MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rankelop Structured version   Visualization version   GIF version

Theorem rankelop 9888
Description: Rank membership is inherited by ordered pairs. (Contributed by NM, 18-Sep-2006.)
Hypotheses
Ref Expression
rankelun.1 𝐴 ∈ V
rankelun.2 𝐵 ∈ V
rankelun.3 𝐶 ∈ V
rankelun.4 𝐷 ∈ V
Assertion
Ref Expression
rankelop (((rank‘𝐴) ∈ (rank‘𝐶) ∧ (rank‘𝐵) ∈ (rank‘𝐷)) → (rank‘⟨𝐴, 𝐵⟩) ∈ (rank‘⟨𝐶, 𝐷⟩))

Proof of Theorem rankelop
StepHypRef Expression
1 rankelun.1 . . . 4 𝐴 ∈ V
2 rankelun.2 . . . 4 𝐵 ∈ V
3 rankelun.3 . . . 4 𝐶 ∈ V
4 rankelun.4 . . . 4 𝐷 ∈ V
51, 2, 3, 4rankelpr 9887 . . 3 (((rank‘𝐴) ∈ (rank‘𝐶) ∧ (rank‘𝐵) ∈ (rank‘𝐷)) → (rank‘{𝐴, 𝐵}) ∈ (rank‘{𝐶, 𝐷}))
6 rankon 9809 . . . . 5 (rank‘{𝐶, 𝐷}) ∈ On
76onordi 6465 . . . 4 Ord (rank‘{𝐶, 𝐷})
8 ordsucelsuc 7816 . . . 4 (Ord (rank‘{𝐶, 𝐷}) → ((rank‘{𝐴, 𝐵}) ∈ (rank‘{𝐶, 𝐷}) ↔ suc (rank‘{𝐴, 𝐵}) ∈ suc (rank‘{𝐶, 𝐷})))
97, 8ax-mp 5 . . 3 ((rank‘{𝐴, 𝐵}) ∈ (rank‘{𝐶, 𝐷}) ↔ suc (rank‘{𝐴, 𝐵}) ∈ suc (rank‘{𝐶, 𝐷}))
105, 9sylib 218 . 2 (((rank‘𝐴) ∈ (rank‘𝐶) ∧ (rank‘𝐵) ∈ (rank‘𝐷)) → suc (rank‘{𝐴, 𝐵}) ∈ suc (rank‘{𝐶, 𝐷}))
111, 2rankop 9872 . . 3 (rank‘⟨𝐴, 𝐵⟩) = suc suc ((rank‘𝐴) ∪ (rank‘𝐵))
121, 2rankpr 9871 . . . 4 (rank‘{𝐴, 𝐵}) = suc ((rank‘𝐴) ∪ (rank‘𝐵))
13 suceq 6419 . . . 4 ((rank‘{𝐴, 𝐵}) = suc ((rank‘𝐴) ∪ (rank‘𝐵)) → suc (rank‘{𝐴, 𝐵}) = suc suc ((rank‘𝐴) ∪ (rank‘𝐵)))
1412, 13ax-mp 5 . . 3 suc (rank‘{𝐴, 𝐵}) = suc suc ((rank‘𝐴) ∪ (rank‘𝐵))
1511, 14eqtr4i 2761 . 2 (rank‘⟨𝐴, 𝐵⟩) = suc (rank‘{𝐴, 𝐵})
163, 4rankop 9872 . . 3 (rank‘⟨𝐶, 𝐷⟩) = suc suc ((rank‘𝐶) ∪ (rank‘𝐷))
173, 4rankpr 9871 . . . 4 (rank‘{𝐶, 𝐷}) = suc ((rank‘𝐶) ∪ (rank‘𝐷))
18 suceq 6419 . . . 4 ((rank‘{𝐶, 𝐷}) = suc ((rank‘𝐶) ∪ (rank‘𝐷)) → suc (rank‘{𝐶, 𝐷}) = suc suc ((rank‘𝐶) ∪ (rank‘𝐷)))
1917, 18ax-mp 5 . . 3 suc (rank‘{𝐶, 𝐷}) = suc suc ((rank‘𝐶) ∪ (rank‘𝐷))
2016, 19eqtr4i 2761 . 2 (rank‘⟨𝐶, 𝐷⟩) = suc (rank‘{𝐶, 𝐷})
2110, 15, 203eltr4g 2851 1 (((rank‘𝐴) ∈ (rank‘𝐶) ∧ (rank‘𝐵) ∈ (rank‘𝐷)) → (rank‘⟨𝐴, 𝐵⟩) ∈ (rank‘⟨𝐶, 𝐷⟩))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2108  Vcvv 3459  cun 3924  {cpr 4603  cop 4607  Ord word 6351  suc csuc 6354  cfv 6531  rankcrnk 9777
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-rep 5249  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7729  ax-reg 9606  ax-inf2 9655
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-ral 3052  df-rex 3061  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-int 4923  df-iun 4969  df-br 5120  df-opab 5182  df-mpt 5202  df-tr 5230  df-id 5548  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-we 5608  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-pred 6290  df-ord 6355  df-on 6356  df-lim 6357  df-suc 6358  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-f1 6536  df-fo 6537  df-f1o 6538  df-fv 6539  df-ov 7408  df-om 7862  df-2nd 7989  df-frecs 8280  df-wrecs 8311  df-recs 8385  df-rdg 8424  df-r1 9778  df-rank 9779
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator