Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  cxpcn3 Structured version   Visualization version   GIF version

Theorem cxpcn3 25010
 Description: Extend continuity of the complex power function to a base of zero, as long as the exponent has strictly positive real part. (Contributed by Mario Carneiro, 2-May-2016.)
Hypotheses
Ref Expression
cxpcn3.d 𝐷 = (ℜ “ ℝ+)
cxpcn3.j 𝐽 = (TopOpen‘ℂfld)
cxpcn3.k 𝐾 = (𝐽t (0[,)+∞))
cxpcn3.l 𝐿 = (𝐽t 𝐷)
Assertion
Ref Expression
cxpcn3 (𝑥 ∈ (0[,)+∞), 𝑦𝐷 ↦ (𝑥𝑐𝑦)) ∈ ((𝐾 ×t 𝐿) Cn 𝐽)
Distinct variable groups:   𝑥,𝑦,𝐽   𝑥,𝐷,𝑦
Allowed substitution hints:   𝐾(𝑥,𝑦)   𝐿(𝑥,𝑦)

Proof of Theorem cxpcn3
Dummy variables 𝑎 𝑏 𝑑 𝑒 𝑢 𝑣 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 rge0ssre 12694 . . . . . . 7 (0[,)+∞) ⊆ ℝ
2 ax-resscn 10440 . . . . . . 7 ℝ ⊆ ℂ
31, 2sstri 3898 . . . . . 6 (0[,)+∞) ⊆ ℂ
43sseli 3885 . . . . 5 (𝑥 ∈ (0[,)+∞) → 𝑥 ∈ ℂ)
5 cxpcn3.d . . . . . . 7 𝐷 = (ℜ “ ℝ+)
6 cnvimass 5825 . . . . . . . 8 (ℜ “ ℝ+) ⊆ dom ℜ
7 ref 14305 . . . . . . . . 9 ℜ:ℂ⟶ℝ
87fdmi 6392 . . . . . . . 8 dom ℜ = ℂ
96, 8sseqtri 3924 . . . . . . 7 (ℜ “ ℝ+) ⊆ ℂ
105, 9eqsstri 3922 . . . . . 6 𝐷 ⊆ ℂ
1110sseli 3885 . . . . 5 (𝑦𝐷𝑦 ∈ ℂ)
12 cxpcl 24938 . . . . 5 ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (𝑥𝑐𝑦) ∈ ℂ)
134, 11, 12syl2an 595 . . . 4 ((𝑥 ∈ (0[,)+∞) ∧ 𝑦𝐷) → (𝑥𝑐𝑦) ∈ ℂ)
1413rgen2 3170 . . 3 𝑥 ∈ (0[,)+∞)∀𝑦𝐷 (𝑥𝑐𝑦) ∈ ℂ
15 eqid 2795 . . . 4 (𝑥 ∈ (0[,)+∞), 𝑦𝐷 ↦ (𝑥𝑐𝑦)) = (𝑥 ∈ (0[,)+∞), 𝑦𝐷 ↦ (𝑥𝑐𝑦))
1615fmpo 7622 . . 3 (∀𝑥 ∈ (0[,)+∞)∀𝑦𝐷 (𝑥𝑐𝑦) ∈ ℂ ↔ (𝑥 ∈ (0[,)+∞), 𝑦𝐷 ↦ (𝑥𝑐𝑦)):((0[,)+∞) × 𝐷)⟶ℂ)
1714, 16mpbi 231 . 2 (𝑥 ∈ (0[,)+∞), 𝑦𝐷 ↦ (𝑥𝑐𝑦)):((0[,)+∞) × 𝐷)⟶ℂ
18 cxpcn3.j . . . . . . . . . . . 12 𝐽 = (TopOpen‘ℂfld)
1918cnfldtopon 23074 . . . . . . . . . . 11 𝐽 ∈ (TopOn‘ℂ)
20 rpre 12247 . . . . . . . . . . . . . 14 (𝑥 ∈ ℝ+𝑥 ∈ ℝ)
21 rpge0 12252 . . . . . . . . . . . . . 14 (𝑥 ∈ ℝ+ → 0 ≤ 𝑥)
22 elrege0 12692 . . . . . . . . . . . . . 14 (𝑥 ∈ (0[,)+∞) ↔ (𝑥 ∈ ℝ ∧ 0 ≤ 𝑥))
2320, 21, 22sylanbrc 583 . . . . . . . . . . . . 13 (𝑥 ∈ ℝ+𝑥 ∈ (0[,)+∞))
2423ssriv 3893 . . . . . . . . . . . 12 + ⊆ (0[,)+∞)
2524, 3sstri 3898 . . . . . . . . . . 11 + ⊆ ℂ
26 resttopon 21453 . . . . . . . . . . 11 ((𝐽 ∈ (TopOn‘ℂ) ∧ ℝ+ ⊆ ℂ) → (𝐽t+) ∈ (TopOn‘ℝ+))
2719, 25, 26mp2an 688 . . . . . . . . . 10 (𝐽t+) ∈ (TopOn‘ℝ+)
2827toponrestid 21213 . . . . . . . . 9 (𝐽t+) = ((𝐽t+) ↾t+)
2927a1i 11 . . . . . . . . 9 (((𝑢 ∈ (0[,)+∞) ∧ 𝑣𝐷) ∧ 0 < 𝑢) → (𝐽t+) ∈ (TopOn‘ℝ+))
30 ssid 3910 . . . . . . . . . 10 + ⊆ ℝ+
3130a1i 11 . . . . . . . . 9 (((𝑢 ∈ (0[,)+∞) ∧ 𝑣𝐷) ∧ 0 < 𝑢) → ℝ+ ⊆ ℝ+)
32 cxpcn3.l . . . . . . . . 9 𝐿 = (𝐽t 𝐷)
3319a1i 11 . . . . . . . . 9 (((𝑢 ∈ (0[,)+∞) ∧ 𝑣𝐷) ∧ 0 < 𝑢) → 𝐽 ∈ (TopOn‘ℂ))
3410a1i 11 . . . . . . . . 9 (((𝑢 ∈ (0[,)+∞) ∧ 𝑣𝐷) ∧ 0 < 𝑢) → 𝐷 ⊆ ℂ)
35 eqid 2795 . . . . . . . . . . 11 (𝐽t+) = (𝐽t+)
3618, 35cxpcn2 25008 . . . . . . . . . 10 (𝑥 ∈ ℝ+, 𝑦 ∈ ℂ ↦ (𝑥𝑐𝑦)) ∈ (((𝐽t+) ×t 𝐽) Cn 𝐽)
3736a1i 11 . . . . . . . . 9 (((𝑢 ∈ (0[,)+∞) ∧ 𝑣𝐷) ∧ 0 < 𝑢) → (𝑥 ∈ ℝ+, 𝑦 ∈ ℂ ↦ (𝑥𝑐𝑦)) ∈ (((𝐽t+) ×t 𝐽) Cn 𝐽))
3828, 29, 31, 32, 33, 34, 37cnmpt2res 21969 . . . . . . . 8 (((𝑢 ∈ (0[,)+∞) ∧ 𝑣𝐷) ∧ 0 < 𝑢) → (𝑥 ∈ ℝ+, 𝑦𝐷 ↦ (𝑥𝑐𝑦)) ∈ (((𝐽t+) ×t 𝐿) Cn 𝐽))
39 elrege0 12692 . . . . . . . . . . . . 13 (𝑢 ∈ (0[,)+∞) ↔ (𝑢 ∈ ℝ ∧ 0 ≤ 𝑢))
4039simplbi 498 . . . . . . . . . . . 12 (𝑢 ∈ (0[,)+∞) → 𝑢 ∈ ℝ)
4140adantr 481 . . . . . . . . . . 11 ((𝑢 ∈ (0[,)+∞) ∧ 𝑣𝐷) → 𝑢 ∈ ℝ)
4241adantr 481 . . . . . . . . . 10 (((𝑢 ∈ (0[,)+∞) ∧ 𝑣𝐷) ∧ 0 < 𝑢) → 𝑢 ∈ ℝ)
43 simpr 485 . . . . . . . . . 10 (((𝑢 ∈ (0[,)+∞) ∧ 𝑣𝐷) ∧ 0 < 𝑢) → 0 < 𝑢)
4442, 43elrpd 12278 . . . . . . . . 9 (((𝑢 ∈ (0[,)+∞) ∧ 𝑣𝐷) ∧ 0 < 𝑢) → 𝑢 ∈ ℝ+)
45 simplr 765 . . . . . . . . 9 (((𝑢 ∈ (0[,)+∞) ∧ 𝑣𝐷) ∧ 0 < 𝑢) → 𝑣𝐷)
4644, 45opelxpd 5481 . . . . . . . 8 (((𝑢 ∈ (0[,)+∞) ∧ 𝑣𝐷) ∧ 0 < 𝑢) → ⟨𝑢, 𝑣⟩ ∈ (ℝ+ × 𝐷))
47 resttopon 21453 . . . . . . . . . . . . 13 ((𝐽 ∈ (TopOn‘ℂ) ∧ 𝐷 ⊆ ℂ) → (𝐽t 𝐷) ∈ (TopOn‘𝐷))
4819, 10, 47mp2an 688 . . . . . . . . . . . 12 (𝐽t 𝐷) ∈ (TopOn‘𝐷)
4932, 48eqeltri 2879 . . . . . . . . . . 11 𝐿 ∈ (TopOn‘𝐷)
50 txtopon 21883 . . . . . . . . . . 11 (((𝐽t+) ∈ (TopOn‘ℝ+) ∧ 𝐿 ∈ (TopOn‘𝐷)) → ((𝐽t+) ×t 𝐿) ∈ (TopOn‘(ℝ+ × 𝐷)))
5127, 49, 50mp2an 688 . . . . . . . . . 10 ((𝐽t+) ×t 𝐿) ∈ (TopOn‘(ℝ+ × 𝐷))
5251toponunii 21208 . . . . . . . . 9 (ℝ+ × 𝐷) = ((𝐽t+) ×t 𝐿)
5352cncnpi 21570 . . . . . . . 8 (((𝑥 ∈ ℝ+, 𝑦𝐷 ↦ (𝑥𝑐𝑦)) ∈ (((𝐽t+) ×t 𝐿) Cn 𝐽) ∧ ⟨𝑢, 𝑣⟩ ∈ (ℝ+ × 𝐷)) → (𝑥 ∈ ℝ+, 𝑦𝐷 ↦ (𝑥𝑐𝑦)) ∈ ((((𝐽t+) ×t 𝐿) CnP 𝐽)‘⟨𝑢, 𝑣⟩))
5438, 46, 53syl2anc 584 . . . . . . 7 (((𝑢 ∈ (0[,)+∞) ∧ 𝑣𝐷) ∧ 0 < 𝑢) → (𝑥 ∈ ℝ+, 𝑦𝐷 ↦ (𝑥𝑐𝑦)) ∈ ((((𝐽t+) ×t 𝐿) CnP 𝐽)‘⟨𝑢, 𝑣⟩))
55 ssid 3910 . . . . . . . 8 𝐷𝐷
56 resmpo 7128 . . . . . . . 8 ((ℝ+ ⊆ (0[,)+∞) ∧ 𝐷𝐷) → ((𝑥 ∈ (0[,)+∞), 𝑦𝐷 ↦ (𝑥𝑐𝑦)) ↾ (ℝ+ × 𝐷)) = (𝑥 ∈ ℝ+, 𝑦𝐷 ↦ (𝑥𝑐𝑦)))
5724, 55, 56mp2an 688 . . . . . . 7 ((𝑥 ∈ (0[,)+∞), 𝑦𝐷 ↦ (𝑥𝑐𝑦)) ↾ (ℝ+ × 𝐷)) = (𝑥 ∈ ℝ+, 𝑦𝐷 ↦ (𝑥𝑐𝑦))
58 cxpcn3.k . . . . . . . . . . . 12 𝐾 = (𝐽t (0[,)+∞))
59 resttopon 21453 . . . . . . . . . . . . 13 ((𝐽 ∈ (TopOn‘ℂ) ∧ (0[,)+∞) ⊆ ℂ) → (𝐽t (0[,)+∞)) ∈ (TopOn‘(0[,)+∞)))
6019, 3, 59mp2an 688 . . . . . . . . . . . 12 (𝐽t (0[,)+∞)) ∈ (TopOn‘(0[,)+∞))
6158, 60eqeltri 2879 . . . . . . . . . . 11 𝐾 ∈ (TopOn‘(0[,)+∞))
62 ioorp 12664 . . . . . . . . . . . . . 14 (0(,)+∞) = ℝ+
63 iooretop 23057 . . . . . . . . . . . . . 14 (0(,)+∞) ∈ (topGen‘ran (,))
6462, 63eqeltrri 2880 . . . . . . . . . . . . 13 + ∈ (topGen‘ran (,))
65 retop 23053 . . . . . . . . . . . . . . 15 (topGen‘ran (,)) ∈ Top
66 ovex 7048 . . . . . . . . . . . . . . 15 (0[,)+∞) ∈ V
67 restopnb 21467 . . . . . . . . . . . . . . 15 ((((topGen‘ran (,)) ∈ Top ∧ (0[,)+∞) ∈ V) ∧ (ℝ+ ∈ (topGen‘ran (,)) ∧ ℝ+ ⊆ (0[,)+∞) ∧ ℝ+ ⊆ ℝ+)) → (ℝ+ ∈ (topGen‘ran (,)) ↔ ℝ+ ∈ ((topGen‘ran (,)) ↾t (0[,)+∞))))
6865, 66, 67mpanl12 698 . . . . . . . . . . . . . 14 ((ℝ+ ∈ (topGen‘ran (,)) ∧ ℝ+ ⊆ (0[,)+∞) ∧ ℝ+ ⊆ ℝ+) → (ℝ+ ∈ (topGen‘ran (,)) ↔ ℝ+ ∈ ((topGen‘ran (,)) ↾t (0[,)+∞))))
6964, 24, 30, 68mp3an 1453 . . . . . . . . . . . . 13 (ℝ+ ∈ (topGen‘ran (,)) ↔ ℝ+ ∈ ((topGen‘ran (,)) ↾t (0[,)+∞)))
7064, 69mpbi 231 . . . . . . . . . . . 12 + ∈ ((topGen‘ran (,)) ↾t (0[,)+∞))
71 eqid 2795 . . . . . . . . . . . . . . 15 (topGen‘ran (,)) = (topGen‘ran (,))
7218, 71rerest 23095 . . . . . . . . . . . . . 14 ((0[,)+∞) ⊆ ℝ → (𝐽t (0[,)+∞)) = ((topGen‘ran (,)) ↾t (0[,)+∞)))
731, 72ax-mp 5 . . . . . . . . . . . . 13 (𝐽t (0[,)+∞)) = ((topGen‘ran (,)) ↾t (0[,)+∞))
7458, 73eqtri 2819 . . . . . . . . . . . 12 𝐾 = ((topGen‘ran (,)) ↾t (0[,)+∞))
7570, 74eleqtrri 2882 . . . . . . . . . . 11 +𝐾
76 toponmax 21218 . . . . . . . . . . . 12 (𝐿 ∈ (TopOn‘𝐷) → 𝐷𝐿)
7749, 76ax-mp 5 . . . . . . . . . . 11 𝐷𝐿
78 txrest 21923 . . . . . . . . . . 11 (((𝐾 ∈ (TopOn‘(0[,)+∞)) ∧ 𝐿 ∈ (TopOn‘𝐷)) ∧ (ℝ+𝐾𝐷𝐿)) → ((𝐾 ×t 𝐿) ↾t (ℝ+ × 𝐷)) = ((𝐾t+) ×t (𝐿t 𝐷)))
7961, 49, 75, 77, 78mp4an 689 . . . . . . . . . 10 ((𝐾 ×t 𝐿) ↾t (ℝ+ × 𝐷)) = ((𝐾t+) ×t (𝐿t 𝐷))
8058oveq1i 7026 . . . . . . . . . . . 12 (𝐾t+) = ((𝐽t (0[,)+∞)) ↾t+)
81 restabs 21457 . . . . . . . . . . . . 13 ((𝐽 ∈ (TopOn‘ℂ) ∧ ℝ+ ⊆ (0[,)+∞) ∧ (0[,)+∞) ∈ V) → ((𝐽t (0[,)+∞)) ↾t+) = (𝐽t+))
8219, 24, 66, 81mp3an 1453 . . . . . . . . . . . 12 ((𝐽t (0[,)+∞)) ↾t+) = (𝐽t+)
8380, 82eqtri 2819 . . . . . . . . . . 11 (𝐾t+) = (𝐽t+)
8449toponunii 21208 . . . . . . . . . . . . 13 𝐷 = 𝐿
8584restid 16536 . . . . . . . . . . . 12 (𝐿 ∈ (TopOn‘𝐷) → (𝐿t 𝐷) = 𝐿)
8649, 85ax-mp 5 . . . . . . . . . . 11 (𝐿t 𝐷) = 𝐿
8783, 86oveq12i 7028 . . . . . . . . . 10 ((𝐾t+) ×t (𝐿t 𝐷)) = ((𝐽t+) ×t 𝐿)
8879, 87eqtri 2819 . . . . . . . . 9 ((𝐾 ×t 𝐿) ↾t (ℝ+ × 𝐷)) = ((𝐽t+) ×t 𝐿)
8988oveq1i 7026 . . . . . . . 8 (((𝐾 ×t 𝐿) ↾t (ℝ+ × 𝐷)) CnP 𝐽) = (((𝐽t+) ×t 𝐿) CnP 𝐽)
9089fveq1i 6539 . . . . . . 7 ((((𝐾 ×t 𝐿) ↾t (ℝ+ × 𝐷)) CnP 𝐽)‘⟨𝑢, 𝑣⟩) = ((((𝐽t+) ×t 𝐿) CnP 𝐽)‘⟨𝑢, 𝑣⟩)
9154, 57, 903eltr4g 2900 . . . . . 6 (((𝑢 ∈ (0[,)+∞) ∧ 𝑣𝐷) ∧ 0 < 𝑢) → ((𝑥 ∈ (0[,)+∞), 𝑦𝐷 ↦ (𝑥𝑐𝑦)) ↾ (ℝ+ × 𝐷)) ∈ ((((𝐾 ×t 𝐿) ↾t (ℝ+ × 𝐷)) CnP 𝐽)‘⟨𝑢, 𝑣⟩))
92 txtopon 21883 . . . . . . . . . 10 ((𝐾 ∈ (TopOn‘(0[,)+∞)) ∧ 𝐿 ∈ (TopOn‘𝐷)) → (𝐾 ×t 𝐿) ∈ (TopOn‘((0[,)+∞) × 𝐷)))
9361, 49, 92mp2an 688 . . . . . . . . 9 (𝐾 ×t 𝐿) ∈ (TopOn‘((0[,)+∞) × 𝐷))
9493topontopi 21207 . . . . . . . 8 (𝐾 ×t 𝐿) ∈ Top
9594a1i 11 . . . . . . 7 (((𝑢 ∈ (0[,)+∞) ∧ 𝑣𝐷) ∧ 0 < 𝑢) → (𝐾 ×t 𝐿) ∈ Top)
96 xpss1 5462 . . . . . . . 8 (ℝ+ ⊆ (0[,)+∞) → (ℝ+ × 𝐷) ⊆ ((0[,)+∞) × 𝐷))
9724, 96mp1i 13 . . . . . . 7 (((𝑢 ∈ (0[,)+∞) ∧ 𝑣𝐷) ∧ 0 < 𝑢) → (ℝ+ × 𝐷) ⊆ ((0[,)+∞) × 𝐷))
98 txopn 21894 . . . . . . . . . 10 (((𝐾 ∈ (TopOn‘(0[,)+∞)) ∧ 𝐿 ∈ (TopOn‘𝐷)) ∧ (ℝ+𝐾𝐷𝐿)) → (ℝ+ × 𝐷) ∈ (𝐾 ×t 𝐿))
9961, 49, 75, 77, 98mp4an 689 . . . . . . . . 9 (ℝ+ × 𝐷) ∈ (𝐾 ×t 𝐿)
100 isopn3i 21374 . . . . . . . . 9 (((𝐾 ×t 𝐿) ∈ Top ∧ (ℝ+ × 𝐷) ∈ (𝐾 ×t 𝐿)) → ((int‘(𝐾 ×t 𝐿))‘(ℝ+ × 𝐷)) = (ℝ+ × 𝐷))
10194, 99, 100mp2an 688 . . . . . . . 8 ((int‘(𝐾 ×t 𝐿))‘(ℝ+ × 𝐷)) = (ℝ+ × 𝐷)
10246, 101syl6eleqr 2894 . . . . . . 7 (((𝑢 ∈ (0[,)+∞) ∧ 𝑣𝐷) ∧ 0 < 𝑢) → ⟨𝑢, 𝑣⟩ ∈ ((int‘(𝐾 ×t 𝐿))‘(ℝ+ × 𝐷)))
10317a1i 11 . . . . . . 7 (((𝑢 ∈ (0[,)+∞) ∧ 𝑣𝐷) ∧ 0 < 𝑢) → (𝑥 ∈ (0[,)+∞), 𝑦𝐷 ↦ (𝑥𝑐𝑦)):((0[,)+∞) × 𝐷)⟶ℂ)
10461topontopi 21207 . . . . . . . . 9 𝐾 ∈ Top
10549topontopi 21207 . . . . . . . . 9 𝐿 ∈ Top
10661toponunii 21208 . . . . . . . . 9 (0[,)+∞) = 𝐾
107104, 105, 106, 84txunii 21885 . . . . . . . 8 ((0[,)+∞) × 𝐷) = (𝐾 ×t 𝐿)
10819toponunii 21208 . . . . . . . 8 ℂ = 𝐽
109107, 108cnprest 21581 . . . . . . 7 ((((𝐾 ×t 𝐿) ∈ Top ∧ (ℝ+ × 𝐷) ⊆ ((0[,)+∞) × 𝐷)) ∧ (⟨𝑢, 𝑣⟩ ∈ ((int‘(𝐾 ×t 𝐿))‘(ℝ+ × 𝐷)) ∧ (𝑥 ∈ (0[,)+∞), 𝑦𝐷 ↦ (𝑥𝑐𝑦)):((0[,)+∞) × 𝐷)⟶ℂ)) → ((𝑥 ∈ (0[,)+∞), 𝑦𝐷 ↦ (𝑥𝑐𝑦)) ∈ (((𝐾 ×t 𝐿) CnP 𝐽)‘⟨𝑢, 𝑣⟩) ↔ ((𝑥 ∈ (0[,)+∞), 𝑦𝐷 ↦ (𝑥𝑐𝑦)) ↾ (ℝ+ × 𝐷)) ∈ ((((𝐾 ×t 𝐿) ↾t (ℝ+ × 𝐷)) CnP 𝐽)‘⟨𝑢, 𝑣⟩)))
11095, 97, 102, 103, 109syl22anc 835 . . . . . 6 (((𝑢 ∈ (0[,)+∞) ∧ 𝑣𝐷) ∧ 0 < 𝑢) → ((𝑥 ∈ (0[,)+∞), 𝑦𝐷 ↦ (𝑥𝑐𝑦)) ∈ (((𝐾 ×t 𝐿) CnP 𝐽)‘⟨𝑢, 𝑣⟩) ↔ ((𝑥 ∈ (0[,)+∞), 𝑦𝐷 ↦ (𝑥𝑐𝑦)) ↾ (ℝ+ × 𝐷)) ∈ ((((𝐾 ×t 𝐿) ↾t (ℝ+ × 𝐷)) CnP 𝐽)‘⟨𝑢, 𝑣⟩)))
11191, 110mpbird 258 . . . . 5 (((𝑢 ∈ (0[,)+∞) ∧ 𝑣𝐷) ∧ 0 < 𝑢) → (𝑥 ∈ (0[,)+∞), 𝑦𝐷 ↦ (𝑥𝑐𝑦)) ∈ (((𝐾 ×t 𝐿) CnP 𝐽)‘⟨𝑢, 𝑣⟩))
11217a1i 11 . . . . . . . 8 (𝑣𝐷 → (𝑥 ∈ (0[,)+∞), 𝑦𝐷 ↦ (𝑥𝑐𝑦)):((0[,)+∞) × 𝐷)⟶ℂ)
113 eqid 2795 . . . . . . . . . . 11 (if((ℜ‘𝑣) ≤ 1, (ℜ‘𝑣), 1) / 2) = (if((ℜ‘𝑣) ≤ 1, (ℜ‘𝑣), 1) / 2)
114 eqid 2795 . . . . . . . . . . 11 if((if((ℜ‘𝑣) ≤ 1, (ℜ‘𝑣), 1) / 2) ≤ (𝑒𝑐(1 / (if((ℜ‘𝑣) ≤ 1, (ℜ‘𝑣), 1) / 2))), (if((ℜ‘𝑣) ≤ 1, (ℜ‘𝑣), 1) / 2), (𝑒𝑐(1 / (if((ℜ‘𝑣) ≤ 1, (ℜ‘𝑣), 1) / 2)))) = if((if((ℜ‘𝑣) ≤ 1, (ℜ‘𝑣), 1) / 2) ≤ (𝑒𝑐(1 / (if((ℜ‘𝑣) ≤ 1, (ℜ‘𝑣), 1) / 2))), (if((ℜ‘𝑣) ≤ 1, (ℜ‘𝑣), 1) / 2), (𝑒𝑐(1 / (if((ℜ‘𝑣) ≤ 1, (ℜ‘𝑣), 1) / 2))))
1155, 18, 58, 32, 113, 114cxpcn3lem 25009 . . . . . . . . . 10 ((𝑣𝐷𝑒 ∈ ℝ+) → ∃𝑑 ∈ ℝ+𝑎 ∈ (0[,)+∞)∀𝑏𝐷 (((abs‘𝑎) < 𝑑 ∧ (abs‘(𝑣𝑏)) < 𝑑) → (abs‘(𝑎𝑐𝑏)) < 𝑒))
116115ralrimiva 3149 . . . . . . . . 9 (𝑣𝐷 → ∀𝑒 ∈ ℝ+𝑑 ∈ ℝ+𝑎 ∈ (0[,)+∞)∀𝑏𝐷 (((abs‘𝑎) < 𝑑 ∧ (abs‘(𝑣𝑏)) < 𝑑) → (abs‘(𝑎𝑐𝑏)) < 𝑒))
117 0e0icopnf 12696 . . . . . . . . . . . . . . . . . 18 0 ∈ (0[,)+∞)
118117a1i 11 . . . . . . . . . . . . . . . . 17 ((𝑣𝐷 ∧ (𝑎 ∈ (0[,)+∞) ∧ 𝑏𝐷)) → 0 ∈ (0[,)+∞))
119 simprl 767 . . . . . . . . . . . . . . . . 17 ((𝑣𝐷 ∧ (𝑎 ∈ (0[,)+∞) ∧ 𝑏𝐷)) → 𝑎 ∈ (0[,)+∞))
120118, 119ovresd 7171 . . . . . . . . . . . . . . . 16 ((𝑣𝐷 ∧ (𝑎 ∈ (0[,)+∞) ∧ 𝑏𝐷)) → (0((abs ∘ − ) ↾ ((0[,)+∞) × (0[,)+∞)))𝑎) = (0(abs ∘ − )𝑎))
121 0cn 10479 . . . . . . . . . . . . . . . . 17 0 ∈ ℂ
1223, 119sseldi 3887 . . . . . . . . . . . . . . . . 17 ((𝑣𝐷 ∧ (𝑎 ∈ (0[,)+∞) ∧ 𝑏𝐷)) → 𝑎 ∈ ℂ)
123 eqid 2795 . . . . . . . . . . . . . . . . . 18 (abs ∘ − ) = (abs ∘ − )
124123cnmetdval 23062 . . . . . . . . . . . . . . . . 17 ((0 ∈ ℂ ∧ 𝑎 ∈ ℂ) → (0(abs ∘ − )𝑎) = (abs‘(0 − 𝑎)))
125121, 122, 124sylancr 587 . . . . . . . . . . . . . . . 16 ((𝑣𝐷 ∧ (𝑎 ∈ (0[,)+∞) ∧ 𝑏𝐷)) → (0(abs ∘ − )𝑎) = (abs‘(0 − 𝑎)))
126 df-neg 10720 . . . . . . . . . . . . . . . . . 18 -𝑎 = (0 − 𝑎)
127126fveq2i 6541 . . . . . . . . . . . . . . . . 17 (abs‘-𝑎) = (abs‘(0 − 𝑎))
128122absnegd 14643 . . . . . . . . . . . . . . . . 17 ((𝑣𝐷 ∧ (𝑎 ∈ (0[,)+∞) ∧ 𝑏𝐷)) → (abs‘-𝑎) = (abs‘𝑎))
129127, 128syl5eqr 2845 . . . . . . . . . . . . . . . 16 ((𝑣𝐷 ∧ (𝑎 ∈ (0[,)+∞) ∧ 𝑏𝐷)) → (abs‘(0 − 𝑎)) = (abs‘𝑎))
130120, 125, 1293eqtrd 2835 . . . . . . . . . . . . . . 15 ((𝑣𝐷 ∧ (𝑎 ∈ (0[,)+∞) ∧ 𝑏𝐷)) → (0((abs ∘ − ) ↾ ((0[,)+∞) × (0[,)+∞)))𝑎) = (abs‘𝑎))
131130breq1d 4972 . . . . . . . . . . . . . 14 ((𝑣𝐷 ∧ (𝑎 ∈ (0[,)+∞) ∧ 𝑏𝐷)) → ((0((abs ∘ − ) ↾ ((0[,)+∞) × (0[,)+∞)))𝑎) < 𝑑 ↔ (abs‘𝑎) < 𝑑))
132 simpl 483 . . . . . . . . . . . . . . . . 17 ((𝑣𝐷 ∧ (𝑎 ∈ (0[,)+∞) ∧ 𝑏𝐷)) → 𝑣𝐷)
133 simprr 769 . . . . . . . . . . . . . . . . 17 ((𝑣𝐷 ∧ (𝑎 ∈ (0[,)+∞) ∧ 𝑏𝐷)) → 𝑏𝐷)
134132, 133ovresd 7171 . . . . . . . . . . . . . . . 16 ((𝑣𝐷 ∧ (𝑎 ∈ (0[,)+∞) ∧ 𝑏𝐷)) → (𝑣((abs ∘ − ) ↾ (𝐷 × 𝐷))𝑏) = (𝑣(abs ∘ − )𝑏))
13510, 132sseldi 3887 . . . . . . . . . . . . . . . . 17 ((𝑣𝐷 ∧ (𝑎 ∈ (0[,)+∞) ∧ 𝑏𝐷)) → 𝑣 ∈ ℂ)
13610, 133sseldi 3887 . . . . . . . . . . . . . . . . 17 ((𝑣𝐷 ∧ (𝑎 ∈ (0[,)+∞) ∧ 𝑏𝐷)) → 𝑏 ∈ ℂ)
137123cnmetdval 23062 . . . . . . . . . . . . . . . . 17 ((𝑣 ∈ ℂ ∧ 𝑏 ∈ ℂ) → (𝑣(abs ∘ − )𝑏) = (abs‘(𝑣𝑏)))
138135, 136, 137syl2anc 584 . . . . . . . . . . . . . . . 16 ((𝑣𝐷 ∧ (𝑎 ∈ (0[,)+∞) ∧ 𝑏𝐷)) → (𝑣(abs ∘ − )𝑏) = (abs‘(𝑣𝑏)))
139134, 138eqtrd 2831 . . . . . . . . . . . . . . 15 ((𝑣𝐷 ∧ (𝑎 ∈ (0[,)+∞) ∧ 𝑏𝐷)) → (𝑣((abs ∘ − ) ↾ (𝐷 × 𝐷))𝑏) = (abs‘(𝑣𝑏)))
140139breq1d 4972 . . . . . . . . . . . . . 14 ((𝑣𝐷 ∧ (𝑎 ∈ (0[,)+∞) ∧ 𝑏𝐷)) → ((𝑣((abs ∘ − ) ↾ (𝐷 × 𝐷))𝑏) < 𝑑 ↔ (abs‘(𝑣𝑏)) < 𝑑))
141131, 140anbi12d 630 . . . . . . . . . . . . 13 ((𝑣𝐷 ∧ (𝑎 ∈ (0[,)+∞) ∧ 𝑏𝐷)) → (((0((abs ∘ − ) ↾ ((0[,)+∞) × (0[,)+∞)))𝑎) < 𝑑 ∧ (𝑣((abs ∘ − ) ↾ (𝐷 × 𝐷))𝑏) < 𝑑) ↔ ((abs‘𝑎) < 𝑑 ∧ (abs‘(𝑣𝑏)) < 𝑑)))
142 oveq12 7025 . . . . . . . . . . . . . . . . . . 19 ((𝑥 = 0 ∧ 𝑦 = 𝑣) → (𝑥𝑐𝑦) = (0↑𝑐𝑣))
143 ovex 7048 . . . . . . . . . . . . . . . . . . 19 (0↑𝑐𝑣) ∈ V
144142, 15, 143ovmpoa 7161 . . . . . . . . . . . . . . . . . 18 ((0 ∈ (0[,)+∞) ∧ 𝑣𝐷) → (0(𝑥 ∈ (0[,)+∞), 𝑦𝐷 ↦ (𝑥𝑐𝑦))𝑣) = (0↑𝑐𝑣))
145117, 132, 144sylancr 587 . . . . . . . . . . . . . . . . 17 ((𝑣𝐷 ∧ (𝑎 ∈ (0[,)+∞) ∧ 𝑏𝐷)) → (0(𝑥 ∈ (0[,)+∞), 𝑦𝐷 ↦ (𝑥𝑐𝑦))𝑣) = (0↑𝑐𝑣))
1465eleq2i 2874 . . . . . . . . . . . . . . . . . . . . 21 (𝑣𝐷𝑣 ∈ (ℜ “ ℝ+))
147 ffn 6382 . . . . . . . . . . . . . . . . . . . . . 22 (ℜ:ℂ⟶ℝ → ℜ Fn ℂ)
148 elpreima 6693 . . . . . . . . . . . . . . . . . . . . . 22 (ℜ Fn ℂ → (𝑣 ∈ (ℜ “ ℝ+) ↔ (𝑣 ∈ ℂ ∧ (ℜ‘𝑣) ∈ ℝ+)))
1497, 147, 148mp2b 10 . . . . . . . . . . . . . . . . . . . . 21 (𝑣 ∈ (ℜ “ ℝ+) ↔ (𝑣 ∈ ℂ ∧ (ℜ‘𝑣) ∈ ℝ+))
150146, 149bitri 276 . . . . . . . . . . . . . . . . . . . 20 (𝑣𝐷 ↔ (𝑣 ∈ ℂ ∧ (ℜ‘𝑣) ∈ ℝ+))
151150simplbi 498 . . . . . . . . . . . . . . . . . . 19 (𝑣𝐷𝑣 ∈ ℂ)
152150simprbi 497 . . . . . . . . . . . . . . . . . . . . 21 (𝑣𝐷 → (ℜ‘𝑣) ∈ ℝ+)
153152rpne0d 12286 . . . . . . . . . . . . . . . . . . . 20 (𝑣𝐷 → (ℜ‘𝑣) ≠ 0)
154 fveq2 6538 . . . . . . . . . . . . . . . . . . . . . 22 (𝑣 = 0 → (ℜ‘𝑣) = (ℜ‘0))
155 re0 14345 . . . . . . . . . . . . . . . . . . . . . 22 (ℜ‘0) = 0
156154, 155syl6eq 2847 . . . . . . . . . . . . . . . . . . . . 21 (𝑣 = 0 → (ℜ‘𝑣) = 0)
157156necon3i 3016 . . . . . . . . . . . . . . . . . . . 20 ((ℜ‘𝑣) ≠ 0 → 𝑣 ≠ 0)
158153, 157syl 17 . . . . . . . . . . . . . . . . . . 19 (𝑣𝐷𝑣 ≠ 0)
159151, 1580cxpd 24974 . . . . . . . . . . . . . . . . . 18 (𝑣𝐷 → (0↑𝑐𝑣) = 0)
160159adantr 481 . . . . . . . . . . . . . . . . 17 ((𝑣𝐷 ∧ (𝑎 ∈ (0[,)+∞) ∧ 𝑏𝐷)) → (0↑𝑐𝑣) = 0)
161145, 160eqtrd 2831 . . . . . . . . . . . . . . . 16 ((𝑣𝐷 ∧ (𝑎 ∈ (0[,)+∞) ∧ 𝑏𝐷)) → (0(𝑥 ∈ (0[,)+∞), 𝑦𝐷 ↦ (𝑥𝑐𝑦))𝑣) = 0)
162 oveq12 7025 . . . . . . . . . . . . . . . . . 18 ((𝑥 = 𝑎𝑦 = 𝑏) → (𝑥𝑐𝑦) = (𝑎𝑐𝑏))
163 ovex 7048 . . . . . . . . . . . . . . . . . 18 (𝑎𝑐𝑏) ∈ V
164162, 15, 163ovmpoa 7161 . . . . . . . . . . . . . . . . 17 ((𝑎 ∈ (0[,)+∞) ∧ 𝑏𝐷) → (𝑎(𝑥 ∈ (0[,)+∞), 𝑦𝐷 ↦ (𝑥𝑐𝑦))𝑏) = (𝑎𝑐𝑏))
165164adantl 482 . . . . . . . . . . . . . . . 16 ((𝑣𝐷 ∧ (𝑎 ∈ (0[,)+∞) ∧ 𝑏𝐷)) → (𝑎(𝑥 ∈ (0[,)+∞), 𝑦𝐷 ↦ (𝑥𝑐𝑦))𝑏) = (𝑎𝑐𝑏))
166161, 165oveq12d 7034 . . . . . . . . . . . . . . 15 ((𝑣𝐷 ∧ (𝑎 ∈ (0[,)+∞) ∧ 𝑏𝐷)) → ((0(𝑥 ∈ (0[,)+∞), 𝑦𝐷 ↦ (𝑥𝑐𝑦))𝑣)(abs ∘ − )(𝑎(𝑥 ∈ (0[,)+∞), 𝑦𝐷 ↦ (𝑥𝑐𝑦))𝑏)) = (0(abs ∘ − )(𝑎𝑐𝑏)))
167122, 136cxpcld 24972 . . . . . . . . . . . . . . . 16 ((𝑣𝐷 ∧ (𝑎 ∈ (0[,)+∞) ∧ 𝑏𝐷)) → (𝑎𝑐𝑏) ∈ ℂ)
168123cnmetdval 23062 . . . . . . . . . . . . . . . 16 ((0 ∈ ℂ ∧ (𝑎𝑐𝑏) ∈ ℂ) → (0(abs ∘ − )(𝑎𝑐𝑏)) = (abs‘(0 − (𝑎𝑐𝑏))))
169121, 167, 168sylancr 587 . . . . . . . . . . . . . . 15 ((𝑣𝐷 ∧ (𝑎 ∈ (0[,)+∞) ∧ 𝑏𝐷)) → (0(abs ∘ − )(𝑎𝑐𝑏)) = (abs‘(0 − (𝑎𝑐𝑏))))
170 df-neg 10720 . . . . . . . . . . . . . . . . 17 -(𝑎𝑐𝑏) = (0 − (𝑎𝑐𝑏))
171170fveq2i 6541 . . . . . . . . . . . . . . . 16 (abs‘-(𝑎𝑐𝑏)) = (abs‘(0 − (𝑎𝑐𝑏)))
172167absnegd 14643 . . . . . . . . . . . . . . . 16 ((𝑣𝐷 ∧ (𝑎 ∈ (0[,)+∞) ∧ 𝑏𝐷)) → (abs‘-(𝑎𝑐𝑏)) = (abs‘(𝑎𝑐𝑏)))
173171, 172syl5eqr 2845 . . . . . . . . . . . . . . 15 ((𝑣𝐷 ∧ (𝑎 ∈ (0[,)+∞) ∧ 𝑏𝐷)) → (abs‘(0 − (𝑎𝑐𝑏))) = (abs‘(𝑎𝑐𝑏)))
174166, 169, 1733eqtrd 2835 . . . . . . . . . . . . . 14 ((𝑣𝐷 ∧ (𝑎 ∈ (0[,)+∞) ∧ 𝑏𝐷)) → ((0(𝑥 ∈ (0[,)+∞), 𝑦𝐷 ↦ (𝑥𝑐𝑦))𝑣)(abs ∘ − )(𝑎(𝑥 ∈ (0[,)+∞), 𝑦𝐷 ↦ (𝑥𝑐𝑦))𝑏)) = (abs‘(𝑎𝑐𝑏)))
175174breq1d 4972 . . . . . . . . . . . . 13 ((𝑣𝐷 ∧ (𝑎 ∈ (0[,)+∞) ∧ 𝑏𝐷)) → (((0(𝑥 ∈ (0[,)+∞), 𝑦𝐷 ↦ (𝑥𝑐𝑦))𝑣)(abs ∘ − )(𝑎(𝑥 ∈ (0[,)+∞), 𝑦𝐷 ↦ (𝑥𝑐𝑦))𝑏)) < 𝑒 ↔ (abs‘(𝑎𝑐𝑏)) < 𝑒))
176141, 175imbi12d 346 . . . . . . . . . . . 12 ((𝑣𝐷 ∧ (𝑎 ∈ (0[,)+∞) ∧ 𝑏𝐷)) → ((((0((abs ∘ − ) ↾ ((0[,)+∞) × (0[,)+∞)))𝑎) < 𝑑 ∧ (𝑣((abs ∘ − ) ↾ (𝐷 × 𝐷))𝑏) < 𝑑) → ((0(𝑥 ∈ (0[,)+∞), 𝑦𝐷 ↦ (𝑥𝑐𝑦))𝑣)(abs ∘ − )(𝑎(𝑥 ∈ (0[,)+∞), 𝑦𝐷 ↦ (𝑥𝑐𝑦))𝑏)) < 𝑒) ↔ (((abs‘𝑎) < 𝑑 ∧ (abs‘(𝑣𝑏)) < 𝑑) → (abs‘(𝑎𝑐𝑏)) < 𝑒)))
1771762ralbidva 3165 . . . . . . . . . . 11 (𝑣𝐷 → (∀𝑎 ∈ (0[,)+∞)∀𝑏𝐷 (((0((abs ∘ − ) ↾ ((0[,)+∞) × (0[,)+∞)))𝑎) < 𝑑 ∧ (𝑣((abs ∘ − ) ↾ (𝐷 × 𝐷))𝑏) < 𝑑) → ((0(𝑥 ∈ (0[,)+∞), 𝑦𝐷 ↦ (𝑥𝑐𝑦))𝑣)(abs ∘ − )(𝑎(𝑥 ∈ (0[,)+∞), 𝑦𝐷 ↦ (𝑥𝑐𝑦))𝑏)) < 𝑒) ↔ ∀𝑎 ∈ (0[,)+∞)∀𝑏𝐷 (((abs‘𝑎) < 𝑑 ∧ (abs‘(𝑣𝑏)) < 𝑑) → (abs‘(𝑎𝑐𝑏)) < 𝑒)))
178177rexbidv 3260 . . . . . . . . . 10 (𝑣𝐷 → (∃𝑑 ∈ ℝ+𝑎 ∈ (0[,)+∞)∀𝑏𝐷 (((0((abs ∘ − ) ↾ ((0[,)+∞) × (0[,)+∞)))𝑎) < 𝑑 ∧ (𝑣((abs ∘ − ) ↾ (𝐷 × 𝐷))𝑏) < 𝑑) → ((0(𝑥 ∈ (0[,)+∞), 𝑦𝐷 ↦ (𝑥𝑐𝑦))𝑣)(abs ∘ − )(𝑎(𝑥 ∈ (0[,)+∞), 𝑦𝐷 ↦ (𝑥𝑐𝑦))𝑏)) < 𝑒) ↔ ∃𝑑 ∈ ℝ+𝑎 ∈ (0[,)+∞)∀𝑏𝐷 (((abs‘𝑎) < 𝑑 ∧ (abs‘(𝑣𝑏)) < 𝑑) → (abs‘(𝑎𝑐𝑏)) < 𝑒)))
179178ralbidv 3164 . . . . . . . . 9 (𝑣𝐷 → (∀𝑒 ∈ ℝ+𝑑 ∈ ℝ+𝑎 ∈ (0[,)+∞)∀𝑏𝐷 (((0((abs ∘ − ) ↾ ((0[,)+∞) × (0[,)+∞)))𝑎) < 𝑑 ∧ (𝑣((abs ∘ − ) ↾ (𝐷 × 𝐷))𝑏) < 𝑑) → ((0(𝑥 ∈ (0[,)+∞), 𝑦𝐷 ↦ (𝑥𝑐𝑦))𝑣)(abs ∘ − )(𝑎(𝑥 ∈ (0[,)+∞), 𝑦𝐷 ↦ (𝑥𝑐𝑦))𝑏)) < 𝑒) ↔ ∀𝑒 ∈ ℝ+𝑑 ∈ ℝ+𝑎 ∈ (0[,)+∞)∀𝑏𝐷 (((abs‘𝑎) < 𝑑 ∧ (abs‘(𝑣𝑏)) < 𝑑) → (abs‘(𝑎𝑐𝑏)) < 𝑒)))
180116, 179mpbird 258 . . . . . . . 8 (𝑣𝐷 → ∀𝑒 ∈ ℝ+𝑑 ∈ ℝ+𝑎 ∈ (0[,)+∞)∀𝑏𝐷 (((0((abs ∘ − ) ↾ ((0[,)+∞) × (0[,)+∞)))𝑎) < 𝑑 ∧ (𝑣((abs ∘ − ) ↾ (𝐷 × 𝐷))𝑏) < 𝑑) → ((0(𝑥 ∈ (0[,)+∞), 𝑦𝐷 ↦ (𝑥𝑐𝑦))𝑣)(abs ∘ − )(𝑎(𝑥 ∈ (0[,)+∞), 𝑦𝐷 ↦ (𝑥𝑐𝑦))𝑏)) < 𝑒))
181 cnxmet 23064 . . . . . . . . . . 11 (abs ∘ − ) ∈ (∞Met‘ℂ)
182181a1i 11 . . . . . . . . . 10 (𝑣𝐷 → (abs ∘ − ) ∈ (∞Met‘ℂ))
183 xmetres2 22654 . . . . . . . . . 10 (((abs ∘ − ) ∈ (∞Met‘ℂ) ∧ (0[,)+∞) ⊆ ℂ) → ((abs ∘ − ) ↾ ((0[,)+∞) × (0[,)+∞))) ∈ (∞Met‘(0[,)+∞)))
184182, 3, 183sylancl 586 . . . . . . . . 9 (𝑣𝐷 → ((abs ∘ − ) ↾ ((0[,)+∞) × (0[,)+∞))) ∈ (∞Met‘(0[,)+∞)))
185 xmetres2 22654 . . . . . . . . . 10 (((abs ∘ − ) ∈ (∞Met‘ℂ) ∧ 𝐷 ⊆ ℂ) → ((abs ∘ − ) ↾ (𝐷 × 𝐷)) ∈ (∞Met‘𝐷))
186182, 10, 185sylancl 586 . . . . . . . . 9 (𝑣𝐷 → ((abs ∘ − ) ↾ (𝐷 × 𝐷)) ∈ (∞Met‘𝐷))
187117a1i 11 . . . . . . . . 9 (𝑣𝐷 → 0 ∈ (0[,)+∞))
188 id 22 . . . . . . . . 9 (𝑣𝐷𝑣𝐷)
189 eqid 2795 . . . . . . . . . . . . 13 ((abs ∘ − ) ↾ ((0[,)+∞) × (0[,)+∞))) = ((abs ∘ − ) ↾ ((0[,)+∞) × (0[,)+∞)))
19018cnfldtopn 23073 . . . . . . . . . . . . 13 𝐽 = (MetOpen‘(abs ∘ − ))
191 eqid 2795 . . . . . . . . . . . . 13 (MetOpen‘((abs ∘ − ) ↾ ((0[,)+∞) × (0[,)+∞)))) = (MetOpen‘((abs ∘ − ) ↾ ((0[,)+∞) × (0[,)+∞))))
192189, 190, 191metrest 22817 . . . . . . . . . . . 12 (((abs ∘ − ) ∈ (∞Met‘ℂ) ∧ (0[,)+∞) ⊆ ℂ) → (𝐽t (0[,)+∞)) = (MetOpen‘((abs ∘ − ) ↾ ((0[,)+∞) × (0[,)+∞)))))
193181, 3, 192mp2an 688 . . . . . . . . . . 11 (𝐽t (0[,)+∞)) = (MetOpen‘((abs ∘ − ) ↾ ((0[,)+∞) × (0[,)+∞))))
19458, 193eqtri 2819 . . . . . . . . . 10 𝐾 = (MetOpen‘((abs ∘ − ) ↾ ((0[,)+∞) × (0[,)+∞))))
195 eqid 2795 . . . . . . . . . . . . 13 ((abs ∘ − ) ↾ (𝐷 × 𝐷)) = ((abs ∘ − ) ↾ (𝐷 × 𝐷))
196 eqid 2795 . . . . . . . . . . . . 13 (MetOpen‘((abs ∘ − ) ↾ (𝐷 × 𝐷))) = (MetOpen‘((abs ∘ − ) ↾ (𝐷 × 𝐷)))
197195, 190, 196metrest 22817 . . . . . . . . . . . 12 (((abs ∘ − ) ∈ (∞Met‘ℂ) ∧ 𝐷 ⊆ ℂ) → (𝐽t 𝐷) = (MetOpen‘((abs ∘ − ) ↾ (𝐷 × 𝐷))))
198181, 10, 197mp2an 688 . . . . . . . . . . 11 (𝐽t 𝐷) = (MetOpen‘((abs ∘ − ) ↾ (𝐷 × 𝐷)))
19932, 198eqtri 2819 . . . . . . . . . 10 𝐿 = (MetOpen‘((abs ∘ − ) ↾ (𝐷 × 𝐷)))
200194, 199, 190txmetcnp 22840 . . . . . . . . 9 (((((abs ∘ − ) ↾ ((0[,)+∞) × (0[,)+∞))) ∈ (∞Met‘(0[,)+∞)) ∧ ((abs ∘ − ) ↾ (𝐷 × 𝐷)) ∈ (∞Met‘𝐷) ∧ (abs ∘ − ) ∈ (∞Met‘ℂ)) ∧ (0 ∈ (0[,)+∞) ∧ 𝑣𝐷)) → ((𝑥 ∈ (0[,)+∞), 𝑦𝐷 ↦ (𝑥𝑐𝑦)) ∈ (((𝐾 ×t 𝐿) CnP 𝐽)‘⟨0, 𝑣⟩) ↔ ((𝑥 ∈ (0[,)+∞), 𝑦𝐷 ↦ (𝑥𝑐𝑦)):((0[,)+∞) × 𝐷)⟶ℂ ∧ ∀𝑒 ∈ ℝ+𝑑 ∈ ℝ+𝑎 ∈ (0[,)+∞)∀𝑏𝐷 (((0((abs ∘ − ) ↾ ((0[,)+∞) × (0[,)+∞)))𝑎) < 𝑑 ∧ (𝑣((abs ∘ − ) ↾ (𝐷 × 𝐷))𝑏) < 𝑑) → ((0(𝑥 ∈ (0[,)+∞), 𝑦𝐷 ↦ (𝑥𝑐𝑦))𝑣)(abs ∘ − )(𝑎(𝑥 ∈ (0[,)+∞), 𝑦𝐷 ↦ (𝑥𝑐𝑦))𝑏)) < 𝑒))))
201184, 186, 182, 187, 188, 200syl32anc 1371 . . . . . . . 8 (𝑣𝐷 → ((𝑥 ∈ (0[,)+∞), 𝑦𝐷 ↦ (𝑥𝑐𝑦)) ∈ (((𝐾 ×t 𝐿) CnP 𝐽)‘⟨0, 𝑣⟩) ↔ ((𝑥 ∈ (0[,)+∞), 𝑦𝐷 ↦ (𝑥𝑐𝑦)):((0[,)+∞) × 𝐷)⟶ℂ ∧ ∀𝑒 ∈ ℝ+𝑑 ∈ ℝ+𝑎 ∈ (0[,)+∞)∀𝑏𝐷 (((0((abs ∘ − ) ↾ ((0[,)+∞) × (0[,)+∞)))𝑎) < 𝑑 ∧ (𝑣((abs ∘ − ) ↾ (𝐷 × 𝐷))𝑏) < 𝑑) → ((0(𝑥 ∈ (0[,)+∞), 𝑦𝐷 ↦ (𝑥𝑐𝑦))𝑣)(abs ∘ − )(𝑎(𝑥 ∈ (0[,)+∞), 𝑦𝐷 ↦ (𝑥𝑐𝑦))𝑏)) < 𝑒))))
202112, 180, 201mpbir2and 709 . . . . . . 7 (𝑣𝐷 → (𝑥 ∈ (0[,)+∞), 𝑦𝐷 ↦ (𝑥𝑐𝑦)) ∈ (((𝐾 ×t 𝐿) CnP 𝐽)‘⟨0, 𝑣⟩))
203202ad2antlr 723 . . . . . 6 (((𝑢 ∈ (0[,)+∞) ∧ 𝑣𝐷) ∧ 0 = 𝑢) → (𝑥 ∈ (0[,)+∞), 𝑦𝐷 ↦ (𝑥𝑐𝑦)) ∈ (((𝐾 ×t 𝐿) CnP 𝐽)‘⟨0, 𝑣⟩))
204 simpr 485 . . . . . . . 8 (((𝑢 ∈ (0[,)+∞) ∧ 𝑣𝐷) ∧ 0 = 𝑢) → 0 = 𝑢)
205204opeq1d 4716 . . . . . . 7 (((𝑢 ∈ (0[,)+∞) ∧ 𝑣𝐷) ∧ 0 = 𝑢) → ⟨0, 𝑣⟩ = ⟨𝑢, 𝑣⟩)
206205fveq2d 6542 . . . . . 6 (((𝑢 ∈ (0[,)+∞) ∧ 𝑣𝐷) ∧ 0 = 𝑢) → (((𝐾 ×t 𝐿) CnP 𝐽)‘⟨0, 𝑣⟩) = (((𝐾 ×t 𝐿) CnP 𝐽)‘⟨𝑢, 𝑣⟩))
207203, 206eleqtrd 2885 . . . . 5 (((𝑢 ∈ (0[,)+∞) ∧ 𝑣𝐷) ∧ 0 = 𝑢) → (𝑥 ∈ (0[,)+∞), 𝑦𝐷 ↦ (𝑥𝑐𝑦)) ∈ (((𝐾 ×t 𝐿) CnP 𝐽)‘⟨𝑢, 𝑣⟩))
20839simprbi 497 . . . . . . 7 (𝑢 ∈ (0[,)+∞) → 0 ≤ 𝑢)
209208adantr 481 . . . . . 6 ((𝑢 ∈ (0[,)+∞) ∧ 𝑣𝐷) → 0 ≤ 𝑢)
210 0re 10489 . . . . . . 7 0 ∈ ℝ
211 leloe 10574 . . . . . . 7 ((0 ∈ ℝ ∧ 𝑢 ∈ ℝ) → (0 ≤ 𝑢 ↔ (0 < 𝑢 ∨ 0 = 𝑢)))
212210, 41, 211sylancr 587 . . . . . 6 ((𝑢 ∈ (0[,)+∞) ∧ 𝑣𝐷) → (0 ≤ 𝑢 ↔ (0 < 𝑢 ∨ 0 = 𝑢)))
213209, 212mpbid 233 . . . . 5 ((𝑢 ∈ (0[,)+∞) ∧ 𝑣𝐷) → (0 < 𝑢 ∨ 0 = 𝑢))
214111, 207, 213mpjaodan 953 . . . 4 ((𝑢 ∈ (0[,)+∞) ∧ 𝑣𝐷) → (𝑥 ∈ (0[,)+∞), 𝑦𝐷 ↦ (𝑥𝑐𝑦)) ∈ (((𝐾 ×t 𝐿) CnP 𝐽)‘⟨𝑢, 𝑣⟩))
215214rgen2 3170 . . 3 𝑢 ∈ (0[,)+∞)∀𝑣𝐷 (𝑥 ∈ (0[,)+∞), 𝑦𝐷 ↦ (𝑥𝑐𝑦)) ∈ (((𝐾 ×t 𝐿) CnP 𝐽)‘⟨𝑢, 𝑣⟩)
216 fveq2 6538 . . . . 5 (𝑧 = ⟨𝑢, 𝑣⟩ → (((𝐾 ×t 𝐿) CnP 𝐽)‘𝑧) = (((𝐾 ×t 𝐿) CnP 𝐽)‘⟨𝑢, 𝑣⟩))
217216eleq2d 2868 . . . 4 (𝑧 = ⟨𝑢, 𝑣⟩ → ((𝑥 ∈ (0[,)+∞), 𝑦𝐷 ↦ (𝑥𝑐𝑦)) ∈ (((𝐾 ×t 𝐿) CnP 𝐽)‘𝑧) ↔ (𝑥 ∈ (0[,)+∞), 𝑦𝐷 ↦ (𝑥𝑐𝑦)) ∈ (((𝐾 ×t 𝐿) CnP 𝐽)‘⟨𝑢, 𝑣⟩)))
218217ralxp 5598 . . 3 (∀𝑧 ∈ ((0[,)+∞) × 𝐷)(𝑥 ∈ (0[,)+∞), 𝑦𝐷 ↦ (𝑥𝑐𝑦)) ∈ (((𝐾 ×t 𝐿) CnP 𝐽)‘𝑧) ↔ ∀𝑢 ∈ (0[,)+∞)∀𝑣𝐷 (𝑥 ∈ (0[,)+∞), 𝑦𝐷 ↦ (𝑥𝑐𝑦)) ∈ (((𝐾 ×t 𝐿) CnP 𝐽)‘⟨𝑢, 𝑣⟩))
219215, 218mpbir 232 . 2 𝑧 ∈ ((0[,)+∞) × 𝐷)(𝑥 ∈ (0[,)+∞), 𝑦𝐷 ↦ (𝑥𝑐𝑦)) ∈ (((𝐾 ×t 𝐿) CnP 𝐽)‘𝑧)
220 cncnp 21572 . . 3 (((𝐾 ×t 𝐿) ∈ (TopOn‘((0[,)+∞) × 𝐷)) ∧ 𝐽 ∈ (TopOn‘ℂ)) → ((𝑥 ∈ (0[,)+∞), 𝑦𝐷 ↦ (𝑥𝑐𝑦)) ∈ ((𝐾 ×t 𝐿) Cn 𝐽) ↔ ((𝑥 ∈ (0[,)+∞), 𝑦𝐷 ↦ (𝑥𝑐𝑦)):((0[,)+∞) × 𝐷)⟶ℂ ∧ ∀𝑧 ∈ ((0[,)+∞) × 𝐷)(𝑥 ∈ (0[,)+∞), 𝑦𝐷 ↦ (𝑥𝑐𝑦)) ∈ (((𝐾 ×t 𝐿) CnP 𝐽)‘𝑧))))
22193, 19, 220mp2an 688 . 2 ((𝑥 ∈ (0[,)+∞), 𝑦𝐷 ↦ (𝑥𝑐𝑦)) ∈ ((𝐾 ×t 𝐿) Cn 𝐽) ↔ ((𝑥 ∈ (0[,)+∞), 𝑦𝐷 ↦ (𝑥𝑐𝑦)):((0[,)+∞) × 𝐷)⟶ℂ ∧ ∀𝑧 ∈ ((0[,)+∞) × 𝐷)(𝑥 ∈ (0[,)+∞), 𝑦𝐷 ↦ (𝑥𝑐𝑦)) ∈ (((𝐾 ×t 𝐿) CnP 𝐽)‘𝑧)))
22217, 219, 221mpbir2an 707 1 (𝑥 ∈ (0[,)+∞), 𝑦𝐷 ↦ (𝑥𝑐𝑦)) ∈ ((𝐾 ×t 𝐿) Cn 𝐽)
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 207   ∧ wa 396   ∨ wo 842   ∧ w3a 1080   = wceq 1522   ∈ wcel 2081   ≠ wne 2984  ∀wral 3105  ∃wrex 3106  Vcvv 3437   ⊆ wss 3859  ifcif 4381  ⟨cop 4478   class class class wbr 4962   × cxp 5441  ◡ccnv 5442  dom cdm 5443  ran crn 5444   ↾ cres 5445   “ cima 5446   ∘ ccom 5447   Fn wfn 6220  ⟶wf 6221  ‘cfv 6225  (class class class)co 7016   ∈ cmpo 7018  ℂcc 10381  ℝcr 10382  0cc0 10383  1c1 10384  +∞cpnf 10518   < clt 10521   ≤ cle 10522   − cmin 10717  -cneg 10718   / cdiv 11145  2c2 11540  ℝ+crp 12239  (,)cioo 12588  [,)cico 12590  ℜcre 14290  abscabs 14427   ↾t crest 16523  TopOpenctopn 16524  topGenctg 16540  ∞Metcxmet 20212  MetOpencmopn 20217  ℂfldccnfld 20227  Topctop 21185  TopOnctopon 21202  intcnt 21309   Cn ccn 21516   CnP ccnp 21517   ×t ctx 21852  ↑𝑐ccxp 24820 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1777  ax-4 1791  ax-5 1888  ax-6 1947  ax-7 1992  ax-8 2083  ax-9 2091  ax-10 2112  ax-11 2126  ax-12 2141  ax-13 2344  ax-ext 2769  ax-rep 5081  ax-sep 5094  ax-nul 5101  ax-pow 5157  ax-pr 5221  ax-un 7319  ax-inf2 8950  ax-cnex 10439  ax-resscn 10440  ax-1cn 10441  ax-icn 10442  ax-addcl 10443  ax-addrcl 10444  ax-mulcl 10445  ax-mulrcl 10446  ax-mulcom 10447  ax-addass 10448  ax-mulass 10449  ax-distr 10450  ax-i2m1 10451  ax-1ne0 10452  ax-1rid 10453  ax-rnegex 10454  ax-rrecex 10455  ax-cnre 10456  ax-pre-lttri 10457  ax-pre-lttrn 10458  ax-pre-ltadd 10459  ax-pre-mulgt0 10460  ax-pre-sup 10461  ax-addf 10462  ax-mulf 10463 This theorem depends on definitions:  df-bi 208  df-an 397  df-or 843  df-3or 1081  df-3an 1082  df-tru 1525  df-fal 1535  df-ex 1762  df-nf 1766  df-sb 2043  df-mo 2576  df-eu 2612  df-clab 2776  df-cleq 2788  df-clel 2863  df-nfc 2935  df-ne 2985  df-nel 3091  df-ral 3110  df-rex 3111  df-reu 3112  df-rmo 3113  df-rab 3114  df-v 3439  df-sbc 3707  df-csb 3812  df-dif 3862  df-un 3864  df-in 3866  df-ss 3874  df-pss 3876  df-nul 4212  df-if 4382  df-pw 4455  df-sn 4473  df-pr 4475  df-tp 4477  df-op 4479  df-uni 4746  df-int 4783  df-iun 4827  df-iin 4828  df-br 4963  df-opab 5025  df-mpt 5042  df-tr 5064  df-id 5348  df-eprel 5353  df-po 5362  df-so 5363  df-fr 5402  df-se 5403  df-we 5404  df-xp 5449  df-rel 5450  df-cnv 5451  df-co 5452  df-dm 5453  df-rn 5454  df-res 5455  df-ima 5456  df-pred 6023  df-ord 6069  df-on 6070  df-lim 6071  df-suc 6072  df-iota 6189  df-fun 6227  df-fn 6228  df-f 6229  df-f1 6230  df-fo 6231  df-f1o 6232  df-fv 6233  df-isom 6234  df-riota 6977  df-ov 7019  df-oprab 7020  df-mpo 7021  df-of 7267  df-om 7437  df-1st 7545  df-2nd 7546  df-supp 7682  df-wrecs 7798  df-recs 7860  df-rdg 7898  df-1o 7953  df-2o 7954  df-oadd 7957  df-er 8139  df-map 8258  df-pm 8259  df-ixp 8311  df-en 8358  df-dom 8359  df-sdom 8360  df-fin 8361  df-fsupp 8680  df-fi 8721  df-sup 8752  df-inf 8753  df-oi 8820  df-card 9214  df-pnf 10523  df-mnf 10524  df-xr 10525  df-ltxr 10526  df-le 10527  df-sub 10719  df-neg 10720  df-div 11146  df-nn 11487  df-2 11548  df-3 11549  df-4 11550  df-5 11551  df-6 11552  df-7 11553  df-8 11554  df-9 11555  df-n0 11746  df-z 11830  df-dec 11948  df-uz 12094  df-q 12198  df-rp 12240  df-xneg 12357  df-xadd 12358  df-xmul 12359  df-ioo 12592  df-ioc 12593  df-ico 12594  df-icc 12595  df-fz 12743  df-fzo 12884  df-fl 13012  df-mod 13088  df-seq 13220  df-exp 13280  df-fac 13484  df-bc 13513  df-hash 13541  df-shft 14260  df-cj 14292  df-re 14293  df-im 14294  df-sqrt 14428  df-abs 14429  df-limsup 14662  df-clim 14679  df-rlim 14680  df-sum 14877  df-ef 15254  df-sin 15256  df-cos 15257  df-tan 15258  df-pi 15259  df-struct 16314  df-ndx 16315  df-slot 16316  df-base 16318  df-sets 16319  df-ress 16320  df-plusg 16407  df-mulr 16408  df-starv 16409  df-sca 16410  df-vsca 16411  df-ip 16412  df-tset 16413  df-ple 16414  df-ds 16416  df-unif 16417  df-hom 16418  df-cco 16419  df-rest 16525  df-topn 16526  df-0g 16544  df-gsum 16545  df-topgen 16546  df-pt 16547  df-prds 16550  df-xrs 16604  df-qtop 16609  df-imas 16610  df-xps 16612  df-mre 16686  df-mrc 16687  df-acs 16689  df-mgm 17681  df-sgrp 17723  df-mnd 17734  df-submnd 17775  df-mulg 17982  df-cntz 18188  df-cmn 18635  df-psmet 20219  df-xmet 20220  df-met 20221  df-bl 20222  df-mopn 20223  df-fbas 20224  df-fg 20225  df-cnfld 20228  df-top 21186  df-topon 21203  df-topsp 21225  df-bases 21238  df-cld 21311  df-ntr 21312  df-cls 21313  df-nei 21390  df-lp 21428  df-perf 21429  df-cn 21519  df-cnp 21520  df-haus 21607  df-cmp 21679  df-tx 21854  df-hmeo 22047  df-fil 22138  df-fm 22230  df-flim 22231  df-flf 22232  df-xms 22613  df-ms 22614  df-tms 22615  df-cncf 23169  df-limc 24147  df-dv 24148  df-log 24821  df-cxp 24822 This theorem is referenced by:  resqrtcn  25011
 Copyright terms: Public domain W3C validator