Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  line2y Structured version   Visualization version   GIF version

Theorem line2y 46831
Description: Example for a vertical line 𝐺 passing through two different points in "standard form". (Contributed by AV, 3-Feb-2023.)
Hypotheses
Ref Expression
line2.i 𝐼 = {1, 2}
line2.e 𝐸 = (ℝ^‘𝐼)
line2.p 𝑃 = (ℝ ↑m 𝐼)
line2.l 𝐿 = (LineM𝐸)
line2.g 𝐺 = {𝑝𝑃 ∣ ((𝐴 · (𝑝‘1)) + (𝐵 · (𝑝‘2))) = 𝐶}
line2y.x 𝑋 = {⟨1, 0⟩, ⟨2, 𝑀⟩}
line2y.y 𝑌 = {⟨1, 0⟩, ⟨2, 𝑁⟩}
Assertion
Ref Expression
line2y (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ ∧ 𝑀𝑁)) → (𝐺 = (𝑋𝐿𝑌) ↔ (𝐴 ≠ 0 ∧ 𝐵 = 0 ∧ 𝐶 = 0)))
Distinct variable groups:   𝐴,𝑝   𝐵,𝑝   𝐶,𝑝   𝐸,𝑝   𝐼,𝑝   𝑃,𝑝   𝑋,𝑝   𝑌,𝑝   𝑀,𝑝   𝑁,𝑝
Allowed substitution hints:   𝐺(𝑝)   𝐿(𝑝)

Proof of Theorem line2y
StepHypRef Expression
1 line2.g . . . 4 𝐺 = {𝑝𝑃 ∣ ((𝐴 · (𝑝‘1)) + (𝐵 · (𝑝‘2))) = 𝐶}
21a1i 11 . . 3 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ ∧ 𝑀𝑁)) → 𝐺 = {𝑝𝑃 ∣ ((𝐴 · (𝑝‘1)) + (𝐵 · (𝑝‘2))) = 𝐶})
3 1ex 11151 . . . . . . . . . . . 12 1 ∈ V
4 2ex 12230 . . . . . . . . . . . 12 2 ∈ V
53, 4pm3.2i 471 . . . . . . . . . . 11 (1 ∈ V ∧ 2 ∈ V)
6 c0ex 11149 . . . . . . . . . . . 12 0 ∈ V
76jctl 524 . . . . . . . . . . 11 (𝑀 ∈ ℝ → (0 ∈ V ∧ 𝑀 ∈ ℝ))
8 1ne2 12361 . . . . . . . . . . . 12 1 ≠ 2
98a1i 11 . . . . . . . . . . 11 (𝑀 ∈ ℝ → 1 ≠ 2)
10 fprg 7101 . . . . . . . . . . . 12 (((1 ∈ V ∧ 2 ∈ V) ∧ (0 ∈ V ∧ 𝑀 ∈ ℝ) ∧ 1 ≠ 2) → {⟨1, 0⟩, ⟨2, 𝑀⟩}:{1, 2}⟶{0, 𝑀})
11 0red 11158 . . . . . . . . . . . . 13 (((1 ∈ V ∧ 2 ∈ V) ∧ (0 ∈ V ∧ 𝑀 ∈ ℝ) ∧ 1 ≠ 2) → 0 ∈ ℝ)
12 simp2r 1200 . . . . . . . . . . . . 13 (((1 ∈ V ∧ 2 ∈ V) ∧ (0 ∈ V ∧ 𝑀 ∈ ℝ) ∧ 1 ≠ 2) → 𝑀 ∈ ℝ)
1311, 12prssd 4782 . . . . . . . . . . . 12 (((1 ∈ V ∧ 2 ∈ V) ∧ (0 ∈ V ∧ 𝑀 ∈ ℝ) ∧ 1 ≠ 2) → {0, 𝑀} ⊆ ℝ)
1410, 13fssd 6686 . . . . . . . . . . 11 (((1 ∈ V ∧ 2 ∈ V) ∧ (0 ∈ V ∧ 𝑀 ∈ ℝ) ∧ 1 ≠ 2) → {⟨1, 0⟩, ⟨2, 𝑀⟩}:{1, 2}⟶ℝ)
155, 7, 9, 14mp3an2i 1466 . . . . . . . . . 10 (𝑀 ∈ ℝ → {⟨1, 0⟩, ⟨2, 𝑀⟩}:{1, 2}⟶ℝ)
16 line2.i . . . . . . . . . . 11 𝐼 = {1, 2}
1716feq2i 6660 . . . . . . . . . 10 ({⟨1, 0⟩, ⟨2, 𝑀⟩}:𝐼⟶ℝ ↔ {⟨1, 0⟩, ⟨2, 𝑀⟩}:{1, 2}⟶ℝ)
1815, 17sylibr 233 . . . . . . . . 9 (𝑀 ∈ ℝ → {⟨1, 0⟩, ⟨2, 𝑀⟩}:𝐼⟶ℝ)
19 reex 11142 . . . . . . . . . 10 ℝ ∈ V
20 prex 5389 . . . . . . . . . . 11 {1, 2} ∈ V
2116, 20eqeltri 2834 . . . . . . . . . 10 𝐼 ∈ V
2219, 21elmap 8809 . . . . . . . . 9 ({⟨1, 0⟩, ⟨2, 𝑀⟩} ∈ (ℝ ↑m 𝐼) ↔ {⟨1, 0⟩, ⟨2, 𝑀⟩}:𝐼⟶ℝ)
2318, 22sylibr 233 . . . . . . . 8 (𝑀 ∈ ℝ → {⟨1, 0⟩, ⟨2, 𝑀⟩} ∈ (ℝ ↑m 𝐼))
24 line2y.x . . . . . . . 8 𝑋 = {⟨1, 0⟩, ⟨2, 𝑀⟩}
25 line2.p . . . . . . . 8 𝑃 = (ℝ ↑m 𝐼)
2623, 24, 253eltr4g 2855 . . . . . . 7 (𝑀 ∈ ℝ → 𝑋𝑃)
27263ad2ant1 1133 . . . . . 6 ((𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ ∧ 𝑀𝑁) → 𝑋𝑃)
286jctl 524 . . . . . . . . . . . 12 (𝑁 ∈ ℝ → (0 ∈ V ∧ 𝑁 ∈ ℝ))
298a1i 11 . . . . . . . . . . . 12 (𝑁 ∈ ℝ → 1 ≠ 2)
30 fprg 7101 . . . . . . . . . . . 12 (((1 ∈ V ∧ 2 ∈ V) ∧ (0 ∈ V ∧ 𝑁 ∈ ℝ) ∧ 1 ≠ 2) → {⟨1, 0⟩, ⟨2, 𝑁⟩}:{1, 2}⟶{0, 𝑁})
315, 28, 29, 30mp3an2i 1466 . . . . . . . . . . 11 (𝑁 ∈ ℝ → {⟨1, 0⟩, ⟨2, 𝑁⟩}:{1, 2}⟶{0, 𝑁})
32 0re 11157 . . . . . . . . . . . 12 0 ∈ ℝ
33 prssi 4781 . . . . . . . . . . . 12 ((0 ∈ ℝ ∧ 𝑁 ∈ ℝ) → {0, 𝑁} ⊆ ℝ)
3432, 33mpan 688 . . . . . . . . . . 11 (𝑁 ∈ ℝ → {0, 𝑁} ⊆ ℝ)
3531, 34fssd 6686 . . . . . . . . . 10 (𝑁 ∈ ℝ → {⟨1, 0⟩, ⟨2, 𝑁⟩}:{1, 2}⟶ℝ)
3616feq2i 6660 . . . . . . . . . 10 ({⟨1, 0⟩, ⟨2, 𝑁⟩}:𝐼⟶ℝ ↔ {⟨1, 0⟩, ⟨2, 𝑁⟩}:{1, 2}⟶ℝ)
3735, 36sylibr 233 . . . . . . . . 9 (𝑁 ∈ ℝ → {⟨1, 0⟩, ⟨2, 𝑁⟩}:𝐼⟶ℝ)
3819, 21pm3.2i 471 . . . . . . . . . 10 (ℝ ∈ V ∧ 𝐼 ∈ V)
39 elmapg 8778 . . . . . . . . . 10 ((ℝ ∈ V ∧ 𝐼 ∈ V) → ({⟨1, 0⟩, ⟨2, 𝑁⟩} ∈ (ℝ ↑m 𝐼) ↔ {⟨1, 0⟩, ⟨2, 𝑁⟩}:𝐼⟶ℝ))
4038, 39mp1i 13 . . . . . . . . 9 (𝑁 ∈ ℝ → ({⟨1, 0⟩, ⟨2, 𝑁⟩} ∈ (ℝ ↑m 𝐼) ↔ {⟨1, 0⟩, ⟨2, 𝑁⟩}:𝐼⟶ℝ))
4137, 40mpbird 256 . . . . . . . 8 (𝑁 ∈ ℝ → {⟨1, 0⟩, ⟨2, 𝑁⟩} ∈ (ℝ ↑m 𝐼))
42 line2y.y . . . . . . . 8 𝑌 = {⟨1, 0⟩, ⟨2, 𝑁⟩}
4341, 42, 253eltr4g 2855 . . . . . . 7 (𝑁 ∈ ℝ → 𝑌𝑃)
44433ad2ant2 1134 . . . . . 6 ((𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ ∧ 𝑀𝑁) → 𝑌𝑃)
4524fveq1i 6843 . . . . . . . . 9 (𝑋‘1) = ({⟨1, 0⟩, ⟨2, 𝑀⟩}‘1)
463, 6, 83pm3.2i 1339 . . . . . . . . . 10 (1 ∈ V ∧ 0 ∈ V ∧ 1 ≠ 2)
47 fvpr1g 7136 . . . . . . . . . 10 ((1 ∈ V ∧ 0 ∈ V ∧ 1 ≠ 2) → ({⟨1, 0⟩, ⟨2, 𝑀⟩}‘1) = 0)
4846, 47mp1i 13 . . . . . . . . 9 ((𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ ∧ 𝑀𝑁) → ({⟨1, 0⟩, ⟨2, 𝑀⟩}‘1) = 0)
4945, 48eqtrid 2788 . . . . . . . 8 ((𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ ∧ 𝑀𝑁) → (𝑋‘1) = 0)
5042fveq1i 6843 . . . . . . . . 9 (𝑌‘1) = ({⟨1, 0⟩, ⟨2, 𝑁⟩}‘1)
51 fvpr1g 7136 . . . . . . . . . 10 ((1 ∈ V ∧ 0 ∈ V ∧ 1 ≠ 2) → ({⟨1, 0⟩, ⟨2, 𝑁⟩}‘1) = 0)
5246, 51mp1i 13 . . . . . . . . 9 ((𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ ∧ 𝑀𝑁) → ({⟨1, 0⟩, ⟨2, 𝑁⟩}‘1) = 0)
5350, 52eqtrid 2788 . . . . . . . 8 ((𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ ∧ 𝑀𝑁) → (𝑌‘1) = 0)
5449, 53eqtr4d 2779 . . . . . . 7 ((𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ ∧ 𝑀𝑁) → (𝑋‘1) = (𝑌‘1))
55 simp3 1138 . . . . . . . 8 ((𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ ∧ 𝑀𝑁) → 𝑀𝑁)
5624fveq1i 6843 . . . . . . . . 9 (𝑋‘2) = ({⟨1, 0⟩, ⟨2, 𝑀⟩}‘2)
57 simp1 1136 . . . . . . . . . 10 ((𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ ∧ 𝑀𝑁) → 𝑀 ∈ ℝ)
588a1i 11 . . . . . . . . . 10 ((𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ ∧ 𝑀𝑁) → 1 ≠ 2)
59 fvpr2g 7137 . . . . . . . . . 10 ((2 ∈ V ∧ 𝑀 ∈ ℝ ∧ 1 ≠ 2) → ({⟨1, 0⟩, ⟨2, 𝑀⟩}‘2) = 𝑀)
604, 57, 58, 59mp3an2i 1466 . . . . . . . . 9 ((𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ ∧ 𝑀𝑁) → ({⟨1, 0⟩, ⟨2, 𝑀⟩}‘2) = 𝑀)
6156, 60eqtrid 2788 . . . . . . . 8 ((𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ ∧ 𝑀𝑁) → (𝑋‘2) = 𝑀)
6242fveq1i 6843 . . . . . . . . 9 (𝑌‘2) = ({⟨1, 0⟩, ⟨2, 𝑁⟩}‘2)
63 simp2 1137 . . . . . . . . . 10 ((𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ ∧ 𝑀𝑁) → 𝑁 ∈ ℝ)
64 fvpr2g 7137 . . . . . . . . . 10 ((2 ∈ V ∧ 𝑁 ∈ ℝ ∧ 1 ≠ 2) → ({⟨1, 0⟩, ⟨2, 𝑁⟩}‘2) = 𝑁)
654, 63, 58, 64mp3an2i 1466 . . . . . . . . 9 ((𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ ∧ 𝑀𝑁) → ({⟨1, 0⟩, ⟨2, 𝑁⟩}‘2) = 𝑁)
6662, 65eqtrid 2788 . . . . . . . 8 ((𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ ∧ 𝑀𝑁) → (𝑌‘2) = 𝑁)
6755, 61, 663netr4d 3021 . . . . . . 7 ((𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ ∧ 𝑀𝑁) → (𝑋‘2) ≠ (𝑌‘2))
6854, 67jca 512 . . . . . 6 ((𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ ∧ 𝑀𝑁) → ((𝑋‘1) = (𝑌‘1) ∧ (𝑋‘2) ≠ (𝑌‘2)))
6927, 44, 683jca 1128 . . . . 5 ((𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ ∧ 𝑀𝑁) → (𝑋𝑃𝑌𝑃 ∧ ((𝑋‘1) = (𝑌‘1) ∧ (𝑋‘2) ≠ (𝑌‘2))))
7069adantl 482 . . . 4 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ ∧ 𝑀𝑁)) → (𝑋𝑃𝑌𝑃 ∧ ((𝑋‘1) = (𝑌‘1) ∧ (𝑋‘2) ≠ (𝑌‘2))))
71 line2.e . . . . 5 𝐸 = (ℝ^‘𝐼)
72 line2.l . . . . 5 𝐿 = (LineM𝐸)
7316, 71, 25, 72rrx2vlinest 46817 . . . 4 ((𝑋𝑃𝑌𝑃 ∧ ((𝑋‘1) = (𝑌‘1) ∧ (𝑋‘2) ≠ (𝑌‘2))) → (𝑋𝐿𝑌) = {𝑝𝑃 ∣ (𝑝‘1) = (𝑋‘1)})
7470, 73syl 17 . . 3 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ ∧ 𝑀𝑁)) → (𝑋𝐿𝑌) = {𝑝𝑃 ∣ (𝑝‘1) = (𝑋‘1)})
752, 74eqeq12d 2752 . 2 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ ∧ 𝑀𝑁)) → (𝐺 = (𝑋𝐿𝑌) ↔ {𝑝𝑃 ∣ ((𝐴 · (𝑝‘1)) + (𝐵 · (𝑝‘2))) = 𝐶} = {𝑝𝑃 ∣ (𝑝‘1) = (𝑋‘1)}))
7646, 47ax-mp 5 . . . . . . 7 ({⟨1, 0⟩, ⟨2, 𝑀⟩}‘1) = 0
7745, 76eqtri 2764 . . . . . 6 (𝑋‘1) = 0
7877a1i 11 . . . . 5 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ ∧ 𝑀𝑁)) → (𝑋‘1) = 0)
7978eqeq2d 2747 . . . 4 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ ∧ 𝑀𝑁)) → ((𝑝‘1) = (𝑋‘1) ↔ (𝑝‘1) = 0))
8079rabbidv 3415 . . 3 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ ∧ 𝑀𝑁)) → {𝑝𝑃 ∣ (𝑝‘1) = (𝑋‘1)} = {𝑝𝑃 ∣ (𝑝‘1) = 0})
8180eqeq2d 2747 . 2 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ ∧ 𝑀𝑁)) → ({𝑝𝑃 ∣ ((𝐴 · (𝑝‘1)) + (𝐵 · (𝑝‘2))) = 𝐶} = {𝑝𝑃 ∣ (𝑝‘1) = (𝑋‘1)} ↔ {𝑝𝑃 ∣ ((𝐴 · (𝑝‘1)) + (𝐵 · (𝑝‘2))) = 𝐶} = {𝑝𝑃 ∣ (𝑝‘1) = 0}))
82 rabbi 3432 . . 3 (∀𝑝𝑃 (((𝐴 · (𝑝‘1)) + (𝐵 · (𝑝‘2))) = 𝐶 ↔ (𝑝‘1) = 0) ↔ {𝑝𝑃 ∣ ((𝐴 · (𝑝‘1)) + (𝐵 · (𝑝‘2))) = 𝐶} = {𝑝𝑃 ∣ (𝑝‘1) = 0})
8316, 25line2ylem 46827 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (∀𝑝𝑃 (((𝐴 · (𝑝‘1)) + (𝐵 · (𝑝‘2))) = 𝐶 ↔ (𝑝‘1) = 0) → (𝐴 ≠ 0 ∧ 𝐵 = 0 ∧ 𝐶 = 0)))
8483adantr 481 . . . 4 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ ∧ 𝑀𝑁)) → (∀𝑝𝑃 (((𝐴 · (𝑝‘1)) + (𝐵 · (𝑝‘2))) = 𝐶 ↔ (𝑝‘1) = 0) → (𝐴 ≠ 0 ∧ 𝐵 = 0 ∧ 𝐶 = 0)))
85 oveq1 7364 . . . . . . . . . . 11 (𝐵 = 0 → (𝐵 · (𝑝‘2)) = (0 · (𝑝‘2)))
86853ad2ant2 1134 . . . . . . . . . 10 ((𝐴 ≠ 0 ∧ 𝐵 = 0 ∧ 𝐶 = 0) → (𝐵 · (𝑝‘2)) = (0 · (𝑝‘2)))
8786oveq2d 7373 . . . . . . . . 9 ((𝐴 ≠ 0 ∧ 𝐵 = 0 ∧ 𝐶 = 0) → ((𝐴 · (𝑝‘1)) + (𝐵 · (𝑝‘2))) = ((𝐴 · (𝑝‘1)) + (0 · (𝑝‘2))))
88 simp3 1138 . . . . . . . . 9 ((𝐴 ≠ 0 ∧ 𝐵 = 0 ∧ 𝐶 = 0) → 𝐶 = 0)
8987, 88eqeq12d 2752 . . . . . . . 8 ((𝐴 ≠ 0 ∧ 𝐵 = 0 ∧ 𝐶 = 0) → (((𝐴 · (𝑝‘1)) + (𝐵 · (𝑝‘2))) = 𝐶 ↔ ((𝐴 · (𝑝‘1)) + (0 · (𝑝‘2))) = 0))
9089ad2antlr 725 . . . . . . 7 (((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ ∧ 𝑀𝑁)) ∧ (𝐴 ≠ 0 ∧ 𝐵 = 0 ∧ 𝐶 = 0)) ∧ 𝑝𝑃) → (((𝐴 · (𝑝‘1)) + (𝐵 · (𝑝‘2))) = 𝐶 ↔ ((𝐴 · (𝑝‘1)) + (0 · (𝑝‘2))) = 0))
9116, 25rrx2pyel 46788 . . . . . . . . . . . . 13 (𝑝𝑃 → (𝑝‘2) ∈ ℝ)
9291recnd 11183 . . . . . . . . . . . 12 (𝑝𝑃 → (𝑝‘2) ∈ ℂ)
9392mul02d 11353 . . . . . . . . . . 11 (𝑝𝑃 → (0 · (𝑝‘2)) = 0)
9493adantl 482 . . . . . . . . . 10 (((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ ∧ 𝑀𝑁)) ∧ (𝐴 ≠ 0 ∧ 𝐵 = 0 ∧ 𝐶 = 0)) ∧ 𝑝𝑃) → (0 · (𝑝‘2)) = 0)
9594oveq2d 7373 . . . . . . . . 9 (((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ ∧ 𝑀𝑁)) ∧ (𝐴 ≠ 0 ∧ 𝐵 = 0 ∧ 𝐶 = 0)) ∧ 𝑝𝑃) → ((𝐴 · (𝑝‘1)) + (0 · (𝑝‘2))) = ((𝐴 · (𝑝‘1)) + 0))
96 simp1 1136 . . . . . . . . . . . . 13 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → 𝐴 ∈ ℝ)
9796recnd 11183 . . . . . . . . . . . 12 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → 𝐴 ∈ ℂ)
9897ad3antrrr 728 . . . . . . . . . . 11 (((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ ∧ 𝑀𝑁)) ∧ (𝐴 ≠ 0 ∧ 𝐵 = 0 ∧ 𝐶 = 0)) ∧ 𝑝𝑃) → 𝐴 ∈ ℂ)
9916, 25rrx2pxel 46787 . . . . . . . . . . . . 13 (𝑝𝑃 → (𝑝‘1) ∈ ℝ)
10099recnd 11183 . . . . . . . . . . . 12 (𝑝𝑃 → (𝑝‘1) ∈ ℂ)
101100adantl 482 . . . . . . . . . . 11 (((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ ∧ 𝑀𝑁)) ∧ (𝐴 ≠ 0 ∧ 𝐵 = 0 ∧ 𝐶 = 0)) ∧ 𝑝𝑃) → (𝑝‘1) ∈ ℂ)
10298, 101mulcld 11175 . . . . . . . . . 10 (((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ ∧ 𝑀𝑁)) ∧ (𝐴 ≠ 0 ∧ 𝐵 = 0 ∧ 𝐶 = 0)) ∧ 𝑝𝑃) → (𝐴 · (𝑝‘1)) ∈ ℂ)
103102addid1d 11355 . . . . . . . . 9 (((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ ∧ 𝑀𝑁)) ∧ (𝐴 ≠ 0 ∧ 𝐵 = 0 ∧ 𝐶 = 0)) ∧ 𝑝𝑃) → ((𝐴 · (𝑝‘1)) + 0) = (𝐴 · (𝑝‘1)))
10495, 103eqtrd 2776 . . . . . . . 8 (((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ ∧ 𝑀𝑁)) ∧ (𝐴 ≠ 0 ∧ 𝐵 = 0 ∧ 𝐶 = 0)) ∧ 𝑝𝑃) → ((𝐴 · (𝑝‘1)) + (0 · (𝑝‘2))) = (𝐴 · (𝑝‘1)))
105104eqeq1d 2738 . . . . . . 7 (((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ ∧ 𝑀𝑁)) ∧ (𝐴 ≠ 0 ∧ 𝐵 = 0 ∧ 𝐶 = 0)) ∧ 𝑝𝑃) → (((𝐴 · (𝑝‘1)) + (0 · (𝑝‘2))) = 0 ↔ (𝐴 · (𝑝‘1)) = 0))
10698, 101mul0ord 11805 . . . . . . . 8 (((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ ∧ 𝑀𝑁)) ∧ (𝐴 ≠ 0 ∧ 𝐵 = 0 ∧ 𝐶 = 0)) ∧ 𝑝𝑃) → ((𝐴 · (𝑝‘1)) = 0 ↔ (𝐴 = 0 ∨ (𝑝‘1) = 0)))
107 eqneqall 2954 . . . . . . . . . . . . 13 (𝐴 = 0 → (𝐴 ≠ 0 → (𝑝‘1) = 0))
108107com12 32 . . . . . . . . . . . 12 (𝐴 ≠ 0 → (𝐴 = 0 → (𝑝‘1) = 0))
1091083ad2ant1 1133 . . . . . . . . . . 11 ((𝐴 ≠ 0 ∧ 𝐵 = 0 ∧ 𝐶 = 0) → (𝐴 = 0 → (𝑝‘1) = 0))
110109ad2antlr 725 . . . . . . . . . 10 (((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ ∧ 𝑀𝑁)) ∧ (𝐴 ≠ 0 ∧ 𝐵 = 0 ∧ 𝐶 = 0)) ∧ 𝑝𝑃) → (𝐴 = 0 → (𝑝‘1) = 0))
111 idd 24 . . . . . . . . . 10 (((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ ∧ 𝑀𝑁)) ∧ (𝐴 ≠ 0 ∧ 𝐵 = 0 ∧ 𝐶 = 0)) ∧ 𝑝𝑃) → ((𝑝‘1) = 0 → (𝑝‘1) = 0))
112110, 111jaod 857 . . . . . . . . 9 (((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ ∧ 𝑀𝑁)) ∧ (𝐴 ≠ 0 ∧ 𝐵 = 0 ∧ 𝐶 = 0)) ∧ 𝑝𝑃) → ((𝐴 = 0 ∨ (𝑝‘1) = 0) → (𝑝‘1) = 0))
113 olc 866 . . . . . . . . 9 ((𝑝‘1) = 0 → (𝐴 = 0 ∨ (𝑝‘1) = 0))
114112, 113impbid1 224 . . . . . . . 8 (((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ ∧ 𝑀𝑁)) ∧ (𝐴 ≠ 0 ∧ 𝐵 = 0 ∧ 𝐶 = 0)) ∧ 𝑝𝑃) → ((𝐴 = 0 ∨ (𝑝‘1) = 0) ↔ (𝑝‘1) = 0))
115106, 114bitrd 278 . . . . . . 7 (((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ ∧ 𝑀𝑁)) ∧ (𝐴 ≠ 0 ∧ 𝐵 = 0 ∧ 𝐶 = 0)) ∧ 𝑝𝑃) → ((𝐴 · (𝑝‘1)) = 0 ↔ (𝑝‘1) = 0))
11690, 105, 1153bitrd 304 . . . . . 6 (((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ ∧ 𝑀𝑁)) ∧ (𝐴 ≠ 0 ∧ 𝐵 = 0 ∧ 𝐶 = 0)) ∧ 𝑝𝑃) → (((𝐴 · (𝑝‘1)) + (𝐵 · (𝑝‘2))) = 𝐶 ↔ (𝑝‘1) = 0))
117116ralrimiva 3143 . . . . 5 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ ∧ 𝑀𝑁)) ∧ (𝐴 ≠ 0 ∧ 𝐵 = 0 ∧ 𝐶 = 0)) → ∀𝑝𝑃 (((𝐴 · (𝑝‘1)) + (𝐵 · (𝑝‘2))) = 𝐶 ↔ (𝑝‘1) = 0))
118117ex 413 . . . 4 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ ∧ 𝑀𝑁)) → ((𝐴 ≠ 0 ∧ 𝐵 = 0 ∧ 𝐶 = 0) → ∀𝑝𝑃 (((𝐴 · (𝑝‘1)) + (𝐵 · (𝑝‘2))) = 𝐶 ↔ (𝑝‘1) = 0)))
11984, 118impbid 211 . . 3 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ ∧ 𝑀𝑁)) → (∀𝑝𝑃 (((𝐴 · (𝑝‘1)) + (𝐵 · (𝑝‘2))) = 𝐶 ↔ (𝑝‘1) = 0) ↔ (𝐴 ≠ 0 ∧ 𝐵 = 0 ∧ 𝐶 = 0)))
12082, 119bitr3id 284 . 2 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ ∧ 𝑀𝑁)) → ({𝑝𝑃 ∣ ((𝐴 · (𝑝‘1)) + (𝐵 · (𝑝‘2))) = 𝐶} = {𝑝𝑃 ∣ (𝑝‘1) = 0} ↔ (𝐴 ≠ 0 ∧ 𝐵 = 0 ∧ 𝐶 = 0)))
12175, 81, 1203bitrd 304 1 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ ∧ 𝑀𝑁)) → (𝐺 = (𝑋𝐿𝑌) ↔ (𝐴 ≠ 0 ∧ 𝐵 = 0 ∧ 𝐶 = 0)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  wo 845  w3a 1087   = wceq 1541  wcel 2106  wne 2943  wral 3064  {crab 3407  Vcvv 3445  wss 3910  {cpr 4588  cop 4592  wf 6492  cfv 6496  (class class class)co 7357  m cmap 8765  cc 11049  cr 11050  0cc0 11051  1c1 11052   + caddc 11054   · cmul 11056  2c2 12208  ℝ^crrx 24747  LineMcline 46803
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-rep 5242  ax-sep 5256  ax-nul 5263  ax-pow 5320  ax-pr 5384  ax-un 7672  ax-cnex 11107  ax-resscn 11108  ax-1cn 11109  ax-icn 11110  ax-addcl 11111  ax-addrcl 11112  ax-mulcl 11113  ax-mulrcl 11114  ax-mulcom 11115  ax-addass 11116  ax-mulass 11117  ax-distr 11118  ax-i2m1 11119  ax-1ne0 11120  ax-1rid 11121  ax-rnegex 11122  ax-rrecex 11123  ax-cnre 11124  ax-pre-lttri 11125  ax-pre-lttrn 11126  ax-pre-ltadd 11127  ax-pre-mulgt0 11128  ax-pre-sup 11129  ax-addf 11130  ax-mulf 11131
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3065  df-rex 3074  df-rmo 3353  df-reu 3354  df-rab 3408  df-v 3447  df-sbc 3740  df-csb 3856  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-pss 3929  df-nul 4283  df-if 4487  df-pw 4562  df-sn 4587  df-pr 4589  df-tp 4591  df-op 4593  df-uni 4866  df-iun 4956  df-br 5106  df-opab 5168  df-mpt 5189  df-tr 5223  df-id 5531  df-eprel 5537  df-po 5545  df-so 5546  df-fr 5588  df-we 5590  df-xp 5639  df-rel 5640  df-cnv 5641  df-co 5642  df-dm 5643  df-rn 5644  df-res 5645  df-ima 5646  df-pred 6253  df-ord 6320  df-on 6321  df-lim 6322  df-suc 6323  df-iota 6448  df-fun 6498  df-fn 6499  df-f 6500  df-f1 6501  df-fo 6502  df-f1o 6503  df-fv 6504  df-riota 7313  df-ov 7360  df-oprab 7361  df-mpo 7362  df-of 7617  df-om 7803  df-1st 7921  df-2nd 7922  df-supp 8093  df-tpos 8157  df-frecs 8212  df-wrecs 8243  df-recs 8317  df-rdg 8356  df-1o 8412  df-er 8648  df-map 8767  df-ixp 8836  df-en 8884  df-dom 8885  df-sdom 8886  df-fin 8887  df-fsupp 9306  df-sup 9378  df-pnf 11191  df-mnf 11192  df-xr 11193  df-ltxr 11194  df-le 11195  df-sub 11387  df-neg 11388  df-div 11813  df-nn 12154  df-2 12216  df-3 12217  df-4 12218  df-5 12219  df-6 12220  df-7 12221  df-8 12222  df-9 12223  df-n0 12414  df-z 12500  df-dec 12619  df-uz 12764  df-rp 12916  df-fz 13425  df-seq 13907  df-exp 13968  df-cj 14984  df-re 14985  df-im 14986  df-sqrt 15120  df-abs 15121  df-struct 17019  df-sets 17036  df-slot 17054  df-ndx 17066  df-base 17084  df-ress 17113  df-plusg 17146  df-mulr 17147  df-starv 17148  df-sca 17149  df-vsca 17150  df-ip 17151  df-tset 17152  df-ple 17153  df-ds 17155  df-unif 17156  df-hom 17157  df-cco 17158  df-0g 17323  df-prds 17329  df-pws 17331  df-mgm 18497  df-sgrp 18546  df-mnd 18557  df-mhm 18601  df-grp 18751  df-minusg 18752  df-sbg 18753  df-subg 18925  df-ghm 19006  df-cmn 19564  df-mgp 19897  df-ur 19914  df-ring 19966  df-cring 19967  df-oppr 20049  df-dvdsr 20070  df-unit 20071  df-invr 20101  df-dvr 20112  df-rnghom 20146  df-drng 20187  df-field 20188  df-subrg 20220  df-staf 20304  df-srng 20305  df-lmod 20324  df-lss 20393  df-sra 20633  df-rgmod 20634  df-cnfld 20797  df-refld 21009  df-dsmm 21138  df-frlm 21153  df-tng 23940  df-tcph 24533  df-rrx 24749  df-line 46805
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator