Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  line2y Structured version   Visualization version   GIF version

Theorem line2y 46079
Description: Example for a vertical line 𝐺 passing through two different points in "standard form". (Contributed by AV, 3-Feb-2023.)
Hypotheses
Ref Expression
line2.i 𝐼 = {1, 2}
line2.e 𝐸 = (ℝ^‘𝐼)
line2.p 𝑃 = (ℝ ↑m 𝐼)
line2.l 𝐿 = (LineM𝐸)
line2.g 𝐺 = {𝑝𝑃 ∣ ((𝐴 · (𝑝‘1)) + (𝐵 · (𝑝‘2))) = 𝐶}
line2y.x 𝑋 = {⟨1, 0⟩, ⟨2, 𝑀⟩}
line2y.y 𝑌 = {⟨1, 0⟩, ⟨2, 𝑁⟩}
Assertion
Ref Expression
line2y (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ ∧ 𝑀𝑁)) → (𝐺 = (𝑋𝐿𝑌) ↔ (𝐴 ≠ 0 ∧ 𝐵 = 0 ∧ 𝐶 = 0)))
Distinct variable groups:   𝐴,𝑝   𝐵,𝑝   𝐶,𝑝   𝐸,𝑝   𝐼,𝑝   𝑃,𝑝   𝑋,𝑝   𝑌,𝑝   𝑀,𝑝   𝑁,𝑝
Allowed substitution hints:   𝐺(𝑝)   𝐿(𝑝)

Proof of Theorem line2y
StepHypRef Expression
1 line2.g . . . 4 𝐺 = {𝑝𝑃 ∣ ((𝐴 · (𝑝‘1)) + (𝐵 · (𝑝‘2))) = 𝐶}
21a1i 11 . . 3 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ ∧ 𝑀𝑁)) → 𝐺 = {𝑝𝑃 ∣ ((𝐴 · (𝑝‘1)) + (𝐵 · (𝑝‘2))) = 𝐶})
3 1ex 10981 . . . . . . . . . . . 12 1 ∈ V
4 2ex 12060 . . . . . . . . . . . 12 2 ∈ V
53, 4pm3.2i 471 . . . . . . . . . . 11 (1 ∈ V ∧ 2 ∈ V)
6 c0ex 10979 . . . . . . . . . . . 12 0 ∈ V
76jctl 524 . . . . . . . . . . 11 (𝑀 ∈ ℝ → (0 ∈ V ∧ 𝑀 ∈ ℝ))
8 1ne2 12191 . . . . . . . . . . . 12 1 ≠ 2
98a1i 11 . . . . . . . . . . 11 (𝑀 ∈ ℝ → 1 ≠ 2)
10 fprg 7019 . . . . . . . . . . . 12 (((1 ∈ V ∧ 2 ∈ V) ∧ (0 ∈ V ∧ 𝑀 ∈ ℝ) ∧ 1 ≠ 2) → {⟨1, 0⟩, ⟨2, 𝑀⟩}:{1, 2}⟶{0, 𝑀})
11 0red 10988 . . . . . . . . . . . . 13 (((1 ∈ V ∧ 2 ∈ V) ∧ (0 ∈ V ∧ 𝑀 ∈ ℝ) ∧ 1 ≠ 2) → 0 ∈ ℝ)
12 simp2r 1199 . . . . . . . . . . . . 13 (((1 ∈ V ∧ 2 ∈ V) ∧ (0 ∈ V ∧ 𝑀 ∈ ℝ) ∧ 1 ≠ 2) → 𝑀 ∈ ℝ)
1311, 12prssd 4755 . . . . . . . . . . . 12 (((1 ∈ V ∧ 2 ∈ V) ∧ (0 ∈ V ∧ 𝑀 ∈ ℝ) ∧ 1 ≠ 2) → {0, 𝑀} ⊆ ℝ)
1410, 13fssd 6610 . . . . . . . . . . 11 (((1 ∈ V ∧ 2 ∈ V) ∧ (0 ∈ V ∧ 𝑀 ∈ ℝ) ∧ 1 ≠ 2) → {⟨1, 0⟩, ⟨2, 𝑀⟩}:{1, 2}⟶ℝ)
155, 7, 9, 14mp3an2i 1465 . . . . . . . . . 10 (𝑀 ∈ ℝ → {⟨1, 0⟩, ⟨2, 𝑀⟩}:{1, 2}⟶ℝ)
16 line2.i . . . . . . . . . . 11 𝐼 = {1, 2}
1716feq2i 6584 . . . . . . . . . 10 ({⟨1, 0⟩, ⟨2, 𝑀⟩}:𝐼⟶ℝ ↔ {⟨1, 0⟩, ⟨2, 𝑀⟩}:{1, 2}⟶ℝ)
1815, 17sylibr 233 . . . . . . . . 9 (𝑀 ∈ ℝ → {⟨1, 0⟩, ⟨2, 𝑀⟩}:𝐼⟶ℝ)
19 reex 10972 . . . . . . . . . 10 ℝ ∈ V
20 prex 5353 . . . . . . . . . . 11 {1, 2} ∈ V
2116, 20eqeltri 2835 . . . . . . . . . 10 𝐼 ∈ V
2219, 21elmap 8646 . . . . . . . . 9 ({⟨1, 0⟩, ⟨2, 𝑀⟩} ∈ (ℝ ↑m 𝐼) ↔ {⟨1, 0⟩, ⟨2, 𝑀⟩}:𝐼⟶ℝ)
2318, 22sylibr 233 . . . . . . . 8 (𝑀 ∈ ℝ → {⟨1, 0⟩, ⟨2, 𝑀⟩} ∈ (ℝ ↑m 𝐼))
24 line2y.x . . . . . . . 8 𝑋 = {⟨1, 0⟩, ⟨2, 𝑀⟩}
25 line2.p . . . . . . . 8 𝑃 = (ℝ ↑m 𝐼)
2623, 24, 253eltr4g 2856 . . . . . . 7 (𝑀 ∈ ℝ → 𝑋𝑃)
27263ad2ant1 1132 . . . . . 6 ((𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ ∧ 𝑀𝑁) → 𝑋𝑃)
286jctl 524 . . . . . . . . . . . 12 (𝑁 ∈ ℝ → (0 ∈ V ∧ 𝑁 ∈ ℝ))
298a1i 11 . . . . . . . . . . . 12 (𝑁 ∈ ℝ → 1 ≠ 2)
30 fprg 7019 . . . . . . . . . . . 12 (((1 ∈ V ∧ 2 ∈ V) ∧ (0 ∈ V ∧ 𝑁 ∈ ℝ) ∧ 1 ≠ 2) → {⟨1, 0⟩, ⟨2, 𝑁⟩}:{1, 2}⟶{0, 𝑁})
315, 28, 29, 30mp3an2i 1465 . . . . . . . . . . 11 (𝑁 ∈ ℝ → {⟨1, 0⟩, ⟨2, 𝑁⟩}:{1, 2}⟶{0, 𝑁})
32 0re 10987 . . . . . . . . . . . 12 0 ∈ ℝ
33 prssi 4754 . . . . . . . . . . . 12 ((0 ∈ ℝ ∧ 𝑁 ∈ ℝ) → {0, 𝑁} ⊆ ℝ)
3432, 33mpan 687 . . . . . . . . . . 11 (𝑁 ∈ ℝ → {0, 𝑁} ⊆ ℝ)
3531, 34fssd 6610 . . . . . . . . . 10 (𝑁 ∈ ℝ → {⟨1, 0⟩, ⟨2, 𝑁⟩}:{1, 2}⟶ℝ)
3616feq2i 6584 . . . . . . . . . 10 ({⟨1, 0⟩, ⟨2, 𝑁⟩}:𝐼⟶ℝ ↔ {⟨1, 0⟩, ⟨2, 𝑁⟩}:{1, 2}⟶ℝ)
3735, 36sylibr 233 . . . . . . . . 9 (𝑁 ∈ ℝ → {⟨1, 0⟩, ⟨2, 𝑁⟩}:𝐼⟶ℝ)
3819, 21pm3.2i 471 . . . . . . . . . 10 (ℝ ∈ V ∧ 𝐼 ∈ V)
39 elmapg 8615 . . . . . . . . . 10 ((ℝ ∈ V ∧ 𝐼 ∈ V) → ({⟨1, 0⟩, ⟨2, 𝑁⟩} ∈ (ℝ ↑m 𝐼) ↔ {⟨1, 0⟩, ⟨2, 𝑁⟩}:𝐼⟶ℝ))
4038, 39mp1i 13 . . . . . . . . 9 (𝑁 ∈ ℝ → ({⟨1, 0⟩, ⟨2, 𝑁⟩} ∈ (ℝ ↑m 𝐼) ↔ {⟨1, 0⟩, ⟨2, 𝑁⟩}:𝐼⟶ℝ))
4137, 40mpbird 256 . . . . . . . 8 (𝑁 ∈ ℝ → {⟨1, 0⟩, ⟨2, 𝑁⟩} ∈ (ℝ ↑m 𝐼))
42 line2y.y . . . . . . . 8 𝑌 = {⟨1, 0⟩, ⟨2, 𝑁⟩}
4341, 42, 253eltr4g 2856 . . . . . . 7 (𝑁 ∈ ℝ → 𝑌𝑃)
44433ad2ant2 1133 . . . . . 6 ((𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ ∧ 𝑀𝑁) → 𝑌𝑃)
4524fveq1i 6767 . . . . . . . . 9 (𝑋‘1) = ({⟨1, 0⟩, ⟨2, 𝑀⟩}‘1)
463, 6, 83pm3.2i 1338 . . . . . . . . . 10 (1 ∈ V ∧ 0 ∈ V ∧ 1 ≠ 2)
47 fvpr1g 7054 . . . . . . . . . 10 ((1 ∈ V ∧ 0 ∈ V ∧ 1 ≠ 2) → ({⟨1, 0⟩, ⟨2, 𝑀⟩}‘1) = 0)
4846, 47mp1i 13 . . . . . . . . 9 ((𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ ∧ 𝑀𝑁) → ({⟨1, 0⟩, ⟨2, 𝑀⟩}‘1) = 0)
4945, 48eqtrid 2790 . . . . . . . 8 ((𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ ∧ 𝑀𝑁) → (𝑋‘1) = 0)
5042fveq1i 6767 . . . . . . . . 9 (𝑌‘1) = ({⟨1, 0⟩, ⟨2, 𝑁⟩}‘1)
51 fvpr1g 7054 . . . . . . . . . 10 ((1 ∈ V ∧ 0 ∈ V ∧ 1 ≠ 2) → ({⟨1, 0⟩, ⟨2, 𝑁⟩}‘1) = 0)
5246, 51mp1i 13 . . . . . . . . 9 ((𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ ∧ 𝑀𝑁) → ({⟨1, 0⟩, ⟨2, 𝑁⟩}‘1) = 0)
5350, 52eqtrid 2790 . . . . . . . 8 ((𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ ∧ 𝑀𝑁) → (𝑌‘1) = 0)
5449, 53eqtr4d 2781 . . . . . . 7 ((𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ ∧ 𝑀𝑁) → (𝑋‘1) = (𝑌‘1))
55 simp3 1137 . . . . . . . 8 ((𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ ∧ 𝑀𝑁) → 𝑀𝑁)
5624fveq1i 6767 . . . . . . . . 9 (𝑋‘2) = ({⟨1, 0⟩, ⟨2, 𝑀⟩}‘2)
57 simp1 1135 . . . . . . . . . 10 ((𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ ∧ 𝑀𝑁) → 𝑀 ∈ ℝ)
588a1i 11 . . . . . . . . . 10 ((𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ ∧ 𝑀𝑁) → 1 ≠ 2)
59 fvpr2g 7055 . . . . . . . . . 10 ((2 ∈ V ∧ 𝑀 ∈ ℝ ∧ 1 ≠ 2) → ({⟨1, 0⟩, ⟨2, 𝑀⟩}‘2) = 𝑀)
604, 57, 58, 59mp3an2i 1465 . . . . . . . . 9 ((𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ ∧ 𝑀𝑁) → ({⟨1, 0⟩, ⟨2, 𝑀⟩}‘2) = 𝑀)
6156, 60eqtrid 2790 . . . . . . . 8 ((𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ ∧ 𝑀𝑁) → (𝑋‘2) = 𝑀)
6242fveq1i 6767 . . . . . . . . 9 (𝑌‘2) = ({⟨1, 0⟩, ⟨2, 𝑁⟩}‘2)
63 simp2 1136 . . . . . . . . . 10 ((𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ ∧ 𝑀𝑁) → 𝑁 ∈ ℝ)
64 fvpr2g 7055 . . . . . . . . . 10 ((2 ∈ V ∧ 𝑁 ∈ ℝ ∧ 1 ≠ 2) → ({⟨1, 0⟩, ⟨2, 𝑁⟩}‘2) = 𝑁)
654, 63, 58, 64mp3an2i 1465 . . . . . . . . 9 ((𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ ∧ 𝑀𝑁) → ({⟨1, 0⟩, ⟨2, 𝑁⟩}‘2) = 𝑁)
6662, 65eqtrid 2790 . . . . . . . 8 ((𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ ∧ 𝑀𝑁) → (𝑌‘2) = 𝑁)
6755, 61, 663netr4d 3021 . . . . . . 7 ((𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ ∧ 𝑀𝑁) → (𝑋‘2) ≠ (𝑌‘2))
6854, 67jca 512 . . . . . 6 ((𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ ∧ 𝑀𝑁) → ((𝑋‘1) = (𝑌‘1) ∧ (𝑋‘2) ≠ (𝑌‘2)))
6927, 44, 683jca 1127 . . . . 5 ((𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ ∧ 𝑀𝑁) → (𝑋𝑃𝑌𝑃 ∧ ((𝑋‘1) = (𝑌‘1) ∧ (𝑋‘2) ≠ (𝑌‘2))))
7069adantl 482 . . . 4 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ ∧ 𝑀𝑁)) → (𝑋𝑃𝑌𝑃 ∧ ((𝑋‘1) = (𝑌‘1) ∧ (𝑋‘2) ≠ (𝑌‘2))))
71 line2.e . . . . 5 𝐸 = (ℝ^‘𝐼)
72 line2.l . . . . 5 𝐿 = (LineM𝐸)
7316, 71, 25, 72rrx2vlinest 46065 . . . 4 ((𝑋𝑃𝑌𝑃 ∧ ((𝑋‘1) = (𝑌‘1) ∧ (𝑋‘2) ≠ (𝑌‘2))) → (𝑋𝐿𝑌) = {𝑝𝑃 ∣ (𝑝‘1) = (𝑋‘1)})
7470, 73syl 17 . . 3 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ ∧ 𝑀𝑁)) → (𝑋𝐿𝑌) = {𝑝𝑃 ∣ (𝑝‘1) = (𝑋‘1)})
752, 74eqeq12d 2754 . 2 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ ∧ 𝑀𝑁)) → (𝐺 = (𝑋𝐿𝑌) ↔ {𝑝𝑃 ∣ ((𝐴 · (𝑝‘1)) + (𝐵 · (𝑝‘2))) = 𝐶} = {𝑝𝑃 ∣ (𝑝‘1) = (𝑋‘1)}))
7646, 47ax-mp 5 . . . . . . 7 ({⟨1, 0⟩, ⟨2, 𝑀⟩}‘1) = 0
7745, 76eqtri 2766 . . . . . 6 (𝑋‘1) = 0
7877a1i 11 . . . . 5 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ ∧ 𝑀𝑁)) → (𝑋‘1) = 0)
7978eqeq2d 2749 . . . 4 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ ∧ 𝑀𝑁)) → ((𝑝‘1) = (𝑋‘1) ↔ (𝑝‘1) = 0))
8079rabbidv 3411 . . 3 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ ∧ 𝑀𝑁)) → {𝑝𝑃 ∣ (𝑝‘1) = (𝑋‘1)} = {𝑝𝑃 ∣ (𝑝‘1) = 0})
8180eqeq2d 2749 . 2 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ ∧ 𝑀𝑁)) → ({𝑝𝑃 ∣ ((𝐴 · (𝑝‘1)) + (𝐵 · (𝑝‘2))) = 𝐶} = {𝑝𝑃 ∣ (𝑝‘1) = (𝑋‘1)} ↔ {𝑝𝑃 ∣ ((𝐴 · (𝑝‘1)) + (𝐵 · (𝑝‘2))) = 𝐶} = {𝑝𝑃 ∣ (𝑝‘1) = 0}))
82 rabbi 3314 . . 3 (∀𝑝𝑃 (((𝐴 · (𝑝‘1)) + (𝐵 · (𝑝‘2))) = 𝐶 ↔ (𝑝‘1) = 0) ↔ {𝑝𝑃 ∣ ((𝐴 · (𝑝‘1)) + (𝐵 · (𝑝‘2))) = 𝐶} = {𝑝𝑃 ∣ (𝑝‘1) = 0})
8316, 25line2ylem 46075 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (∀𝑝𝑃 (((𝐴 · (𝑝‘1)) + (𝐵 · (𝑝‘2))) = 𝐶 ↔ (𝑝‘1) = 0) → (𝐴 ≠ 0 ∧ 𝐵 = 0 ∧ 𝐶 = 0)))
8483adantr 481 . . . 4 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ ∧ 𝑀𝑁)) → (∀𝑝𝑃 (((𝐴 · (𝑝‘1)) + (𝐵 · (𝑝‘2))) = 𝐶 ↔ (𝑝‘1) = 0) → (𝐴 ≠ 0 ∧ 𝐵 = 0 ∧ 𝐶 = 0)))
85 oveq1 7274 . . . . . . . . . . 11 (𝐵 = 0 → (𝐵 · (𝑝‘2)) = (0 · (𝑝‘2)))
86853ad2ant2 1133 . . . . . . . . . 10 ((𝐴 ≠ 0 ∧ 𝐵 = 0 ∧ 𝐶 = 0) → (𝐵 · (𝑝‘2)) = (0 · (𝑝‘2)))
8786oveq2d 7283 . . . . . . . . 9 ((𝐴 ≠ 0 ∧ 𝐵 = 0 ∧ 𝐶 = 0) → ((𝐴 · (𝑝‘1)) + (𝐵 · (𝑝‘2))) = ((𝐴 · (𝑝‘1)) + (0 · (𝑝‘2))))
88 simp3 1137 . . . . . . . . 9 ((𝐴 ≠ 0 ∧ 𝐵 = 0 ∧ 𝐶 = 0) → 𝐶 = 0)
8987, 88eqeq12d 2754 . . . . . . . 8 ((𝐴 ≠ 0 ∧ 𝐵 = 0 ∧ 𝐶 = 0) → (((𝐴 · (𝑝‘1)) + (𝐵 · (𝑝‘2))) = 𝐶 ↔ ((𝐴 · (𝑝‘1)) + (0 · (𝑝‘2))) = 0))
9089ad2antlr 724 . . . . . . 7 (((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ ∧ 𝑀𝑁)) ∧ (𝐴 ≠ 0 ∧ 𝐵 = 0 ∧ 𝐶 = 0)) ∧ 𝑝𝑃) → (((𝐴 · (𝑝‘1)) + (𝐵 · (𝑝‘2))) = 𝐶 ↔ ((𝐴 · (𝑝‘1)) + (0 · (𝑝‘2))) = 0))
9116, 25rrx2pyel 46036 . . . . . . . . . . . . 13 (𝑝𝑃 → (𝑝‘2) ∈ ℝ)
9291recnd 11013 . . . . . . . . . . . 12 (𝑝𝑃 → (𝑝‘2) ∈ ℂ)
9392mul02d 11183 . . . . . . . . . . 11 (𝑝𝑃 → (0 · (𝑝‘2)) = 0)
9493adantl 482 . . . . . . . . . 10 (((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ ∧ 𝑀𝑁)) ∧ (𝐴 ≠ 0 ∧ 𝐵 = 0 ∧ 𝐶 = 0)) ∧ 𝑝𝑃) → (0 · (𝑝‘2)) = 0)
9594oveq2d 7283 . . . . . . . . 9 (((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ ∧ 𝑀𝑁)) ∧ (𝐴 ≠ 0 ∧ 𝐵 = 0 ∧ 𝐶 = 0)) ∧ 𝑝𝑃) → ((𝐴 · (𝑝‘1)) + (0 · (𝑝‘2))) = ((𝐴 · (𝑝‘1)) + 0))
96 simp1 1135 . . . . . . . . . . . . 13 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → 𝐴 ∈ ℝ)
9796recnd 11013 . . . . . . . . . . . 12 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → 𝐴 ∈ ℂ)
9897ad3antrrr 727 . . . . . . . . . . 11 (((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ ∧ 𝑀𝑁)) ∧ (𝐴 ≠ 0 ∧ 𝐵 = 0 ∧ 𝐶 = 0)) ∧ 𝑝𝑃) → 𝐴 ∈ ℂ)
9916, 25rrx2pxel 46035 . . . . . . . . . . . . 13 (𝑝𝑃 → (𝑝‘1) ∈ ℝ)
10099recnd 11013 . . . . . . . . . . . 12 (𝑝𝑃 → (𝑝‘1) ∈ ℂ)
101100adantl 482 . . . . . . . . . . 11 (((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ ∧ 𝑀𝑁)) ∧ (𝐴 ≠ 0 ∧ 𝐵 = 0 ∧ 𝐶 = 0)) ∧ 𝑝𝑃) → (𝑝‘1) ∈ ℂ)
10298, 101mulcld 11005 . . . . . . . . . 10 (((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ ∧ 𝑀𝑁)) ∧ (𝐴 ≠ 0 ∧ 𝐵 = 0 ∧ 𝐶 = 0)) ∧ 𝑝𝑃) → (𝐴 · (𝑝‘1)) ∈ ℂ)
103102addid1d 11185 . . . . . . . . 9 (((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ ∧ 𝑀𝑁)) ∧ (𝐴 ≠ 0 ∧ 𝐵 = 0 ∧ 𝐶 = 0)) ∧ 𝑝𝑃) → ((𝐴 · (𝑝‘1)) + 0) = (𝐴 · (𝑝‘1)))
10495, 103eqtrd 2778 . . . . . . . 8 (((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ ∧ 𝑀𝑁)) ∧ (𝐴 ≠ 0 ∧ 𝐵 = 0 ∧ 𝐶 = 0)) ∧ 𝑝𝑃) → ((𝐴 · (𝑝‘1)) + (0 · (𝑝‘2))) = (𝐴 · (𝑝‘1)))
105104eqeq1d 2740 . . . . . . 7 (((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ ∧ 𝑀𝑁)) ∧ (𝐴 ≠ 0 ∧ 𝐵 = 0 ∧ 𝐶 = 0)) ∧ 𝑝𝑃) → (((𝐴 · (𝑝‘1)) + (0 · (𝑝‘2))) = 0 ↔ (𝐴 · (𝑝‘1)) = 0))
10698, 101mul0ord 11635 . . . . . . . 8 (((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ ∧ 𝑀𝑁)) ∧ (𝐴 ≠ 0 ∧ 𝐵 = 0 ∧ 𝐶 = 0)) ∧ 𝑝𝑃) → ((𝐴 · (𝑝‘1)) = 0 ↔ (𝐴 = 0 ∨ (𝑝‘1) = 0)))
107 eqneqall 2954 . . . . . . . . . . . . 13 (𝐴 = 0 → (𝐴 ≠ 0 → (𝑝‘1) = 0))
108107com12 32 . . . . . . . . . . . 12 (𝐴 ≠ 0 → (𝐴 = 0 → (𝑝‘1) = 0))
1091083ad2ant1 1132 . . . . . . . . . . 11 ((𝐴 ≠ 0 ∧ 𝐵 = 0 ∧ 𝐶 = 0) → (𝐴 = 0 → (𝑝‘1) = 0))
110109ad2antlr 724 . . . . . . . . . 10 (((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ ∧ 𝑀𝑁)) ∧ (𝐴 ≠ 0 ∧ 𝐵 = 0 ∧ 𝐶 = 0)) ∧ 𝑝𝑃) → (𝐴 = 0 → (𝑝‘1) = 0))
111 idd 24 . . . . . . . . . 10 (((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ ∧ 𝑀𝑁)) ∧ (𝐴 ≠ 0 ∧ 𝐵 = 0 ∧ 𝐶 = 0)) ∧ 𝑝𝑃) → ((𝑝‘1) = 0 → (𝑝‘1) = 0))
112110, 111jaod 856 . . . . . . . . 9 (((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ ∧ 𝑀𝑁)) ∧ (𝐴 ≠ 0 ∧ 𝐵 = 0 ∧ 𝐶 = 0)) ∧ 𝑝𝑃) → ((𝐴 = 0 ∨ (𝑝‘1) = 0) → (𝑝‘1) = 0))
113 olc 865 . . . . . . . . 9 ((𝑝‘1) = 0 → (𝐴 = 0 ∨ (𝑝‘1) = 0))
114112, 113impbid1 224 . . . . . . . 8 (((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ ∧ 𝑀𝑁)) ∧ (𝐴 ≠ 0 ∧ 𝐵 = 0 ∧ 𝐶 = 0)) ∧ 𝑝𝑃) → ((𝐴 = 0 ∨ (𝑝‘1) = 0) ↔ (𝑝‘1) = 0))
115106, 114bitrd 278 . . . . . . 7 (((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ ∧ 𝑀𝑁)) ∧ (𝐴 ≠ 0 ∧ 𝐵 = 0 ∧ 𝐶 = 0)) ∧ 𝑝𝑃) → ((𝐴 · (𝑝‘1)) = 0 ↔ (𝑝‘1) = 0))
11690, 105, 1153bitrd 305 . . . . . 6 (((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ ∧ 𝑀𝑁)) ∧ (𝐴 ≠ 0 ∧ 𝐵 = 0 ∧ 𝐶 = 0)) ∧ 𝑝𝑃) → (((𝐴 · (𝑝‘1)) + (𝐵 · (𝑝‘2))) = 𝐶 ↔ (𝑝‘1) = 0))
117116ralrimiva 3108 . . . . 5 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ ∧ 𝑀𝑁)) ∧ (𝐴 ≠ 0 ∧ 𝐵 = 0 ∧ 𝐶 = 0)) → ∀𝑝𝑃 (((𝐴 · (𝑝‘1)) + (𝐵 · (𝑝‘2))) = 𝐶 ↔ (𝑝‘1) = 0))
118117ex 413 . . . 4 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ ∧ 𝑀𝑁)) → ((𝐴 ≠ 0 ∧ 𝐵 = 0 ∧ 𝐶 = 0) → ∀𝑝𝑃 (((𝐴 · (𝑝‘1)) + (𝐵 · (𝑝‘2))) = 𝐶 ↔ (𝑝‘1) = 0)))
11984, 118impbid 211 . . 3 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ ∧ 𝑀𝑁)) → (∀𝑝𝑃 (((𝐴 · (𝑝‘1)) + (𝐵 · (𝑝‘2))) = 𝐶 ↔ (𝑝‘1) = 0) ↔ (𝐴 ≠ 0 ∧ 𝐵 = 0 ∧ 𝐶 = 0)))
12082, 119bitr3id 285 . 2 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ ∧ 𝑀𝑁)) → ({𝑝𝑃 ∣ ((𝐴 · (𝑝‘1)) + (𝐵 · (𝑝‘2))) = 𝐶} = {𝑝𝑃 ∣ (𝑝‘1) = 0} ↔ (𝐴 ≠ 0 ∧ 𝐵 = 0 ∧ 𝐶 = 0)))
12175, 81, 1203bitrd 305 1 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ ∧ 𝑀𝑁)) → (𝐺 = (𝑋𝐿𝑌) ↔ (𝐴 ≠ 0 ∧ 𝐵 = 0 ∧ 𝐶 = 0)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  wo 844  w3a 1086   = wceq 1539  wcel 2106  wne 2943  wral 3064  {crab 3068  Vcvv 3429  wss 3886  {cpr 4563  cop 4567  wf 6422  cfv 6426  (class class class)co 7267  m cmap 8602  cc 10879  cr 10880  0cc0 10881  1c1 10882   + caddc 10884   · cmul 10886  2c2 12038  ℝ^crrx 24557  LineMcline 46051
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5208  ax-sep 5221  ax-nul 5228  ax-pow 5286  ax-pr 5350  ax-un 7578  ax-cnex 10937  ax-resscn 10938  ax-1cn 10939  ax-icn 10940  ax-addcl 10941  ax-addrcl 10942  ax-mulcl 10943  ax-mulrcl 10944  ax-mulcom 10945  ax-addass 10946  ax-mulass 10947  ax-distr 10948  ax-i2m1 10949  ax-1ne0 10950  ax-1rid 10951  ax-rnegex 10952  ax-rrecex 10953  ax-cnre 10954  ax-pre-lttri 10955  ax-pre-lttrn 10956  ax-pre-ltadd 10957  ax-pre-mulgt0 10958  ax-pre-sup 10959  ax-addf 10960  ax-mulf 10961
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-reu 3071  df-rmo 3072  df-rab 3073  df-v 3431  df-sbc 3716  df-csb 3832  df-dif 3889  df-un 3891  df-in 3893  df-ss 3903  df-pss 3905  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-tp 4566  df-op 4568  df-uni 4840  df-iun 4926  df-br 5074  df-opab 5136  df-mpt 5157  df-tr 5191  df-id 5484  df-eprel 5490  df-po 5498  df-so 5499  df-fr 5539  df-we 5541  df-xp 5590  df-rel 5591  df-cnv 5592  df-co 5593  df-dm 5594  df-rn 5595  df-res 5596  df-ima 5597  df-pred 6195  df-ord 6262  df-on 6263  df-lim 6264  df-suc 6265  df-iota 6384  df-fun 6428  df-fn 6429  df-f 6430  df-f1 6431  df-fo 6432  df-f1o 6433  df-fv 6434  df-riota 7224  df-ov 7270  df-oprab 7271  df-mpo 7272  df-of 7523  df-om 7703  df-1st 7820  df-2nd 7821  df-supp 7965  df-tpos 8029  df-frecs 8084  df-wrecs 8115  df-recs 8189  df-rdg 8228  df-1o 8284  df-er 8485  df-map 8604  df-ixp 8673  df-en 8721  df-dom 8722  df-sdom 8723  df-fin 8724  df-fsupp 9116  df-sup 9188  df-pnf 11021  df-mnf 11022  df-xr 11023  df-ltxr 11024  df-le 11025  df-sub 11217  df-neg 11218  df-div 11643  df-nn 11984  df-2 12046  df-3 12047  df-4 12048  df-5 12049  df-6 12050  df-7 12051  df-8 12052  df-9 12053  df-n0 12244  df-z 12330  df-dec 12448  df-uz 12593  df-rp 12741  df-fz 13250  df-seq 13732  df-exp 13793  df-cj 14820  df-re 14821  df-im 14822  df-sqrt 14956  df-abs 14957  df-struct 16858  df-sets 16875  df-slot 16893  df-ndx 16905  df-base 16923  df-ress 16952  df-plusg 16985  df-mulr 16986  df-starv 16987  df-sca 16988  df-vsca 16989  df-ip 16990  df-tset 16991  df-ple 16992  df-ds 16994  df-unif 16995  df-hom 16996  df-cco 16997  df-0g 17162  df-prds 17168  df-pws 17170  df-mgm 18336  df-sgrp 18385  df-mnd 18396  df-mhm 18440  df-grp 18590  df-minusg 18591  df-sbg 18592  df-subg 18762  df-ghm 18842  df-cmn 19398  df-mgp 19731  df-ur 19748  df-ring 19795  df-cring 19796  df-oppr 19872  df-dvdsr 19893  df-unit 19894  df-invr 19924  df-dvr 19935  df-rnghom 19969  df-drng 20003  df-field 20004  df-subrg 20032  df-staf 20115  df-srng 20116  df-lmod 20135  df-lss 20204  df-sra 20444  df-rgmod 20445  df-cnfld 20608  df-refld 20820  df-dsmm 20949  df-frlm 20964  df-tng 23750  df-tcph 24343  df-rrx 24559  df-line 46053
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator