Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  line2y Structured version   Visualization version   GIF version

Theorem line2y 45989
Description: Example for a vertical line 𝐺 passing through two different points in "standard form". (Contributed by AV, 3-Feb-2023.)
Hypotheses
Ref Expression
line2.i 𝐼 = {1, 2}
line2.e 𝐸 = (ℝ^‘𝐼)
line2.p 𝑃 = (ℝ ↑m 𝐼)
line2.l 𝐿 = (LineM𝐸)
line2.g 𝐺 = {𝑝𝑃 ∣ ((𝐴 · (𝑝‘1)) + (𝐵 · (𝑝‘2))) = 𝐶}
line2y.x 𝑋 = {⟨1, 0⟩, ⟨2, 𝑀⟩}
line2y.y 𝑌 = {⟨1, 0⟩, ⟨2, 𝑁⟩}
Assertion
Ref Expression
line2y (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ ∧ 𝑀𝑁)) → (𝐺 = (𝑋𝐿𝑌) ↔ (𝐴 ≠ 0 ∧ 𝐵 = 0 ∧ 𝐶 = 0)))
Distinct variable groups:   𝐴,𝑝   𝐵,𝑝   𝐶,𝑝   𝐸,𝑝   𝐼,𝑝   𝑃,𝑝   𝑋,𝑝   𝑌,𝑝   𝑀,𝑝   𝑁,𝑝
Allowed substitution hints:   𝐺(𝑝)   𝐿(𝑝)

Proof of Theorem line2y
StepHypRef Expression
1 line2.g . . . 4 𝐺 = {𝑝𝑃 ∣ ((𝐴 · (𝑝‘1)) + (𝐵 · (𝑝‘2))) = 𝐶}
21a1i 11 . . 3 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ ∧ 𝑀𝑁)) → 𝐺 = {𝑝𝑃 ∣ ((𝐴 · (𝑝‘1)) + (𝐵 · (𝑝‘2))) = 𝐶})
3 1ex 10902 . . . . . . . . . . . 12 1 ∈ V
4 2ex 11980 . . . . . . . . . . . 12 2 ∈ V
53, 4pm3.2i 470 . . . . . . . . . . 11 (1 ∈ V ∧ 2 ∈ V)
6 c0ex 10900 . . . . . . . . . . . 12 0 ∈ V
76jctl 523 . . . . . . . . . . 11 (𝑀 ∈ ℝ → (0 ∈ V ∧ 𝑀 ∈ ℝ))
8 1ne2 12111 . . . . . . . . . . . 12 1 ≠ 2
98a1i 11 . . . . . . . . . . 11 (𝑀 ∈ ℝ → 1 ≠ 2)
10 fprg 7009 . . . . . . . . . . . 12 (((1 ∈ V ∧ 2 ∈ V) ∧ (0 ∈ V ∧ 𝑀 ∈ ℝ) ∧ 1 ≠ 2) → {⟨1, 0⟩, ⟨2, 𝑀⟩}:{1, 2}⟶{0, 𝑀})
11 0red 10909 . . . . . . . . . . . . 13 (((1 ∈ V ∧ 2 ∈ V) ∧ (0 ∈ V ∧ 𝑀 ∈ ℝ) ∧ 1 ≠ 2) → 0 ∈ ℝ)
12 simp2r 1198 . . . . . . . . . . . . 13 (((1 ∈ V ∧ 2 ∈ V) ∧ (0 ∈ V ∧ 𝑀 ∈ ℝ) ∧ 1 ≠ 2) → 𝑀 ∈ ℝ)
1311, 12prssd 4752 . . . . . . . . . . . 12 (((1 ∈ V ∧ 2 ∈ V) ∧ (0 ∈ V ∧ 𝑀 ∈ ℝ) ∧ 1 ≠ 2) → {0, 𝑀} ⊆ ℝ)
1410, 13fssd 6602 . . . . . . . . . . 11 (((1 ∈ V ∧ 2 ∈ V) ∧ (0 ∈ V ∧ 𝑀 ∈ ℝ) ∧ 1 ≠ 2) → {⟨1, 0⟩, ⟨2, 𝑀⟩}:{1, 2}⟶ℝ)
155, 7, 9, 14mp3an2i 1464 . . . . . . . . . 10 (𝑀 ∈ ℝ → {⟨1, 0⟩, ⟨2, 𝑀⟩}:{1, 2}⟶ℝ)
16 line2.i . . . . . . . . . . 11 𝐼 = {1, 2}
1716feq2i 6576 . . . . . . . . . 10 ({⟨1, 0⟩, ⟨2, 𝑀⟩}:𝐼⟶ℝ ↔ {⟨1, 0⟩, ⟨2, 𝑀⟩}:{1, 2}⟶ℝ)
1815, 17sylibr 233 . . . . . . . . 9 (𝑀 ∈ ℝ → {⟨1, 0⟩, ⟨2, 𝑀⟩}:𝐼⟶ℝ)
19 reex 10893 . . . . . . . . . 10 ℝ ∈ V
20 prex 5350 . . . . . . . . . . 11 {1, 2} ∈ V
2116, 20eqeltri 2835 . . . . . . . . . 10 𝐼 ∈ V
2219, 21elmap 8617 . . . . . . . . 9 ({⟨1, 0⟩, ⟨2, 𝑀⟩} ∈ (ℝ ↑m 𝐼) ↔ {⟨1, 0⟩, ⟨2, 𝑀⟩}:𝐼⟶ℝ)
2318, 22sylibr 233 . . . . . . . 8 (𝑀 ∈ ℝ → {⟨1, 0⟩, ⟨2, 𝑀⟩} ∈ (ℝ ↑m 𝐼))
24 line2y.x . . . . . . . 8 𝑋 = {⟨1, 0⟩, ⟨2, 𝑀⟩}
25 line2.p . . . . . . . 8 𝑃 = (ℝ ↑m 𝐼)
2623, 24, 253eltr4g 2856 . . . . . . 7 (𝑀 ∈ ℝ → 𝑋𝑃)
27263ad2ant1 1131 . . . . . 6 ((𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ ∧ 𝑀𝑁) → 𝑋𝑃)
286jctl 523 . . . . . . . . . . . 12 (𝑁 ∈ ℝ → (0 ∈ V ∧ 𝑁 ∈ ℝ))
298a1i 11 . . . . . . . . . . . 12 (𝑁 ∈ ℝ → 1 ≠ 2)
30 fprg 7009 . . . . . . . . . . . 12 (((1 ∈ V ∧ 2 ∈ V) ∧ (0 ∈ V ∧ 𝑁 ∈ ℝ) ∧ 1 ≠ 2) → {⟨1, 0⟩, ⟨2, 𝑁⟩}:{1, 2}⟶{0, 𝑁})
315, 28, 29, 30mp3an2i 1464 . . . . . . . . . . 11 (𝑁 ∈ ℝ → {⟨1, 0⟩, ⟨2, 𝑁⟩}:{1, 2}⟶{0, 𝑁})
32 0re 10908 . . . . . . . . . . . 12 0 ∈ ℝ
33 prssi 4751 . . . . . . . . . . . 12 ((0 ∈ ℝ ∧ 𝑁 ∈ ℝ) → {0, 𝑁} ⊆ ℝ)
3432, 33mpan 686 . . . . . . . . . . 11 (𝑁 ∈ ℝ → {0, 𝑁} ⊆ ℝ)
3531, 34fssd 6602 . . . . . . . . . 10 (𝑁 ∈ ℝ → {⟨1, 0⟩, ⟨2, 𝑁⟩}:{1, 2}⟶ℝ)
3616feq2i 6576 . . . . . . . . . 10 ({⟨1, 0⟩, ⟨2, 𝑁⟩}:𝐼⟶ℝ ↔ {⟨1, 0⟩, ⟨2, 𝑁⟩}:{1, 2}⟶ℝ)
3735, 36sylibr 233 . . . . . . . . 9 (𝑁 ∈ ℝ → {⟨1, 0⟩, ⟨2, 𝑁⟩}:𝐼⟶ℝ)
3819, 21pm3.2i 470 . . . . . . . . . 10 (ℝ ∈ V ∧ 𝐼 ∈ V)
39 elmapg 8586 . . . . . . . . . 10 ((ℝ ∈ V ∧ 𝐼 ∈ V) → ({⟨1, 0⟩, ⟨2, 𝑁⟩} ∈ (ℝ ↑m 𝐼) ↔ {⟨1, 0⟩, ⟨2, 𝑁⟩}:𝐼⟶ℝ))
4038, 39mp1i 13 . . . . . . . . 9 (𝑁 ∈ ℝ → ({⟨1, 0⟩, ⟨2, 𝑁⟩} ∈ (ℝ ↑m 𝐼) ↔ {⟨1, 0⟩, ⟨2, 𝑁⟩}:𝐼⟶ℝ))
4137, 40mpbird 256 . . . . . . . 8 (𝑁 ∈ ℝ → {⟨1, 0⟩, ⟨2, 𝑁⟩} ∈ (ℝ ↑m 𝐼))
42 line2y.y . . . . . . . 8 𝑌 = {⟨1, 0⟩, ⟨2, 𝑁⟩}
4341, 42, 253eltr4g 2856 . . . . . . 7 (𝑁 ∈ ℝ → 𝑌𝑃)
44433ad2ant2 1132 . . . . . 6 ((𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ ∧ 𝑀𝑁) → 𝑌𝑃)
4524fveq1i 6757 . . . . . . . . 9 (𝑋‘1) = ({⟨1, 0⟩, ⟨2, 𝑀⟩}‘1)
463, 6, 83pm3.2i 1337 . . . . . . . . . 10 (1 ∈ V ∧ 0 ∈ V ∧ 1 ≠ 2)
47 fvpr1g 7044 . . . . . . . . . 10 ((1 ∈ V ∧ 0 ∈ V ∧ 1 ≠ 2) → ({⟨1, 0⟩, ⟨2, 𝑀⟩}‘1) = 0)
4846, 47mp1i 13 . . . . . . . . 9 ((𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ ∧ 𝑀𝑁) → ({⟨1, 0⟩, ⟨2, 𝑀⟩}‘1) = 0)
4945, 48syl5eq 2791 . . . . . . . 8 ((𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ ∧ 𝑀𝑁) → (𝑋‘1) = 0)
5042fveq1i 6757 . . . . . . . . 9 (𝑌‘1) = ({⟨1, 0⟩, ⟨2, 𝑁⟩}‘1)
51 fvpr1g 7044 . . . . . . . . . 10 ((1 ∈ V ∧ 0 ∈ V ∧ 1 ≠ 2) → ({⟨1, 0⟩, ⟨2, 𝑁⟩}‘1) = 0)
5246, 51mp1i 13 . . . . . . . . 9 ((𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ ∧ 𝑀𝑁) → ({⟨1, 0⟩, ⟨2, 𝑁⟩}‘1) = 0)
5350, 52syl5eq 2791 . . . . . . . 8 ((𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ ∧ 𝑀𝑁) → (𝑌‘1) = 0)
5449, 53eqtr4d 2781 . . . . . . 7 ((𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ ∧ 𝑀𝑁) → (𝑋‘1) = (𝑌‘1))
55 simp3 1136 . . . . . . . 8 ((𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ ∧ 𝑀𝑁) → 𝑀𝑁)
5624fveq1i 6757 . . . . . . . . 9 (𝑋‘2) = ({⟨1, 0⟩, ⟨2, 𝑀⟩}‘2)
57 simp1 1134 . . . . . . . . . 10 ((𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ ∧ 𝑀𝑁) → 𝑀 ∈ ℝ)
588a1i 11 . . . . . . . . . 10 ((𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ ∧ 𝑀𝑁) → 1 ≠ 2)
59 fvpr2g 7045 . . . . . . . . . 10 ((2 ∈ V ∧ 𝑀 ∈ ℝ ∧ 1 ≠ 2) → ({⟨1, 0⟩, ⟨2, 𝑀⟩}‘2) = 𝑀)
604, 57, 58, 59mp3an2i 1464 . . . . . . . . 9 ((𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ ∧ 𝑀𝑁) → ({⟨1, 0⟩, ⟨2, 𝑀⟩}‘2) = 𝑀)
6156, 60syl5eq 2791 . . . . . . . 8 ((𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ ∧ 𝑀𝑁) → (𝑋‘2) = 𝑀)
6242fveq1i 6757 . . . . . . . . 9 (𝑌‘2) = ({⟨1, 0⟩, ⟨2, 𝑁⟩}‘2)
63 simp2 1135 . . . . . . . . . 10 ((𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ ∧ 𝑀𝑁) → 𝑁 ∈ ℝ)
64 fvpr2g 7045 . . . . . . . . . 10 ((2 ∈ V ∧ 𝑁 ∈ ℝ ∧ 1 ≠ 2) → ({⟨1, 0⟩, ⟨2, 𝑁⟩}‘2) = 𝑁)
654, 63, 58, 64mp3an2i 1464 . . . . . . . . 9 ((𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ ∧ 𝑀𝑁) → ({⟨1, 0⟩, ⟨2, 𝑁⟩}‘2) = 𝑁)
6662, 65syl5eq 2791 . . . . . . . 8 ((𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ ∧ 𝑀𝑁) → (𝑌‘2) = 𝑁)
6755, 61, 663netr4d 3020 . . . . . . 7 ((𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ ∧ 𝑀𝑁) → (𝑋‘2) ≠ (𝑌‘2))
6854, 67jca 511 . . . . . 6 ((𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ ∧ 𝑀𝑁) → ((𝑋‘1) = (𝑌‘1) ∧ (𝑋‘2) ≠ (𝑌‘2)))
6927, 44, 683jca 1126 . . . . 5 ((𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ ∧ 𝑀𝑁) → (𝑋𝑃𝑌𝑃 ∧ ((𝑋‘1) = (𝑌‘1) ∧ (𝑋‘2) ≠ (𝑌‘2))))
7069adantl 481 . . . 4 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ ∧ 𝑀𝑁)) → (𝑋𝑃𝑌𝑃 ∧ ((𝑋‘1) = (𝑌‘1) ∧ (𝑋‘2) ≠ (𝑌‘2))))
71 line2.e . . . . 5 𝐸 = (ℝ^‘𝐼)
72 line2.l . . . . 5 𝐿 = (LineM𝐸)
7316, 71, 25, 72rrx2vlinest 45975 . . . 4 ((𝑋𝑃𝑌𝑃 ∧ ((𝑋‘1) = (𝑌‘1) ∧ (𝑋‘2) ≠ (𝑌‘2))) → (𝑋𝐿𝑌) = {𝑝𝑃 ∣ (𝑝‘1) = (𝑋‘1)})
7470, 73syl 17 . . 3 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ ∧ 𝑀𝑁)) → (𝑋𝐿𝑌) = {𝑝𝑃 ∣ (𝑝‘1) = (𝑋‘1)})
752, 74eqeq12d 2754 . 2 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ ∧ 𝑀𝑁)) → (𝐺 = (𝑋𝐿𝑌) ↔ {𝑝𝑃 ∣ ((𝐴 · (𝑝‘1)) + (𝐵 · (𝑝‘2))) = 𝐶} = {𝑝𝑃 ∣ (𝑝‘1) = (𝑋‘1)}))
7646, 47ax-mp 5 . . . . . . 7 ({⟨1, 0⟩, ⟨2, 𝑀⟩}‘1) = 0
7745, 76eqtri 2766 . . . . . 6 (𝑋‘1) = 0
7877a1i 11 . . . . 5 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ ∧ 𝑀𝑁)) → (𝑋‘1) = 0)
7978eqeq2d 2749 . . . 4 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ ∧ 𝑀𝑁)) → ((𝑝‘1) = (𝑋‘1) ↔ (𝑝‘1) = 0))
8079rabbidv 3404 . . 3 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ ∧ 𝑀𝑁)) → {𝑝𝑃 ∣ (𝑝‘1) = (𝑋‘1)} = {𝑝𝑃 ∣ (𝑝‘1) = 0})
8180eqeq2d 2749 . 2 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ ∧ 𝑀𝑁)) → ({𝑝𝑃 ∣ ((𝐴 · (𝑝‘1)) + (𝐵 · (𝑝‘2))) = 𝐶} = {𝑝𝑃 ∣ (𝑝‘1) = (𝑋‘1)} ↔ {𝑝𝑃 ∣ ((𝐴 · (𝑝‘1)) + (𝐵 · (𝑝‘2))) = 𝐶} = {𝑝𝑃 ∣ (𝑝‘1) = 0}))
82 rabbi 3309 . . 3 (∀𝑝𝑃 (((𝐴 · (𝑝‘1)) + (𝐵 · (𝑝‘2))) = 𝐶 ↔ (𝑝‘1) = 0) ↔ {𝑝𝑃 ∣ ((𝐴 · (𝑝‘1)) + (𝐵 · (𝑝‘2))) = 𝐶} = {𝑝𝑃 ∣ (𝑝‘1) = 0})
8316, 25line2ylem 45985 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (∀𝑝𝑃 (((𝐴 · (𝑝‘1)) + (𝐵 · (𝑝‘2))) = 𝐶 ↔ (𝑝‘1) = 0) → (𝐴 ≠ 0 ∧ 𝐵 = 0 ∧ 𝐶 = 0)))
8483adantr 480 . . . 4 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ ∧ 𝑀𝑁)) → (∀𝑝𝑃 (((𝐴 · (𝑝‘1)) + (𝐵 · (𝑝‘2))) = 𝐶 ↔ (𝑝‘1) = 0) → (𝐴 ≠ 0 ∧ 𝐵 = 0 ∧ 𝐶 = 0)))
85 oveq1 7262 . . . . . . . . . . 11 (𝐵 = 0 → (𝐵 · (𝑝‘2)) = (0 · (𝑝‘2)))
86853ad2ant2 1132 . . . . . . . . . 10 ((𝐴 ≠ 0 ∧ 𝐵 = 0 ∧ 𝐶 = 0) → (𝐵 · (𝑝‘2)) = (0 · (𝑝‘2)))
8786oveq2d 7271 . . . . . . . . 9 ((𝐴 ≠ 0 ∧ 𝐵 = 0 ∧ 𝐶 = 0) → ((𝐴 · (𝑝‘1)) + (𝐵 · (𝑝‘2))) = ((𝐴 · (𝑝‘1)) + (0 · (𝑝‘2))))
88 simp3 1136 . . . . . . . . 9 ((𝐴 ≠ 0 ∧ 𝐵 = 0 ∧ 𝐶 = 0) → 𝐶 = 0)
8987, 88eqeq12d 2754 . . . . . . . 8 ((𝐴 ≠ 0 ∧ 𝐵 = 0 ∧ 𝐶 = 0) → (((𝐴 · (𝑝‘1)) + (𝐵 · (𝑝‘2))) = 𝐶 ↔ ((𝐴 · (𝑝‘1)) + (0 · (𝑝‘2))) = 0))
9089ad2antlr 723 . . . . . . 7 (((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ ∧ 𝑀𝑁)) ∧ (𝐴 ≠ 0 ∧ 𝐵 = 0 ∧ 𝐶 = 0)) ∧ 𝑝𝑃) → (((𝐴 · (𝑝‘1)) + (𝐵 · (𝑝‘2))) = 𝐶 ↔ ((𝐴 · (𝑝‘1)) + (0 · (𝑝‘2))) = 0))
9116, 25rrx2pyel 45946 . . . . . . . . . . . . 13 (𝑝𝑃 → (𝑝‘2) ∈ ℝ)
9291recnd 10934 . . . . . . . . . . . 12 (𝑝𝑃 → (𝑝‘2) ∈ ℂ)
9392mul02d 11103 . . . . . . . . . . 11 (𝑝𝑃 → (0 · (𝑝‘2)) = 0)
9493adantl 481 . . . . . . . . . 10 (((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ ∧ 𝑀𝑁)) ∧ (𝐴 ≠ 0 ∧ 𝐵 = 0 ∧ 𝐶 = 0)) ∧ 𝑝𝑃) → (0 · (𝑝‘2)) = 0)
9594oveq2d 7271 . . . . . . . . 9 (((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ ∧ 𝑀𝑁)) ∧ (𝐴 ≠ 0 ∧ 𝐵 = 0 ∧ 𝐶 = 0)) ∧ 𝑝𝑃) → ((𝐴 · (𝑝‘1)) + (0 · (𝑝‘2))) = ((𝐴 · (𝑝‘1)) + 0))
96 simp1 1134 . . . . . . . . . . . . 13 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → 𝐴 ∈ ℝ)
9796recnd 10934 . . . . . . . . . . . 12 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → 𝐴 ∈ ℂ)
9897ad3antrrr 726 . . . . . . . . . . 11 (((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ ∧ 𝑀𝑁)) ∧ (𝐴 ≠ 0 ∧ 𝐵 = 0 ∧ 𝐶 = 0)) ∧ 𝑝𝑃) → 𝐴 ∈ ℂ)
9916, 25rrx2pxel 45945 . . . . . . . . . . . . 13 (𝑝𝑃 → (𝑝‘1) ∈ ℝ)
10099recnd 10934 . . . . . . . . . . . 12 (𝑝𝑃 → (𝑝‘1) ∈ ℂ)
101100adantl 481 . . . . . . . . . . 11 (((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ ∧ 𝑀𝑁)) ∧ (𝐴 ≠ 0 ∧ 𝐵 = 0 ∧ 𝐶 = 0)) ∧ 𝑝𝑃) → (𝑝‘1) ∈ ℂ)
10298, 101mulcld 10926 . . . . . . . . . 10 (((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ ∧ 𝑀𝑁)) ∧ (𝐴 ≠ 0 ∧ 𝐵 = 0 ∧ 𝐶 = 0)) ∧ 𝑝𝑃) → (𝐴 · (𝑝‘1)) ∈ ℂ)
103102addid1d 11105 . . . . . . . . 9 (((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ ∧ 𝑀𝑁)) ∧ (𝐴 ≠ 0 ∧ 𝐵 = 0 ∧ 𝐶 = 0)) ∧ 𝑝𝑃) → ((𝐴 · (𝑝‘1)) + 0) = (𝐴 · (𝑝‘1)))
10495, 103eqtrd 2778 . . . . . . . 8 (((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ ∧ 𝑀𝑁)) ∧ (𝐴 ≠ 0 ∧ 𝐵 = 0 ∧ 𝐶 = 0)) ∧ 𝑝𝑃) → ((𝐴 · (𝑝‘1)) + (0 · (𝑝‘2))) = (𝐴 · (𝑝‘1)))
105104eqeq1d 2740 . . . . . . 7 (((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ ∧ 𝑀𝑁)) ∧ (𝐴 ≠ 0 ∧ 𝐵 = 0 ∧ 𝐶 = 0)) ∧ 𝑝𝑃) → (((𝐴 · (𝑝‘1)) + (0 · (𝑝‘2))) = 0 ↔ (𝐴 · (𝑝‘1)) = 0))
10698, 101mul0ord 11555 . . . . . . . 8 (((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ ∧ 𝑀𝑁)) ∧ (𝐴 ≠ 0 ∧ 𝐵 = 0 ∧ 𝐶 = 0)) ∧ 𝑝𝑃) → ((𝐴 · (𝑝‘1)) = 0 ↔ (𝐴 = 0 ∨ (𝑝‘1) = 0)))
107 eqneqall 2953 . . . . . . . . . . . . 13 (𝐴 = 0 → (𝐴 ≠ 0 → (𝑝‘1) = 0))
108107com12 32 . . . . . . . . . . . 12 (𝐴 ≠ 0 → (𝐴 = 0 → (𝑝‘1) = 0))
1091083ad2ant1 1131 . . . . . . . . . . 11 ((𝐴 ≠ 0 ∧ 𝐵 = 0 ∧ 𝐶 = 0) → (𝐴 = 0 → (𝑝‘1) = 0))
110109ad2antlr 723 . . . . . . . . . 10 (((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ ∧ 𝑀𝑁)) ∧ (𝐴 ≠ 0 ∧ 𝐵 = 0 ∧ 𝐶 = 0)) ∧ 𝑝𝑃) → (𝐴 = 0 → (𝑝‘1) = 0))
111 idd 24 . . . . . . . . . 10 (((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ ∧ 𝑀𝑁)) ∧ (𝐴 ≠ 0 ∧ 𝐵 = 0 ∧ 𝐶 = 0)) ∧ 𝑝𝑃) → ((𝑝‘1) = 0 → (𝑝‘1) = 0))
112110, 111jaod 855 . . . . . . . . 9 (((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ ∧ 𝑀𝑁)) ∧ (𝐴 ≠ 0 ∧ 𝐵 = 0 ∧ 𝐶 = 0)) ∧ 𝑝𝑃) → ((𝐴 = 0 ∨ (𝑝‘1) = 0) → (𝑝‘1) = 0))
113 olc 864 . . . . . . . . 9 ((𝑝‘1) = 0 → (𝐴 = 0 ∨ (𝑝‘1) = 0))
114112, 113impbid1 224 . . . . . . . 8 (((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ ∧ 𝑀𝑁)) ∧ (𝐴 ≠ 0 ∧ 𝐵 = 0 ∧ 𝐶 = 0)) ∧ 𝑝𝑃) → ((𝐴 = 0 ∨ (𝑝‘1) = 0) ↔ (𝑝‘1) = 0))
115106, 114bitrd 278 . . . . . . 7 (((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ ∧ 𝑀𝑁)) ∧ (𝐴 ≠ 0 ∧ 𝐵 = 0 ∧ 𝐶 = 0)) ∧ 𝑝𝑃) → ((𝐴 · (𝑝‘1)) = 0 ↔ (𝑝‘1) = 0))
11690, 105, 1153bitrd 304 . . . . . 6 (((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ ∧ 𝑀𝑁)) ∧ (𝐴 ≠ 0 ∧ 𝐵 = 0 ∧ 𝐶 = 0)) ∧ 𝑝𝑃) → (((𝐴 · (𝑝‘1)) + (𝐵 · (𝑝‘2))) = 𝐶 ↔ (𝑝‘1) = 0))
117116ralrimiva 3107 . . . . 5 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ ∧ 𝑀𝑁)) ∧ (𝐴 ≠ 0 ∧ 𝐵 = 0 ∧ 𝐶 = 0)) → ∀𝑝𝑃 (((𝐴 · (𝑝‘1)) + (𝐵 · (𝑝‘2))) = 𝐶 ↔ (𝑝‘1) = 0))
118117ex 412 . . . 4 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ ∧ 𝑀𝑁)) → ((𝐴 ≠ 0 ∧ 𝐵 = 0 ∧ 𝐶 = 0) → ∀𝑝𝑃 (((𝐴 · (𝑝‘1)) + (𝐵 · (𝑝‘2))) = 𝐶 ↔ (𝑝‘1) = 0)))
11984, 118impbid 211 . . 3 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ ∧ 𝑀𝑁)) → (∀𝑝𝑃 (((𝐴 · (𝑝‘1)) + (𝐵 · (𝑝‘2))) = 𝐶 ↔ (𝑝‘1) = 0) ↔ (𝐴 ≠ 0 ∧ 𝐵 = 0 ∧ 𝐶 = 0)))
12082, 119bitr3id 284 . 2 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ ∧ 𝑀𝑁)) → ({𝑝𝑃 ∣ ((𝐴 · (𝑝‘1)) + (𝐵 · (𝑝‘2))) = 𝐶} = {𝑝𝑃 ∣ (𝑝‘1) = 0} ↔ (𝐴 ≠ 0 ∧ 𝐵 = 0 ∧ 𝐶 = 0)))
12175, 81, 1203bitrd 304 1 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ ∧ 𝑀𝑁)) → (𝐺 = (𝑋𝐿𝑌) ↔ (𝐴 ≠ 0 ∧ 𝐵 = 0 ∧ 𝐶 = 0)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395  wo 843  w3a 1085   = wceq 1539  wcel 2108  wne 2942  wral 3063  {crab 3067  Vcvv 3422  wss 3883  {cpr 4560  cop 4564  wf 6414  cfv 6418  (class class class)co 7255  m cmap 8573  cc 10800  cr 10801  0cc0 10802  1c1 10803   + caddc 10805   · cmul 10807  2c2 11958  ℝ^crrx 24452  LineMcline 45961
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879  ax-pre-sup 10880  ax-addf 10881  ax-mulf 10882
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-of 7511  df-om 7688  df-1st 7804  df-2nd 7805  df-supp 7949  df-tpos 8013  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-1o 8267  df-er 8456  df-map 8575  df-ixp 8644  df-en 8692  df-dom 8693  df-sdom 8694  df-fin 8695  df-fsupp 9059  df-sup 9131  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-div 11563  df-nn 11904  df-2 11966  df-3 11967  df-4 11968  df-5 11969  df-6 11970  df-7 11971  df-8 11972  df-9 11973  df-n0 12164  df-z 12250  df-dec 12367  df-uz 12512  df-rp 12660  df-fz 13169  df-seq 13650  df-exp 13711  df-cj 14738  df-re 14739  df-im 14740  df-sqrt 14874  df-abs 14875  df-struct 16776  df-sets 16793  df-slot 16811  df-ndx 16823  df-base 16841  df-ress 16868  df-plusg 16901  df-mulr 16902  df-starv 16903  df-sca 16904  df-vsca 16905  df-ip 16906  df-tset 16907  df-ple 16908  df-ds 16910  df-unif 16911  df-hom 16912  df-cco 16913  df-0g 17069  df-prds 17075  df-pws 17077  df-mgm 18241  df-sgrp 18290  df-mnd 18301  df-mhm 18345  df-grp 18495  df-minusg 18496  df-sbg 18497  df-subg 18667  df-ghm 18747  df-cmn 19303  df-mgp 19636  df-ur 19653  df-ring 19700  df-cring 19701  df-oppr 19777  df-dvdsr 19798  df-unit 19799  df-invr 19829  df-dvr 19840  df-rnghom 19874  df-drng 19908  df-field 19909  df-subrg 19937  df-staf 20020  df-srng 20021  df-lmod 20040  df-lss 20109  df-sra 20349  df-rgmod 20350  df-cnfld 20511  df-refld 20722  df-dsmm 20849  df-frlm 20864  df-tng 23646  df-tcph 24238  df-rrx 24454  df-line 45963
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator