MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cxpcn3 Structured version   Visualization version   GIF version

Theorem cxpcn3 26029
Description: Extend continuity of the complex power function to a base of zero, as long as the exponent has strictly positive real part. (Contributed by Mario Carneiro, 2-May-2016.)
Hypotheses
Ref Expression
cxpcn3.d 𝐷 = (ℜ “ ℝ+)
cxpcn3.j 𝐽 = (TopOpen‘ℂfld)
cxpcn3.k 𝐾 = (𝐽t (0[,)+∞))
cxpcn3.l 𝐿 = (𝐽t 𝐷)
Assertion
Ref Expression
cxpcn3 (𝑥 ∈ (0[,)+∞), 𝑦𝐷 ↦ (𝑥𝑐𝑦)) ∈ ((𝐾 ×t 𝐿) Cn 𝐽)
Distinct variable groups:   𝑥,𝑦,𝐽   𝑥,𝐷,𝑦
Allowed substitution hints:   𝐾(𝑥,𝑦)   𝐿(𝑥,𝑦)

Proof of Theorem cxpcn3
Dummy variables 𝑎 𝑏 𝑑 𝑒 𝑢 𝑣 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 rge0ssre 13303 . . . . . . 7 (0[,)+∞) ⊆ ℝ
2 ax-resscn 11042 . . . . . . 7 ℝ ⊆ ℂ
31, 2sstri 3952 . . . . . 6 (0[,)+∞) ⊆ ℂ
43sseli 3939 . . . . 5 (𝑥 ∈ (0[,)+∞) → 𝑥 ∈ ℂ)
5 cxpcn3.d . . . . . . 7 𝐷 = (ℜ “ ℝ+)
6 cnvimass 6030 . . . . . . . 8 (ℜ “ ℝ+) ⊆ dom ℜ
7 ref 14932 . . . . . . . . 9 ℜ:ℂ⟶ℝ
87fdmi 6676 . . . . . . . 8 dom ℜ = ℂ
96, 8sseqtri 3979 . . . . . . 7 (ℜ “ ℝ+) ⊆ ℂ
105, 9eqsstri 3977 . . . . . 6 𝐷 ⊆ ℂ
1110sseli 3939 . . . . 5 (𝑦𝐷𝑦 ∈ ℂ)
12 cxpcl 25957 . . . . 5 ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (𝑥𝑐𝑦) ∈ ℂ)
134, 11, 12syl2an 597 . . . 4 ((𝑥 ∈ (0[,)+∞) ∧ 𝑦𝐷) → (𝑥𝑐𝑦) ∈ ℂ)
1413rgen2 3193 . . 3 𝑥 ∈ (0[,)+∞)∀𝑦𝐷 (𝑥𝑐𝑦) ∈ ℂ
15 eqid 2738 . . . 4 (𝑥 ∈ (0[,)+∞), 𝑦𝐷 ↦ (𝑥𝑐𝑦)) = (𝑥 ∈ (0[,)+∞), 𝑦𝐷 ↦ (𝑥𝑐𝑦))
1615fmpo 7989 . . 3 (∀𝑥 ∈ (0[,)+∞)∀𝑦𝐷 (𝑥𝑐𝑦) ∈ ℂ ↔ (𝑥 ∈ (0[,)+∞), 𝑦𝐷 ↦ (𝑥𝑐𝑦)):((0[,)+∞) × 𝐷)⟶ℂ)
1714, 16mpbi 229 . 2 (𝑥 ∈ (0[,)+∞), 𝑦𝐷 ↦ (𝑥𝑐𝑦)):((0[,)+∞) × 𝐷)⟶ℂ
18 cxpcn3.j . . . . . . . . . . . 12 𝐽 = (TopOpen‘ℂfld)
1918cnfldtopon 24074 . . . . . . . . . . 11 𝐽 ∈ (TopOn‘ℂ)
20 rpre 12853 . . . . . . . . . . . . . 14 (𝑥 ∈ ℝ+𝑥 ∈ ℝ)
21 rpge0 12858 . . . . . . . . . . . . . 14 (𝑥 ∈ ℝ+ → 0 ≤ 𝑥)
22 elrege0 13301 . . . . . . . . . . . . . 14 (𝑥 ∈ (0[,)+∞) ↔ (𝑥 ∈ ℝ ∧ 0 ≤ 𝑥))
2320, 21, 22sylanbrc 584 . . . . . . . . . . . . 13 (𝑥 ∈ ℝ+𝑥 ∈ (0[,)+∞))
2423ssriv 3947 . . . . . . . . . . . 12 + ⊆ (0[,)+∞)
2524, 3sstri 3952 . . . . . . . . . . 11 + ⊆ ℂ
26 resttopon 22440 . . . . . . . . . . 11 ((𝐽 ∈ (TopOn‘ℂ) ∧ ℝ+ ⊆ ℂ) → (𝐽t+) ∈ (TopOn‘ℝ+))
2719, 25, 26mp2an 691 . . . . . . . . . 10 (𝐽t+) ∈ (TopOn‘ℝ+)
2827toponrestid 22198 . . . . . . . . 9 (𝐽t+) = ((𝐽t+) ↾t+)
2927a1i 11 . . . . . . . . 9 (((𝑢 ∈ (0[,)+∞) ∧ 𝑣𝐷) ∧ 0 < 𝑢) → (𝐽t+) ∈ (TopOn‘ℝ+))
30 ssid 3965 . . . . . . . . . 10 + ⊆ ℝ+
3130a1i 11 . . . . . . . . 9 (((𝑢 ∈ (0[,)+∞) ∧ 𝑣𝐷) ∧ 0 < 𝑢) → ℝ+ ⊆ ℝ+)
32 cxpcn3.l . . . . . . . . 9 𝐿 = (𝐽t 𝐷)
3319a1i 11 . . . . . . . . 9 (((𝑢 ∈ (0[,)+∞) ∧ 𝑣𝐷) ∧ 0 < 𝑢) → 𝐽 ∈ (TopOn‘ℂ))
3410a1i 11 . . . . . . . . 9 (((𝑢 ∈ (0[,)+∞) ∧ 𝑣𝐷) ∧ 0 < 𝑢) → 𝐷 ⊆ ℂ)
35 eqid 2738 . . . . . . . . . . 11 (𝐽t+) = (𝐽t+)
3618, 35cxpcn2 26027 . . . . . . . . . 10 (𝑥 ∈ ℝ+, 𝑦 ∈ ℂ ↦ (𝑥𝑐𝑦)) ∈ (((𝐽t+) ×t 𝐽) Cn 𝐽)
3736a1i 11 . . . . . . . . 9 (((𝑢 ∈ (0[,)+∞) ∧ 𝑣𝐷) ∧ 0 < 𝑢) → (𝑥 ∈ ℝ+, 𝑦 ∈ ℂ ↦ (𝑥𝑐𝑦)) ∈ (((𝐽t+) ×t 𝐽) Cn 𝐽))
3828, 29, 31, 32, 33, 34, 37cnmpt2res 22956 . . . . . . . 8 (((𝑢 ∈ (0[,)+∞) ∧ 𝑣𝐷) ∧ 0 < 𝑢) → (𝑥 ∈ ℝ+, 𝑦𝐷 ↦ (𝑥𝑐𝑦)) ∈ (((𝐽t+) ×t 𝐿) Cn 𝐽))
39 elrege0 13301 . . . . . . . . . . . . 13 (𝑢 ∈ (0[,)+∞) ↔ (𝑢 ∈ ℝ ∧ 0 ≤ 𝑢))
4039simplbi 499 . . . . . . . . . . . 12 (𝑢 ∈ (0[,)+∞) → 𝑢 ∈ ℝ)
4140adantr 482 . . . . . . . . . . 11 ((𝑢 ∈ (0[,)+∞) ∧ 𝑣𝐷) → 𝑢 ∈ ℝ)
4241adantr 482 . . . . . . . . . 10 (((𝑢 ∈ (0[,)+∞) ∧ 𝑣𝐷) ∧ 0 < 𝑢) → 𝑢 ∈ ℝ)
43 simpr 486 . . . . . . . . . 10 (((𝑢 ∈ (0[,)+∞) ∧ 𝑣𝐷) ∧ 0 < 𝑢) → 0 < 𝑢)
4442, 43elrpd 12884 . . . . . . . . 9 (((𝑢 ∈ (0[,)+∞) ∧ 𝑣𝐷) ∧ 0 < 𝑢) → 𝑢 ∈ ℝ+)
45 simplr 768 . . . . . . . . 9 (((𝑢 ∈ (0[,)+∞) ∧ 𝑣𝐷) ∧ 0 < 𝑢) → 𝑣𝐷)
4644, 45opelxpd 5669 . . . . . . . 8 (((𝑢 ∈ (0[,)+∞) ∧ 𝑣𝐷) ∧ 0 < 𝑢) → ⟨𝑢, 𝑣⟩ ∈ (ℝ+ × 𝐷))
47 resttopon 22440 . . . . . . . . . . . . 13 ((𝐽 ∈ (TopOn‘ℂ) ∧ 𝐷 ⊆ ℂ) → (𝐽t 𝐷) ∈ (TopOn‘𝐷))
4819, 10, 47mp2an 691 . . . . . . . . . . . 12 (𝐽t 𝐷) ∈ (TopOn‘𝐷)
4932, 48eqeltri 2835 . . . . . . . . . . 11 𝐿 ∈ (TopOn‘𝐷)
50 txtopon 22870 . . . . . . . . . . 11 (((𝐽t+) ∈ (TopOn‘ℝ+) ∧ 𝐿 ∈ (TopOn‘𝐷)) → ((𝐽t+) ×t 𝐿) ∈ (TopOn‘(ℝ+ × 𝐷)))
5127, 49, 50mp2an 691 . . . . . . . . . 10 ((𝐽t+) ×t 𝐿) ∈ (TopOn‘(ℝ+ × 𝐷))
5251toponunii 22193 . . . . . . . . 9 (ℝ+ × 𝐷) = ((𝐽t+) ×t 𝐿)
5352cncnpi 22557 . . . . . . . 8 (((𝑥 ∈ ℝ+, 𝑦𝐷 ↦ (𝑥𝑐𝑦)) ∈ (((𝐽t+) ×t 𝐿) Cn 𝐽) ∧ ⟨𝑢, 𝑣⟩ ∈ (ℝ+ × 𝐷)) → (𝑥 ∈ ℝ+, 𝑦𝐷 ↦ (𝑥𝑐𝑦)) ∈ ((((𝐽t+) ×t 𝐿) CnP 𝐽)‘⟨𝑢, 𝑣⟩))
5438, 46, 53syl2anc 585 . . . . . . 7 (((𝑢 ∈ (0[,)+∞) ∧ 𝑣𝐷) ∧ 0 < 𝑢) → (𝑥 ∈ ℝ+, 𝑦𝐷 ↦ (𝑥𝑐𝑦)) ∈ ((((𝐽t+) ×t 𝐿) CnP 𝐽)‘⟨𝑢, 𝑣⟩))
55 ssid 3965 . . . . . . . 8 𝐷𝐷
56 resmpo 7469 . . . . . . . 8 ((ℝ+ ⊆ (0[,)+∞) ∧ 𝐷𝐷) → ((𝑥 ∈ (0[,)+∞), 𝑦𝐷 ↦ (𝑥𝑐𝑦)) ↾ (ℝ+ × 𝐷)) = (𝑥 ∈ ℝ+, 𝑦𝐷 ↦ (𝑥𝑐𝑦)))
5724, 55, 56mp2an 691 . . . . . . 7 ((𝑥 ∈ (0[,)+∞), 𝑦𝐷 ↦ (𝑥𝑐𝑦)) ↾ (ℝ+ × 𝐷)) = (𝑥 ∈ ℝ+, 𝑦𝐷 ↦ (𝑥𝑐𝑦))
58 cxpcn3.k . . . . . . . . . . . 12 𝐾 = (𝐽t (0[,)+∞))
59 resttopon 22440 . . . . . . . . . . . . 13 ((𝐽 ∈ (TopOn‘ℂ) ∧ (0[,)+∞) ⊆ ℂ) → (𝐽t (0[,)+∞)) ∈ (TopOn‘(0[,)+∞)))
6019, 3, 59mp2an 691 . . . . . . . . . . . 12 (𝐽t (0[,)+∞)) ∈ (TopOn‘(0[,)+∞))
6158, 60eqeltri 2835 . . . . . . . . . . 11 𝐾 ∈ (TopOn‘(0[,)+∞))
62 ioorp 13272 . . . . . . . . . . . . . 14 (0(,)+∞) = ℝ+
63 iooretop 24057 . . . . . . . . . . . . . 14 (0(,)+∞) ∈ (topGen‘ran (,))
6462, 63eqeltrri 2836 . . . . . . . . . . . . 13 + ∈ (topGen‘ran (,))
65 retop 24053 . . . . . . . . . . . . . . 15 (topGen‘ran (,)) ∈ Top
66 ovex 7383 . . . . . . . . . . . . . . 15 (0[,)+∞) ∈ V
67 restopnb 22454 . . . . . . . . . . . . . . 15 ((((topGen‘ran (,)) ∈ Top ∧ (0[,)+∞) ∈ V) ∧ (ℝ+ ∈ (topGen‘ran (,)) ∧ ℝ+ ⊆ (0[,)+∞) ∧ ℝ+ ⊆ ℝ+)) → (ℝ+ ∈ (topGen‘ran (,)) ↔ ℝ+ ∈ ((topGen‘ran (,)) ↾t (0[,)+∞))))
6865, 66, 67mpanl12 701 . . . . . . . . . . . . . 14 ((ℝ+ ∈ (topGen‘ran (,)) ∧ ℝ+ ⊆ (0[,)+∞) ∧ ℝ+ ⊆ ℝ+) → (ℝ+ ∈ (topGen‘ran (,)) ↔ ℝ+ ∈ ((topGen‘ran (,)) ↾t (0[,)+∞))))
6964, 24, 30, 68mp3an 1462 . . . . . . . . . . . . 13 (ℝ+ ∈ (topGen‘ran (,)) ↔ ℝ+ ∈ ((topGen‘ran (,)) ↾t (0[,)+∞)))
7064, 69mpbi 229 . . . . . . . . . . . 12 + ∈ ((topGen‘ran (,)) ↾t (0[,)+∞))
71 eqid 2738 . . . . . . . . . . . . . . 15 (topGen‘ran (,)) = (topGen‘ran (,))
7218, 71rerest 24095 . . . . . . . . . . . . . 14 ((0[,)+∞) ⊆ ℝ → (𝐽t (0[,)+∞)) = ((topGen‘ran (,)) ↾t (0[,)+∞)))
731, 72ax-mp 5 . . . . . . . . . . . . 13 (𝐽t (0[,)+∞)) = ((topGen‘ran (,)) ↾t (0[,)+∞))
7458, 73eqtri 2766 . . . . . . . . . . . 12 𝐾 = ((topGen‘ran (,)) ↾t (0[,)+∞))
7570, 74eleqtrri 2838 . . . . . . . . . . 11 +𝐾
76 toponmax 22203 . . . . . . . . . . . 12 (𝐿 ∈ (TopOn‘𝐷) → 𝐷𝐿)
7749, 76ax-mp 5 . . . . . . . . . . 11 𝐷𝐿
78 txrest 22910 . . . . . . . . . . 11 (((𝐾 ∈ (TopOn‘(0[,)+∞)) ∧ 𝐿 ∈ (TopOn‘𝐷)) ∧ (ℝ+𝐾𝐷𝐿)) → ((𝐾 ×t 𝐿) ↾t (ℝ+ × 𝐷)) = ((𝐾t+) ×t (𝐿t 𝐷)))
7961, 49, 75, 77, 78mp4an 692 . . . . . . . . . 10 ((𝐾 ×t 𝐿) ↾t (ℝ+ × 𝐷)) = ((𝐾t+) ×t (𝐿t 𝐷))
8058oveq1i 7360 . . . . . . . . . . . 12 (𝐾t+) = ((𝐽t (0[,)+∞)) ↾t+)
81 restabs 22444 . . . . . . . . . . . . 13 ((𝐽 ∈ (TopOn‘ℂ) ∧ ℝ+ ⊆ (0[,)+∞) ∧ (0[,)+∞) ∈ V) → ((𝐽t (0[,)+∞)) ↾t+) = (𝐽t+))
8219, 24, 66, 81mp3an 1462 . . . . . . . . . . . 12 ((𝐽t (0[,)+∞)) ↾t+) = (𝐽t+)
8380, 82eqtri 2766 . . . . . . . . . . 11 (𝐾t+) = (𝐽t+)
8449toponunii 22193 . . . . . . . . . . . . 13 𝐷 = 𝐿
8584restid 17251 . . . . . . . . . . . 12 (𝐿 ∈ (TopOn‘𝐷) → (𝐿t 𝐷) = 𝐿)
8649, 85ax-mp 5 . . . . . . . . . . 11 (𝐿t 𝐷) = 𝐿
8783, 86oveq12i 7362 . . . . . . . . . 10 ((𝐾t+) ×t (𝐿t 𝐷)) = ((𝐽t+) ×t 𝐿)
8879, 87eqtri 2766 . . . . . . . . 9 ((𝐾 ×t 𝐿) ↾t (ℝ+ × 𝐷)) = ((𝐽t+) ×t 𝐿)
8988oveq1i 7360 . . . . . . . 8 (((𝐾 ×t 𝐿) ↾t (ℝ+ × 𝐷)) CnP 𝐽) = (((𝐽t+) ×t 𝐿) CnP 𝐽)
9089fveq1i 6839 . . . . . . 7 ((((𝐾 ×t 𝐿) ↾t (ℝ+ × 𝐷)) CnP 𝐽)‘⟨𝑢, 𝑣⟩) = ((((𝐽t+) ×t 𝐿) CnP 𝐽)‘⟨𝑢, 𝑣⟩)
9154, 57, 903eltr4g 2856 . . . . . 6 (((𝑢 ∈ (0[,)+∞) ∧ 𝑣𝐷) ∧ 0 < 𝑢) → ((𝑥 ∈ (0[,)+∞), 𝑦𝐷 ↦ (𝑥𝑐𝑦)) ↾ (ℝ+ × 𝐷)) ∈ ((((𝐾 ×t 𝐿) ↾t (ℝ+ × 𝐷)) CnP 𝐽)‘⟨𝑢, 𝑣⟩))
92 txtopon 22870 . . . . . . . . . 10 ((𝐾 ∈ (TopOn‘(0[,)+∞)) ∧ 𝐿 ∈ (TopOn‘𝐷)) → (𝐾 ×t 𝐿) ∈ (TopOn‘((0[,)+∞) × 𝐷)))
9361, 49, 92mp2an 691 . . . . . . . . 9 (𝐾 ×t 𝐿) ∈ (TopOn‘((0[,)+∞) × 𝐷))
9493topontopi 22192 . . . . . . . 8 (𝐾 ×t 𝐿) ∈ Top
9594a1i 11 . . . . . . 7 (((𝑢 ∈ (0[,)+∞) ∧ 𝑣𝐷) ∧ 0 < 𝑢) → (𝐾 ×t 𝐿) ∈ Top)
96 xpss1 5650 . . . . . . . 8 (ℝ+ ⊆ (0[,)+∞) → (ℝ+ × 𝐷) ⊆ ((0[,)+∞) × 𝐷))
9724, 96mp1i 13 . . . . . . 7 (((𝑢 ∈ (0[,)+∞) ∧ 𝑣𝐷) ∧ 0 < 𝑢) → (ℝ+ × 𝐷) ⊆ ((0[,)+∞) × 𝐷))
98 txopn 22881 . . . . . . . . . 10 (((𝐾 ∈ (TopOn‘(0[,)+∞)) ∧ 𝐿 ∈ (TopOn‘𝐷)) ∧ (ℝ+𝐾𝐷𝐿)) → (ℝ+ × 𝐷) ∈ (𝐾 ×t 𝐿))
9961, 49, 75, 77, 98mp4an 692 . . . . . . . . 9 (ℝ+ × 𝐷) ∈ (𝐾 ×t 𝐿)
100 isopn3i 22361 . . . . . . . . 9 (((𝐾 ×t 𝐿) ∈ Top ∧ (ℝ+ × 𝐷) ∈ (𝐾 ×t 𝐿)) → ((int‘(𝐾 ×t 𝐿))‘(ℝ+ × 𝐷)) = (ℝ+ × 𝐷))
10194, 99, 100mp2an 691 . . . . . . . 8 ((int‘(𝐾 ×t 𝐿))‘(ℝ+ × 𝐷)) = (ℝ+ × 𝐷)
10246, 101eleqtrrdi 2850 . . . . . . 7 (((𝑢 ∈ (0[,)+∞) ∧ 𝑣𝐷) ∧ 0 < 𝑢) → ⟨𝑢, 𝑣⟩ ∈ ((int‘(𝐾 ×t 𝐿))‘(ℝ+ × 𝐷)))
10317a1i 11 . . . . . . 7 (((𝑢 ∈ (0[,)+∞) ∧ 𝑣𝐷) ∧ 0 < 𝑢) → (𝑥 ∈ (0[,)+∞), 𝑦𝐷 ↦ (𝑥𝑐𝑦)):((0[,)+∞) × 𝐷)⟶ℂ)
10461topontopi 22192 . . . . . . . . 9 𝐾 ∈ Top
10549topontopi 22192 . . . . . . . . 9 𝐿 ∈ Top
10661toponunii 22193 . . . . . . . . 9 (0[,)+∞) = 𝐾
107104, 105, 106, 84txunii 22872 . . . . . . . 8 ((0[,)+∞) × 𝐷) = (𝐾 ×t 𝐿)
10819toponunii 22193 . . . . . . . 8 ℂ = 𝐽
109107, 108cnprest 22568 . . . . . . 7 ((((𝐾 ×t 𝐿) ∈ Top ∧ (ℝ+ × 𝐷) ⊆ ((0[,)+∞) × 𝐷)) ∧ (⟨𝑢, 𝑣⟩ ∈ ((int‘(𝐾 ×t 𝐿))‘(ℝ+ × 𝐷)) ∧ (𝑥 ∈ (0[,)+∞), 𝑦𝐷 ↦ (𝑥𝑐𝑦)):((0[,)+∞) × 𝐷)⟶ℂ)) → ((𝑥 ∈ (0[,)+∞), 𝑦𝐷 ↦ (𝑥𝑐𝑦)) ∈ (((𝐾 ×t 𝐿) CnP 𝐽)‘⟨𝑢, 𝑣⟩) ↔ ((𝑥 ∈ (0[,)+∞), 𝑦𝐷 ↦ (𝑥𝑐𝑦)) ↾ (ℝ+ × 𝐷)) ∈ ((((𝐾 ×t 𝐿) ↾t (ℝ+ × 𝐷)) CnP 𝐽)‘⟨𝑢, 𝑣⟩)))
11095, 97, 102, 103, 109syl22anc 838 . . . . . 6 (((𝑢 ∈ (0[,)+∞) ∧ 𝑣𝐷) ∧ 0 < 𝑢) → ((𝑥 ∈ (0[,)+∞), 𝑦𝐷 ↦ (𝑥𝑐𝑦)) ∈ (((𝐾 ×t 𝐿) CnP 𝐽)‘⟨𝑢, 𝑣⟩) ↔ ((𝑥 ∈ (0[,)+∞), 𝑦𝐷 ↦ (𝑥𝑐𝑦)) ↾ (ℝ+ × 𝐷)) ∈ ((((𝐾 ×t 𝐿) ↾t (ℝ+ × 𝐷)) CnP 𝐽)‘⟨𝑢, 𝑣⟩)))
11191, 110mpbird 257 . . . . 5 (((𝑢 ∈ (0[,)+∞) ∧ 𝑣𝐷) ∧ 0 < 𝑢) → (𝑥 ∈ (0[,)+∞), 𝑦𝐷 ↦ (𝑥𝑐𝑦)) ∈ (((𝐾 ×t 𝐿) CnP 𝐽)‘⟨𝑢, 𝑣⟩))
11217a1i 11 . . . . . . . 8 (𝑣𝐷 → (𝑥 ∈ (0[,)+∞), 𝑦𝐷 ↦ (𝑥𝑐𝑦)):((0[,)+∞) × 𝐷)⟶ℂ)
113 eqid 2738 . . . . . . . . . . 11 (if((ℜ‘𝑣) ≤ 1, (ℜ‘𝑣), 1) / 2) = (if((ℜ‘𝑣) ≤ 1, (ℜ‘𝑣), 1) / 2)
114 eqid 2738 . . . . . . . . . . 11 if((if((ℜ‘𝑣) ≤ 1, (ℜ‘𝑣), 1) / 2) ≤ (𝑒𝑐(1 / (if((ℜ‘𝑣) ≤ 1, (ℜ‘𝑣), 1) / 2))), (if((ℜ‘𝑣) ≤ 1, (ℜ‘𝑣), 1) / 2), (𝑒𝑐(1 / (if((ℜ‘𝑣) ≤ 1, (ℜ‘𝑣), 1) / 2)))) = if((if((ℜ‘𝑣) ≤ 1, (ℜ‘𝑣), 1) / 2) ≤ (𝑒𝑐(1 / (if((ℜ‘𝑣) ≤ 1, (ℜ‘𝑣), 1) / 2))), (if((ℜ‘𝑣) ≤ 1, (ℜ‘𝑣), 1) / 2), (𝑒𝑐(1 / (if((ℜ‘𝑣) ≤ 1, (ℜ‘𝑣), 1) / 2))))
1155, 18, 58, 32, 113, 114cxpcn3lem 26028 . . . . . . . . . 10 ((𝑣𝐷𝑒 ∈ ℝ+) → ∃𝑑 ∈ ℝ+𝑎 ∈ (0[,)+∞)∀𝑏𝐷 (((abs‘𝑎) < 𝑑 ∧ (abs‘(𝑣𝑏)) < 𝑑) → (abs‘(𝑎𝑐𝑏)) < 𝑒))
116115ralrimiva 3142 . . . . . . . . 9 (𝑣𝐷 → ∀𝑒 ∈ ℝ+𝑑 ∈ ℝ+𝑎 ∈ (0[,)+∞)∀𝑏𝐷 (((abs‘𝑎) < 𝑑 ∧ (abs‘(𝑣𝑏)) < 𝑑) → (abs‘(𝑎𝑐𝑏)) < 𝑒))
117 0e0icopnf 13305 . . . . . . . . . . . . . . . . . 18 0 ∈ (0[,)+∞)
118117a1i 11 . . . . . . . . . . . . . . . . 17 ((𝑣𝐷 ∧ (𝑎 ∈ (0[,)+∞) ∧ 𝑏𝐷)) → 0 ∈ (0[,)+∞))
119 simprl 770 . . . . . . . . . . . . . . . . 17 ((𝑣𝐷 ∧ (𝑎 ∈ (0[,)+∞) ∧ 𝑏𝐷)) → 𝑎 ∈ (0[,)+∞))
120118, 119ovresd 7514 . . . . . . . . . . . . . . . 16 ((𝑣𝐷 ∧ (𝑎 ∈ (0[,)+∞) ∧ 𝑏𝐷)) → (0((abs ∘ − ) ↾ ((0[,)+∞) × (0[,)+∞)))𝑎) = (0(abs ∘ − )𝑎))
121 0cn 11081 . . . . . . . . . . . . . . . . 17 0 ∈ ℂ
1223, 119sselid 3941 . . . . . . . . . . . . . . . . 17 ((𝑣𝐷 ∧ (𝑎 ∈ (0[,)+∞) ∧ 𝑏𝐷)) → 𝑎 ∈ ℂ)
123 eqid 2738 . . . . . . . . . . . . . . . . . 18 (abs ∘ − ) = (abs ∘ − )
124123cnmetdval 24062 . . . . . . . . . . . . . . . . 17 ((0 ∈ ℂ ∧ 𝑎 ∈ ℂ) → (0(abs ∘ − )𝑎) = (abs‘(0 − 𝑎)))
125121, 122, 124sylancr 588 . . . . . . . . . . . . . . . 16 ((𝑣𝐷 ∧ (𝑎 ∈ (0[,)+∞) ∧ 𝑏𝐷)) → (0(abs ∘ − )𝑎) = (abs‘(0 − 𝑎)))
126 df-neg 11322 . . . . . . . . . . . . . . . . . 18 -𝑎 = (0 − 𝑎)
127126fveq2i 6841 . . . . . . . . . . . . . . . . 17 (abs‘-𝑎) = (abs‘(0 − 𝑎))
128122absnegd 15270 . . . . . . . . . . . . . . . . 17 ((𝑣𝐷 ∧ (𝑎 ∈ (0[,)+∞) ∧ 𝑏𝐷)) → (abs‘-𝑎) = (abs‘𝑎))
129127, 128eqtr3id 2792 . . . . . . . . . . . . . . . 16 ((𝑣𝐷 ∧ (𝑎 ∈ (0[,)+∞) ∧ 𝑏𝐷)) → (abs‘(0 − 𝑎)) = (abs‘𝑎))
130120, 125, 1293eqtrd 2782 . . . . . . . . . . . . . . 15 ((𝑣𝐷 ∧ (𝑎 ∈ (0[,)+∞) ∧ 𝑏𝐷)) → (0((abs ∘ − ) ↾ ((0[,)+∞) × (0[,)+∞)))𝑎) = (abs‘𝑎))
131130breq1d 5114 . . . . . . . . . . . . . 14 ((𝑣𝐷 ∧ (𝑎 ∈ (0[,)+∞) ∧ 𝑏𝐷)) → ((0((abs ∘ − ) ↾ ((0[,)+∞) × (0[,)+∞)))𝑎) < 𝑑 ↔ (abs‘𝑎) < 𝑑))
132 simpl 484 . . . . . . . . . . . . . . . . 17 ((𝑣𝐷 ∧ (𝑎 ∈ (0[,)+∞) ∧ 𝑏𝐷)) → 𝑣𝐷)
133 simprr 772 . . . . . . . . . . . . . . . . 17 ((𝑣𝐷 ∧ (𝑎 ∈ (0[,)+∞) ∧ 𝑏𝐷)) → 𝑏𝐷)
134132, 133ovresd 7514 . . . . . . . . . . . . . . . 16 ((𝑣𝐷 ∧ (𝑎 ∈ (0[,)+∞) ∧ 𝑏𝐷)) → (𝑣((abs ∘ − ) ↾ (𝐷 × 𝐷))𝑏) = (𝑣(abs ∘ − )𝑏))
13510, 132sselid 3941 . . . . . . . . . . . . . . . . 17 ((𝑣𝐷 ∧ (𝑎 ∈ (0[,)+∞) ∧ 𝑏𝐷)) → 𝑣 ∈ ℂ)
13610, 133sselid 3941 . . . . . . . . . . . . . . . . 17 ((𝑣𝐷 ∧ (𝑎 ∈ (0[,)+∞) ∧ 𝑏𝐷)) → 𝑏 ∈ ℂ)
137123cnmetdval 24062 . . . . . . . . . . . . . . . . 17 ((𝑣 ∈ ℂ ∧ 𝑏 ∈ ℂ) → (𝑣(abs ∘ − )𝑏) = (abs‘(𝑣𝑏)))
138135, 136, 137syl2anc 585 . . . . . . . . . . . . . . . 16 ((𝑣𝐷 ∧ (𝑎 ∈ (0[,)+∞) ∧ 𝑏𝐷)) → (𝑣(abs ∘ − )𝑏) = (abs‘(𝑣𝑏)))
139134, 138eqtrd 2778 . . . . . . . . . . . . . . 15 ((𝑣𝐷 ∧ (𝑎 ∈ (0[,)+∞) ∧ 𝑏𝐷)) → (𝑣((abs ∘ − ) ↾ (𝐷 × 𝐷))𝑏) = (abs‘(𝑣𝑏)))
140139breq1d 5114 . . . . . . . . . . . . . 14 ((𝑣𝐷 ∧ (𝑎 ∈ (0[,)+∞) ∧ 𝑏𝐷)) → ((𝑣((abs ∘ − ) ↾ (𝐷 × 𝐷))𝑏) < 𝑑 ↔ (abs‘(𝑣𝑏)) < 𝑑))
141131, 140anbi12d 632 . . . . . . . . . . . . 13 ((𝑣𝐷 ∧ (𝑎 ∈ (0[,)+∞) ∧ 𝑏𝐷)) → (((0((abs ∘ − ) ↾ ((0[,)+∞) × (0[,)+∞)))𝑎) < 𝑑 ∧ (𝑣((abs ∘ − ) ↾ (𝐷 × 𝐷))𝑏) < 𝑑) ↔ ((abs‘𝑎) < 𝑑 ∧ (abs‘(𝑣𝑏)) < 𝑑)))
142 oveq12 7359 . . . . . . . . . . . . . . . . . . 19 ((𝑥 = 0 ∧ 𝑦 = 𝑣) → (𝑥𝑐𝑦) = (0↑𝑐𝑣))
143 ovex 7383 . . . . . . . . . . . . . . . . . . 19 (0↑𝑐𝑣) ∈ V
144142, 15, 143ovmpoa 7503 . . . . . . . . . . . . . . . . . 18 ((0 ∈ (0[,)+∞) ∧ 𝑣𝐷) → (0(𝑥 ∈ (0[,)+∞), 𝑦𝐷 ↦ (𝑥𝑐𝑦))𝑣) = (0↑𝑐𝑣))
145117, 132, 144sylancr 588 . . . . . . . . . . . . . . . . 17 ((𝑣𝐷 ∧ (𝑎 ∈ (0[,)+∞) ∧ 𝑏𝐷)) → (0(𝑥 ∈ (0[,)+∞), 𝑦𝐷 ↦ (𝑥𝑐𝑦))𝑣) = (0↑𝑐𝑣))
1465eleq2i 2830 . . . . . . . . . . . . . . . . . . . . 21 (𝑣𝐷𝑣 ∈ (ℜ “ ℝ+))
147 ffn 6664 . . . . . . . . . . . . . . . . . . . . . 22 (ℜ:ℂ⟶ℝ → ℜ Fn ℂ)
148 elpreima 7004 . . . . . . . . . . . . . . . . . . . . . 22 (ℜ Fn ℂ → (𝑣 ∈ (ℜ “ ℝ+) ↔ (𝑣 ∈ ℂ ∧ (ℜ‘𝑣) ∈ ℝ+)))
1497, 147, 148mp2b 10 . . . . . . . . . . . . . . . . . . . . 21 (𝑣 ∈ (ℜ “ ℝ+) ↔ (𝑣 ∈ ℂ ∧ (ℜ‘𝑣) ∈ ℝ+))
150146, 149bitri 275 . . . . . . . . . . . . . . . . . . . 20 (𝑣𝐷 ↔ (𝑣 ∈ ℂ ∧ (ℜ‘𝑣) ∈ ℝ+))
151150simplbi 499 . . . . . . . . . . . . . . . . . . 19 (𝑣𝐷𝑣 ∈ ℂ)
152150simprbi 498 . . . . . . . . . . . . . . . . . . . . 21 (𝑣𝐷 → (ℜ‘𝑣) ∈ ℝ+)
153152rpne0d 12892 . . . . . . . . . . . . . . . . . . . 20 (𝑣𝐷 → (ℜ‘𝑣) ≠ 0)
154 fveq2 6838 . . . . . . . . . . . . . . . . . . . . . 22 (𝑣 = 0 → (ℜ‘𝑣) = (ℜ‘0))
155 re0 14972 . . . . . . . . . . . . . . . . . . . . . 22 (ℜ‘0) = 0
156154, 155eqtrdi 2794 . . . . . . . . . . . . . . . . . . . . 21 (𝑣 = 0 → (ℜ‘𝑣) = 0)
157156necon3i 2975 . . . . . . . . . . . . . . . . . . . 20 ((ℜ‘𝑣) ≠ 0 → 𝑣 ≠ 0)
158153, 157syl 17 . . . . . . . . . . . . . . . . . . 19 (𝑣𝐷𝑣 ≠ 0)
159151, 1580cxpd 25993 . . . . . . . . . . . . . . . . . 18 (𝑣𝐷 → (0↑𝑐𝑣) = 0)
160159adantr 482 . . . . . . . . . . . . . . . . 17 ((𝑣𝐷 ∧ (𝑎 ∈ (0[,)+∞) ∧ 𝑏𝐷)) → (0↑𝑐𝑣) = 0)
161145, 160eqtrd 2778 . . . . . . . . . . . . . . . 16 ((𝑣𝐷 ∧ (𝑎 ∈ (0[,)+∞) ∧ 𝑏𝐷)) → (0(𝑥 ∈ (0[,)+∞), 𝑦𝐷 ↦ (𝑥𝑐𝑦))𝑣) = 0)
162 oveq12 7359 . . . . . . . . . . . . . . . . . 18 ((𝑥 = 𝑎𝑦 = 𝑏) → (𝑥𝑐𝑦) = (𝑎𝑐𝑏))
163 ovex 7383 . . . . . . . . . . . . . . . . . 18 (𝑎𝑐𝑏) ∈ V
164162, 15, 163ovmpoa 7503 . . . . . . . . . . . . . . . . 17 ((𝑎 ∈ (0[,)+∞) ∧ 𝑏𝐷) → (𝑎(𝑥 ∈ (0[,)+∞), 𝑦𝐷 ↦ (𝑥𝑐𝑦))𝑏) = (𝑎𝑐𝑏))
165164adantl 483 . . . . . . . . . . . . . . . 16 ((𝑣𝐷 ∧ (𝑎 ∈ (0[,)+∞) ∧ 𝑏𝐷)) → (𝑎(𝑥 ∈ (0[,)+∞), 𝑦𝐷 ↦ (𝑥𝑐𝑦))𝑏) = (𝑎𝑐𝑏))
166161, 165oveq12d 7368 . . . . . . . . . . . . . . 15 ((𝑣𝐷 ∧ (𝑎 ∈ (0[,)+∞) ∧ 𝑏𝐷)) → ((0(𝑥 ∈ (0[,)+∞), 𝑦𝐷 ↦ (𝑥𝑐𝑦))𝑣)(abs ∘ − )(𝑎(𝑥 ∈ (0[,)+∞), 𝑦𝐷 ↦ (𝑥𝑐𝑦))𝑏)) = (0(abs ∘ − )(𝑎𝑐𝑏)))
167122, 136cxpcld 25991 . . . . . . . . . . . . . . . 16 ((𝑣𝐷 ∧ (𝑎 ∈ (0[,)+∞) ∧ 𝑏𝐷)) → (𝑎𝑐𝑏) ∈ ℂ)
168123cnmetdval 24062 . . . . . . . . . . . . . . . 16 ((0 ∈ ℂ ∧ (𝑎𝑐𝑏) ∈ ℂ) → (0(abs ∘ − )(𝑎𝑐𝑏)) = (abs‘(0 − (𝑎𝑐𝑏))))
169121, 167, 168sylancr 588 . . . . . . . . . . . . . . 15 ((𝑣𝐷 ∧ (𝑎 ∈ (0[,)+∞) ∧ 𝑏𝐷)) → (0(abs ∘ − )(𝑎𝑐𝑏)) = (abs‘(0 − (𝑎𝑐𝑏))))
170 df-neg 11322 . . . . . . . . . . . . . . . . 17 -(𝑎𝑐𝑏) = (0 − (𝑎𝑐𝑏))
171170fveq2i 6841 . . . . . . . . . . . . . . . 16 (abs‘-(𝑎𝑐𝑏)) = (abs‘(0 − (𝑎𝑐𝑏)))
172167absnegd 15270 . . . . . . . . . . . . . . . 16 ((𝑣𝐷 ∧ (𝑎 ∈ (0[,)+∞) ∧ 𝑏𝐷)) → (abs‘-(𝑎𝑐𝑏)) = (abs‘(𝑎𝑐𝑏)))
173171, 172eqtr3id 2792 . . . . . . . . . . . . . . 15 ((𝑣𝐷 ∧ (𝑎 ∈ (0[,)+∞) ∧ 𝑏𝐷)) → (abs‘(0 − (𝑎𝑐𝑏))) = (abs‘(𝑎𝑐𝑏)))
174166, 169, 1733eqtrd 2782 . . . . . . . . . . . . . 14 ((𝑣𝐷 ∧ (𝑎 ∈ (0[,)+∞) ∧ 𝑏𝐷)) → ((0(𝑥 ∈ (0[,)+∞), 𝑦𝐷 ↦ (𝑥𝑐𝑦))𝑣)(abs ∘ − )(𝑎(𝑥 ∈ (0[,)+∞), 𝑦𝐷 ↦ (𝑥𝑐𝑦))𝑏)) = (abs‘(𝑎𝑐𝑏)))
175174breq1d 5114 . . . . . . . . . . . . 13 ((𝑣𝐷 ∧ (𝑎 ∈ (0[,)+∞) ∧ 𝑏𝐷)) → (((0(𝑥 ∈ (0[,)+∞), 𝑦𝐷 ↦ (𝑥𝑐𝑦))𝑣)(abs ∘ − )(𝑎(𝑥 ∈ (0[,)+∞), 𝑦𝐷 ↦ (𝑥𝑐𝑦))𝑏)) < 𝑒 ↔ (abs‘(𝑎𝑐𝑏)) < 𝑒))
176141, 175imbi12d 345 . . . . . . . . . . . 12 ((𝑣𝐷 ∧ (𝑎 ∈ (0[,)+∞) ∧ 𝑏𝐷)) → ((((0((abs ∘ − ) ↾ ((0[,)+∞) × (0[,)+∞)))𝑎) < 𝑑 ∧ (𝑣((abs ∘ − ) ↾ (𝐷 × 𝐷))𝑏) < 𝑑) → ((0(𝑥 ∈ (0[,)+∞), 𝑦𝐷 ↦ (𝑥𝑐𝑦))𝑣)(abs ∘ − )(𝑎(𝑥 ∈ (0[,)+∞), 𝑦𝐷 ↦ (𝑥𝑐𝑦))𝑏)) < 𝑒) ↔ (((abs‘𝑎) < 𝑑 ∧ (abs‘(𝑣𝑏)) < 𝑑) → (abs‘(𝑎𝑐𝑏)) < 𝑒)))
1771762ralbidva 3209 . . . . . . . . . . 11 (𝑣𝐷 → (∀𝑎 ∈ (0[,)+∞)∀𝑏𝐷 (((0((abs ∘ − ) ↾ ((0[,)+∞) × (0[,)+∞)))𝑎) < 𝑑 ∧ (𝑣((abs ∘ − ) ↾ (𝐷 × 𝐷))𝑏) < 𝑑) → ((0(𝑥 ∈ (0[,)+∞), 𝑦𝐷 ↦ (𝑥𝑐𝑦))𝑣)(abs ∘ − )(𝑎(𝑥 ∈ (0[,)+∞), 𝑦𝐷 ↦ (𝑥𝑐𝑦))𝑏)) < 𝑒) ↔ ∀𝑎 ∈ (0[,)+∞)∀𝑏𝐷 (((abs‘𝑎) < 𝑑 ∧ (abs‘(𝑣𝑏)) < 𝑑) → (abs‘(𝑎𝑐𝑏)) < 𝑒)))
178177rexbidv 3174 . . . . . . . . . 10 (𝑣𝐷 → (∃𝑑 ∈ ℝ+𝑎 ∈ (0[,)+∞)∀𝑏𝐷 (((0((abs ∘ − ) ↾ ((0[,)+∞) × (0[,)+∞)))𝑎) < 𝑑 ∧ (𝑣((abs ∘ − ) ↾ (𝐷 × 𝐷))𝑏) < 𝑑) → ((0(𝑥 ∈ (0[,)+∞), 𝑦𝐷 ↦ (𝑥𝑐𝑦))𝑣)(abs ∘ − )(𝑎(𝑥 ∈ (0[,)+∞), 𝑦𝐷 ↦ (𝑥𝑐𝑦))𝑏)) < 𝑒) ↔ ∃𝑑 ∈ ℝ+𝑎 ∈ (0[,)+∞)∀𝑏𝐷 (((abs‘𝑎) < 𝑑 ∧ (abs‘(𝑣𝑏)) < 𝑑) → (abs‘(𝑎𝑐𝑏)) < 𝑒)))
179178ralbidv 3173 . . . . . . . . 9 (𝑣𝐷 → (∀𝑒 ∈ ℝ+𝑑 ∈ ℝ+𝑎 ∈ (0[,)+∞)∀𝑏𝐷 (((0((abs ∘ − ) ↾ ((0[,)+∞) × (0[,)+∞)))𝑎) < 𝑑 ∧ (𝑣((abs ∘ − ) ↾ (𝐷 × 𝐷))𝑏) < 𝑑) → ((0(𝑥 ∈ (0[,)+∞), 𝑦𝐷 ↦ (𝑥𝑐𝑦))𝑣)(abs ∘ − )(𝑎(𝑥 ∈ (0[,)+∞), 𝑦𝐷 ↦ (𝑥𝑐𝑦))𝑏)) < 𝑒) ↔ ∀𝑒 ∈ ℝ+𝑑 ∈ ℝ+𝑎 ∈ (0[,)+∞)∀𝑏𝐷 (((abs‘𝑎) < 𝑑 ∧ (abs‘(𝑣𝑏)) < 𝑑) → (abs‘(𝑎𝑐𝑏)) < 𝑒)))
180116, 179mpbird 257 . . . . . . . 8 (𝑣𝐷 → ∀𝑒 ∈ ℝ+𝑑 ∈ ℝ+𝑎 ∈ (0[,)+∞)∀𝑏𝐷 (((0((abs ∘ − ) ↾ ((0[,)+∞) × (0[,)+∞)))𝑎) < 𝑑 ∧ (𝑣((abs ∘ − ) ↾ (𝐷 × 𝐷))𝑏) < 𝑑) → ((0(𝑥 ∈ (0[,)+∞), 𝑦𝐷 ↦ (𝑥𝑐𝑦))𝑣)(abs ∘ − )(𝑎(𝑥 ∈ (0[,)+∞), 𝑦𝐷 ↦ (𝑥𝑐𝑦))𝑏)) < 𝑒))
181 cnxmet 24064 . . . . . . . . . . 11 (abs ∘ − ) ∈ (∞Met‘ℂ)
182181a1i 11 . . . . . . . . . 10 (𝑣𝐷 → (abs ∘ − ) ∈ (∞Met‘ℂ))
183 xmetres2 23642 . . . . . . . . . 10 (((abs ∘ − ) ∈ (∞Met‘ℂ) ∧ (0[,)+∞) ⊆ ℂ) → ((abs ∘ − ) ↾ ((0[,)+∞) × (0[,)+∞))) ∈ (∞Met‘(0[,)+∞)))
184182, 3, 183sylancl 587 . . . . . . . . 9 (𝑣𝐷 → ((abs ∘ − ) ↾ ((0[,)+∞) × (0[,)+∞))) ∈ (∞Met‘(0[,)+∞)))
185 xmetres2 23642 . . . . . . . . . 10 (((abs ∘ − ) ∈ (∞Met‘ℂ) ∧ 𝐷 ⊆ ℂ) → ((abs ∘ − ) ↾ (𝐷 × 𝐷)) ∈ (∞Met‘𝐷))
186182, 10, 185sylancl 587 . . . . . . . . 9 (𝑣𝐷 → ((abs ∘ − ) ↾ (𝐷 × 𝐷)) ∈ (∞Met‘𝐷))
187117a1i 11 . . . . . . . . 9 (𝑣𝐷 → 0 ∈ (0[,)+∞))
188 id 22 . . . . . . . . 9 (𝑣𝐷𝑣𝐷)
189 eqid 2738 . . . . . . . . . . . . 13 ((abs ∘ − ) ↾ ((0[,)+∞) × (0[,)+∞))) = ((abs ∘ − ) ↾ ((0[,)+∞) × (0[,)+∞)))
19018cnfldtopn 24073 . . . . . . . . . . . . 13 𝐽 = (MetOpen‘(abs ∘ − ))
191 eqid 2738 . . . . . . . . . . . . 13 (MetOpen‘((abs ∘ − ) ↾ ((0[,)+∞) × (0[,)+∞)))) = (MetOpen‘((abs ∘ − ) ↾ ((0[,)+∞) × (0[,)+∞))))
192189, 190, 191metrest 23808 . . . . . . . . . . . 12 (((abs ∘ − ) ∈ (∞Met‘ℂ) ∧ (0[,)+∞) ⊆ ℂ) → (𝐽t (0[,)+∞)) = (MetOpen‘((abs ∘ − ) ↾ ((0[,)+∞) × (0[,)+∞)))))
193181, 3, 192mp2an 691 . . . . . . . . . . 11 (𝐽t (0[,)+∞)) = (MetOpen‘((abs ∘ − ) ↾ ((0[,)+∞) × (0[,)+∞))))
19458, 193eqtri 2766 . . . . . . . . . 10 𝐾 = (MetOpen‘((abs ∘ − ) ↾ ((0[,)+∞) × (0[,)+∞))))
195 eqid 2738 . . . . . . . . . . . . 13 ((abs ∘ − ) ↾ (𝐷 × 𝐷)) = ((abs ∘ − ) ↾ (𝐷 × 𝐷))
196 eqid 2738 . . . . . . . . . . . . 13 (MetOpen‘((abs ∘ − ) ↾ (𝐷 × 𝐷))) = (MetOpen‘((abs ∘ − ) ↾ (𝐷 × 𝐷)))
197195, 190, 196metrest 23808 . . . . . . . . . . . 12 (((abs ∘ − ) ∈ (∞Met‘ℂ) ∧ 𝐷 ⊆ ℂ) → (𝐽t 𝐷) = (MetOpen‘((abs ∘ − ) ↾ (𝐷 × 𝐷))))
198181, 10, 197mp2an 691 . . . . . . . . . . 11 (𝐽t 𝐷) = (MetOpen‘((abs ∘ − ) ↾ (𝐷 × 𝐷)))
19932, 198eqtri 2766 . . . . . . . . . 10 𝐿 = (MetOpen‘((abs ∘ − ) ↾ (𝐷 × 𝐷)))
200194, 199, 190txmetcnp 23831 . . . . . . . . 9 (((((abs ∘ − ) ↾ ((0[,)+∞) × (0[,)+∞))) ∈ (∞Met‘(0[,)+∞)) ∧ ((abs ∘ − ) ↾ (𝐷 × 𝐷)) ∈ (∞Met‘𝐷) ∧ (abs ∘ − ) ∈ (∞Met‘ℂ)) ∧ (0 ∈ (0[,)+∞) ∧ 𝑣𝐷)) → ((𝑥 ∈ (0[,)+∞), 𝑦𝐷 ↦ (𝑥𝑐𝑦)) ∈ (((𝐾 ×t 𝐿) CnP 𝐽)‘⟨0, 𝑣⟩) ↔ ((𝑥 ∈ (0[,)+∞), 𝑦𝐷 ↦ (𝑥𝑐𝑦)):((0[,)+∞) × 𝐷)⟶ℂ ∧ ∀𝑒 ∈ ℝ+𝑑 ∈ ℝ+𝑎 ∈ (0[,)+∞)∀𝑏𝐷 (((0((abs ∘ − ) ↾ ((0[,)+∞) × (0[,)+∞)))𝑎) < 𝑑 ∧ (𝑣((abs ∘ − ) ↾ (𝐷 × 𝐷))𝑏) < 𝑑) → ((0(𝑥 ∈ (0[,)+∞), 𝑦𝐷 ↦ (𝑥𝑐𝑦))𝑣)(abs ∘ − )(𝑎(𝑥 ∈ (0[,)+∞), 𝑦𝐷 ↦ (𝑥𝑐𝑦))𝑏)) < 𝑒))))
201184, 186, 182, 187, 188, 200syl32anc 1379 . . . . . . . 8 (𝑣𝐷 → ((𝑥 ∈ (0[,)+∞), 𝑦𝐷 ↦ (𝑥𝑐𝑦)) ∈ (((𝐾 ×t 𝐿) CnP 𝐽)‘⟨0, 𝑣⟩) ↔ ((𝑥 ∈ (0[,)+∞), 𝑦𝐷 ↦ (𝑥𝑐𝑦)):((0[,)+∞) × 𝐷)⟶ℂ ∧ ∀𝑒 ∈ ℝ+𝑑 ∈ ℝ+𝑎 ∈ (0[,)+∞)∀𝑏𝐷 (((0((abs ∘ − ) ↾ ((0[,)+∞) × (0[,)+∞)))𝑎) < 𝑑 ∧ (𝑣((abs ∘ − ) ↾ (𝐷 × 𝐷))𝑏) < 𝑑) → ((0(𝑥 ∈ (0[,)+∞), 𝑦𝐷 ↦ (𝑥𝑐𝑦))𝑣)(abs ∘ − )(𝑎(𝑥 ∈ (0[,)+∞), 𝑦𝐷 ↦ (𝑥𝑐𝑦))𝑏)) < 𝑒))))
202112, 180, 201mpbir2and 712 . . . . . . 7 (𝑣𝐷 → (𝑥 ∈ (0[,)+∞), 𝑦𝐷 ↦ (𝑥𝑐𝑦)) ∈ (((𝐾 ×t 𝐿) CnP 𝐽)‘⟨0, 𝑣⟩))
203202ad2antlr 726 . . . . . 6 (((𝑢 ∈ (0[,)+∞) ∧ 𝑣𝐷) ∧ 0 = 𝑢) → (𝑥 ∈ (0[,)+∞), 𝑦𝐷 ↦ (𝑥𝑐𝑦)) ∈ (((𝐾 ×t 𝐿) CnP 𝐽)‘⟨0, 𝑣⟩))
204 simpr 486 . . . . . . . 8 (((𝑢 ∈ (0[,)+∞) ∧ 𝑣𝐷) ∧ 0 = 𝑢) → 0 = 𝑢)
205204opeq1d 4835 . . . . . . 7 (((𝑢 ∈ (0[,)+∞) ∧ 𝑣𝐷) ∧ 0 = 𝑢) → ⟨0, 𝑣⟩ = ⟨𝑢, 𝑣⟩)
206205fveq2d 6842 . . . . . 6 (((𝑢 ∈ (0[,)+∞) ∧ 𝑣𝐷) ∧ 0 = 𝑢) → (((𝐾 ×t 𝐿) CnP 𝐽)‘⟨0, 𝑣⟩) = (((𝐾 ×t 𝐿) CnP 𝐽)‘⟨𝑢, 𝑣⟩))
207203, 206eleqtrd 2841 . . . . 5 (((𝑢 ∈ (0[,)+∞) ∧ 𝑣𝐷) ∧ 0 = 𝑢) → (𝑥 ∈ (0[,)+∞), 𝑦𝐷 ↦ (𝑥𝑐𝑦)) ∈ (((𝐾 ×t 𝐿) CnP 𝐽)‘⟨𝑢, 𝑣⟩))
20839simprbi 498 . . . . . . 7 (𝑢 ∈ (0[,)+∞) → 0 ≤ 𝑢)
209208adantr 482 . . . . . 6 ((𝑢 ∈ (0[,)+∞) ∧ 𝑣𝐷) → 0 ≤ 𝑢)
210 0re 11091 . . . . . . 7 0 ∈ ℝ
211 leloe 11175 . . . . . . 7 ((0 ∈ ℝ ∧ 𝑢 ∈ ℝ) → (0 ≤ 𝑢 ↔ (0 < 𝑢 ∨ 0 = 𝑢)))
212210, 41, 211sylancr 588 . . . . . 6 ((𝑢 ∈ (0[,)+∞) ∧ 𝑣𝐷) → (0 ≤ 𝑢 ↔ (0 < 𝑢 ∨ 0 = 𝑢)))
213209, 212mpbid 231 . . . . 5 ((𝑢 ∈ (0[,)+∞) ∧ 𝑣𝐷) → (0 < 𝑢 ∨ 0 = 𝑢))
214111, 207, 213mpjaodan 958 . . . 4 ((𝑢 ∈ (0[,)+∞) ∧ 𝑣𝐷) → (𝑥 ∈ (0[,)+∞), 𝑦𝐷 ↦ (𝑥𝑐𝑦)) ∈ (((𝐾 ×t 𝐿) CnP 𝐽)‘⟨𝑢, 𝑣⟩))
215214rgen2 3193 . . 3 𝑢 ∈ (0[,)+∞)∀𝑣𝐷 (𝑥 ∈ (0[,)+∞), 𝑦𝐷 ↦ (𝑥𝑐𝑦)) ∈ (((𝐾 ×t 𝐿) CnP 𝐽)‘⟨𝑢, 𝑣⟩)
216 fveq2 6838 . . . . 5 (𝑧 = ⟨𝑢, 𝑣⟩ → (((𝐾 ×t 𝐿) CnP 𝐽)‘𝑧) = (((𝐾 ×t 𝐿) CnP 𝐽)‘⟨𝑢, 𝑣⟩))
217216eleq2d 2824 . . . 4 (𝑧 = ⟨𝑢, 𝑣⟩ → ((𝑥 ∈ (0[,)+∞), 𝑦𝐷 ↦ (𝑥𝑐𝑦)) ∈ (((𝐾 ×t 𝐿) CnP 𝐽)‘𝑧) ↔ (𝑥 ∈ (0[,)+∞), 𝑦𝐷 ↦ (𝑥𝑐𝑦)) ∈ (((𝐾 ×t 𝐿) CnP 𝐽)‘⟨𝑢, 𝑣⟩)))
218217ralxp 5794 . . 3 (∀𝑧 ∈ ((0[,)+∞) × 𝐷)(𝑥 ∈ (0[,)+∞), 𝑦𝐷 ↦ (𝑥𝑐𝑦)) ∈ (((𝐾 ×t 𝐿) CnP 𝐽)‘𝑧) ↔ ∀𝑢 ∈ (0[,)+∞)∀𝑣𝐷 (𝑥 ∈ (0[,)+∞), 𝑦𝐷 ↦ (𝑥𝑐𝑦)) ∈ (((𝐾 ×t 𝐿) CnP 𝐽)‘⟨𝑢, 𝑣⟩))
219215, 218mpbir 230 . 2 𝑧 ∈ ((0[,)+∞) × 𝐷)(𝑥 ∈ (0[,)+∞), 𝑦𝐷 ↦ (𝑥𝑐𝑦)) ∈ (((𝐾 ×t 𝐿) CnP 𝐽)‘𝑧)
220 cncnp 22559 . . 3 (((𝐾 ×t 𝐿) ∈ (TopOn‘((0[,)+∞) × 𝐷)) ∧ 𝐽 ∈ (TopOn‘ℂ)) → ((𝑥 ∈ (0[,)+∞), 𝑦𝐷 ↦ (𝑥𝑐𝑦)) ∈ ((𝐾 ×t 𝐿) Cn 𝐽) ↔ ((𝑥 ∈ (0[,)+∞), 𝑦𝐷 ↦ (𝑥𝑐𝑦)):((0[,)+∞) × 𝐷)⟶ℂ ∧ ∀𝑧 ∈ ((0[,)+∞) × 𝐷)(𝑥 ∈ (0[,)+∞), 𝑦𝐷 ↦ (𝑥𝑐𝑦)) ∈ (((𝐾 ×t 𝐿) CnP 𝐽)‘𝑧))))
22193, 19, 220mp2an 691 . 2 ((𝑥 ∈ (0[,)+∞), 𝑦𝐷 ↦ (𝑥𝑐𝑦)) ∈ ((𝐾 ×t 𝐿) Cn 𝐽) ↔ ((𝑥 ∈ (0[,)+∞), 𝑦𝐷 ↦ (𝑥𝑐𝑦)):((0[,)+∞) × 𝐷)⟶ℂ ∧ ∀𝑧 ∈ ((0[,)+∞) × 𝐷)(𝑥 ∈ (0[,)+∞), 𝑦𝐷 ↦ (𝑥𝑐𝑦)) ∈ (((𝐾 ×t 𝐿) CnP 𝐽)‘𝑧)))
22217, 219, 221mpbir2an 710 1 (𝑥 ∈ (0[,)+∞), 𝑦𝐷 ↦ (𝑥𝑐𝑦)) ∈ ((𝐾 ×t 𝐿) Cn 𝐽)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 397  wo 846  w3a 1088   = wceq 1542  wcel 2107  wne 2942  wral 3063  wrex 3072  Vcvv 3444  wss 3909  ifcif 4485  cop 4591   class class class wbr 5104   × cxp 5629  ccnv 5630  dom cdm 5631  ran crn 5632  cres 5633  cima 5634  ccom 5635   Fn wfn 6487  wf 6488  cfv 6492  (class class class)co 7350  cmpo 7352  cc 10983  cr 10984  0cc0 10985  1c1 10986  +∞cpnf 11120   < clt 11123  cle 11124  cmin 11319  -cneg 11320   / cdiv 11746  2c2 12142  +crp 12845  (,)cioo 13194  [,)cico 13196  cre 14917  abscabs 15054  t crest 17238  TopOpenctopn 17239  topGenctg 17255  ∞Metcxmet 20710  MetOpencmopn 20715  fldccnfld 20725  Topctop 22170  TopOnctopon 22187  intcnt 22296   Cn ccn 22503   CnP ccnp 22504   ×t ctx 22839  𝑐ccxp 25839
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2709  ax-rep 5241  ax-sep 5255  ax-nul 5262  ax-pow 5319  ax-pr 5383  ax-un 7663  ax-inf2 9511  ax-cnex 11041  ax-resscn 11042  ax-1cn 11043  ax-icn 11044  ax-addcl 11045  ax-addrcl 11046  ax-mulcl 11047  ax-mulrcl 11048  ax-mulcom 11049  ax-addass 11050  ax-mulass 11051  ax-distr 11052  ax-i2m1 11053  ax-1ne0 11054  ax-1rid 11055  ax-rnegex 11056  ax-rrecex 11057  ax-cnre 11058  ax-pre-lttri 11059  ax-pre-lttrn 11060  ax-pre-ltadd 11061  ax-pre-mulgt0 11062  ax-pre-sup 11063  ax-addf 11064  ax-mulf 11065
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3064  df-rex 3073  df-rmo 3352  df-reu 3353  df-rab 3407  df-v 3446  df-sbc 3739  df-csb 3855  df-dif 3912  df-un 3914  df-in 3916  df-ss 3926  df-pss 3928  df-nul 4282  df-if 4486  df-pw 4561  df-sn 4586  df-pr 4588  df-tp 4590  df-op 4592  df-uni 4865  df-int 4907  df-iun 4955  df-iin 4956  df-br 5105  df-opab 5167  df-mpt 5188  df-tr 5222  df-id 5529  df-eprel 5535  df-po 5543  df-so 5544  df-fr 5586  df-se 5587  df-we 5588  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6250  df-ord 6317  df-on 6318  df-lim 6319  df-suc 6320  df-iota 6444  df-fun 6494  df-fn 6495  df-f 6496  df-f1 6497  df-fo 6498  df-f1o 6499  df-fv 6500  df-isom 6501  df-riota 7306  df-ov 7353  df-oprab 7354  df-mpo 7355  df-of 7608  df-om 7794  df-1st 7912  df-2nd 7913  df-supp 8061  df-frecs 8180  df-wrecs 8211  df-recs 8285  df-rdg 8324  df-1o 8380  df-2o 8381  df-er 8582  df-map 8701  df-pm 8702  df-ixp 8770  df-en 8818  df-dom 8819  df-sdom 8820  df-fin 8821  df-fsupp 9240  df-fi 9281  df-sup 9312  df-inf 9313  df-oi 9380  df-card 9809  df-pnf 11125  df-mnf 11126  df-xr 11127  df-ltxr 11128  df-le 11129  df-sub 11321  df-neg 11322  df-div 11747  df-nn 12088  df-2 12150  df-3 12151  df-4 12152  df-5 12153  df-6 12154  df-7 12155  df-8 12156  df-9 12157  df-n0 12348  df-z 12434  df-dec 12553  df-uz 12698  df-q 12804  df-rp 12846  df-xneg 12963  df-xadd 12964  df-xmul 12965  df-ioo 13198  df-ioc 13199  df-ico 13200  df-icc 13201  df-fz 13355  df-fzo 13498  df-fl 13627  df-mod 13705  df-seq 13837  df-exp 13898  df-fac 14103  df-bc 14132  df-hash 14160  df-shft 14887  df-cj 14919  df-re 14920  df-im 14921  df-sqrt 15055  df-abs 15056  df-limsup 15289  df-clim 15306  df-rlim 15307  df-sum 15507  df-ef 15886  df-sin 15888  df-cos 15889  df-tan 15890  df-pi 15891  df-struct 16955  df-sets 16972  df-slot 16990  df-ndx 17002  df-base 17020  df-ress 17049  df-plusg 17082  df-mulr 17083  df-starv 17084  df-sca 17085  df-vsca 17086  df-ip 17087  df-tset 17088  df-ple 17089  df-ds 17091  df-unif 17092  df-hom 17093  df-cco 17094  df-rest 17240  df-topn 17241  df-0g 17259  df-gsum 17260  df-topgen 17261  df-pt 17262  df-prds 17265  df-xrs 17320  df-qtop 17325  df-imas 17326  df-xps 17328  df-mre 17402  df-mrc 17403  df-acs 17405  df-mgm 18433  df-sgrp 18482  df-mnd 18493  df-submnd 18538  df-mulg 18808  df-cntz 19032  df-cmn 19499  df-psmet 20717  df-xmet 20718  df-met 20719  df-bl 20720  df-mopn 20721  df-fbas 20722  df-fg 20723  df-cnfld 20726  df-top 22171  df-topon 22188  df-topsp 22210  df-bases 22224  df-cld 22298  df-ntr 22299  df-cls 22300  df-nei 22377  df-lp 22415  df-perf 22416  df-cn 22506  df-cnp 22507  df-haus 22594  df-cmp 22666  df-tx 22841  df-hmeo 23034  df-fil 23125  df-fm 23217  df-flim 23218  df-flf 23219  df-xms 23601  df-ms 23602  df-tms 23603  df-cncf 24169  df-limc 25158  df-dv 25159  df-log 25840  df-cxp 25841
This theorem is referenced by:  resqrtcn  26030
  Copyright terms: Public domain W3C validator