Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > rankelop | Structured version Visualization version GIF version |
Description: Rank membership is inherited by ordered pairs. (Contributed by NM, 18-Sep-2006.) |
Ref | Expression |
---|---|
rankelun.1 | ⊢ 𝐴 ∈ V |
rankelun.2 | ⊢ 𝐵 ∈ V |
rankelun.3 | ⊢ 𝐶 ∈ V |
rankelun.4 | ⊢ 𝐷 ∈ V |
Ref | Expression |
---|---|
rankelop | ⊢ (((rank‘𝐴) ∈ (rank‘𝐶) ∧ (rank‘𝐵) ∈ (rank‘𝐷)) → (rank‘〈𝐴, 𝐵〉) ∈ (rank‘〈𝐶, 𝐷〉)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rankelun.1 | . . . 4 ⊢ 𝐴 ∈ V | |
2 | rankelun.2 | . . . 4 ⊢ 𝐵 ∈ V | |
3 | rankelun.3 | . . . 4 ⊢ 𝐶 ∈ V | |
4 | rankelun.4 | . . . 4 ⊢ 𝐷 ∈ V | |
5 | 1, 2, 3, 4 | rankelpr 9562 | . . 3 ⊢ (((rank‘𝐴) ∈ (rank‘𝐶) ∧ (rank‘𝐵) ∈ (rank‘𝐷)) → (rank‘{𝐴, 𝐵}) ∈ (rank‘{𝐶, 𝐷})) |
6 | rankon 9484 | . . . . 5 ⊢ (rank‘{𝐶, 𝐷}) ∈ On | |
7 | 6 | onordi 6356 | . . . 4 ⊢ Ord (rank‘{𝐶, 𝐷}) |
8 | ordsucelsuc 7644 | . . . 4 ⊢ (Ord (rank‘{𝐶, 𝐷}) → ((rank‘{𝐴, 𝐵}) ∈ (rank‘{𝐶, 𝐷}) ↔ suc (rank‘{𝐴, 𝐵}) ∈ suc (rank‘{𝐶, 𝐷}))) | |
9 | 7, 8 | ax-mp 5 | . . 3 ⊢ ((rank‘{𝐴, 𝐵}) ∈ (rank‘{𝐶, 𝐷}) ↔ suc (rank‘{𝐴, 𝐵}) ∈ suc (rank‘{𝐶, 𝐷})) |
10 | 5, 9 | sylib 217 | . 2 ⊢ (((rank‘𝐴) ∈ (rank‘𝐶) ∧ (rank‘𝐵) ∈ (rank‘𝐷)) → suc (rank‘{𝐴, 𝐵}) ∈ suc (rank‘{𝐶, 𝐷})) |
11 | 1, 2 | rankop 9547 | . . 3 ⊢ (rank‘〈𝐴, 𝐵〉) = suc suc ((rank‘𝐴) ∪ (rank‘𝐵)) |
12 | 1, 2 | rankpr 9546 | . . . 4 ⊢ (rank‘{𝐴, 𝐵}) = suc ((rank‘𝐴) ∪ (rank‘𝐵)) |
13 | suceq 6316 | . . . 4 ⊢ ((rank‘{𝐴, 𝐵}) = suc ((rank‘𝐴) ∪ (rank‘𝐵)) → suc (rank‘{𝐴, 𝐵}) = suc suc ((rank‘𝐴) ∪ (rank‘𝐵))) | |
14 | 12, 13 | ax-mp 5 | . . 3 ⊢ suc (rank‘{𝐴, 𝐵}) = suc suc ((rank‘𝐴) ∪ (rank‘𝐵)) |
15 | 11, 14 | eqtr4i 2769 | . 2 ⊢ (rank‘〈𝐴, 𝐵〉) = suc (rank‘{𝐴, 𝐵}) |
16 | 3, 4 | rankop 9547 | . . 3 ⊢ (rank‘〈𝐶, 𝐷〉) = suc suc ((rank‘𝐶) ∪ (rank‘𝐷)) |
17 | 3, 4 | rankpr 9546 | . . . 4 ⊢ (rank‘{𝐶, 𝐷}) = suc ((rank‘𝐶) ∪ (rank‘𝐷)) |
18 | suceq 6316 | . . . 4 ⊢ ((rank‘{𝐶, 𝐷}) = suc ((rank‘𝐶) ∪ (rank‘𝐷)) → suc (rank‘{𝐶, 𝐷}) = suc suc ((rank‘𝐶) ∪ (rank‘𝐷))) | |
19 | 17, 18 | ax-mp 5 | . . 3 ⊢ suc (rank‘{𝐶, 𝐷}) = suc suc ((rank‘𝐶) ∪ (rank‘𝐷)) |
20 | 16, 19 | eqtr4i 2769 | . 2 ⊢ (rank‘〈𝐶, 𝐷〉) = suc (rank‘{𝐶, 𝐷}) |
21 | 10, 15, 20 | 3eltr4g 2856 | 1 ⊢ (((rank‘𝐴) ∈ (rank‘𝐶) ∧ (rank‘𝐵) ∈ (rank‘𝐷)) → (rank‘〈𝐴, 𝐵〉) ∈ (rank‘〈𝐶, 𝐷〉)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 = wceq 1539 ∈ wcel 2108 Vcvv 3422 ∪ cun 3881 {cpr 4560 〈cop 4564 Ord word 6250 suc csuc 6253 ‘cfv 6418 rankcrnk 9452 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-rep 5205 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-reg 9281 ax-inf2 9329 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-ral 3068 df-rex 3069 df-reu 3070 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-int 4877 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-pred 6191 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-ov 7258 df-om 7688 df-2nd 7805 df-frecs 8068 df-wrecs 8099 df-recs 8173 df-rdg 8212 df-r1 9453 df-rank 9454 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |