![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > rankelop | Structured version Visualization version GIF version |
Description: Rank membership is inherited by ordered pairs. (Contributed by NM, 18-Sep-2006.) |
Ref | Expression |
---|---|
rankelun.1 | ⊢ 𝐴 ∈ V |
rankelun.2 | ⊢ 𝐵 ∈ V |
rankelun.3 | ⊢ 𝐶 ∈ V |
rankelun.4 | ⊢ 𝐷 ∈ V |
Ref | Expression |
---|---|
rankelop | ⊢ (((rank‘𝐴) ∈ (rank‘𝐶) ∧ (rank‘𝐵) ∈ (rank‘𝐷)) → (rank‘〈𝐴, 𝐵〉) ∈ (rank‘〈𝐶, 𝐷〉)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rankelun.1 | . . . 4 ⊢ 𝐴 ∈ V | |
2 | rankelun.2 | . . . 4 ⊢ 𝐵 ∈ V | |
3 | rankelun.3 | . . . 4 ⊢ 𝐶 ∈ V | |
4 | rankelun.4 | . . . 4 ⊢ 𝐷 ∈ V | |
5 | 1, 2, 3, 4 | rankelpr 9088 | . . 3 ⊢ (((rank‘𝐴) ∈ (rank‘𝐶) ∧ (rank‘𝐵) ∈ (rank‘𝐷)) → (rank‘{𝐴, 𝐵}) ∈ (rank‘{𝐶, 𝐷})) |
6 | rankon 9010 | . . . . 5 ⊢ (rank‘{𝐶, 𝐷}) ∈ On | |
7 | 6 | onordi 6127 | . . . 4 ⊢ Ord (rank‘{𝐶, 𝐷}) |
8 | ordsucelsuc 7347 | . . . 4 ⊢ (Ord (rank‘{𝐶, 𝐷}) → ((rank‘{𝐴, 𝐵}) ∈ (rank‘{𝐶, 𝐷}) ↔ suc (rank‘{𝐴, 𝐵}) ∈ suc (rank‘{𝐶, 𝐷}))) | |
9 | 7, 8 | ax-mp 5 | . . 3 ⊢ ((rank‘{𝐴, 𝐵}) ∈ (rank‘{𝐶, 𝐷}) ↔ suc (rank‘{𝐴, 𝐵}) ∈ suc (rank‘{𝐶, 𝐷})) |
10 | 5, 9 | sylib 210 | . 2 ⊢ (((rank‘𝐴) ∈ (rank‘𝐶) ∧ (rank‘𝐵) ∈ (rank‘𝐷)) → suc (rank‘{𝐴, 𝐵}) ∈ suc (rank‘{𝐶, 𝐷})) |
11 | 1, 2 | rankop 9073 | . . 3 ⊢ (rank‘〈𝐴, 𝐵〉) = suc suc ((rank‘𝐴) ∪ (rank‘𝐵)) |
12 | 1, 2 | rankpr 9072 | . . . 4 ⊢ (rank‘{𝐴, 𝐵}) = suc ((rank‘𝐴) ∪ (rank‘𝐵)) |
13 | suceq 6088 | . . . 4 ⊢ ((rank‘{𝐴, 𝐵}) = suc ((rank‘𝐴) ∪ (rank‘𝐵)) → suc (rank‘{𝐴, 𝐵}) = suc suc ((rank‘𝐴) ∪ (rank‘𝐵))) | |
14 | 12, 13 | ax-mp 5 | . . 3 ⊢ suc (rank‘{𝐴, 𝐵}) = suc suc ((rank‘𝐴) ∪ (rank‘𝐵)) |
15 | 11, 14 | eqtr4i 2799 | . 2 ⊢ (rank‘〈𝐴, 𝐵〉) = suc (rank‘{𝐴, 𝐵}) |
16 | 3, 4 | rankop 9073 | . . 3 ⊢ (rank‘〈𝐶, 𝐷〉) = suc suc ((rank‘𝐶) ∪ (rank‘𝐷)) |
17 | 3, 4 | rankpr 9072 | . . . 4 ⊢ (rank‘{𝐶, 𝐷}) = suc ((rank‘𝐶) ∪ (rank‘𝐷)) |
18 | suceq 6088 | . . . 4 ⊢ ((rank‘{𝐶, 𝐷}) = suc ((rank‘𝐶) ∪ (rank‘𝐷)) → suc (rank‘{𝐶, 𝐷}) = suc suc ((rank‘𝐶) ∪ (rank‘𝐷))) | |
19 | 17, 18 | ax-mp 5 | . . 3 ⊢ suc (rank‘{𝐶, 𝐷}) = suc suc ((rank‘𝐶) ∪ (rank‘𝐷)) |
20 | 16, 19 | eqtr4i 2799 | . 2 ⊢ (rank‘〈𝐶, 𝐷〉) = suc (rank‘{𝐶, 𝐷}) |
21 | 10, 15, 20 | 3eltr4g 2877 | 1 ⊢ (((rank‘𝐴) ∈ (rank‘𝐶) ∧ (rank‘𝐵) ∈ (rank‘𝐷)) → (rank‘〈𝐴, 𝐵〉) ∈ (rank‘〈𝐶, 𝐷〉)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 198 ∧ wa 387 = wceq 1507 ∈ wcel 2048 Vcvv 3409 ∪ cun 3823 {cpr 4437 〈cop 4441 Ord word 6022 suc csuc 6025 ‘cfv 6182 rankcrnk 8978 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1758 ax-4 1772 ax-5 1869 ax-6 1928 ax-7 1964 ax-8 2050 ax-9 2057 ax-10 2077 ax-11 2091 ax-12 2104 ax-13 2299 ax-ext 2745 ax-rep 5043 ax-sep 5054 ax-nul 5061 ax-pow 5113 ax-pr 5180 ax-un 7273 ax-reg 8843 ax-inf2 8890 |
This theorem depends on definitions: df-bi 199 df-an 388 df-or 834 df-3or 1069 df-3an 1070 df-tru 1510 df-ex 1743 df-nf 1747 df-sb 2014 df-mo 2544 df-eu 2580 df-clab 2754 df-cleq 2765 df-clel 2840 df-nfc 2912 df-ne 2962 df-ral 3087 df-rex 3088 df-reu 3089 df-rab 3091 df-v 3411 df-sbc 3678 df-csb 3783 df-dif 3828 df-un 3830 df-in 3832 df-ss 3839 df-pss 3841 df-nul 4174 df-if 4345 df-pw 4418 df-sn 4436 df-pr 4438 df-tp 4440 df-op 4442 df-uni 4707 df-int 4744 df-iun 4788 df-br 4924 df-opab 4986 df-mpt 5003 df-tr 5025 df-id 5305 df-eprel 5310 df-po 5319 df-so 5320 df-fr 5359 df-we 5361 df-xp 5406 df-rel 5407 df-cnv 5408 df-co 5409 df-dm 5410 df-rn 5411 df-res 5412 df-ima 5413 df-pred 5980 df-ord 6026 df-on 6027 df-lim 6028 df-suc 6029 df-iota 6146 df-fun 6184 df-fn 6185 df-f 6186 df-f1 6187 df-fo 6188 df-f1o 6189 df-fv 6190 df-om 7391 df-wrecs 7743 df-recs 7805 df-rdg 7843 df-r1 8979 df-rank 8980 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |