MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cxpcn3 Structured version   Visualization version   GIF version

Theorem cxpcn3 26674
Description: Extend continuity of the complex power function to a base of zero, as long as the exponent has strictly positive real part. (Contributed by Mario Carneiro, 2-May-2016.)
Hypotheses
Ref Expression
cxpcn3.d 𝐷 = (ℜ “ ℝ+)
cxpcn3.j 𝐽 = (TopOpen‘ℂfld)
cxpcn3.k 𝐾 = (𝐽t (0[,)+∞))
cxpcn3.l 𝐿 = (𝐽t 𝐷)
Assertion
Ref Expression
cxpcn3 (𝑥 ∈ (0[,)+∞), 𝑦𝐷 ↦ (𝑥𝑐𝑦)) ∈ ((𝐾 ×t 𝐿) Cn 𝐽)
Distinct variable groups:   𝑥,𝑦,𝐽   𝑥,𝐷,𝑦
Allowed substitution hints:   𝐾(𝑥,𝑦)   𝐿(𝑥,𝑦)

Proof of Theorem cxpcn3
Dummy variables 𝑎 𝑏 𝑑 𝑒 𝑢 𝑣 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 rge0ssre 13377 . . . . . . 7 (0[,)+∞) ⊆ ℝ
2 ax-resscn 11085 . . . . . . 7 ℝ ⊆ ℂ
31, 2sstri 3947 . . . . . 6 (0[,)+∞) ⊆ ℂ
43sseli 3933 . . . . 5 (𝑥 ∈ (0[,)+∞) → 𝑥 ∈ ℂ)
5 cxpcn3.d . . . . . . 7 𝐷 = (ℜ “ ℝ+)
6 cnvimass 6037 . . . . . . . 8 (ℜ “ ℝ+) ⊆ dom ℜ
7 ref 15037 . . . . . . . . 9 ℜ:ℂ⟶ℝ
87fdmi 6667 . . . . . . . 8 dom ℜ = ℂ
96, 8sseqtri 3986 . . . . . . 7 (ℜ “ ℝ+) ⊆ ℂ
105, 9eqsstri 3984 . . . . . 6 𝐷 ⊆ ℂ
1110sseli 3933 . . . . 5 (𝑦𝐷𝑦 ∈ ℂ)
12 cxpcl 26599 . . . . 5 ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (𝑥𝑐𝑦) ∈ ℂ)
134, 11, 12syl2an 596 . . . 4 ((𝑥 ∈ (0[,)+∞) ∧ 𝑦𝐷) → (𝑥𝑐𝑦) ∈ ℂ)
1413rgen2 3169 . . 3 𝑥 ∈ (0[,)+∞)∀𝑦𝐷 (𝑥𝑐𝑦) ∈ ℂ
15 eqid 2729 . . . 4 (𝑥 ∈ (0[,)+∞), 𝑦𝐷 ↦ (𝑥𝑐𝑦)) = (𝑥 ∈ (0[,)+∞), 𝑦𝐷 ↦ (𝑥𝑐𝑦))
1615fmpo 8010 . . 3 (∀𝑥 ∈ (0[,)+∞)∀𝑦𝐷 (𝑥𝑐𝑦) ∈ ℂ ↔ (𝑥 ∈ (0[,)+∞), 𝑦𝐷 ↦ (𝑥𝑐𝑦)):((0[,)+∞) × 𝐷)⟶ℂ)
1714, 16mpbi 230 . 2 (𝑥 ∈ (0[,)+∞), 𝑦𝐷 ↦ (𝑥𝑐𝑦)):((0[,)+∞) × 𝐷)⟶ℂ
18 cxpcn3.j . . . . . . . . . . . 12 𝐽 = (TopOpen‘ℂfld)
1918cnfldtopon 24686 . . . . . . . . . . 11 𝐽 ∈ (TopOn‘ℂ)
20 rpre 12920 . . . . . . . . . . . . . 14 (𝑥 ∈ ℝ+𝑥 ∈ ℝ)
21 rpge0 12925 . . . . . . . . . . . . . 14 (𝑥 ∈ ℝ+ → 0 ≤ 𝑥)
22 elrege0 13375 . . . . . . . . . . . . . 14 (𝑥 ∈ (0[,)+∞) ↔ (𝑥 ∈ ℝ ∧ 0 ≤ 𝑥))
2320, 21, 22sylanbrc 583 . . . . . . . . . . . . 13 (𝑥 ∈ ℝ+𝑥 ∈ (0[,)+∞))
2423ssriv 3941 . . . . . . . . . . . 12 + ⊆ (0[,)+∞)
2524, 3sstri 3947 . . . . . . . . . . 11 + ⊆ ℂ
26 resttopon 23064 . . . . . . . . . . 11 ((𝐽 ∈ (TopOn‘ℂ) ∧ ℝ+ ⊆ ℂ) → (𝐽t+) ∈ (TopOn‘ℝ+))
2719, 25, 26mp2an 692 . . . . . . . . . 10 (𝐽t+) ∈ (TopOn‘ℝ+)
2827toponrestid 22824 . . . . . . . . 9 (𝐽t+) = ((𝐽t+) ↾t+)
2927a1i 11 . . . . . . . . 9 (((𝑢 ∈ (0[,)+∞) ∧ 𝑣𝐷) ∧ 0 < 𝑢) → (𝐽t+) ∈ (TopOn‘ℝ+))
30 ssid 3960 . . . . . . . . . 10 + ⊆ ℝ+
3130a1i 11 . . . . . . . . 9 (((𝑢 ∈ (0[,)+∞) ∧ 𝑣𝐷) ∧ 0 < 𝑢) → ℝ+ ⊆ ℝ+)
32 cxpcn3.l . . . . . . . . 9 𝐿 = (𝐽t 𝐷)
3319a1i 11 . . . . . . . . 9 (((𝑢 ∈ (0[,)+∞) ∧ 𝑣𝐷) ∧ 0 < 𝑢) → 𝐽 ∈ (TopOn‘ℂ))
3410a1i 11 . . . . . . . . 9 (((𝑢 ∈ (0[,)+∞) ∧ 𝑣𝐷) ∧ 0 < 𝑢) → 𝐷 ⊆ ℂ)
35 eqid 2729 . . . . . . . . . . 11 (𝐽t+) = (𝐽t+)
3618, 35cxpcn2 26672 . . . . . . . . . 10 (𝑥 ∈ ℝ+, 𝑦 ∈ ℂ ↦ (𝑥𝑐𝑦)) ∈ (((𝐽t+) ×t 𝐽) Cn 𝐽)
3736a1i 11 . . . . . . . . 9 (((𝑢 ∈ (0[,)+∞) ∧ 𝑣𝐷) ∧ 0 < 𝑢) → (𝑥 ∈ ℝ+, 𝑦 ∈ ℂ ↦ (𝑥𝑐𝑦)) ∈ (((𝐽t+) ×t 𝐽) Cn 𝐽))
3828, 29, 31, 32, 33, 34, 37cnmpt2res 23580 . . . . . . . 8 (((𝑢 ∈ (0[,)+∞) ∧ 𝑣𝐷) ∧ 0 < 𝑢) → (𝑥 ∈ ℝ+, 𝑦𝐷 ↦ (𝑥𝑐𝑦)) ∈ (((𝐽t+) ×t 𝐿) Cn 𝐽))
39 elrege0 13375 . . . . . . . . . . . . 13 (𝑢 ∈ (0[,)+∞) ↔ (𝑢 ∈ ℝ ∧ 0 ≤ 𝑢))
4039simplbi 497 . . . . . . . . . . . 12 (𝑢 ∈ (0[,)+∞) → 𝑢 ∈ ℝ)
4140adantr 480 . . . . . . . . . . 11 ((𝑢 ∈ (0[,)+∞) ∧ 𝑣𝐷) → 𝑢 ∈ ℝ)
4241adantr 480 . . . . . . . . . 10 (((𝑢 ∈ (0[,)+∞) ∧ 𝑣𝐷) ∧ 0 < 𝑢) → 𝑢 ∈ ℝ)
43 simpr 484 . . . . . . . . . 10 (((𝑢 ∈ (0[,)+∞) ∧ 𝑣𝐷) ∧ 0 < 𝑢) → 0 < 𝑢)
4442, 43elrpd 12952 . . . . . . . . 9 (((𝑢 ∈ (0[,)+∞) ∧ 𝑣𝐷) ∧ 0 < 𝑢) → 𝑢 ∈ ℝ+)
45 simplr 768 . . . . . . . . 9 (((𝑢 ∈ (0[,)+∞) ∧ 𝑣𝐷) ∧ 0 < 𝑢) → 𝑣𝐷)
4644, 45opelxpd 5662 . . . . . . . 8 (((𝑢 ∈ (0[,)+∞) ∧ 𝑣𝐷) ∧ 0 < 𝑢) → ⟨𝑢, 𝑣⟩ ∈ (ℝ+ × 𝐷))
47 resttopon 23064 . . . . . . . . . . . . 13 ((𝐽 ∈ (TopOn‘ℂ) ∧ 𝐷 ⊆ ℂ) → (𝐽t 𝐷) ∈ (TopOn‘𝐷))
4819, 10, 47mp2an 692 . . . . . . . . . . . 12 (𝐽t 𝐷) ∈ (TopOn‘𝐷)
4932, 48eqeltri 2824 . . . . . . . . . . 11 𝐿 ∈ (TopOn‘𝐷)
50 txtopon 23494 . . . . . . . . . . 11 (((𝐽t+) ∈ (TopOn‘ℝ+) ∧ 𝐿 ∈ (TopOn‘𝐷)) → ((𝐽t+) ×t 𝐿) ∈ (TopOn‘(ℝ+ × 𝐷)))
5127, 49, 50mp2an 692 . . . . . . . . . 10 ((𝐽t+) ×t 𝐿) ∈ (TopOn‘(ℝ+ × 𝐷))
5251toponunii 22819 . . . . . . . . 9 (ℝ+ × 𝐷) = ((𝐽t+) ×t 𝐿)
5352cncnpi 23181 . . . . . . . 8 (((𝑥 ∈ ℝ+, 𝑦𝐷 ↦ (𝑥𝑐𝑦)) ∈ (((𝐽t+) ×t 𝐿) Cn 𝐽) ∧ ⟨𝑢, 𝑣⟩ ∈ (ℝ+ × 𝐷)) → (𝑥 ∈ ℝ+, 𝑦𝐷 ↦ (𝑥𝑐𝑦)) ∈ ((((𝐽t+) ×t 𝐿) CnP 𝐽)‘⟨𝑢, 𝑣⟩))
5438, 46, 53syl2anc 584 . . . . . . 7 (((𝑢 ∈ (0[,)+∞) ∧ 𝑣𝐷) ∧ 0 < 𝑢) → (𝑥 ∈ ℝ+, 𝑦𝐷 ↦ (𝑥𝑐𝑦)) ∈ ((((𝐽t+) ×t 𝐿) CnP 𝐽)‘⟨𝑢, 𝑣⟩))
55 ssid 3960 . . . . . . . 8 𝐷𝐷
56 resmpo 7473 . . . . . . . 8 ((ℝ+ ⊆ (0[,)+∞) ∧ 𝐷𝐷) → ((𝑥 ∈ (0[,)+∞), 𝑦𝐷 ↦ (𝑥𝑐𝑦)) ↾ (ℝ+ × 𝐷)) = (𝑥 ∈ ℝ+, 𝑦𝐷 ↦ (𝑥𝑐𝑦)))
5724, 55, 56mp2an 692 . . . . . . 7 ((𝑥 ∈ (0[,)+∞), 𝑦𝐷 ↦ (𝑥𝑐𝑦)) ↾ (ℝ+ × 𝐷)) = (𝑥 ∈ ℝ+, 𝑦𝐷 ↦ (𝑥𝑐𝑦))
58 cxpcn3.k . . . . . . . . . . . 12 𝐾 = (𝐽t (0[,)+∞))
59 resttopon 23064 . . . . . . . . . . . . 13 ((𝐽 ∈ (TopOn‘ℂ) ∧ (0[,)+∞) ⊆ ℂ) → (𝐽t (0[,)+∞)) ∈ (TopOn‘(0[,)+∞)))
6019, 3, 59mp2an 692 . . . . . . . . . . . 12 (𝐽t (0[,)+∞)) ∈ (TopOn‘(0[,)+∞))
6158, 60eqeltri 2824 . . . . . . . . . . 11 𝐾 ∈ (TopOn‘(0[,)+∞))
62 ioorp 13346 . . . . . . . . . . . . . 14 (0(,)+∞) = ℝ+
63 iooretop 24669 . . . . . . . . . . . . . 14 (0(,)+∞) ∈ (topGen‘ran (,))
6462, 63eqeltrri 2825 . . . . . . . . . . . . 13 + ∈ (topGen‘ran (,))
65 retop 24665 . . . . . . . . . . . . . . 15 (topGen‘ran (,)) ∈ Top
66 ovex 7386 . . . . . . . . . . . . . . 15 (0[,)+∞) ∈ V
67 restopnb 23078 . . . . . . . . . . . . . . 15 ((((topGen‘ran (,)) ∈ Top ∧ (0[,)+∞) ∈ V) ∧ (ℝ+ ∈ (topGen‘ran (,)) ∧ ℝ+ ⊆ (0[,)+∞) ∧ ℝ+ ⊆ ℝ+)) → (ℝ+ ∈ (topGen‘ran (,)) ↔ ℝ+ ∈ ((topGen‘ran (,)) ↾t (0[,)+∞))))
6865, 66, 67mpanl12 702 . . . . . . . . . . . . . 14 ((ℝ+ ∈ (topGen‘ran (,)) ∧ ℝ+ ⊆ (0[,)+∞) ∧ ℝ+ ⊆ ℝ+) → (ℝ+ ∈ (topGen‘ran (,)) ↔ ℝ+ ∈ ((topGen‘ran (,)) ↾t (0[,)+∞))))
6964, 24, 30, 68mp3an 1463 . . . . . . . . . . . . 13 (ℝ+ ∈ (topGen‘ran (,)) ↔ ℝ+ ∈ ((topGen‘ran (,)) ↾t (0[,)+∞)))
7064, 69mpbi 230 . . . . . . . . . . . 12 + ∈ ((topGen‘ran (,)) ↾t (0[,)+∞))
71 eqid 2729 . . . . . . . . . . . . . . 15 (topGen‘ran (,)) = (topGen‘ran (,))
7218, 71rerest 24708 . . . . . . . . . . . . . 14 ((0[,)+∞) ⊆ ℝ → (𝐽t (0[,)+∞)) = ((topGen‘ran (,)) ↾t (0[,)+∞)))
731, 72ax-mp 5 . . . . . . . . . . . . 13 (𝐽t (0[,)+∞)) = ((topGen‘ran (,)) ↾t (0[,)+∞))
7458, 73eqtri 2752 . . . . . . . . . . . 12 𝐾 = ((topGen‘ran (,)) ↾t (0[,)+∞))
7570, 74eleqtrri 2827 . . . . . . . . . . 11 +𝐾
76 toponmax 22829 . . . . . . . . . . . 12 (𝐿 ∈ (TopOn‘𝐷) → 𝐷𝐿)
7749, 76ax-mp 5 . . . . . . . . . . 11 𝐷𝐿
78 txrest 23534 . . . . . . . . . . 11 (((𝐾 ∈ (TopOn‘(0[,)+∞)) ∧ 𝐿 ∈ (TopOn‘𝐷)) ∧ (ℝ+𝐾𝐷𝐿)) → ((𝐾 ×t 𝐿) ↾t (ℝ+ × 𝐷)) = ((𝐾t+) ×t (𝐿t 𝐷)))
7961, 49, 75, 77, 78mp4an 693 . . . . . . . . . 10 ((𝐾 ×t 𝐿) ↾t (ℝ+ × 𝐷)) = ((𝐾t+) ×t (𝐿t 𝐷))
8058oveq1i 7363 . . . . . . . . . . . 12 (𝐾t+) = ((𝐽t (0[,)+∞)) ↾t+)
81 restabs 23068 . . . . . . . . . . . . 13 ((𝐽 ∈ (TopOn‘ℂ) ∧ ℝ+ ⊆ (0[,)+∞) ∧ (0[,)+∞) ∈ V) → ((𝐽t (0[,)+∞)) ↾t+) = (𝐽t+))
8219, 24, 66, 81mp3an 1463 . . . . . . . . . . . 12 ((𝐽t (0[,)+∞)) ↾t+) = (𝐽t+)
8380, 82eqtri 2752 . . . . . . . . . . 11 (𝐾t+) = (𝐽t+)
8449toponunii 22819 . . . . . . . . . . . . 13 𝐷 = 𝐿
8584restid 17355 . . . . . . . . . . . 12 (𝐿 ∈ (TopOn‘𝐷) → (𝐿t 𝐷) = 𝐿)
8649, 85ax-mp 5 . . . . . . . . . . 11 (𝐿t 𝐷) = 𝐿
8783, 86oveq12i 7365 . . . . . . . . . 10 ((𝐾t+) ×t (𝐿t 𝐷)) = ((𝐽t+) ×t 𝐿)
8879, 87eqtri 2752 . . . . . . . . 9 ((𝐾 ×t 𝐿) ↾t (ℝ+ × 𝐷)) = ((𝐽t+) ×t 𝐿)
8988oveq1i 7363 . . . . . . . 8 (((𝐾 ×t 𝐿) ↾t (ℝ+ × 𝐷)) CnP 𝐽) = (((𝐽t+) ×t 𝐿) CnP 𝐽)
9089fveq1i 6827 . . . . . . 7 ((((𝐾 ×t 𝐿) ↾t (ℝ+ × 𝐷)) CnP 𝐽)‘⟨𝑢, 𝑣⟩) = ((((𝐽t+) ×t 𝐿) CnP 𝐽)‘⟨𝑢, 𝑣⟩)
9154, 57, 903eltr4g 2845 . . . . . 6 (((𝑢 ∈ (0[,)+∞) ∧ 𝑣𝐷) ∧ 0 < 𝑢) → ((𝑥 ∈ (0[,)+∞), 𝑦𝐷 ↦ (𝑥𝑐𝑦)) ↾ (ℝ+ × 𝐷)) ∈ ((((𝐾 ×t 𝐿) ↾t (ℝ+ × 𝐷)) CnP 𝐽)‘⟨𝑢, 𝑣⟩))
92 txtopon 23494 . . . . . . . . . 10 ((𝐾 ∈ (TopOn‘(0[,)+∞)) ∧ 𝐿 ∈ (TopOn‘𝐷)) → (𝐾 ×t 𝐿) ∈ (TopOn‘((0[,)+∞) × 𝐷)))
9361, 49, 92mp2an 692 . . . . . . . . 9 (𝐾 ×t 𝐿) ∈ (TopOn‘((0[,)+∞) × 𝐷))
9493topontopi 22818 . . . . . . . 8 (𝐾 ×t 𝐿) ∈ Top
9594a1i 11 . . . . . . 7 (((𝑢 ∈ (0[,)+∞) ∧ 𝑣𝐷) ∧ 0 < 𝑢) → (𝐾 ×t 𝐿) ∈ Top)
96 xpss1 5642 . . . . . . . 8 (ℝ+ ⊆ (0[,)+∞) → (ℝ+ × 𝐷) ⊆ ((0[,)+∞) × 𝐷))
9724, 96mp1i 13 . . . . . . 7 (((𝑢 ∈ (0[,)+∞) ∧ 𝑣𝐷) ∧ 0 < 𝑢) → (ℝ+ × 𝐷) ⊆ ((0[,)+∞) × 𝐷))
98 txopn 23505 . . . . . . . . . 10 (((𝐾 ∈ (TopOn‘(0[,)+∞)) ∧ 𝐿 ∈ (TopOn‘𝐷)) ∧ (ℝ+𝐾𝐷𝐿)) → (ℝ+ × 𝐷) ∈ (𝐾 ×t 𝐿))
9961, 49, 75, 77, 98mp4an 693 . . . . . . . . 9 (ℝ+ × 𝐷) ∈ (𝐾 ×t 𝐿)
100 isopn3i 22985 . . . . . . . . 9 (((𝐾 ×t 𝐿) ∈ Top ∧ (ℝ+ × 𝐷) ∈ (𝐾 ×t 𝐿)) → ((int‘(𝐾 ×t 𝐿))‘(ℝ+ × 𝐷)) = (ℝ+ × 𝐷))
10194, 99, 100mp2an 692 . . . . . . . 8 ((int‘(𝐾 ×t 𝐿))‘(ℝ+ × 𝐷)) = (ℝ+ × 𝐷)
10246, 101eleqtrrdi 2839 . . . . . . 7 (((𝑢 ∈ (0[,)+∞) ∧ 𝑣𝐷) ∧ 0 < 𝑢) → ⟨𝑢, 𝑣⟩ ∈ ((int‘(𝐾 ×t 𝐿))‘(ℝ+ × 𝐷)))
10317a1i 11 . . . . . . 7 (((𝑢 ∈ (0[,)+∞) ∧ 𝑣𝐷) ∧ 0 < 𝑢) → (𝑥 ∈ (0[,)+∞), 𝑦𝐷 ↦ (𝑥𝑐𝑦)):((0[,)+∞) × 𝐷)⟶ℂ)
10461topontopi 22818 . . . . . . . . 9 𝐾 ∈ Top
10549topontopi 22818 . . . . . . . . 9 𝐿 ∈ Top
10661toponunii 22819 . . . . . . . . 9 (0[,)+∞) = 𝐾
107104, 105, 106, 84txunii 23496 . . . . . . . 8 ((0[,)+∞) × 𝐷) = (𝐾 ×t 𝐿)
10819toponunii 22819 . . . . . . . 8 ℂ = 𝐽
109107, 108cnprest 23192 . . . . . . 7 ((((𝐾 ×t 𝐿) ∈ Top ∧ (ℝ+ × 𝐷) ⊆ ((0[,)+∞) × 𝐷)) ∧ (⟨𝑢, 𝑣⟩ ∈ ((int‘(𝐾 ×t 𝐿))‘(ℝ+ × 𝐷)) ∧ (𝑥 ∈ (0[,)+∞), 𝑦𝐷 ↦ (𝑥𝑐𝑦)):((0[,)+∞) × 𝐷)⟶ℂ)) → ((𝑥 ∈ (0[,)+∞), 𝑦𝐷 ↦ (𝑥𝑐𝑦)) ∈ (((𝐾 ×t 𝐿) CnP 𝐽)‘⟨𝑢, 𝑣⟩) ↔ ((𝑥 ∈ (0[,)+∞), 𝑦𝐷 ↦ (𝑥𝑐𝑦)) ↾ (ℝ+ × 𝐷)) ∈ ((((𝐾 ×t 𝐿) ↾t (ℝ+ × 𝐷)) CnP 𝐽)‘⟨𝑢, 𝑣⟩)))
11095, 97, 102, 103, 109syl22anc 838 . . . . . 6 (((𝑢 ∈ (0[,)+∞) ∧ 𝑣𝐷) ∧ 0 < 𝑢) → ((𝑥 ∈ (0[,)+∞), 𝑦𝐷 ↦ (𝑥𝑐𝑦)) ∈ (((𝐾 ×t 𝐿) CnP 𝐽)‘⟨𝑢, 𝑣⟩) ↔ ((𝑥 ∈ (0[,)+∞), 𝑦𝐷 ↦ (𝑥𝑐𝑦)) ↾ (ℝ+ × 𝐷)) ∈ ((((𝐾 ×t 𝐿) ↾t (ℝ+ × 𝐷)) CnP 𝐽)‘⟨𝑢, 𝑣⟩)))
11191, 110mpbird 257 . . . . 5 (((𝑢 ∈ (0[,)+∞) ∧ 𝑣𝐷) ∧ 0 < 𝑢) → (𝑥 ∈ (0[,)+∞), 𝑦𝐷 ↦ (𝑥𝑐𝑦)) ∈ (((𝐾 ×t 𝐿) CnP 𝐽)‘⟨𝑢, 𝑣⟩))
11217a1i 11 . . . . . . . 8 (𝑣𝐷 → (𝑥 ∈ (0[,)+∞), 𝑦𝐷 ↦ (𝑥𝑐𝑦)):((0[,)+∞) × 𝐷)⟶ℂ)
113 eqid 2729 . . . . . . . . . . 11 (if((ℜ‘𝑣) ≤ 1, (ℜ‘𝑣), 1) / 2) = (if((ℜ‘𝑣) ≤ 1, (ℜ‘𝑣), 1) / 2)
114 eqid 2729 . . . . . . . . . . 11 if((if((ℜ‘𝑣) ≤ 1, (ℜ‘𝑣), 1) / 2) ≤ (𝑒𝑐(1 / (if((ℜ‘𝑣) ≤ 1, (ℜ‘𝑣), 1) / 2))), (if((ℜ‘𝑣) ≤ 1, (ℜ‘𝑣), 1) / 2), (𝑒𝑐(1 / (if((ℜ‘𝑣) ≤ 1, (ℜ‘𝑣), 1) / 2)))) = if((if((ℜ‘𝑣) ≤ 1, (ℜ‘𝑣), 1) / 2) ≤ (𝑒𝑐(1 / (if((ℜ‘𝑣) ≤ 1, (ℜ‘𝑣), 1) / 2))), (if((ℜ‘𝑣) ≤ 1, (ℜ‘𝑣), 1) / 2), (𝑒𝑐(1 / (if((ℜ‘𝑣) ≤ 1, (ℜ‘𝑣), 1) / 2))))
1155, 18, 58, 32, 113, 114cxpcn3lem 26673 . . . . . . . . . 10 ((𝑣𝐷𝑒 ∈ ℝ+) → ∃𝑑 ∈ ℝ+𝑎 ∈ (0[,)+∞)∀𝑏𝐷 (((abs‘𝑎) < 𝑑 ∧ (abs‘(𝑣𝑏)) < 𝑑) → (abs‘(𝑎𝑐𝑏)) < 𝑒))
116115ralrimiva 3121 . . . . . . . . 9 (𝑣𝐷 → ∀𝑒 ∈ ℝ+𝑑 ∈ ℝ+𝑎 ∈ (0[,)+∞)∀𝑏𝐷 (((abs‘𝑎) < 𝑑 ∧ (abs‘(𝑣𝑏)) < 𝑑) → (abs‘(𝑎𝑐𝑏)) < 𝑒))
117 0e0icopnf 13379 . . . . . . . . . . . . . . . . . 18 0 ∈ (0[,)+∞)
118117a1i 11 . . . . . . . . . . . . . . . . 17 ((𝑣𝐷 ∧ (𝑎 ∈ (0[,)+∞) ∧ 𝑏𝐷)) → 0 ∈ (0[,)+∞))
119 simprl 770 . . . . . . . . . . . . . . . . 17 ((𝑣𝐷 ∧ (𝑎 ∈ (0[,)+∞) ∧ 𝑏𝐷)) → 𝑎 ∈ (0[,)+∞))
120118, 119ovresd 7520 . . . . . . . . . . . . . . . 16 ((𝑣𝐷 ∧ (𝑎 ∈ (0[,)+∞) ∧ 𝑏𝐷)) → (0((abs ∘ − ) ↾ ((0[,)+∞) × (0[,)+∞)))𝑎) = (0(abs ∘ − )𝑎))
121 0cn 11126 . . . . . . . . . . . . . . . . 17 0 ∈ ℂ
1223, 119sselid 3935 . . . . . . . . . . . . . . . . 17 ((𝑣𝐷 ∧ (𝑎 ∈ (0[,)+∞) ∧ 𝑏𝐷)) → 𝑎 ∈ ℂ)
123 eqid 2729 . . . . . . . . . . . . . . . . . 18 (abs ∘ − ) = (abs ∘ − )
124123cnmetdval 24674 . . . . . . . . . . . . . . . . 17 ((0 ∈ ℂ ∧ 𝑎 ∈ ℂ) → (0(abs ∘ − )𝑎) = (abs‘(0 − 𝑎)))
125121, 122, 124sylancr 587 . . . . . . . . . . . . . . . 16 ((𝑣𝐷 ∧ (𝑎 ∈ (0[,)+∞) ∧ 𝑏𝐷)) → (0(abs ∘ − )𝑎) = (abs‘(0 − 𝑎)))
126 df-neg 11368 . . . . . . . . . . . . . . . . . 18 -𝑎 = (0 − 𝑎)
127126fveq2i 6829 . . . . . . . . . . . . . . . . 17 (abs‘-𝑎) = (abs‘(0 − 𝑎))
128122absnegd 15377 . . . . . . . . . . . . . . . . 17 ((𝑣𝐷 ∧ (𝑎 ∈ (0[,)+∞) ∧ 𝑏𝐷)) → (abs‘-𝑎) = (abs‘𝑎))
129127, 128eqtr3id 2778 . . . . . . . . . . . . . . . 16 ((𝑣𝐷 ∧ (𝑎 ∈ (0[,)+∞) ∧ 𝑏𝐷)) → (abs‘(0 − 𝑎)) = (abs‘𝑎))
130120, 125, 1293eqtrd 2768 . . . . . . . . . . . . . . 15 ((𝑣𝐷 ∧ (𝑎 ∈ (0[,)+∞) ∧ 𝑏𝐷)) → (0((abs ∘ − ) ↾ ((0[,)+∞) × (0[,)+∞)))𝑎) = (abs‘𝑎))
131130breq1d 5105 . . . . . . . . . . . . . 14 ((𝑣𝐷 ∧ (𝑎 ∈ (0[,)+∞) ∧ 𝑏𝐷)) → ((0((abs ∘ − ) ↾ ((0[,)+∞) × (0[,)+∞)))𝑎) < 𝑑 ↔ (abs‘𝑎) < 𝑑))
132 simpl 482 . . . . . . . . . . . . . . . . 17 ((𝑣𝐷 ∧ (𝑎 ∈ (0[,)+∞) ∧ 𝑏𝐷)) → 𝑣𝐷)
133 simprr 772 . . . . . . . . . . . . . . . . 17 ((𝑣𝐷 ∧ (𝑎 ∈ (0[,)+∞) ∧ 𝑏𝐷)) → 𝑏𝐷)
134132, 133ovresd 7520 . . . . . . . . . . . . . . . 16 ((𝑣𝐷 ∧ (𝑎 ∈ (0[,)+∞) ∧ 𝑏𝐷)) → (𝑣((abs ∘ − ) ↾ (𝐷 × 𝐷))𝑏) = (𝑣(abs ∘ − )𝑏))
13510, 132sselid 3935 . . . . . . . . . . . . . . . . 17 ((𝑣𝐷 ∧ (𝑎 ∈ (0[,)+∞) ∧ 𝑏𝐷)) → 𝑣 ∈ ℂ)
13610, 133sselid 3935 . . . . . . . . . . . . . . . . 17 ((𝑣𝐷 ∧ (𝑎 ∈ (0[,)+∞) ∧ 𝑏𝐷)) → 𝑏 ∈ ℂ)
137123cnmetdval 24674 . . . . . . . . . . . . . . . . 17 ((𝑣 ∈ ℂ ∧ 𝑏 ∈ ℂ) → (𝑣(abs ∘ − )𝑏) = (abs‘(𝑣𝑏)))
138135, 136, 137syl2anc 584 . . . . . . . . . . . . . . . 16 ((𝑣𝐷 ∧ (𝑎 ∈ (0[,)+∞) ∧ 𝑏𝐷)) → (𝑣(abs ∘ − )𝑏) = (abs‘(𝑣𝑏)))
139134, 138eqtrd 2764 . . . . . . . . . . . . . . 15 ((𝑣𝐷 ∧ (𝑎 ∈ (0[,)+∞) ∧ 𝑏𝐷)) → (𝑣((abs ∘ − ) ↾ (𝐷 × 𝐷))𝑏) = (abs‘(𝑣𝑏)))
140139breq1d 5105 . . . . . . . . . . . . . 14 ((𝑣𝐷 ∧ (𝑎 ∈ (0[,)+∞) ∧ 𝑏𝐷)) → ((𝑣((abs ∘ − ) ↾ (𝐷 × 𝐷))𝑏) < 𝑑 ↔ (abs‘(𝑣𝑏)) < 𝑑))
141131, 140anbi12d 632 . . . . . . . . . . . . 13 ((𝑣𝐷 ∧ (𝑎 ∈ (0[,)+∞) ∧ 𝑏𝐷)) → (((0((abs ∘ − ) ↾ ((0[,)+∞) × (0[,)+∞)))𝑎) < 𝑑 ∧ (𝑣((abs ∘ − ) ↾ (𝐷 × 𝐷))𝑏) < 𝑑) ↔ ((abs‘𝑎) < 𝑑 ∧ (abs‘(𝑣𝑏)) < 𝑑)))
142 oveq12 7362 . . . . . . . . . . . . . . . . . . 19 ((𝑥 = 0 ∧ 𝑦 = 𝑣) → (𝑥𝑐𝑦) = (0↑𝑐𝑣))
143 ovex 7386 . . . . . . . . . . . . . . . . . . 19 (0↑𝑐𝑣) ∈ V
144142, 15, 143ovmpoa 7508 . . . . . . . . . . . . . . . . . 18 ((0 ∈ (0[,)+∞) ∧ 𝑣𝐷) → (0(𝑥 ∈ (0[,)+∞), 𝑦𝐷 ↦ (𝑥𝑐𝑦))𝑣) = (0↑𝑐𝑣))
145117, 132, 144sylancr 587 . . . . . . . . . . . . . . . . 17 ((𝑣𝐷 ∧ (𝑎 ∈ (0[,)+∞) ∧ 𝑏𝐷)) → (0(𝑥 ∈ (0[,)+∞), 𝑦𝐷 ↦ (𝑥𝑐𝑦))𝑣) = (0↑𝑐𝑣))
1465eleq2i 2820 . . . . . . . . . . . . . . . . . . . . 21 (𝑣𝐷𝑣 ∈ (ℜ “ ℝ+))
147 ffn 6656 . . . . . . . . . . . . . . . . . . . . . 22 (ℜ:ℂ⟶ℝ → ℜ Fn ℂ)
148 elpreima 6996 . . . . . . . . . . . . . . . . . . . . . 22 (ℜ Fn ℂ → (𝑣 ∈ (ℜ “ ℝ+) ↔ (𝑣 ∈ ℂ ∧ (ℜ‘𝑣) ∈ ℝ+)))
1497, 147, 148mp2b 10 . . . . . . . . . . . . . . . . . . . . 21 (𝑣 ∈ (ℜ “ ℝ+) ↔ (𝑣 ∈ ℂ ∧ (ℜ‘𝑣) ∈ ℝ+))
150146, 149bitri 275 . . . . . . . . . . . . . . . . . . . 20 (𝑣𝐷 ↔ (𝑣 ∈ ℂ ∧ (ℜ‘𝑣) ∈ ℝ+))
151150simplbi 497 . . . . . . . . . . . . . . . . . . 19 (𝑣𝐷𝑣 ∈ ℂ)
152150simprbi 496 . . . . . . . . . . . . . . . . . . . . 21 (𝑣𝐷 → (ℜ‘𝑣) ∈ ℝ+)
153152rpne0d 12960 . . . . . . . . . . . . . . . . . . . 20 (𝑣𝐷 → (ℜ‘𝑣) ≠ 0)
154 fveq2 6826 . . . . . . . . . . . . . . . . . . . . . 22 (𝑣 = 0 → (ℜ‘𝑣) = (ℜ‘0))
155 re0 15077 . . . . . . . . . . . . . . . . . . . . . 22 (ℜ‘0) = 0
156154, 155eqtrdi 2780 . . . . . . . . . . . . . . . . . . . . 21 (𝑣 = 0 → (ℜ‘𝑣) = 0)
157156necon3i 2957 . . . . . . . . . . . . . . . . . . . 20 ((ℜ‘𝑣) ≠ 0 → 𝑣 ≠ 0)
158153, 157syl 17 . . . . . . . . . . . . . . . . . . 19 (𝑣𝐷𝑣 ≠ 0)
159151, 1580cxpd 26635 . . . . . . . . . . . . . . . . . 18 (𝑣𝐷 → (0↑𝑐𝑣) = 0)
160159adantr 480 . . . . . . . . . . . . . . . . 17 ((𝑣𝐷 ∧ (𝑎 ∈ (0[,)+∞) ∧ 𝑏𝐷)) → (0↑𝑐𝑣) = 0)
161145, 160eqtrd 2764 . . . . . . . . . . . . . . . 16 ((𝑣𝐷 ∧ (𝑎 ∈ (0[,)+∞) ∧ 𝑏𝐷)) → (0(𝑥 ∈ (0[,)+∞), 𝑦𝐷 ↦ (𝑥𝑐𝑦))𝑣) = 0)
162 oveq12 7362 . . . . . . . . . . . . . . . . . 18 ((𝑥 = 𝑎𝑦 = 𝑏) → (𝑥𝑐𝑦) = (𝑎𝑐𝑏))
163 ovex 7386 . . . . . . . . . . . . . . . . . 18 (𝑎𝑐𝑏) ∈ V
164162, 15, 163ovmpoa 7508 . . . . . . . . . . . . . . . . 17 ((𝑎 ∈ (0[,)+∞) ∧ 𝑏𝐷) → (𝑎(𝑥 ∈ (0[,)+∞), 𝑦𝐷 ↦ (𝑥𝑐𝑦))𝑏) = (𝑎𝑐𝑏))
165164adantl 481 . . . . . . . . . . . . . . . 16 ((𝑣𝐷 ∧ (𝑎 ∈ (0[,)+∞) ∧ 𝑏𝐷)) → (𝑎(𝑥 ∈ (0[,)+∞), 𝑦𝐷 ↦ (𝑥𝑐𝑦))𝑏) = (𝑎𝑐𝑏))
166161, 165oveq12d 7371 . . . . . . . . . . . . . . 15 ((𝑣𝐷 ∧ (𝑎 ∈ (0[,)+∞) ∧ 𝑏𝐷)) → ((0(𝑥 ∈ (0[,)+∞), 𝑦𝐷 ↦ (𝑥𝑐𝑦))𝑣)(abs ∘ − )(𝑎(𝑥 ∈ (0[,)+∞), 𝑦𝐷 ↦ (𝑥𝑐𝑦))𝑏)) = (0(abs ∘ − )(𝑎𝑐𝑏)))
167122, 136cxpcld 26633 . . . . . . . . . . . . . . . 16 ((𝑣𝐷 ∧ (𝑎 ∈ (0[,)+∞) ∧ 𝑏𝐷)) → (𝑎𝑐𝑏) ∈ ℂ)
168123cnmetdval 24674 . . . . . . . . . . . . . . . 16 ((0 ∈ ℂ ∧ (𝑎𝑐𝑏) ∈ ℂ) → (0(abs ∘ − )(𝑎𝑐𝑏)) = (abs‘(0 − (𝑎𝑐𝑏))))
169121, 167, 168sylancr 587 . . . . . . . . . . . . . . 15 ((𝑣𝐷 ∧ (𝑎 ∈ (0[,)+∞) ∧ 𝑏𝐷)) → (0(abs ∘ − )(𝑎𝑐𝑏)) = (abs‘(0 − (𝑎𝑐𝑏))))
170 df-neg 11368 . . . . . . . . . . . . . . . . 17 -(𝑎𝑐𝑏) = (0 − (𝑎𝑐𝑏))
171170fveq2i 6829 . . . . . . . . . . . . . . . 16 (abs‘-(𝑎𝑐𝑏)) = (abs‘(0 − (𝑎𝑐𝑏)))
172167absnegd 15377 . . . . . . . . . . . . . . . 16 ((𝑣𝐷 ∧ (𝑎 ∈ (0[,)+∞) ∧ 𝑏𝐷)) → (abs‘-(𝑎𝑐𝑏)) = (abs‘(𝑎𝑐𝑏)))
173171, 172eqtr3id 2778 . . . . . . . . . . . . . . 15 ((𝑣𝐷 ∧ (𝑎 ∈ (0[,)+∞) ∧ 𝑏𝐷)) → (abs‘(0 − (𝑎𝑐𝑏))) = (abs‘(𝑎𝑐𝑏)))
174166, 169, 1733eqtrd 2768 . . . . . . . . . . . . . 14 ((𝑣𝐷 ∧ (𝑎 ∈ (0[,)+∞) ∧ 𝑏𝐷)) → ((0(𝑥 ∈ (0[,)+∞), 𝑦𝐷 ↦ (𝑥𝑐𝑦))𝑣)(abs ∘ − )(𝑎(𝑥 ∈ (0[,)+∞), 𝑦𝐷 ↦ (𝑥𝑐𝑦))𝑏)) = (abs‘(𝑎𝑐𝑏)))
175174breq1d 5105 . . . . . . . . . . . . 13 ((𝑣𝐷 ∧ (𝑎 ∈ (0[,)+∞) ∧ 𝑏𝐷)) → (((0(𝑥 ∈ (0[,)+∞), 𝑦𝐷 ↦ (𝑥𝑐𝑦))𝑣)(abs ∘ − )(𝑎(𝑥 ∈ (0[,)+∞), 𝑦𝐷 ↦ (𝑥𝑐𝑦))𝑏)) < 𝑒 ↔ (abs‘(𝑎𝑐𝑏)) < 𝑒))
176141, 175imbi12d 344 . . . . . . . . . . . 12 ((𝑣𝐷 ∧ (𝑎 ∈ (0[,)+∞) ∧ 𝑏𝐷)) → ((((0((abs ∘ − ) ↾ ((0[,)+∞) × (0[,)+∞)))𝑎) < 𝑑 ∧ (𝑣((abs ∘ − ) ↾ (𝐷 × 𝐷))𝑏) < 𝑑) → ((0(𝑥 ∈ (0[,)+∞), 𝑦𝐷 ↦ (𝑥𝑐𝑦))𝑣)(abs ∘ − )(𝑎(𝑥 ∈ (0[,)+∞), 𝑦𝐷 ↦ (𝑥𝑐𝑦))𝑏)) < 𝑒) ↔ (((abs‘𝑎) < 𝑑 ∧ (abs‘(𝑣𝑏)) < 𝑑) → (abs‘(𝑎𝑐𝑏)) < 𝑒)))
1771762ralbidva 3191 . . . . . . . . . . 11 (𝑣𝐷 → (∀𝑎 ∈ (0[,)+∞)∀𝑏𝐷 (((0((abs ∘ − ) ↾ ((0[,)+∞) × (0[,)+∞)))𝑎) < 𝑑 ∧ (𝑣((abs ∘ − ) ↾ (𝐷 × 𝐷))𝑏) < 𝑑) → ((0(𝑥 ∈ (0[,)+∞), 𝑦𝐷 ↦ (𝑥𝑐𝑦))𝑣)(abs ∘ − )(𝑎(𝑥 ∈ (0[,)+∞), 𝑦𝐷 ↦ (𝑥𝑐𝑦))𝑏)) < 𝑒) ↔ ∀𝑎 ∈ (0[,)+∞)∀𝑏𝐷 (((abs‘𝑎) < 𝑑 ∧ (abs‘(𝑣𝑏)) < 𝑑) → (abs‘(𝑎𝑐𝑏)) < 𝑒)))
178177rexbidv 3153 . . . . . . . . . 10 (𝑣𝐷 → (∃𝑑 ∈ ℝ+𝑎 ∈ (0[,)+∞)∀𝑏𝐷 (((0((abs ∘ − ) ↾ ((0[,)+∞) × (0[,)+∞)))𝑎) < 𝑑 ∧ (𝑣((abs ∘ − ) ↾ (𝐷 × 𝐷))𝑏) < 𝑑) → ((0(𝑥 ∈ (0[,)+∞), 𝑦𝐷 ↦ (𝑥𝑐𝑦))𝑣)(abs ∘ − )(𝑎(𝑥 ∈ (0[,)+∞), 𝑦𝐷 ↦ (𝑥𝑐𝑦))𝑏)) < 𝑒) ↔ ∃𝑑 ∈ ℝ+𝑎 ∈ (0[,)+∞)∀𝑏𝐷 (((abs‘𝑎) < 𝑑 ∧ (abs‘(𝑣𝑏)) < 𝑑) → (abs‘(𝑎𝑐𝑏)) < 𝑒)))
179178ralbidv 3152 . . . . . . . . 9 (𝑣𝐷 → (∀𝑒 ∈ ℝ+𝑑 ∈ ℝ+𝑎 ∈ (0[,)+∞)∀𝑏𝐷 (((0((abs ∘ − ) ↾ ((0[,)+∞) × (0[,)+∞)))𝑎) < 𝑑 ∧ (𝑣((abs ∘ − ) ↾ (𝐷 × 𝐷))𝑏) < 𝑑) → ((0(𝑥 ∈ (0[,)+∞), 𝑦𝐷 ↦ (𝑥𝑐𝑦))𝑣)(abs ∘ − )(𝑎(𝑥 ∈ (0[,)+∞), 𝑦𝐷 ↦ (𝑥𝑐𝑦))𝑏)) < 𝑒) ↔ ∀𝑒 ∈ ℝ+𝑑 ∈ ℝ+𝑎 ∈ (0[,)+∞)∀𝑏𝐷 (((abs‘𝑎) < 𝑑 ∧ (abs‘(𝑣𝑏)) < 𝑑) → (abs‘(𝑎𝑐𝑏)) < 𝑒)))
180116, 179mpbird 257 . . . . . . . 8 (𝑣𝐷 → ∀𝑒 ∈ ℝ+𝑑 ∈ ℝ+𝑎 ∈ (0[,)+∞)∀𝑏𝐷 (((0((abs ∘ − ) ↾ ((0[,)+∞) × (0[,)+∞)))𝑎) < 𝑑 ∧ (𝑣((abs ∘ − ) ↾ (𝐷 × 𝐷))𝑏) < 𝑑) → ((0(𝑥 ∈ (0[,)+∞), 𝑦𝐷 ↦ (𝑥𝑐𝑦))𝑣)(abs ∘ − )(𝑎(𝑥 ∈ (0[,)+∞), 𝑦𝐷 ↦ (𝑥𝑐𝑦))𝑏)) < 𝑒))
181 cnxmet 24676 . . . . . . . . . . 11 (abs ∘ − ) ∈ (∞Met‘ℂ)
182181a1i 11 . . . . . . . . . 10 (𝑣𝐷 → (abs ∘ − ) ∈ (∞Met‘ℂ))
183 xmetres2 24265 . . . . . . . . . 10 (((abs ∘ − ) ∈ (∞Met‘ℂ) ∧ (0[,)+∞) ⊆ ℂ) → ((abs ∘ − ) ↾ ((0[,)+∞) × (0[,)+∞))) ∈ (∞Met‘(0[,)+∞)))
184182, 3, 183sylancl 586 . . . . . . . . 9 (𝑣𝐷 → ((abs ∘ − ) ↾ ((0[,)+∞) × (0[,)+∞))) ∈ (∞Met‘(0[,)+∞)))
185 xmetres2 24265 . . . . . . . . . 10 (((abs ∘ − ) ∈ (∞Met‘ℂ) ∧ 𝐷 ⊆ ℂ) → ((abs ∘ − ) ↾ (𝐷 × 𝐷)) ∈ (∞Met‘𝐷))
186182, 10, 185sylancl 586 . . . . . . . . 9 (𝑣𝐷 → ((abs ∘ − ) ↾ (𝐷 × 𝐷)) ∈ (∞Met‘𝐷))
187117a1i 11 . . . . . . . . 9 (𝑣𝐷 → 0 ∈ (0[,)+∞))
188 id 22 . . . . . . . . 9 (𝑣𝐷𝑣𝐷)
189 eqid 2729 . . . . . . . . . . . . 13 ((abs ∘ − ) ↾ ((0[,)+∞) × (0[,)+∞))) = ((abs ∘ − ) ↾ ((0[,)+∞) × (0[,)+∞)))
19018cnfldtopn 24685 . . . . . . . . . . . . 13 𝐽 = (MetOpen‘(abs ∘ − ))
191 eqid 2729 . . . . . . . . . . . . 13 (MetOpen‘((abs ∘ − ) ↾ ((0[,)+∞) × (0[,)+∞)))) = (MetOpen‘((abs ∘ − ) ↾ ((0[,)+∞) × (0[,)+∞))))
192189, 190, 191metrest 24428 . . . . . . . . . . . 12 (((abs ∘ − ) ∈ (∞Met‘ℂ) ∧ (0[,)+∞) ⊆ ℂ) → (𝐽t (0[,)+∞)) = (MetOpen‘((abs ∘ − ) ↾ ((0[,)+∞) × (0[,)+∞)))))
193181, 3, 192mp2an 692 . . . . . . . . . . 11 (𝐽t (0[,)+∞)) = (MetOpen‘((abs ∘ − ) ↾ ((0[,)+∞) × (0[,)+∞))))
19458, 193eqtri 2752 . . . . . . . . . 10 𝐾 = (MetOpen‘((abs ∘ − ) ↾ ((0[,)+∞) × (0[,)+∞))))
195 eqid 2729 . . . . . . . . . . . . 13 ((abs ∘ − ) ↾ (𝐷 × 𝐷)) = ((abs ∘ − ) ↾ (𝐷 × 𝐷))
196 eqid 2729 . . . . . . . . . . . . 13 (MetOpen‘((abs ∘ − ) ↾ (𝐷 × 𝐷))) = (MetOpen‘((abs ∘ − ) ↾ (𝐷 × 𝐷)))
197195, 190, 196metrest 24428 . . . . . . . . . . . 12 (((abs ∘ − ) ∈ (∞Met‘ℂ) ∧ 𝐷 ⊆ ℂ) → (𝐽t 𝐷) = (MetOpen‘((abs ∘ − ) ↾ (𝐷 × 𝐷))))
198181, 10, 197mp2an 692 . . . . . . . . . . 11 (𝐽t 𝐷) = (MetOpen‘((abs ∘ − ) ↾ (𝐷 × 𝐷)))
19932, 198eqtri 2752 . . . . . . . . . 10 𝐿 = (MetOpen‘((abs ∘ − ) ↾ (𝐷 × 𝐷)))
200194, 199, 190txmetcnp 24451 . . . . . . . . 9 (((((abs ∘ − ) ↾ ((0[,)+∞) × (0[,)+∞))) ∈ (∞Met‘(0[,)+∞)) ∧ ((abs ∘ − ) ↾ (𝐷 × 𝐷)) ∈ (∞Met‘𝐷) ∧ (abs ∘ − ) ∈ (∞Met‘ℂ)) ∧ (0 ∈ (0[,)+∞) ∧ 𝑣𝐷)) → ((𝑥 ∈ (0[,)+∞), 𝑦𝐷 ↦ (𝑥𝑐𝑦)) ∈ (((𝐾 ×t 𝐿) CnP 𝐽)‘⟨0, 𝑣⟩) ↔ ((𝑥 ∈ (0[,)+∞), 𝑦𝐷 ↦ (𝑥𝑐𝑦)):((0[,)+∞) × 𝐷)⟶ℂ ∧ ∀𝑒 ∈ ℝ+𝑑 ∈ ℝ+𝑎 ∈ (0[,)+∞)∀𝑏𝐷 (((0((abs ∘ − ) ↾ ((0[,)+∞) × (0[,)+∞)))𝑎) < 𝑑 ∧ (𝑣((abs ∘ − ) ↾ (𝐷 × 𝐷))𝑏) < 𝑑) → ((0(𝑥 ∈ (0[,)+∞), 𝑦𝐷 ↦ (𝑥𝑐𝑦))𝑣)(abs ∘ − )(𝑎(𝑥 ∈ (0[,)+∞), 𝑦𝐷 ↦ (𝑥𝑐𝑦))𝑏)) < 𝑒))))
201184, 186, 182, 187, 188, 200syl32anc 1380 . . . . . . . 8 (𝑣𝐷 → ((𝑥 ∈ (0[,)+∞), 𝑦𝐷 ↦ (𝑥𝑐𝑦)) ∈ (((𝐾 ×t 𝐿) CnP 𝐽)‘⟨0, 𝑣⟩) ↔ ((𝑥 ∈ (0[,)+∞), 𝑦𝐷 ↦ (𝑥𝑐𝑦)):((0[,)+∞) × 𝐷)⟶ℂ ∧ ∀𝑒 ∈ ℝ+𝑑 ∈ ℝ+𝑎 ∈ (0[,)+∞)∀𝑏𝐷 (((0((abs ∘ − ) ↾ ((0[,)+∞) × (0[,)+∞)))𝑎) < 𝑑 ∧ (𝑣((abs ∘ − ) ↾ (𝐷 × 𝐷))𝑏) < 𝑑) → ((0(𝑥 ∈ (0[,)+∞), 𝑦𝐷 ↦ (𝑥𝑐𝑦))𝑣)(abs ∘ − )(𝑎(𝑥 ∈ (0[,)+∞), 𝑦𝐷 ↦ (𝑥𝑐𝑦))𝑏)) < 𝑒))))
202112, 180, 201mpbir2and 713 . . . . . . 7 (𝑣𝐷 → (𝑥 ∈ (0[,)+∞), 𝑦𝐷 ↦ (𝑥𝑐𝑦)) ∈ (((𝐾 ×t 𝐿) CnP 𝐽)‘⟨0, 𝑣⟩))
203202ad2antlr 727 . . . . . 6 (((𝑢 ∈ (0[,)+∞) ∧ 𝑣𝐷) ∧ 0 = 𝑢) → (𝑥 ∈ (0[,)+∞), 𝑦𝐷 ↦ (𝑥𝑐𝑦)) ∈ (((𝐾 ×t 𝐿) CnP 𝐽)‘⟨0, 𝑣⟩))
204 simpr 484 . . . . . . . 8 (((𝑢 ∈ (0[,)+∞) ∧ 𝑣𝐷) ∧ 0 = 𝑢) → 0 = 𝑢)
205204opeq1d 4833 . . . . . . 7 (((𝑢 ∈ (0[,)+∞) ∧ 𝑣𝐷) ∧ 0 = 𝑢) → ⟨0, 𝑣⟩ = ⟨𝑢, 𝑣⟩)
206205fveq2d 6830 . . . . . 6 (((𝑢 ∈ (0[,)+∞) ∧ 𝑣𝐷) ∧ 0 = 𝑢) → (((𝐾 ×t 𝐿) CnP 𝐽)‘⟨0, 𝑣⟩) = (((𝐾 ×t 𝐿) CnP 𝐽)‘⟨𝑢, 𝑣⟩))
207203, 206eleqtrd 2830 . . . . 5 (((𝑢 ∈ (0[,)+∞) ∧ 𝑣𝐷) ∧ 0 = 𝑢) → (𝑥 ∈ (0[,)+∞), 𝑦𝐷 ↦ (𝑥𝑐𝑦)) ∈ (((𝐾 ×t 𝐿) CnP 𝐽)‘⟨𝑢, 𝑣⟩))
20839simprbi 496 . . . . . . 7 (𝑢 ∈ (0[,)+∞) → 0 ≤ 𝑢)
209208adantr 480 . . . . . 6 ((𝑢 ∈ (0[,)+∞) ∧ 𝑣𝐷) → 0 ≤ 𝑢)
210 0re 11136 . . . . . . 7 0 ∈ ℝ
211 leloe 11220 . . . . . . 7 ((0 ∈ ℝ ∧ 𝑢 ∈ ℝ) → (0 ≤ 𝑢 ↔ (0 < 𝑢 ∨ 0 = 𝑢)))
212210, 41, 211sylancr 587 . . . . . 6 ((𝑢 ∈ (0[,)+∞) ∧ 𝑣𝐷) → (0 ≤ 𝑢 ↔ (0 < 𝑢 ∨ 0 = 𝑢)))
213209, 212mpbid 232 . . . . 5 ((𝑢 ∈ (0[,)+∞) ∧ 𝑣𝐷) → (0 < 𝑢 ∨ 0 = 𝑢))
214111, 207, 213mpjaodan 960 . . . 4 ((𝑢 ∈ (0[,)+∞) ∧ 𝑣𝐷) → (𝑥 ∈ (0[,)+∞), 𝑦𝐷 ↦ (𝑥𝑐𝑦)) ∈ (((𝐾 ×t 𝐿) CnP 𝐽)‘⟨𝑢, 𝑣⟩))
215214rgen2 3169 . . 3 𝑢 ∈ (0[,)+∞)∀𝑣𝐷 (𝑥 ∈ (0[,)+∞), 𝑦𝐷 ↦ (𝑥𝑐𝑦)) ∈ (((𝐾 ×t 𝐿) CnP 𝐽)‘⟨𝑢, 𝑣⟩)
216 fveq2 6826 . . . . 5 (𝑧 = ⟨𝑢, 𝑣⟩ → (((𝐾 ×t 𝐿) CnP 𝐽)‘𝑧) = (((𝐾 ×t 𝐿) CnP 𝐽)‘⟨𝑢, 𝑣⟩))
217216eleq2d 2814 . . . 4 (𝑧 = ⟨𝑢, 𝑣⟩ → ((𝑥 ∈ (0[,)+∞), 𝑦𝐷 ↦ (𝑥𝑐𝑦)) ∈ (((𝐾 ×t 𝐿) CnP 𝐽)‘𝑧) ↔ (𝑥 ∈ (0[,)+∞), 𝑦𝐷 ↦ (𝑥𝑐𝑦)) ∈ (((𝐾 ×t 𝐿) CnP 𝐽)‘⟨𝑢, 𝑣⟩)))
218217ralxp 5788 . . 3 (∀𝑧 ∈ ((0[,)+∞) × 𝐷)(𝑥 ∈ (0[,)+∞), 𝑦𝐷 ↦ (𝑥𝑐𝑦)) ∈ (((𝐾 ×t 𝐿) CnP 𝐽)‘𝑧) ↔ ∀𝑢 ∈ (0[,)+∞)∀𝑣𝐷 (𝑥 ∈ (0[,)+∞), 𝑦𝐷 ↦ (𝑥𝑐𝑦)) ∈ (((𝐾 ×t 𝐿) CnP 𝐽)‘⟨𝑢, 𝑣⟩))
219215, 218mpbir 231 . 2 𝑧 ∈ ((0[,)+∞) × 𝐷)(𝑥 ∈ (0[,)+∞), 𝑦𝐷 ↦ (𝑥𝑐𝑦)) ∈ (((𝐾 ×t 𝐿) CnP 𝐽)‘𝑧)
220 cncnp 23183 . . 3 (((𝐾 ×t 𝐿) ∈ (TopOn‘((0[,)+∞) × 𝐷)) ∧ 𝐽 ∈ (TopOn‘ℂ)) → ((𝑥 ∈ (0[,)+∞), 𝑦𝐷 ↦ (𝑥𝑐𝑦)) ∈ ((𝐾 ×t 𝐿) Cn 𝐽) ↔ ((𝑥 ∈ (0[,)+∞), 𝑦𝐷 ↦ (𝑥𝑐𝑦)):((0[,)+∞) × 𝐷)⟶ℂ ∧ ∀𝑧 ∈ ((0[,)+∞) × 𝐷)(𝑥 ∈ (0[,)+∞), 𝑦𝐷 ↦ (𝑥𝑐𝑦)) ∈ (((𝐾 ×t 𝐿) CnP 𝐽)‘𝑧))))
22193, 19, 220mp2an 692 . 2 ((𝑥 ∈ (0[,)+∞), 𝑦𝐷 ↦ (𝑥𝑐𝑦)) ∈ ((𝐾 ×t 𝐿) Cn 𝐽) ↔ ((𝑥 ∈ (0[,)+∞), 𝑦𝐷 ↦ (𝑥𝑐𝑦)):((0[,)+∞) × 𝐷)⟶ℂ ∧ ∀𝑧 ∈ ((0[,)+∞) × 𝐷)(𝑥 ∈ (0[,)+∞), 𝑦𝐷 ↦ (𝑥𝑐𝑦)) ∈ (((𝐾 ×t 𝐿) CnP 𝐽)‘𝑧)))
22217, 219, 221mpbir2an 711 1 (𝑥 ∈ (0[,)+∞), 𝑦𝐷 ↦ (𝑥𝑐𝑦)) ∈ ((𝐾 ×t 𝐿) Cn 𝐽)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wo 847  w3a 1086   = wceq 1540  wcel 2109  wne 2925  wral 3044  wrex 3053  Vcvv 3438  wss 3905  ifcif 4478  cop 4585   class class class wbr 5095   × cxp 5621  ccnv 5622  dom cdm 5623  ran crn 5624  cres 5625  cima 5626  ccom 5627   Fn wfn 6481  wf 6482  cfv 6486  (class class class)co 7353  cmpo 7355  cc 11026  cr 11027  0cc0 11028  1c1 11029  +∞cpnf 11165   < clt 11168  cle 11169  cmin 11365  -cneg 11366   / cdiv 11795  2c2 12201  +crp 12911  (,)cioo 13266  [,)cico 13268  cre 15022  abscabs 15159  t crest 17342  TopOpenctopn 17343  topGenctg 17359  ∞Metcxmet 21264  MetOpencmopn 21269  fldccnfld 21279  Topctop 22796  TopOnctopon 22813  intcnt 22920   Cn ccn 23127   CnP ccnp 23128   ×t ctx 23463  𝑐ccxp 26480
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675  ax-inf2 9556  ax-cnex 11084  ax-resscn 11085  ax-1cn 11086  ax-icn 11087  ax-addcl 11088  ax-addrcl 11089  ax-mulcl 11090  ax-mulrcl 11091  ax-mulcom 11092  ax-addass 11093  ax-mulass 11094  ax-distr 11095  ax-i2m1 11096  ax-1ne0 11097  ax-1rid 11098  ax-rnegex 11099  ax-rrecex 11100  ax-cnre 11101  ax-pre-lttri 11102  ax-pre-lttrn 11103  ax-pre-ltadd 11104  ax-pre-mulgt0 11105  ax-pre-sup 11106  ax-addf 11107
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3345  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-pss 3925  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-tp 4584  df-op 4586  df-uni 4862  df-int 4900  df-iun 4946  df-iin 4947  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5518  df-eprel 5523  df-po 5531  df-so 5532  df-fr 5576  df-se 5577  df-we 5578  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-isom 6495  df-riota 7310  df-ov 7356  df-oprab 7357  df-mpo 7358  df-of 7617  df-om 7807  df-1st 7931  df-2nd 7932  df-supp 8101  df-frecs 8221  df-wrecs 8252  df-recs 8301  df-rdg 8339  df-1o 8395  df-2o 8396  df-er 8632  df-map 8762  df-pm 8763  df-ixp 8832  df-en 8880  df-dom 8881  df-sdom 8882  df-fin 8883  df-fsupp 9271  df-fi 9320  df-sup 9351  df-inf 9352  df-oi 9421  df-card 9854  df-pnf 11170  df-mnf 11171  df-xr 11172  df-ltxr 11173  df-le 11174  df-sub 11367  df-neg 11368  df-div 11796  df-nn 12147  df-2 12209  df-3 12210  df-4 12211  df-5 12212  df-6 12213  df-7 12214  df-8 12215  df-9 12216  df-n0 12403  df-z 12490  df-dec 12610  df-uz 12754  df-q 12868  df-rp 12912  df-xneg 13032  df-xadd 13033  df-xmul 13034  df-ioo 13270  df-ioc 13271  df-ico 13272  df-icc 13273  df-fz 13429  df-fzo 13576  df-fl 13714  df-mod 13792  df-seq 13927  df-exp 13987  df-fac 14199  df-bc 14228  df-hash 14256  df-shft 14992  df-cj 15024  df-re 15025  df-im 15026  df-sqrt 15160  df-abs 15161  df-limsup 15396  df-clim 15413  df-rlim 15414  df-sum 15612  df-ef 15992  df-sin 15994  df-cos 15995  df-tan 15996  df-pi 15997  df-struct 17076  df-sets 17093  df-slot 17111  df-ndx 17123  df-base 17139  df-ress 17160  df-plusg 17192  df-mulr 17193  df-starv 17194  df-sca 17195  df-vsca 17196  df-ip 17197  df-tset 17198  df-ple 17199  df-ds 17201  df-unif 17202  df-hom 17203  df-cco 17204  df-rest 17344  df-topn 17345  df-0g 17363  df-gsum 17364  df-topgen 17365  df-pt 17366  df-prds 17369  df-xrs 17424  df-qtop 17429  df-imas 17430  df-xps 17432  df-mre 17506  df-mrc 17507  df-acs 17509  df-mgm 18532  df-sgrp 18611  df-mnd 18627  df-submnd 18676  df-mulg 18965  df-cntz 19214  df-cmn 19679  df-psmet 21271  df-xmet 21272  df-met 21273  df-bl 21274  df-mopn 21275  df-fbas 21276  df-fg 21277  df-cnfld 21280  df-top 22797  df-topon 22814  df-topsp 22836  df-bases 22849  df-cld 22922  df-ntr 22923  df-cls 22924  df-nei 23001  df-lp 23039  df-perf 23040  df-cn 23130  df-cnp 23131  df-haus 23218  df-cmp 23290  df-tx 23465  df-hmeo 23658  df-fil 23749  df-fm 23841  df-flim 23842  df-flf 23843  df-xms 24224  df-ms 24225  df-tms 24226  df-cncf 24787  df-limc 25783  df-dv 25784  df-log 26481  df-cxp 26482
This theorem is referenced by:  resqrtcn  26675
  Copyright terms: Public domain W3C validator