,)+∞), 𝑦𝐷 ↦ (𝑥𝑐𝑦))𝑏)) < 𝑒))))
201184, 186, 182, 187, 188, 200syl32anc 1380 . . . . . . . 8 (𝑣𝐷 → ((𝑥 ∈ (0[,)+∞), 𝑦𝐷 ↦ (𝑥𝑐𝑦)) ∈ (((𝐾 ×t 𝐿) CnP 𝐽)‘⟨0, 𝑣⟩) ↔ ((𝑥 ∈ (0[,)+∞), 𝑦𝐷 ↦ (𝑥𝑐𝑦)):((0[,)+∞) × 𝐷)⟶ℂ ∧ ∀𝑒 ∈ ℝ+𝑑 ∈ ℝ+𝑎 ∈ (0[,)+∞)∀𝑏𝐷 (((0((abs ∘ − ) ↾ ((0[,)+∞) × (0[,)+∞)))𝑎) < 𝑑 ∧ (𝑣((abs ∘ − ) ↾ (𝐷 × 𝐷))𝑏) < 𝑑) → ((0(𝑥 ∈ (0[,)+∞), 𝑦𝐷 ↦ (𝑥𝑐𝑦))𝑣)(abs ∘ − )(𝑎(𝑥 ∈ (0[,)+∞), 𝑦𝐷 ↦ (𝑥𝑐𝑦))𝑏)) < 𝑒))))
202112, 180, 201mpbir2and 713 . . . . . . 7 (𝑣𝐷 → (𝑥 ∈ (0[,)+∞), 𝑦𝐷 ↦ (𝑥𝑐𝑦)) ∈ (((𝐾 ×t 𝐿) CnP 𝐽)‘⟨0, 𝑣⟩))
203202ad2antlr 727 . . . . . 6 (((𝑢 ∈ (0[,)+∞) ∧ 𝑣𝐷) ∧ 0 = 𝑢) → (𝑥 ∈ (0[,)+∞), 𝑦𝐷 ↦ (𝑥𝑐𝑦)) ∈ (((𝐾 ×t 𝐿) CnP 𝐽)‘⟨0, 𝑣⟩))
204 simpr 484 . . . . . . . 8 (((𝑢 ∈ (0[,)+∞) ∧ 𝑣𝐷) ∧ 0 = 𝑢) → 0 = 𝑢)
205204opeq1d 4843 . . . . . . 7 (((𝑢 ∈ (0[,)+∞) ∧ 𝑣𝐷) ∧ 0 = 𝑢) → ⟨0, 𝑣⟩ = ⟨𝑢, 𝑣⟩)
206205fveq2d 6862 . . . . . 6 (((𝑢 ∈ (0[,)+∞) ∧ 𝑣𝐷) ∧ 0 = 𝑢) → (((𝐾 ×t 𝐿) CnP 𝐽)‘⟨0, 𝑣⟩) = (((𝐾 ×t 𝐿) CnP 𝐽)‘⟨𝑢, 𝑣⟩))
207203, 206eleqtrd 2830 . . . . 5 (((𝑢 ∈ (0[,)+∞) ∧ 𝑣𝐷) ∧ 0 = 𝑢) → (𝑥 ∈ (0[,)+∞), 𝑦𝐷 ↦ (𝑥𝑐𝑦)) ∈ (((𝐾 ×t 𝐿) CnP 𝐽)‘⟨𝑢, 𝑣⟩))
20839simprbi 496 . . . . . . 7 (𝑢 ∈ (0[,)+∞) → 0 ≤ 𝑢)
209208adantr 480 . . . . . 6 ((𝑢 ∈ (0[,)+∞) ∧ 𝑣𝐷) → 0 ≤ 𝑢)
210 0re 11176 . . . . . . 7 0 ∈ ℝ
211 leloe 11260 . . . . . . 7 ((0 ∈ ℝ ∧ 𝑢 ∈ ℝ) → (0 ≤ 𝑢 ↔ (0 < 𝑢 ∨ 0 = 𝑢)))
212210, 41, 211sylancr 587 . . . . . 6 ((𝑢 ∈ (0[,)+∞) ∧ 𝑣𝐷) → (0 ≤ 𝑢 ↔ (0 < 𝑢 ∨ 0 = 𝑢)))
213209, 212mpbid 232 . . . . 5 ((𝑢 ∈ (0[,)+∞) ∧ 𝑣𝐷) → (0 < 𝑢 ∨ 0 = 𝑢))
214111, 207, 213mpjaodan 960 . . . 4 ((𝑢 ∈ (0[,)+∞) ∧ 𝑣𝐷) → (𝑥 ∈ (0[,)+∞), 𝑦𝐷 ↦ (𝑥𝑐𝑦)) ∈ (((𝐾 ×t 𝐿) CnP 𝐽)‘⟨𝑢, 𝑣⟩))
215214rgen2 3177 . . 3 𝑢 ∈ (0[,)+∞)∀𝑣𝐷 (𝑥 ∈ (0[,)+∞), 𝑦𝐷 ↦ (𝑥𝑐𝑦)) ∈ (((𝐾 ×t 𝐿) CnP 𝐽)‘⟨𝑢, 𝑣⟩)
216 fveq2 6858 . . . . 5 (𝑧 = ⟨𝑢, 𝑣⟩ → (((𝐾 ×t 𝐿) CnP 𝐽)‘𝑧) = (((𝐾 ×t 𝐿) CnP 𝐽)‘⟨𝑢, 𝑣⟩))
217216eleq2d 2814 . . . 4 (𝑧 = ⟨𝑢, 𝑣⟩ → ((𝑥 ∈ (0[,)+∞), 𝑦𝐷 ↦ (𝑥𝑐𝑦)) ∈ (((𝐾 ×t 𝐿) CnP 𝐽)‘𝑧) ↔ (𝑥 ∈ (0[,)+∞), 𝑦𝐷 ↦ (𝑥𝑐𝑦)) ∈ (((𝐾 ×t 𝐿) CnP 𝐽)‘⟨𝑢, 𝑣⟩)))
218217ralxp 5805 . . 3 (∀𝑧 ∈ ((0[,)+∞) × 𝐷)(𝑥 ∈ (0[,)+∞), 𝑦𝐷 ↦ (𝑥𝑐𝑦)) ∈ (((𝐾 ×t 𝐿) CnP 𝐽)‘𝑧) ↔ ∀𝑢 ∈ (0[,)+∞)∀𝑣𝐷 (𝑥 ∈ (0[,)+∞), 𝑦𝐷 ↦ (𝑥𝑐𝑦)) ∈ (((𝐾 ×t 𝐿) CnP 𝐽)‘⟨𝑢, 𝑣⟩))
219215, 218mpbir 231 . 2 𝑧 ∈ ((0[,)+∞) × 𝐷)(𝑥 ∈ (0[,)+∞), 𝑦𝐷 ↦ (𝑥𝑐𝑦)) ∈ (((𝐾 ×t 𝐿) CnP 𝐽)‘𝑧)
220 cncnp 23167 . . 3 (((𝐾 ×t 𝐿) ∈ (TopOn‘((0[,)+∞) × 𝐷)) ∧ 𝐽 ∈ (TopOn‘ℂ)) → ((𝑥 ∈ (0[,)+∞), 𝑦𝐷 ↦ (𝑥𝑐𝑦)) ∈ ((𝐾 ×t 𝐿) Cn 𝐽) ↔ ((𝑥 ∈ (0[,)+∞), 𝑦𝐷 ↦ (𝑥𝑐𝑦)):((0[,)+∞) × 𝐷)⟶ℂ ∧ ∀𝑧 ∈ ((0[,)+∞) × 𝐷)(𝑥 ∈ (0[,)+∞), 𝑦𝐷 ↦ (𝑥𝑐𝑦)) ∈ (((𝐾 ×t 𝐿) CnP 𝐽)‘𝑧))))
22193, 19, 220mp2an 692 . 2 ((𝑥 ∈ (0[,)+∞), 𝑦𝐷 ↦ (𝑥𝑐𝑦)) ∈ ((𝐾 ×t 𝐿) Cn 𝐽) ↔ ((𝑥 ∈ (0[,)+∞), 𝑦𝐷 ↦ (𝑥𝑐𝑦)):((0[,)+∞) × 𝐷)⟶ℂ ∧ ∀𝑧 ∈ ((0[,)+∞) × 𝐷)(𝑥 ∈ (0[,)+∞), 𝑦𝐷 ↦ (𝑥𝑐𝑦)) ∈ (((𝐾 ×t 𝐿) CnP 𝐽)‘𝑧)))
22217, 219, 221mpbir2an 711 1 (𝑥 ∈ (0[,)+∞), 𝑦𝐷 ↦ (𝑥𝑐𝑦)) ∈ ((𝐾 ×t 𝐿) Cn 𝐽)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wo 847  w3a 1086   = wceq 1540  wcel 2109  wne 2925  wral 3044  wrex 3053  Vcvv 3447  wss 3914  ifcif 4488  cop 4595   class class class wbr 5107   × cxp 5636  ccnv 5637  dom cdm 5638  ran crn 5639  cres 5640  cima 5641  ccom 5642   Fn wfn 6506  wf 6507  cfv 6511  (class class class)co 7387  cmpo 7389  cc 11066  cr 11067  0cc0 11068  1c1 11069  +∞cpnf 11205   < clt 11208  cle 11209  cmin 11405  -cneg 11406   / cdiv 11835  2c2 12241  +crp 12951  (,)cioo 13306  [,)cico 13308  cre 15063  abscabs 15200  t crest 17383  TopOpenctopn 17384  topGenctg 17400  ∞Metcxmet 21249  MetOpencmopn 21254  fldccnfld 21264  Topctop 22780  TopOnctopon 22797  intcnt 22904   Cn ccn 23111   CnP ccnp 23112   ×t ctx 23447  𝑐ccxp 26464
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-inf2 9594  ax-cnex 11124  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145  ax-pre-sup 11146  ax-addf 11147
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-tp 4594  df-op 4596  df-uni 4872  df-int 4911  df-iun 4957  df-iin 4958  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-se 5592  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-isom 6520  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-of 7653  df-om 7843  df-1st 7968  df-2nd 7969  df-supp 8140  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-1o 8434  df-2o 8435  df-er 8671  df-map 8801  df-pm 8802  df-ixp 8871  df-en 8919  df-dom 8920  df-sdom 8921  df-fin 8922  df-fsupp 9313  df-fi 9362  df-sup 9393  df-inf 9394  df-oi 9463  df-card 9892  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-div 11836  df-nn 12187  df-2 12249  df-3 12250  df-4 12251  df-5 12252  df-6 12253  df-7 12254  df-8 12255  df-9 12256  df-n0 12443  df-z 12530  df-dec 12650  df-uz 12794  df-q 12908  df-rp 12952  df-xneg 13072  df-xadd 13073  df-xmul 13074  df-ioo 13310  df-ioc 13311  df-ico 13312  df-icc 13313  df-fz 13469  df-fzo 13616  df-fl 13754  df-mod 13832  df-seq 13967  df-exp 14027  df-fac 14239  df-bc 14268  df-hash 14296  df-shft 15033  df-cj 15065  df-re 15066  df-im 15067  df-sqrt 15201  df-abs 15202  df-limsup 15437  df-clim 15454  df-rlim 15455  df-sum 15653  df-ef 16033  df-sin 16035  df-cos 16036  df-tan 16037  df-pi 16038  df-struct 17117  df-sets 17134  df-slot 17152  df-ndx 17164  df-base 17180  df-ress 17201  df-plusg 17233  df-mulr 17234  df-starv 17235  df-sca 17236  df-vsca 17237  df-ip 17238  df-tset 17239  df-ple 17240  df-ds 17242  df-unif 17243  df-hom 17244  df-cco 17245  df-rest 17385  df-topn 17386  df-0g 17404  df-gsum 17405  df-topgen 17406  df-pt 17407  df-prds 17410  df-xrs 17465  df-qtop 17470  df-imas 17471  df-xps 17473  df-mre 17547  df-mrc 17548  df-acs 17550  df-mgm 18567  df-sgrp 18646  df-mnd 18662  df-submnd 18711  df-mulg 19000  df-cntz 19249  df-cmn 19712  df-psmet 21256  df-xmet 21257  df-met 21258  df-bl 21259  df-mopn 21260  df-fbas 21261  df-fg 21262  df-cnfld 21265  df-top 22781  df-topon 22798  df-topsp 22820  df-bases 22833  df-cld 22906  df-ntr 22907  df-cls 22908  df-nei 22985  df-lp 23023  df-perf 23024  df-cn 23114  df-cnp 23115  df-haus 23202  df-cmp 23274  df-tx 23449  df-hmeo 23642  df-fil 23733  df-fm 23825  df-flim 23826  df-flf 23827  df-xms 24208  df-ms 24209  df-tms 24210  df-cncf 24771  df-limc 25767  df-dv 25768  df-log 26465  df-cxp 26466
This theorem is referenced by:  resqrtcn  26659
  Copyright terms: Public domain W3C validator