Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  line2y Structured version   Visualization version   GIF version

Theorem line2y 44762
Description: Example for a vertical line 𝐺 passing through two different points in "standard form". (Contributed by AV, 3-Feb-2023.)
Hypotheses
Ref Expression
line2.i 𝐼 = {1, 2}
line2.e 𝐸 = (ℝ^‘𝐼)
line2.p 𝑃 = (ℝ ↑m 𝐼)
line2.l 𝐿 = (LineM𝐸)
line2.g 𝐺 = {𝑝𝑃 ∣ ((𝐴 · (𝑝‘1)) + (𝐵 · (𝑝‘2))) = 𝐶}
line2y.x 𝑋 = {⟨1, 0⟩, ⟨2, 𝑀⟩}
line2y.y 𝑌 = {⟨1, 0⟩, ⟨2, 𝑁⟩}
Assertion
Ref Expression
line2y (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ ∧ 𝑀𝑁)) → (𝐺 = (𝑋𝐿𝑌) ↔ (𝐴 ≠ 0 ∧ 𝐵 = 0 ∧ 𝐶 = 0)))
Distinct variable groups:   𝐴,𝑝   𝐵,𝑝   𝐶,𝑝   𝐸,𝑝   𝐼,𝑝   𝑃,𝑝   𝑋,𝑝   𝑌,𝑝   𝑀,𝑝   𝑁,𝑝
Allowed substitution hints:   𝐺(𝑝)   𝐿(𝑝)

Proof of Theorem line2y
StepHypRef Expression
1 line2.g . . . 4 𝐺 = {𝑝𝑃 ∣ ((𝐴 · (𝑝‘1)) + (𝐵 · (𝑝‘2))) = 𝐶}
21a1i 11 . . 3 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ ∧ 𝑀𝑁)) → 𝐺 = {𝑝𝑃 ∣ ((𝐴 · (𝑝‘1)) + (𝐵 · (𝑝‘2))) = 𝐶})
3 1ex 10637 . . . . . . . . . . . 12 1 ∈ V
4 2ex 11715 . . . . . . . . . . . 12 2 ∈ V
53, 4pm3.2i 473 . . . . . . . . . . 11 (1 ∈ V ∧ 2 ∈ V)
6 c0ex 10635 . . . . . . . . . . . 12 0 ∈ V
76jctl 526 . . . . . . . . . . 11 (𝑀 ∈ ℝ → (0 ∈ V ∧ 𝑀 ∈ ℝ))
8 1ne2 11846 . . . . . . . . . . . 12 1 ≠ 2
98a1i 11 . . . . . . . . . . 11 (𝑀 ∈ ℝ → 1 ≠ 2)
10 fprg 6917 . . . . . . . . . . . 12 (((1 ∈ V ∧ 2 ∈ V) ∧ (0 ∈ V ∧ 𝑀 ∈ ℝ) ∧ 1 ≠ 2) → {⟨1, 0⟩, ⟨2, 𝑀⟩}:{1, 2}⟶{0, 𝑀})
11 0red 10644 . . . . . . . . . . . . 13 (((1 ∈ V ∧ 2 ∈ V) ∧ (0 ∈ V ∧ 𝑀 ∈ ℝ) ∧ 1 ≠ 2) → 0 ∈ ℝ)
12 simp2r 1196 . . . . . . . . . . . . 13 (((1 ∈ V ∧ 2 ∈ V) ∧ (0 ∈ V ∧ 𝑀 ∈ ℝ) ∧ 1 ≠ 2) → 𝑀 ∈ ℝ)
1311, 12prssd 4755 . . . . . . . . . . . 12 (((1 ∈ V ∧ 2 ∈ V) ∧ (0 ∈ V ∧ 𝑀 ∈ ℝ) ∧ 1 ≠ 2) → {0, 𝑀} ⊆ ℝ)
1410, 13fssd 6528 . . . . . . . . . . 11 (((1 ∈ V ∧ 2 ∈ V) ∧ (0 ∈ V ∧ 𝑀 ∈ ℝ) ∧ 1 ≠ 2) → {⟨1, 0⟩, ⟨2, 𝑀⟩}:{1, 2}⟶ℝ)
155, 7, 9, 14mp3an2i 1462 . . . . . . . . . 10 (𝑀 ∈ ℝ → {⟨1, 0⟩, ⟨2, 𝑀⟩}:{1, 2}⟶ℝ)
16 line2.i . . . . . . . . . . 11 𝐼 = {1, 2}
1716feq2i 6506 . . . . . . . . . 10 ({⟨1, 0⟩, ⟨2, 𝑀⟩}:𝐼⟶ℝ ↔ {⟨1, 0⟩, ⟨2, 𝑀⟩}:{1, 2}⟶ℝ)
1815, 17sylibr 236 . . . . . . . . 9 (𝑀 ∈ ℝ → {⟨1, 0⟩, ⟨2, 𝑀⟩}:𝐼⟶ℝ)
19 reex 10628 . . . . . . . . . 10 ℝ ∈ V
20 prex 5333 . . . . . . . . . . 11 {1, 2} ∈ V
2116, 20eqeltri 2909 . . . . . . . . . 10 𝐼 ∈ V
2219, 21elmap 8435 . . . . . . . . 9 ({⟨1, 0⟩, ⟨2, 𝑀⟩} ∈ (ℝ ↑m 𝐼) ↔ {⟨1, 0⟩, ⟨2, 𝑀⟩}:𝐼⟶ℝ)
2318, 22sylibr 236 . . . . . . . 8 (𝑀 ∈ ℝ → {⟨1, 0⟩, ⟨2, 𝑀⟩} ∈ (ℝ ↑m 𝐼))
24 line2y.x . . . . . . . 8 𝑋 = {⟨1, 0⟩, ⟨2, 𝑀⟩}
25 line2.p . . . . . . . 8 𝑃 = (ℝ ↑m 𝐼)
2623, 24, 253eltr4g 2930 . . . . . . 7 (𝑀 ∈ ℝ → 𝑋𝑃)
27263ad2ant1 1129 . . . . . 6 ((𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ ∧ 𝑀𝑁) → 𝑋𝑃)
286jctl 526 . . . . . . . . . . . 12 (𝑁 ∈ ℝ → (0 ∈ V ∧ 𝑁 ∈ ℝ))
298a1i 11 . . . . . . . . . . . 12 (𝑁 ∈ ℝ → 1 ≠ 2)
30 fprg 6917 . . . . . . . . . . . 12 (((1 ∈ V ∧ 2 ∈ V) ∧ (0 ∈ V ∧ 𝑁 ∈ ℝ) ∧ 1 ≠ 2) → {⟨1, 0⟩, ⟨2, 𝑁⟩}:{1, 2}⟶{0, 𝑁})
315, 28, 29, 30mp3an2i 1462 . . . . . . . . . . 11 (𝑁 ∈ ℝ → {⟨1, 0⟩, ⟨2, 𝑁⟩}:{1, 2}⟶{0, 𝑁})
32 0re 10643 . . . . . . . . . . . 12 0 ∈ ℝ
33 prssi 4754 . . . . . . . . . . . 12 ((0 ∈ ℝ ∧ 𝑁 ∈ ℝ) → {0, 𝑁} ⊆ ℝ)
3432, 33mpan 688 . . . . . . . . . . 11 (𝑁 ∈ ℝ → {0, 𝑁} ⊆ ℝ)
3531, 34fssd 6528 . . . . . . . . . 10 (𝑁 ∈ ℝ → {⟨1, 0⟩, ⟨2, 𝑁⟩}:{1, 2}⟶ℝ)
3616feq2i 6506 . . . . . . . . . 10 ({⟨1, 0⟩, ⟨2, 𝑁⟩}:𝐼⟶ℝ ↔ {⟨1, 0⟩, ⟨2, 𝑁⟩}:{1, 2}⟶ℝ)
3735, 36sylibr 236 . . . . . . . . 9 (𝑁 ∈ ℝ → {⟨1, 0⟩, ⟨2, 𝑁⟩}:𝐼⟶ℝ)
3819, 21pm3.2i 473 . . . . . . . . . 10 (ℝ ∈ V ∧ 𝐼 ∈ V)
39 elmapg 8419 . . . . . . . . . 10 ((ℝ ∈ V ∧ 𝐼 ∈ V) → ({⟨1, 0⟩, ⟨2, 𝑁⟩} ∈ (ℝ ↑m 𝐼) ↔ {⟨1, 0⟩, ⟨2, 𝑁⟩}:𝐼⟶ℝ))
4038, 39mp1i 13 . . . . . . . . 9 (𝑁 ∈ ℝ → ({⟨1, 0⟩, ⟨2, 𝑁⟩} ∈ (ℝ ↑m 𝐼) ↔ {⟨1, 0⟩, ⟨2, 𝑁⟩}:𝐼⟶ℝ))
4137, 40mpbird 259 . . . . . . . 8 (𝑁 ∈ ℝ → {⟨1, 0⟩, ⟨2, 𝑁⟩} ∈ (ℝ ↑m 𝐼))
42 line2y.y . . . . . . . 8 𝑌 = {⟨1, 0⟩, ⟨2, 𝑁⟩}
4341, 42, 253eltr4g 2930 . . . . . . 7 (𝑁 ∈ ℝ → 𝑌𝑃)
44433ad2ant2 1130 . . . . . 6 ((𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ ∧ 𝑀𝑁) → 𝑌𝑃)
4524fveq1i 6671 . . . . . . . . 9 (𝑋‘1) = ({⟨1, 0⟩, ⟨2, 𝑀⟩}‘1)
463, 6, 83pm3.2i 1335 . . . . . . . . . 10 (1 ∈ V ∧ 0 ∈ V ∧ 1 ≠ 2)
47 fvpr1g 6954 . . . . . . . . . 10 ((1 ∈ V ∧ 0 ∈ V ∧ 1 ≠ 2) → ({⟨1, 0⟩, ⟨2, 𝑀⟩}‘1) = 0)
4846, 47mp1i 13 . . . . . . . . 9 ((𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ ∧ 𝑀𝑁) → ({⟨1, 0⟩, ⟨2, 𝑀⟩}‘1) = 0)
4945, 48syl5eq 2868 . . . . . . . 8 ((𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ ∧ 𝑀𝑁) → (𝑋‘1) = 0)
5042fveq1i 6671 . . . . . . . . 9 (𝑌‘1) = ({⟨1, 0⟩, ⟨2, 𝑁⟩}‘1)
51 fvpr1g 6954 . . . . . . . . . 10 ((1 ∈ V ∧ 0 ∈ V ∧ 1 ≠ 2) → ({⟨1, 0⟩, ⟨2, 𝑁⟩}‘1) = 0)
5246, 51mp1i 13 . . . . . . . . 9 ((𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ ∧ 𝑀𝑁) → ({⟨1, 0⟩, ⟨2, 𝑁⟩}‘1) = 0)
5350, 52syl5eq 2868 . . . . . . . 8 ((𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ ∧ 𝑀𝑁) → (𝑌‘1) = 0)
5449, 53eqtr4d 2859 . . . . . . 7 ((𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ ∧ 𝑀𝑁) → (𝑋‘1) = (𝑌‘1))
55 simp3 1134 . . . . . . . 8 ((𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ ∧ 𝑀𝑁) → 𝑀𝑁)
5624fveq1i 6671 . . . . . . . . 9 (𝑋‘2) = ({⟨1, 0⟩, ⟨2, 𝑀⟩}‘2)
57 simp1 1132 . . . . . . . . . 10 ((𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ ∧ 𝑀𝑁) → 𝑀 ∈ ℝ)
588a1i 11 . . . . . . . . . 10 ((𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ ∧ 𝑀𝑁) → 1 ≠ 2)
59 fvpr2g 6955 . . . . . . . . . 10 ((2 ∈ V ∧ 𝑀 ∈ ℝ ∧ 1 ≠ 2) → ({⟨1, 0⟩, ⟨2, 𝑀⟩}‘2) = 𝑀)
604, 57, 58, 59mp3an2i 1462 . . . . . . . . 9 ((𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ ∧ 𝑀𝑁) → ({⟨1, 0⟩, ⟨2, 𝑀⟩}‘2) = 𝑀)
6156, 60syl5eq 2868 . . . . . . . 8 ((𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ ∧ 𝑀𝑁) → (𝑋‘2) = 𝑀)
6242fveq1i 6671 . . . . . . . . 9 (𝑌‘2) = ({⟨1, 0⟩, ⟨2, 𝑁⟩}‘2)
63 simp2 1133 . . . . . . . . . 10 ((𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ ∧ 𝑀𝑁) → 𝑁 ∈ ℝ)
64 fvpr2g 6955 . . . . . . . . . 10 ((2 ∈ V ∧ 𝑁 ∈ ℝ ∧ 1 ≠ 2) → ({⟨1, 0⟩, ⟨2, 𝑁⟩}‘2) = 𝑁)
654, 63, 58, 64mp3an2i 1462 . . . . . . . . 9 ((𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ ∧ 𝑀𝑁) → ({⟨1, 0⟩, ⟨2, 𝑁⟩}‘2) = 𝑁)
6662, 65syl5eq 2868 . . . . . . . 8 ((𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ ∧ 𝑀𝑁) → (𝑌‘2) = 𝑁)
6755, 61, 663netr4d 3093 . . . . . . 7 ((𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ ∧ 𝑀𝑁) → (𝑋‘2) ≠ (𝑌‘2))
6854, 67jca 514 . . . . . 6 ((𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ ∧ 𝑀𝑁) → ((𝑋‘1) = (𝑌‘1) ∧ (𝑋‘2) ≠ (𝑌‘2)))
6927, 44, 683jca 1124 . . . . 5 ((𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ ∧ 𝑀𝑁) → (𝑋𝑃𝑌𝑃 ∧ ((𝑋‘1) = (𝑌‘1) ∧ (𝑋‘2) ≠ (𝑌‘2))))
7069adantl 484 . . . 4 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ ∧ 𝑀𝑁)) → (𝑋𝑃𝑌𝑃 ∧ ((𝑋‘1) = (𝑌‘1) ∧ (𝑋‘2) ≠ (𝑌‘2))))
71 line2.e . . . . 5 𝐸 = (ℝ^‘𝐼)
72 line2.l . . . . 5 𝐿 = (LineM𝐸)
7316, 71, 25, 72rrx2vlinest 44748 . . . 4 ((𝑋𝑃𝑌𝑃 ∧ ((𝑋‘1) = (𝑌‘1) ∧ (𝑋‘2) ≠ (𝑌‘2))) → (𝑋𝐿𝑌) = {𝑝𝑃 ∣ (𝑝‘1) = (𝑋‘1)})
7470, 73syl 17 . . 3 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ ∧ 𝑀𝑁)) → (𝑋𝐿𝑌) = {𝑝𝑃 ∣ (𝑝‘1) = (𝑋‘1)})
752, 74eqeq12d 2837 . 2 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ ∧ 𝑀𝑁)) → (𝐺 = (𝑋𝐿𝑌) ↔ {𝑝𝑃 ∣ ((𝐴 · (𝑝‘1)) + (𝐵 · (𝑝‘2))) = 𝐶} = {𝑝𝑃 ∣ (𝑝‘1) = (𝑋‘1)}))
7646, 47ax-mp 5 . . . . . . 7 ({⟨1, 0⟩, ⟨2, 𝑀⟩}‘1) = 0
7745, 76eqtri 2844 . . . . . 6 (𝑋‘1) = 0
7877a1i 11 . . . . 5 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ ∧ 𝑀𝑁)) → (𝑋‘1) = 0)
7978eqeq2d 2832 . . . 4 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ ∧ 𝑀𝑁)) → ((𝑝‘1) = (𝑋‘1) ↔ (𝑝‘1) = 0))
8079rabbidv 3480 . . 3 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ ∧ 𝑀𝑁)) → {𝑝𝑃 ∣ (𝑝‘1) = (𝑋‘1)} = {𝑝𝑃 ∣ (𝑝‘1) = 0})
8180eqeq2d 2832 . 2 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ ∧ 𝑀𝑁)) → ({𝑝𝑃 ∣ ((𝐴 · (𝑝‘1)) + (𝐵 · (𝑝‘2))) = 𝐶} = {𝑝𝑃 ∣ (𝑝‘1) = (𝑋‘1)} ↔ {𝑝𝑃 ∣ ((𝐴 · (𝑝‘1)) + (𝐵 · (𝑝‘2))) = 𝐶} = {𝑝𝑃 ∣ (𝑝‘1) = 0}))
82 rabbi 3383 . . 3 (∀𝑝𝑃 (((𝐴 · (𝑝‘1)) + (𝐵 · (𝑝‘2))) = 𝐶 ↔ (𝑝‘1) = 0) ↔ {𝑝𝑃 ∣ ((𝐴 · (𝑝‘1)) + (𝐵 · (𝑝‘2))) = 𝐶} = {𝑝𝑃 ∣ (𝑝‘1) = 0})
8316, 25line2ylem 44758 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (∀𝑝𝑃 (((𝐴 · (𝑝‘1)) + (𝐵 · (𝑝‘2))) = 𝐶 ↔ (𝑝‘1) = 0) → (𝐴 ≠ 0 ∧ 𝐵 = 0 ∧ 𝐶 = 0)))
8483adantr 483 . . . 4 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ ∧ 𝑀𝑁)) → (∀𝑝𝑃 (((𝐴 · (𝑝‘1)) + (𝐵 · (𝑝‘2))) = 𝐶 ↔ (𝑝‘1) = 0) → (𝐴 ≠ 0 ∧ 𝐵 = 0 ∧ 𝐶 = 0)))
85 oveq1 7163 . . . . . . . . . . 11 (𝐵 = 0 → (𝐵 · (𝑝‘2)) = (0 · (𝑝‘2)))
86853ad2ant2 1130 . . . . . . . . . 10 ((𝐴 ≠ 0 ∧ 𝐵 = 0 ∧ 𝐶 = 0) → (𝐵 · (𝑝‘2)) = (0 · (𝑝‘2)))
8786oveq2d 7172 . . . . . . . . 9 ((𝐴 ≠ 0 ∧ 𝐵 = 0 ∧ 𝐶 = 0) → ((𝐴 · (𝑝‘1)) + (𝐵 · (𝑝‘2))) = ((𝐴 · (𝑝‘1)) + (0 · (𝑝‘2))))
88 simp3 1134 . . . . . . . . 9 ((𝐴 ≠ 0 ∧ 𝐵 = 0 ∧ 𝐶 = 0) → 𝐶 = 0)
8987, 88eqeq12d 2837 . . . . . . . 8 ((𝐴 ≠ 0 ∧ 𝐵 = 0 ∧ 𝐶 = 0) → (((𝐴 · (𝑝‘1)) + (𝐵 · (𝑝‘2))) = 𝐶 ↔ ((𝐴 · (𝑝‘1)) + (0 · (𝑝‘2))) = 0))
9089ad2antlr 725 . . . . . . 7 (((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ ∧ 𝑀𝑁)) ∧ (𝐴 ≠ 0 ∧ 𝐵 = 0 ∧ 𝐶 = 0)) ∧ 𝑝𝑃) → (((𝐴 · (𝑝‘1)) + (𝐵 · (𝑝‘2))) = 𝐶 ↔ ((𝐴 · (𝑝‘1)) + (0 · (𝑝‘2))) = 0))
9116, 25rrx2pyel 44719 . . . . . . . . . . . . 13 (𝑝𝑃 → (𝑝‘2) ∈ ℝ)
9291recnd 10669 . . . . . . . . . . . 12 (𝑝𝑃 → (𝑝‘2) ∈ ℂ)
9392mul02d 10838 . . . . . . . . . . 11 (𝑝𝑃 → (0 · (𝑝‘2)) = 0)
9493adantl 484 . . . . . . . . . 10 (((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ ∧ 𝑀𝑁)) ∧ (𝐴 ≠ 0 ∧ 𝐵 = 0 ∧ 𝐶 = 0)) ∧ 𝑝𝑃) → (0 · (𝑝‘2)) = 0)
9594oveq2d 7172 . . . . . . . . 9 (((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ ∧ 𝑀𝑁)) ∧ (𝐴 ≠ 0 ∧ 𝐵 = 0 ∧ 𝐶 = 0)) ∧ 𝑝𝑃) → ((𝐴 · (𝑝‘1)) + (0 · (𝑝‘2))) = ((𝐴 · (𝑝‘1)) + 0))
96 simp1 1132 . . . . . . . . . . . . 13 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → 𝐴 ∈ ℝ)
9796recnd 10669 . . . . . . . . . . . 12 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → 𝐴 ∈ ℂ)
9897ad3antrrr 728 . . . . . . . . . . 11 (((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ ∧ 𝑀𝑁)) ∧ (𝐴 ≠ 0 ∧ 𝐵 = 0 ∧ 𝐶 = 0)) ∧ 𝑝𝑃) → 𝐴 ∈ ℂ)
9916, 25rrx2pxel 44718 . . . . . . . . . . . . 13 (𝑝𝑃 → (𝑝‘1) ∈ ℝ)
10099recnd 10669 . . . . . . . . . . . 12 (𝑝𝑃 → (𝑝‘1) ∈ ℂ)
101100adantl 484 . . . . . . . . . . 11 (((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ ∧ 𝑀𝑁)) ∧ (𝐴 ≠ 0 ∧ 𝐵 = 0 ∧ 𝐶 = 0)) ∧ 𝑝𝑃) → (𝑝‘1) ∈ ℂ)
10298, 101mulcld 10661 . . . . . . . . . 10 (((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ ∧ 𝑀𝑁)) ∧ (𝐴 ≠ 0 ∧ 𝐵 = 0 ∧ 𝐶 = 0)) ∧ 𝑝𝑃) → (𝐴 · (𝑝‘1)) ∈ ℂ)
103102addid1d 10840 . . . . . . . . 9 (((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ ∧ 𝑀𝑁)) ∧ (𝐴 ≠ 0 ∧ 𝐵 = 0 ∧ 𝐶 = 0)) ∧ 𝑝𝑃) → ((𝐴 · (𝑝‘1)) + 0) = (𝐴 · (𝑝‘1)))
10495, 103eqtrd 2856 . . . . . . . 8 (((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ ∧ 𝑀𝑁)) ∧ (𝐴 ≠ 0 ∧ 𝐵 = 0 ∧ 𝐶 = 0)) ∧ 𝑝𝑃) → ((𝐴 · (𝑝‘1)) + (0 · (𝑝‘2))) = (𝐴 · (𝑝‘1)))
105104eqeq1d 2823 . . . . . . 7 (((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ ∧ 𝑀𝑁)) ∧ (𝐴 ≠ 0 ∧ 𝐵 = 0 ∧ 𝐶 = 0)) ∧ 𝑝𝑃) → (((𝐴 · (𝑝‘1)) + (0 · (𝑝‘2))) = 0 ↔ (𝐴 · (𝑝‘1)) = 0))
10698, 101mul0ord 11290 . . . . . . . 8 (((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ ∧ 𝑀𝑁)) ∧ (𝐴 ≠ 0 ∧ 𝐵 = 0 ∧ 𝐶 = 0)) ∧ 𝑝𝑃) → ((𝐴 · (𝑝‘1)) = 0 ↔ (𝐴 = 0 ∨ (𝑝‘1) = 0)))
107 eqneqall 3027 . . . . . . . . . . . . 13 (𝐴 = 0 → (𝐴 ≠ 0 → (𝑝‘1) = 0))
108107com12 32 . . . . . . . . . . . 12 (𝐴 ≠ 0 → (𝐴 = 0 → (𝑝‘1) = 0))
1091083ad2ant1 1129 . . . . . . . . . . 11 ((𝐴 ≠ 0 ∧ 𝐵 = 0 ∧ 𝐶 = 0) → (𝐴 = 0 → (𝑝‘1) = 0))
110109ad2antlr 725 . . . . . . . . . 10 (((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ ∧ 𝑀𝑁)) ∧ (𝐴 ≠ 0 ∧ 𝐵 = 0 ∧ 𝐶 = 0)) ∧ 𝑝𝑃) → (𝐴 = 0 → (𝑝‘1) = 0))
111 idd 24 . . . . . . . . . 10 (((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ ∧ 𝑀𝑁)) ∧ (𝐴 ≠ 0 ∧ 𝐵 = 0 ∧ 𝐶 = 0)) ∧ 𝑝𝑃) → ((𝑝‘1) = 0 → (𝑝‘1) = 0))
112110, 111jaod 855 . . . . . . . . 9 (((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ ∧ 𝑀𝑁)) ∧ (𝐴 ≠ 0 ∧ 𝐵 = 0 ∧ 𝐶 = 0)) ∧ 𝑝𝑃) → ((𝐴 = 0 ∨ (𝑝‘1) = 0) → (𝑝‘1) = 0))
113 olc 864 . . . . . . . . 9 ((𝑝‘1) = 0 → (𝐴 = 0 ∨ (𝑝‘1) = 0))
114112, 113impbid1 227 . . . . . . . 8 (((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ ∧ 𝑀𝑁)) ∧ (𝐴 ≠ 0 ∧ 𝐵 = 0 ∧ 𝐶 = 0)) ∧ 𝑝𝑃) → ((𝐴 = 0 ∨ (𝑝‘1) = 0) ↔ (𝑝‘1) = 0))
115106, 114bitrd 281 . . . . . . 7 (((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ ∧ 𝑀𝑁)) ∧ (𝐴 ≠ 0 ∧ 𝐵 = 0 ∧ 𝐶 = 0)) ∧ 𝑝𝑃) → ((𝐴 · (𝑝‘1)) = 0 ↔ (𝑝‘1) = 0))
11690, 105, 1153bitrd 307 . . . . . 6 (((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ ∧ 𝑀𝑁)) ∧ (𝐴 ≠ 0 ∧ 𝐵 = 0 ∧ 𝐶 = 0)) ∧ 𝑝𝑃) → (((𝐴 · (𝑝‘1)) + (𝐵 · (𝑝‘2))) = 𝐶 ↔ (𝑝‘1) = 0))
117116ralrimiva 3182 . . . . 5 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ ∧ 𝑀𝑁)) ∧ (𝐴 ≠ 0 ∧ 𝐵 = 0 ∧ 𝐶 = 0)) → ∀𝑝𝑃 (((𝐴 · (𝑝‘1)) + (𝐵 · (𝑝‘2))) = 𝐶 ↔ (𝑝‘1) = 0))
118117ex 415 . . . 4 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ ∧ 𝑀𝑁)) → ((𝐴 ≠ 0 ∧ 𝐵 = 0 ∧ 𝐶 = 0) → ∀𝑝𝑃 (((𝐴 · (𝑝‘1)) + (𝐵 · (𝑝‘2))) = 𝐶 ↔ (𝑝‘1) = 0)))
11984, 118impbid 214 . . 3 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ ∧ 𝑀𝑁)) → (∀𝑝𝑃 (((𝐴 · (𝑝‘1)) + (𝐵 · (𝑝‘2))) = 𝐶 ↔ (𝑝‘1) = 0) ↔ (𝐴 ≠ 0 ∧ 𝐵 = 0 ∧ 𝐶 = 0)))
12082, 119syl5bbr 287 . 2 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ ∧ 𝑀𝑁)) → ({𝑝𝑃 ∣ ((𝐴 · (𝑝‘1)) + (𝐵 · (𝑝‘2))) = 𝐶} = {𝑝𝑃 ∣ (𝑝‘1) = 0} ↔ (𝐴 ≠ 0 ∧ 𝐵 = 0 ∧ 𝐶 = 0)))
12175, 81, 1203bitrd 307 1 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ ∧ 𝑀𝑁)) → (𝐺 = (𝑋𝐿𝑌) ↔ (𝐴 ≠ 0 ∧ 𝐵 = 0 ∧ 𝐶 = 0)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398  wo 843  w3a 1083   = wceq 1537  wcel 2114  wne 3016  wral 3138  {crab 3142  Vcvv 3494  wss 3936  {cpr 4569  cop 4573  wf 6351  cfv 6355  (class class class)co 7156  m cmap 8406  cc 10535  cr 10536  0cc0 10537  1c1 10538   + caddc 10540   · cmul 10542  2c2 11693  ℝ^crrx 23986  LineMcline 44734
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-rep 5190  ax-sep 5203  ax-nul 5210  ax-pow 5266  ax-pr 5330  ax-un 7461  ax-cnex 10593  ax-resscn 10594  ax-1cn 10595  ax-icn 10596  ax-addcl 10597  ax-addrcl 10598  ax-mulcl 10599  ax-mulrcl 10600  ax-mulcom 10601  ax-addass 10602  ax-mulass 10603  ax-distr 10604  ax-i2m1 10605  ax-1ne0 10606  ax-1rid 10607  ax-rnegex 10608  ax-rrecex 10609  ax-cnre 10610  ax-pre-lttri 10611  ax-pre-lttrn 10612  ax-pre-ltadd 10613  ax-pre-mulgt0 10614  ax-pre-sup 10615  ax-addf 10616  ax-mulf 10617
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3496  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-pss 3954  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4568  df-pr 4570  df-tp 4572  df-op 4574  df-uni 4839  df-int 4877  df-iun 4921  df-br 5067  df-opab 5129  df-mpt 5147  df-tr 5173  df-id 5460  df-eprel 5465  df-po 5474  df-so 5475  df-fr 5514  df-we 5516  df-xp 5561  df-rel 5562  df-cnv 5563  df-co 5564  df-dm 5565  df-rn 5566  df-res 5567  df-ima 5568  df-pred 6148  df-ord 6194  df-on 6195  df-lim 6196  df-suc 6197  df-iota 6314  df-fun 6357  df-fn 6358  df-f 6359  df-f1 6360  df-fo 6361  df-f1o 6362  df-fv 6363  df-riota 7114  df-ov 7159  df-oprab 7160  df-mpo 7161  df-of 7409  df-om 7581  df-1st 7689  df-2nd 7690  df-supp 7831  df-tpos 7892  df-wrecs 7947  df-recs 8008  df-rdg 8046  df-1o 8102  df-oadd 8106  df-er 8289  df-map 8408  df-ixp 8462  df-en 8510  df-dom 8511  df-sdom 8512  df-fin 8513  df-fsupp 8834  df-sup 8906  df-pnf 10677  df-mnf 10678  df-xr 10679  df-ltxr 10680  df-le 10681  df-sub 10872  df-neg 10873  df-div 11298  df-nn 11639  df-2 11701  df-3 11702  df-4 11703  df-5 11704  df-6 11705  df-7 11706  df-8 11707  df-9 11708  df-n0 11899  df-z 11983  df-dec 12100  df-uz 12245  df-rp 12391  df-fz 12894  df-seq 13371  df-exp 13431  df-cj 14458  df-re 14459  df-im 14460  df-sqrt 14594  df-abs 14595  df-struct 16485  df-ndx 16486  df-slot 16487  df-base 16489  df-sets 16490  df-ress 16491  df-plusg 16578  df-mulr 16579  df-starv 16580  df-sca 16581  df-vsca 16582  df-ip 16583  df-tset 16584  df-ple 16585  df-ds 16587  df-unif 16588  df-hom 16589  df-cco 16590  df-0g 16715  df-prds 16721  df-pws 16723  df-mgm 17852  df-sgrp 17901  df-mnd 17912  df-mhm 17956  df-grp 18106  df-minusg 18107  df-sbg 18108  df-subg 18276  df-ghm 18356  df-cmn 18908  df-mgp 19240  df-ur 19252  df-ring 19299  df-cring 19300  df-oppr 19373  df-dvdsr 19391  df-unit 19392  df-invr 19422  df-dvr 19433  df-rnghom 19467  df-drng 19504  df-field 19505  df-subrg 19533  df-staf 19616  df-srng 19617  df-lmod 19636  df-lss 19704  df-sra 19944  df-rgmod 19945  df-cnfld 20546  df-refld 20749  df-dsmm 20876  df-frlm 20891  df-tng 23194  df-tcph 23773  df-rrx 23988  df-line 44736
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator