| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > rankelop | Structured version Visualization version GIF version | ||
| Description: Rank membership is inherited by ordered pairs. (Contributed by NM, 18-Sep-2006.) |
| Ref | Expression |
|---|---|
| rankelun.1 | ⊢ 𝐴 ∈ V |
| rankelun.2 | ⊢ 𝐵 ∈ V |
| rankelun.3 | ⊢ 𝐶 ∈ V |
| rankelun.4 | ⊢ 𝐷 ∈ V |
| Ref | Expression |
|---|---|
| rankelop | ⊢ (((rank‘𝐴) ∈ (rank‘𝐶) ∧ (rank‘𝐵) ∈ (rank‘𝐷)) → (rank‘〈𝐴, 𝐵〉) ∈ (rank‘〈𝐶, 𝐷〉)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rankelun.1 | . . . 4 ⊢ 𝐴 ∈ V | |
| 2 | rankelun.2 | . . . 4 ⊢ 𝐵 ∈ V | |
| 3 | rankelun.3 | . . . 4 ⊢ 𝐶 ∈ V | |
| 4 | rankelun.4 | . . . 4 ⊢ 𝐷 ∈ V | |
| 5 | 1, 2, 3, 4 | rankelpr 9833 | . . 3 ⊢ (((rank‘𝐴) ∈ (rank‘𝐶) ∧ (rank‘𝐵) ∈ (rank‘𝐷)) → (rank‘{𝐴, 𝐵}) ∈ (rank‘{𝐶, 𝐷})) |
| 6 | rankon 9755 | . . . . 5 ⊢ (rank‘{𝐶, 𝐷}) ∈ On | |
| 7 | 6 | onordi 6448 | . . . 4 ⊢ Ord (rank‘{𝐶, 𝐷}) |
| 8 | ordsucelsuc 7800 | . . . 4 ⊢ (Ord (rank‘{𝐶, 𝐷}) → ((rank‘{𝐴, 𝐵}) ∈ (rank‘{𝐶, 𝐷}) ↔ suc (rank‘{𝐴, 𝐵}) ∈ suc (rank‘{𝐶, 𝐷}))) | |
| 9 | 7, 8 | ax-mp 5 | . . 3 ⊢ ((rank‘{𝐴, 𝐵}) ∈ (rank‘{𝐶, 𝐷}) ↔ suc (rank‘{𝐴, 𝐵}) ∈ suc (rank‘{𝐶, 𝐷})) |
| 10 | 5, 9 | sylib 218 | . 2 ⊢ (((rank‘𝐴) ∈ (rank‘𝐶) ∧ (rank‘𝐵) ∈ (rank‘𝐷)) → suc (rank‘{𝐴, 𝐵}) ∈ suc (rank‘{𝐶, 𝐷})) |
| 11 | 1, 2 | rankop 9818 | . . 3 ⊢ (rank‘〈𝐴, 𝐵〉) = suc suc ((rank‘𝐴) ∪ (rank‘𝐵)) |
| 12 | 1, 2 | rankpr 9817 | . . . 4 ⊢ (rank‘{𝐴, 𝐵}) = suc ((rank‘𝐴) ∪ (rank‘𝐵)) |
| 13 | suceq 6403 | . . . 4 ⊢ ((rank‘{𝐴, 𝐵}) = suc ((rank‘𝐴) ∪ (rank‘𝐵)) → suc (rank‘{𝐴, 𝐵}) = suc suc ((rank‘𝐴) ∪ (rank‘𝐵))) | |
| 14 | 12, 13 | ax-mp 5 | . . 3 ⊢ suc (rank‘{𝐴, 𝐵}) = suc suc ((rank‘𝐴) ∪ (rank‘𝐵)) |
| 15 | 11, 14 | eqtr4i 2756 | . 2 ⊢ (rank‘〈𝐴, 𝐵〉) = suc (rank‘{𝐴, 𝐵}) |
| 16 | 3, 4 | rankop 9818 | . . 3 ⊢ (rank‘〈𝐶, 𝐷〉) = suc suc ((rank‘𝐶) ∪ (rank‘𝐷)) |
| 17 | 3, 4 | rankpr 9817 | . . . 4 ⊢ (rank‘{𝐶, 𝐷}) = suc ((rank‘𝐶) ∪ (rank‘𝐷)) |
| 18 | suceq 6403 | . . . 4 ⊢ ((rank‘{𝐶, 𝐷}) = suc ((rank‘𝐶) ∪ (rank‘𝐷)) → suc (rank‘{𝐶, 𝐷}) = suc suc ((rank‘𝐶) ∪ (rank‘𝐷))) | |
| 19 | 17, 18 | ax-mp 5 | . . 3 ⊢ suc (rank‘{𝐶, 𝐷}) = suc suc ((rank‘𝐶) ∪ (rank‘𝐷)) |
| 20 | 16, 19 | eqtr4i 2756 | . 2 ⊢ (rank‘〈𝐶, 𝐷〉) = suc (rank‘{𝐶, 𝐷}) |
| 21 | 10, 15, 20 | 3eltr4g 2846 | 1 ⊢ (((rank‘𝐴) ∈ (rank‘𝐶) ∧ (rank‘𝐵) ∈ (rank‘𝐷)) → (rank‘〈𝐴, 𝐵〉) ∈ (rank‘〈𝐶, 𝐷〉)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 Vcvv 3450 ∪ cun 3915 {cpr 4594 〈cop 4598 Ord word 6334 suc csuc 6337 ‘cfv 6514 rankcrnk 9723 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5237 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 ax-reg 9552 ax-inf2 9601 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-pss 3937 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-int 4914 df-iun 4960 df-br 5111 df-opab 5173 df-mpt 5192 df-tr 5218 df-id 5536 df-eprel 5541 df-po 5549 df-so 5550 df-fr 5594 df-we 5596 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-pred 6277 df-ord 6338 df-on 6339 df-lim 6340 df-suc 6341 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-ov 7393 df-om 7846 df-2nd 7972 df-frecs 8263 df-wrecs 8294 df-recs 8343 df-rdg 8381 df-r1 9724 df-rank 9725 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |