MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rankelop Structured version   Visualization version   GIF version

Theorem rankelop 9834
Description: Rank membership is inherited by ordered pairs. (Contributed by NM, 18-Sep-2006.)
Hypotheses
Ref Expression
rankelun.1 𝐴 ∈ V
rankelun.2 𝐵 ∈ V
rankelun.3 𝐶 ∈ V
rankelun.4 𝐷 ∈ V
Assertion
Ref Expression
rankelop (((rank‘𝐴) ∈ (rank‘𝐶) ∧ (rank‘𝐵) ∈ (rank‘𝐷)) → (rank‘⟨𝐴, 𝐵⟩) ∈ (rank‘⟨𝐶, 𝐷⟩))

Proof of Theorem rankelop
StepHypRef Expression
1 rankelun.1 . . . 4 𝐴 ∈ V
2 rankelun.2 . . . 4 𝐵 ∈ V
3 rankelun.3 . . . 4 𝐶 ∈ V
4 rankelun.4 . . . 4 𝐷 ∈ V
51, 2, 3, 4rankelpr 9833 . . 3 (((rank‘𝐴) ∈ (rank‘𝐶) ∧ (rank‘𝐵) ∈ (rank‘𝐷)) → (rank‘{𝐴, 𝐵}) ∈ (rank‘{𝐶, 𝐷}))
6 rankon 9755 . . . . 5 (rank‘{𝐶, 𝐷}) ∈ On
76onordi 6448 . . . 4 Ord (rank‘{𝐶, 𝐷})
8 ordsucelsuc 7800 . . . 4 (Ord (rank‘{𝐶, 𝐷}) → ((rank‘{𝐴, 𝐵}) ∈ (rank‘{𝐶, 𝐷}) ↔ suc (rank‘{𝐴, 𝐵}) ∈ suc (rank‘{𝐶, 𝐷})))
97, 8ax-mp 5 . . 3 ((rank‘{𝐴, 𝐵}) ∈ (rank‘{𝐶, 𝐷}) ↔ suc (rank‘{𝐴, 𝐵}) ∈ suc (rank‘{𝐶, 𝐷}))
105, 9sylib 218 . 2 (((rank‘𝐴) ∈ (rank‘𝐶) ∧ (rank‘𝐵) ∈ (rank‘𝐷)) → suc (rank‘{𝐴, 𝐵}) ∈ suc (rank‘{𝐶, 𝐷}))
111, 2rankop 9818 . . 3 (rank‘⟨𝐴, 𝐵⟩) = suc suc ((rank‘𝐴) ∪ (rank‘𝐵))
121, 2rankpr 9817 . . . 4 (rank‘{𝐴, 𝐵}) = suc ((rank‘𝐴) ∪ (rank‘𝐵))
13 suceq 6403 . . . 4 ((rank‘{𝐴, 𝐵}) = suc ((rank‘𝐴) ∪ (rank‘𝐵)) → suc (rank‘{𝐴, 𝐵}) = suc suc ((rank‘𝐴) ∪ (rank‘𝐵)))
1412, 13ax-mp 5 . . 3 suc (rank‘{𝐴, 𝐵}) = suc suc ((rank‘𝐴) ∪ (rank‘𝐵))
1511, 14eqtr4i 2756 . 2 (rank‘⟨𝐴, 𝐵⟩) = suc (rank‘{𝐴, 𝐵})
163, 4rankop 9818 . . 3 (rank‘⟨𝐶, 𝐷⟩) = suc suc ((rank‘𝐶) ∪ (rank‘𝐷))
173, 4rankpr 9817 . . . 4 (rank‘{𝐶, 𝐷}) = suc ((rank‘𝐶) ∪ (rank‘𝐷))
18 suceq 6403 . . . 4 ((rank‘{𝐶, 𝐷}) = suc ((rank‘𝐶) ∪ (rank‘𝐷)) → suc (rank‘{𝐶, 𝐷}) = suc suc ((rank‘𝐶) ∪ (rank‘𝐷)))
1917, 18ax-mp 5 . . 3 suc (rank‘{𝐶, 𝐷}) = suc suc ((rank‘𝐶) ∪ (rank‘𝐷))
2016, 19eqtr4i 2756 . 2 (rank‘⟨𝐶, 𝐷⟩) = suc (rank‘{𝐶, 𝐷})
2110, 15, 203eltr4g 2846 1 (((rank‘𝐴) ∈ (rank‘𝐶) ∧ (rank‘𝐵) ∈ (rank‘𝐷)) → (rank‘⟨𝐴, 𝐵⟩) ∈ (rank‘⟨𝐶, 𝐷⟩))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  Vcvv 3450  cun 3915  {cpr 4594  cop 4598  Ord word 6334  suc csuc 6337  cfv 6514  rankcrnk 9723
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-reg 9552  ax-inf2 9601
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-int 4914  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-ov 7393  df-om 7846  df-2nd 7972  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-r1 9724  df-rank 9725
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator