MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rankelop Structured version   Visualization version   GIF version

Theorem rankelop 9803
Description: Rank membership is inherited by ordered pairs. (Contributed by NM, 18-Sep-2006.)
Hypotheses
Ref Expression
rankelun.1 𝐴 ∈ V
rankelun.2 𝐵 ∈ V
rankelun.3 𝐶 ∈ V
rankelun.4 𝐷 ∈ V
Assertion
Ref Expression
rankelop (((rank‘𝐴) ∈ (rank‘𝐶) ∧ (rank‘𝐵) ∈ (rank‘𝐷)) → (rank‘⟨𝐴, 𝐵⟩) ∈ (rank‘⟨𝐶, 𝐷⟩))

Proof of Theorem rankelop
StepHypRef Expression
1 rankelun.1 . . . 4 𝐴 ∈ V
2 rankelun.2 . . . 4 𝐵 ∈ V
3 rankelun.3 . . . 4 𝐶 ∈ V
4 rankelun.4 . . . 4 𝐷 ∈ V
51, 2, 3, 4rankelpr 9802 . . 3 (((rank‘𝐴) ∈ (rank‘𝐶) ∧ (rank‘𝐵) ∈ (rank‘𝐷)) → (rank‘{𝐴, 𝐵}) ∈ (rank‘{𝐶, 𝐷}))
6 rankon 9724 . . . . 5 (rank‘{𝐶, 𝐷}) ∈ On
76onordi 6433 . . . 4 Ord (rank‘{𝐶, 𝐷})
8 ordsucelsuc 7777 . . . 4 (Ord (rank‘{𝐶, 𝐷}) → ((rank‘{𝐴, 𝐵}) ∈ (rank‘{𝐶, 𝐷}) ↔ suc (rank‘{𝐴, 𝐵}) ∈ suc (rank‘{𝐶, 𝐷})))
97, 8ax-mp 5 . . 3 ((rank‘{𝐴, 𝐵}) ∈ (rank‘{𝐶, 𝐷}) ↔ suc (rank‘{𝐴, 𝐵}) ∈ suc (rank‘{𝐶, 𝐷}))
105, 9sylib 218 . 2 (((rank‘𝐴) ∈ (rank‘𝐶) ∧ (rank‘𝐵) ∈ (rank‘𝐷)) → suc (rank‘{𝐴, 𝐵}) ∈ suc (rank‘{𝐶, 𝐷}))
111, 2rankop 9787 . . 3 (rank‘⟨𝐴, 𝐵⟩) = suc suc ((rank‘𝐴) ∪ (rank‘𝐵))
121, 2rankpr 9786 . . . 4 (rank‘{𝐴, 𝐵}) = suc ((rank‘𝐴) ∪ (rank‘𝐵))
13 suceq 6388 . . . 4 ((rank‘{𝐴, 𝐵}) = suc ((rank‘𝐴) ∪ (rank‘𝐵)) → suc (rank‘{𝐴, 𝐵}) = suc suc ((rank‘𝐴) ∪ (rank‘𝐵)))
1412, 13ax-mp 5 . . 3 suc (rank‘{𝐴, 𝐵}) = suc suc ((rank‘𝐴) ∪ (rank‘𝐵))
1511, 14eqtr4i 2755 . 2 (rank‘⟨𝐴, 𝐵⟩) = suc (rank‘{𝐴, 𝐵})
163, 4rankop 9787 . . 3 (rank‘⟨𝐶, 𝐷⟩) = suc suc ((rank‘𝐶) ∪ (rank‘𝐷))
173, 4rankpr 9786 . . . 4 (rank‘{𝐶, 𝐷}) = suc ((rank‘𝐶) ∪ (rank‘𝐷))
18 suceq 6388 . . . 4 ((rank‘{𝐶, 𝐷}) = suc ((rank‘𝐶) ∪ (rank‘𝐷)) → suc (rank‘{𝐶, 𝐷}) = suc suc ((rank‘𝐶) ∪ (rank‘𝐷)))
1917, 18ax-mp 5 . . 3 suc (rank‘{𝐶, 𝐷}) = suc suc ((rank‘𝐶) ∪ (rank‘𝐷))
2016, 19eqtr4i 2755 . 2 (rank‘⟨𝐶, 𝐷⟩) = suc (rank‘{𝐶, 𝐷})
2110, 15, 203eltr4g 2845 1 (((rank‘𝐴) ∈ (rank‘𝐶) ∧ (rank‘𝐵) ∈ (rank‘𝐷)) → (rank‘⟨𝐴, 𝐵⟩) ∈ (rank‘⟨𝐶, 𝐷⟩))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  Vcvv 3444  cun 3909  {cpr 4587  cop 4591  Ord word 6319  suc csuc 6322  cfv 6499  rankcrnk 9692
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691  ax-reg 9521  ax-inf2 9570
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-int 4907  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-ov 7372  df-om 7823  df-2nd 7948  df-frecs 8237  df-wrecs 8268  df-recs 8317  df-rdg 8355  df-r1 9693  df-rank 9694
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator