Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  line2y Structured version   Visualization version   GIF version

Theorem line2y 48489
Description: Example for a vertical line 𝐺 passing through two different points in "standard form". (Contributed by AV, 3-Feb-2023.)
Hypotheses
Ref Expression
line2.i 𝐼 = {1, 2}
line2.e 𝐸 = (ℝ^‘𝐼)
line2.p 𝑃 = (ℝ ↑m 𝐼)
line2.l 𝐿 = (LineM𝐸)
line2.g 𝐺 = {𝑝𝑃 ∣ ((𝐴 · (𝑝‘1)) + (𝐵 · (𝑝‘2))) = 𝐶}
line2y.x 𝑋 = {⟨1, 0⟩, ⟨2, 𝑀⟩}
line2y.y 𝑌 = {⟨1, 0⟩, ⟨2, 𝑁⟩}
Assertion
Ref Expression
line2y (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ ∧ 𝑀𝑁)) → (𝐺 = (𝑋𝐿𝑌) ↔ (𝐴 ≠ 0 ∧ 𝐵 = 0 ∧ 𝐶 = 0)))
Distinct variable groups:   𝐴,𝑝   𝐵,𝑝   𝐶,𝑝   𝐸,𝑝   𝐼,𝑝   𝑃,𝑝   𝑋,𝑝   𝑌,𝑝   𝑀,𝑝   𝑁,𝑝
Allowed substitution hints:   𝐺(𝑝)   𝐿(𝑝)

Proof of Theorem line2y
StepHypRef Expression
1 line2.g . . . 4 𝐺 = {𝑝𝑃 ∣ ((𝐴 · (𝑝‘1)) + (𝐵 · (𝑝‘2))) = 𝐶}
21a1i 11 . . 3 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ ∧ 𝑀𝑁)) → 𝐺 = {𝑝𝑃 ∣ ((𝐴 · (𝑝‘1)) + (𝐵 · (𝑝‘2))) = 𝐶})
3 1ex 11286 . . . . . . . . . . . 12 1 ∈ V
4 2ex 12370 . . . . . . . . . . . 12 2 ∈ V
53, 4pm3.2i 470 . . . . . . . . . . 11 (1 ∈ V ∧ 2 ∈ V)
6 c0ex 11284 . . . . . . . . . . . 12 0 ∈ V
76jctl 523 . . . . . . . . . . 11 (𝑀 ∈ ℝ → (0 ∈ V ∧ 𝑀 ∈ ℝ))
8 1ne2 12501 . . . . . . . . . . . 12 1 ≠ 2
98a1i 11 . . . . . . . . . . 11 (𝑀 ∈ ℝ → 1 ≠ 2)
10 fprg 7189 . . . . . . . . . . . 12 (((1 ∈ V ∧ 2 ∈ V) ∧ (0 ∈ V ∧ 𝑀 ∈ ℝ) ∧ 1 ≠ 2) → {⟨1, 0⟩, ⟨2, 𝑀⟩}:{1, 2}⟶{0, 𝑀})
11 0red 11293 . . . . . . . . . . . . 13 (((1 ∈ V ∧ 2 ∈ V) ∧ (0 ∈ V ∧ 𝑀 ∈ ℝ) ∧ 1 ≠ 2) → 0 ∈ ℝ)
12 simp2r 1200 . . . . . . . . . . . . 13 (((1 ∈ V ∧ 2 ∈ V) ∧ (0 ∈ V ∧ 𝑀 ∈ ℝ) ∧ 1 ≠ 2) → 𝑀 ∈ ℝ)
1311, 12prssd 4847 . . . . . . . . . . . 12 (((1 ∈ V ∧ 2 ∈ V) ∧ (0 ∈ V ∧ 𝑀 ∈ ℝ) ∧ 1 ≠ 2) → {0, 𝑀} ⊆ ℝ)
1410, 13fssd 6764 . . . . . . . . . . 11 (((1 ∈ V ∧ 2 ∈ V) ∧ (0 ∈ V ∧ 𝑀 ∈ ℝ) ∧ 1 ≠ 2) → {⟨1, 0⟩, ⟨2, 𝑀⟩}:{1, 2}⟶ℝ)
155, 7, 9, 14mp3an2i 1466 . . . . . . . . . 10 (𝑀 ∈ ℝ → {⟨1, 0⟩, ⟨2, 𝑀⟩}:{1, 2}⟶ℝ)
16 line2.i . . . . . . . . . . 11 𝐼 = {1, 2}
1716feq2i 6739 . . . . . . . . . 10 ({⟨1, 0⟩, ⟨2, 𝑀⟩}:𝐼⟶ℝ ↔ {⟨1, 0⟩, ⟨2, 𝑀⟩}:{1, 2}⟶ℝ)
1815, 17sylibr 234 . . . . . . . . 9 (𝑀 ∈ ℝ → {⟨1, 0⟩, ⟨2, 𝑀⟩}:𝐼⟶ℝ)
19 reex 11275 . . . . . . . . . 10 ℝ ∈ V
20 prex 5452 . . . . . . . . . . 11 {1, 2} ∈ V
2116, 20eqeltri 2840 . . . . . . . . . 10 𝐼 ∈ V
2219, 21elmap 8929 . . . . . . . . 9 ({⟨1, 0⟩, ⟨2, 𝑀⟩} ∈ (ℝ ↑m 𝐼) ↔ {⟨1, 0⟩, ⟨2, 𝑀⟩}:𝐼⟶ℝ)
2318, 22sylibr 234 . . . . . . . 8 (𝑀 ∈ ℝ → {⟨1, 0⟩, ⟨2, 𝑀⟩} ∈ (ℝ ↑m 𝐼))
24 line2y.x . . . . . . . 8 𝑋 = {⟨1, 0⟩, ⟨2, 𝑀⟩}
25 line2.p . . . . . . . 8 𝑃 = (ℝ ↑m 𝐼)
2623, 24, 253eltr4g 2861 . . . . . . 7 (𝑀 ∈ ℝ → 𝑋𝑃)
27263ad2ant1 1133 . . . . . 6 ((𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ ∧ 𝑀𝑁) → 𝑋𝑃)
286jctl 523 . . . . . . . . . . . 12 (𝑁 ∈ ℝ → (0 ∈ V ∧ 𝑁 ∈ ℝ))
298a1i 11 . . . . . . . . . . . 12 (𝑁 ∈ ℝ → 1 ≠ 2)
30 fprg 7189 . . . . . . . . . . . 12 (((1 ∈ V ∧ 2 ∈ V) ∧ (0 ∈ V ∧ 𝑁 ∈ ℝ) ∧ 1 ≠ 2) → {⟨1, 0⟩, ⟨2, 𝑁⟩}:{1, 2}⟶{0, 𝑁})
315, 28, 29, 30mp3an2i 1466 . . . . . . . . . . 11 (𝑁 ∈ ℝ → {⟨1, 0⟩, ⟨2, 𝑁⟩}:{1, 2}⟶{0, 𝑁})
32 0re 11292 . . . . . . . . . . . 12 0 ∈ ℝ
33 prssi 4846 . . . . . . . . . . . 12 ((0 ∈ ℝ ∧ 𝑁 ∈ ℝ) → {0, 𝑁} ⊆ ℝ)
3432, 33mpan 689 . . . . . . . . . . 11 (𝑁 ∈ ℝ → {0, 𝑁} ⊆ ℝ)
3531, 34fssd 6764 . . . . . . . . . 10 (𝑁 ∈ ℝ → {⟨1, 0⟩, ⟨2, 𝑁⟩}:{1, 2}⟶ℝ)
3616feq2i 6739 . . . . . . . . . 10 ({⟨1, 0⟩, ⟨2, 𝑁⟩}:𝐼⟶ℝ ↔ {⟨1, 0⟩, ⟨2, 𝑁⟩}:{1, 2}⟶ℝ)
3735, 36sylibr 234 . . . . . . . . 9 (𝑁 ∈ ℝ → {⟨1, 0⟩, ⟨2, 𝑁⟩}:𝐼⟶ℝ)
3819, 21pm3.2i 470 . . . . . . . . . 10 (ℝ ∈ V ∧ 𝐼 ∈ V)
39 elmapg 8897 . . . . . . . . . 10 ((ℝ ∈ V ∧ 𝐼 ∈ V) → ({⟨1, 0⟩, ⟨2, 𝑁⟩} ∈ (ℝ ↑m 𝐼) ↔ {⟨1, 0⟩, ⟨2, 𝑁⟩}:𝐼⟶ℝ))
4038, 39mp1i 13 . . . . . . . . 9 (𝑁 ∈ ℝ → ({⟨1, 0⟩, ⟨2, 𝑁⟩} ∈ (ℝ ↑m 𝐼) ↔ {⟨1, 0⟩, ⟨2, 𝑁⟩}:𝐼⟶ℝ))
4137, 40mpbird 257 . . . . . . . 8 (𝑁 ∈ ℝ → {⟨1, 0⟩, ⟨2, 𝑁⟩} ∈ (ℝ ↑m 𝐼))
42 line2y.y . . . . . . . 8 𝑌 = {⟨1, 0⟩, ⟨2, 𝑁⟩}
4341, 42, 253eltr4g 2861 . . . . . . 7 (𝑁 ∈ ℝ → 𝑌𝑃)
44433ad2ant2 1134 . . . . . 6 ((𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ ∧ 𝑀𝑁) → 𝑌𝑃)
4524fveq1i 6921 . . . . . . . . 9 (𝑋‘1) = ({⟨1, 0⟩, ⟨2, 𝑀⟩}‘1)
463, 6, 83pm3.2i 1339 . . . . . . . . . 10 (1 ∈ V ∧ 0 ∈ V ∧ 1 ≠ 2)
47 fvpr1g 7224 . . . . . . . . . 10 ((1 ∈ V ∧ 0 ∈ V ∧ 1 ≠ 2) → ({⟨1, 0⟩, ⟨2, 𝑀⟩}‘1) = 0)
4846, 47mp1i 13 . . . . . . . . 9 ((𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ ∧ 𝑀𝑁) → ({⟨1, 0⟩, ⟨2, 𝑀⟩}‘1) = 0)
4945, 48eqtrid 2792 . . . . . . . 8 ((𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ ∧ 𝑀𝑁) → (𝑋‘1) = 0)
5042fveq1i 6921 . . . . . . . . 9 (𝑌‘1) = ({⟨1, 0⟩, ⟨2, 𝑁⟩}‘1)
51 fvpr1g 7224 . . . . . . . . . 10 ((1 ∈ V ∧ 0 ∈ V ∧ 1 ≠ 2) → ({⟨1, 0⟩, ⟨2, 𝑁⟩}‘1) = 0)
5246, 51mp1i 13 . . . . . . . . 9 ((𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ ∧ 𝑀𝑁) → ({⟨1, 0⟩, ⟨2, 𝑁⟩}‘1) = 0)
5350, 52eqtrid 2792 . . . . . . . 8 ((𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ ∧ 𝑀𝑁) → (𝑌‘1) = 0)
5449, 53eqtr4d 2783 . . . . . . 7 ((𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ ∧ 𝑀𝑁) → (𝑋‘1) = (𝑌‘1))
55 simp3 1138 . . . . . . . 8 ((𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ ∧ 𝑀𝑁) → 𝑀𝑁)
5624fveq1i 6921 . . . . . . . . 9 (𝑋‘2) = ({⟨1, 0⟩, ⟨2, 𝑀⟩}‘2)
57 simp1 1136 . . . . . . . . . 10 ((𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ ∧ 𝑀𝑁) → 𝑀 ∈ ℝ)
588a1i 11 . . . . . . . . . 10 ((𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ ∧ 𝑀𝑁) → 1 ≠ 2)
59 fvpr2g 7225 . . . . . . . . . 10 ((2 ∈ V ∧ 𝑀 ∈ ℝ ∧ 1 ≠ 2) → ({⟨1, 0⟩, ⟨2, 𝑀⟩}‘2) = 𝑀)
604, 57, 58, 59mp3an2i 1466 . . . . . . . . 9 ((𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ ∧ 𝑀𝑁) → ({⟨1, 0⟩, ⟨2, 𝑀⟩}‘2) = 𝑀)
6156, 60eqtrid 2792 . . . . . . . 8 ((𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ ∧ 𝑀𝑁) → (𝑋‘2) = 𝑀)
6242fveq1i 6921 . . . . . . . . 9 (𝑌‘2) = ({⟨1, 0⟩, ⟨2, 𝑁⟩}‘2)
63 simp2 1137 . . . . . . . . . 10 ((𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ ∧ 𝑀𝑁) → 𝑁 ∈ ℝ)
64 fvpr2g 7225 . . . . . . . . . 10 ((2 ∈ V ∧ 𝑁 ∈ ℝ ∧ 1 ≠ 2) → ({⟨1, 0⟩, ⟨2, 𝑁⟩}‘2) = 𝑁)
654, 63, 58, 64mp3an2i 1466 . . . . . . . . 9 ((𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ ∧ 𝑀𝑁) → ({⟨1, 0⟩, ⟨2, 𝑁⟩}‘2) = 𝑁)
6662, 65eqtrid 2792 . . . . . . . 8 ((𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ ∧ 𝑀𝑁) → (𝑌‘2) = 𝑁)
6755, 61, 663netr4d 3024 . . . . . . 7 ((𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ ∧ 𝑀𝑁) → (𝑋‘2) ≠ (𝑌‘2))
6854, 67jca 511 . . . . . 6 ((𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ ∧ 𝑀𝑁) → ((𝑋‘1) = (𝑌‘1) ∧ (𝑋‘2) ≠ (𝑌‘2)))
6927, 44, 683jca 1128 . . . . 5 ((𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ ∧ 𝑀𝑁) → (𝑋𝑃𝑌𝑃 ∧ ((𝑋‘1) = (𝑌‘1) ∧ (𝑋‘2) ≠ (𝑌‘2))))
7069adantl 481 . . . 4 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ ∧ 𝑀𝑁)) → (𝑋𝑃𝑌𝑃 ∧ ((𝑋‘1) = (𝑌‘1) ∧ (𝑋‘2) ≠ (𝑌‘2))))
71 line2.e . . . . 5 𝐸 = (ℝ^‘𝐼)
72 line2.l . . . . 5 𝐿 = (LineM𝐸)
7316, 71, 25, 72rrx2vlinest 48475 . . . 4 ((𝑋𝑃𝑌𝑃 ∧ ((𝑋‘1) = (𝑌‘1) ∧ (𝑋‘2) ≠ (𝑌‘2))) → (𝑋𝐿𝑌) = {𝑝𝑃 ∣ (𝑝‘1) = (𝑋‘1)})
7470, 73syl 17 . . 3 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ ∧ 𝑀𝑁)) → (𝑋𝐿𝑌) = {𝑝𝑃 ∣ (𝑝‘1) = (𝑋‘1)})
752, 74eqeq12d 2756 . 2 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ ∧ 𝑀𝑁)) → (𝐺 = (𝑋𝐿𝑌) ↔ {𝑝𝑃 ∣ ((𝐴 · (𝑝‘1)) + (𝐵 · (𝑝‘2))) = 𝐶} = {𝑝𝑃 ∣ (𝑝‘1) = (𝑋‘1)}))
7646, 47ax-mp 5 . . . . . . 7 ({⟨1, 0⟩, ⟨2, 𝑀⟩}‘1) = 0
7745, 76eqtri 2768 . . . . . 6 (𝑋‘1) = 0
7877a1i 11 . . . . 5 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ ∧ 𝑀𝑁)) → (𝑋‘1) = 0)
7978eqeq2d 2751 . . . 4 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ ∧ 𝑀𝑁)) → ((𝑝‘1) = (𝑋‘1) ↔ (𝑝‘1) = 0))
8079rabbidv 3451 . . 3 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ ∧ 𝑀𝑁)) → {𝑝𝑃 ∣ (𝑝‘1) = (𝑋‘1)} = {𝑝𝑃 ∣ (𝑝‘1) = 0})
8180eqeq2d 2751 . 2 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ ∧ 𝑀𝑁)) → ({𝑝𝑃 ∣ ((𝐴 · (𝑝‘1)) + (𝐵 · (𝑝‘2))) = 𝐶} = {𝑝𝑃 ∣ (𝑝‘1) = (𝑋‘1)} ↔ {𝑝𝑃 ∣ ((𝐴 · (𝑝‘1)) + (𝐵 · (𝑝‘2))) = 𝐶} = {𝑝𝑃 ∣ (𝑝‘1) = 0}))
82 rabbi 3475 . . 3 (∀𝑝𝑃 (((𝐴 · (𝑝‘1)) + (𝐵 · (𝑝‘2))) = 𝐶 ↔ (𝑝‘1) = 0) ↔ {𝑝𝑃 ∣ ((𝐴 · (𝑝‘1)) + (𝐵 · (𝑝‘2))) = 𝐶} = {𝑝𝑃 ∣ (𝑝‘1) = 0})
8316, 25line2ylem 48485 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (∀𝑝𝑃 (((𝐴 · (𝑝‘1)) + (𝐵 · (𝑝‘2))) = 𝐶 ↔ (𝑝‘1) = 0) → (𝐴 ≠ 0 ∧ 𝐵 = 0 ∧ 𝐶 = 0)))
8483adantr 480 . . . 4 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ ∧ 𝑀𝑁)) → (∀𝑝𝑃 (((𝐴 · (𝑝‘1)) + (𝐵 · (𝑝‘2))) = 𝐶 ↔ (𝑝‘1) = 0) → (𝐴 ≠ 0 ∧ 𝐵 = 0 ∧ 𝐶 = 0)))
85 oveq1 7455 . . . . . . . . . . 11 (𝐵 = 0 → (𝐵 · (𝑝‘2)) = (0 · (𝑝‘2)))
86853ad2ant2 1134 . . . . . . . . . 10 ((𝐴 ≠ 0 ∧ 𝐵 = 0 ∧ 𝐶 = 0) → (𝐵 · (𝑝‘2)) = (0 · (𝑝‘2)))
8786oveq2d 7464 . . . . . . . . 9 ((𝐴 ≠ 0 ∧ 𝐵 = 0 ∧ 𝐶 = 0) → ((𝐴 · (𝑝‘1)) + (𝐵 · (𝑝‘2))) = ((𝐴 · (𝑝‘1)) + (0 · (𝑝‘2))))
88 simp3 1138 . . . . . . . . 9 ((𝐴 ≠ 0 ∧ 𝐵 = 0 ∧ 𝐶 = 0) → 𝐶 = 0)
8987, 88eqeq12d 2756 . . . . . . . 8 ((𝐴 ≠ 0 ∧ 𝐵 = 0 ∧ 𝐶 = 0) → (((𝐴 · (𝑝‘1)) + (𝐵 · (𝑝‘2))) = 𝐶 ↔ ((𝐴 · (𝑝‘1)) + (0 · (𝑝‘2))) = 0))
9089ad2antlr 726 . . . . . . 7 (((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ ∧ 𝑀𝑁)) ∧ (𝐴 ≠ 0 ∧ 𝐵 = 0 ∧ 𝐶 = 0)) ∧ 𝑝𝑃) → (((𝐴 · (𝑝‘1)) + (𝐵 · (𝑝‘2))) = 𝐶 ↔ ((𝐴 · (𝑝‘1)) + (0 · (𝑝‘2))) = 0))
9116, 25rrx2pyel 48446 . . . . . . . . . . . . 13 (𝑝𝑃 → (𝑝‘2) ∈ ℝ)
9291recnd 11318 . . . . . . . . . . . 12 (𝑝𝑃 → (𝑝‘2) ∈ ℂ)
9392mul02d 11488 . . . . . . . . . . 11 (𝑝𝑃 → (0 · (𝑝‘2)) = 0)
9493adantl 481 . . . . . . . . . 10 (((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ ∧ 𝑀𝑁)) ∧ (𝐴 ≠ 0 ∧ 𝐵 = 0 ∧ 𝐶 = 0)) ∧ 𝑝𝑃) → (0 · (𝑝‘2)) = 0)
9594oveq2d 7464 . . . . . . . . 9 (((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ ∧ 𝑀𝑁)) ∧ (𝐴 ≠ 0 ∧ 𝐵 = 0 ∧ 𝐶 = 0)) ∧ 𝑝𝑃) → ((𝐴 · (𝑝‘1)) + (0 · (𝑝‘2))) = ((𝐴 · (𝑝‘1)) + 0))
96 simp1 1136 . . . . . . . . . . . . 13 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → 𝐴 ∈ ℝ)
9796recnd 11318 . . . . . . . . . . . 12 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → 𝐴 ∈ ℂ)
9897ad3antrrr 729 . . . . . . . . . . 11 (((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ ∧ 𝑀𝑁)) ∧ (𝐴 ≠ 0 ∧ 𝐵 = 0 ∧ 𝐶 = 0)) ∧ 𝑝𝑃) → 𝐴 ∈ ℂ)
9916, 25rrx2pxel 48445 . . . . . . . . . . . . 13 (𝑝𝑃 → (𝑝‘1) ∈ ℝ)
10099recnd 11318 . . . . . . . . . . . 12 (𝑝𝑃 → (𝑝‘1) ∈ ℂ)
101100adantl 481 . . . . . . . . . . 11 (((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ ∧ 𝑀𝑁)) ∧ (𝐴 ≠ 0 ∧ 𝐵 = 0 ∧ 𝐶 = 0)) ∧ 𝑝𝑃) → (𝑝‘1) ∈ ℂ)
10298, 101mulcld 11310 . . . . . . . . . 10 (((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ ∧ 𝑀𝑁)) ∧ (𝐴 ≠ 0 ∧ 𝐵 = 0 ∧ 𝐶 = 0)) ∧ 𝑝𝑃) → (𝐴 · (𝑝‘1)) ∈ ℂ)
103102addridd 11490 . . . . . . . . 9 (((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ ∧ 𝑀𝑁)) ∧ (𝐴 ≠ 0 ∧ 𝐵 = 0 ∧ 𝐶 = 0)) ∧ 𝑝𝑃) → ((𝐴 · (𝑝‘1)) + 0) = (𝐴 · (𝑝‘1)))
10495, 103eqtrd 2780 . . . . . . . 8 (((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ ∧ 𝑀𝑁)) ∧ (𝐴 ≠ 0 ∧ 𝐵 = 0 ∧ 𝐶 = 0)) ∧ 𝑝𝑃) → ((𝐴 · (𝑝‘1)) + (0 · (𝑝‘2))) = (𝐴 · (𝑝‘1)))
105104eqeq1d 2742 . . . . . . 7 (((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ ∧ 𝑀𝑁)) ∧ (𝐴 ≠ 0 ∧ 𝐵 = 0 ∧ 𝐶 = 0)) ∧ 𝑝𝑃) → (((𝐴 · (𝑝‘1)) + (0 · (𝑝‘2))) = 0 ↔ (𝐴 · (𝑝‘1)) = 0))
10698, 101mul0ord 11940 . . . . . . . 8 (((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ ∧ 𝑀𝑁)) ∧ (𝐴 ≠ 0 ∧ 𝐵 = 0 ∧ 𝐶 = 0)) ∧ 𝑝𝑃) → ((𝐴 · (𝑝‘1)) = 0 ↔ (𝐴 = 0 ∨ (𝑝‘1) = 0)))
107 eqneqall 2957 . . . . . . . . . . . . 13 (𝐴 = 0 → (𝐴 ≠ 0 → (𝑝‘1) = 0))
108107com12 32 . . . . . . . . . . . 12 (𝐴 ≠ 0 → (𝐴 = 0 → (𝑝‘1) = 0))
1091083ad2ant1 1133 . . . . . . . . . . 11 ((𝐴 ≠ 0 ∧ 𝐵 = 0 ∧ 𝐶 = 0) → (𝐴 = 0 → (𝑝‘1) = 0))
110109ad2antlr 726 . . . . . . . . . 10 (((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ ∧ 𝑀𝑁)) ∧ (𝐴 ≠ 0 ∧ 𝐵 = 0 ∧ 𝐶 = 0)) ∧ 𝑝𝑃) → (𝐴 = 0 → (𝑝‘1) = 0))
111 idd 24 . . . . . . . . . 10 (((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ ∧ 𝑀𝑁)) ∧ (𝐴 ≠ 0 ∧ 𝐵 = 0 ∧ 𝐶 = 0)) ∧ 𝑝𝑃) → ((𝑝‘1) = 0 → (𝑝‘1) = 0))
112110, 111jaod 858 . . . . . . . . 9 (((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ ∧ 𝑀𝑁)) ∧ (𝐴 ≠ 0 ∧ 𝐵 = 0 ∧ 𝐶 = 0)) ∧ 𝑝𝑃) → ((𝐴 = 0 ∨ (𝑝‘1) = 0) → (𝑝‘1) = 0))
113 olc 867 . . . . . . . . 9 ((𝑝‘1) = 0 → (𝐴 = 0 ∨ (𝑝‘1) = 0))
114112, 113impbid1 225 . . . . . . . 8 (((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ ∧ 𝑀𝑁)) ∧ (𝐴 ≠ 0 ∧ 𝐵 = 0 ∧ 𝐶 = 0)) ∧ 𝑝𝑃) → ((𝐴 = 0 ∨ (𝑝‘1) = 0) ↔ (𝑝‘1) = 0))
115106, 114bitrd 279 . . . . . . 7 (((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ ∧ 𝑀𝑁)) ∧ (𝐴 ≠ 0 ∧ 𝐵 = 0 ∧ 𝐶 = 0)) ∧ 𝑝𝑃) → ((𝐴 · (𝑝‘1)) = 0 ↔ (𝑝‘1) = 0))
11690, 105, 1153bitrd 305 . . . . . 6 (((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ ∧ 𝑀𝑁)) ∧ (𝐴 ≠ 0 ∧ 𝐵 = 0 ∧ 𝐶 = 0)) ∧ 𝑝𝑃) → (((𝐴 · (𝑝‘1)) + (𝐵 · (𝑝‘2))) = 𝐶 ↔ (𝑝‘1) = 0))
117116ralrimiva 3152 . . . . 5 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ ∧ 𝑀𝑁)) ∧ (𝐴 ≠ 0 ∧ 𝐵 = 0 ∧ 𝐶 = 0)) → ∀𝑝𝑃 (((𝐴 · (𝑝‘1)) + (𝐵 · (𝑝‘2))) = 𝐶 ↔ (𝑝‘1) = 0))
118117ex 412 . . . 4 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ ∧ 𝑀𝑁)) → ((𝐴 ≠ 0 ∧ 𝐵 = 0 ∧ 𝐶 = 0) → ∀𝑝𝑃 (((𝐴 · (𝑝‘1)) + (𝐵 · (𝑝‘2))) = 𝐶 ↔ (𝑝‘1) = 0)))
11984, 118impbid 212 . . 3 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ ∧ 𝑀𝑁)) → (∀𝑝𝑃 (((𝐴 · (𝑝‘1)) + (𝐵 · (𝑝‘2))) = 𝐶 ↔ (𝑝‘1) = 0) ↔ (𝐴 ≠ 0 ∧ 𝐵 = 0 ∧ 𝐶 = 0)))
12082, 119bitr3id 285 . 2 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ ∧ 𝑀𝑁)) → ({𝑝𝑃 ∣ ((𝐴 · (𝑝‘1)) + (𝐵 · (𝑝‘2))) = 𝐶} = {𝑝𝑃 ∣ (𝑝‘1) = 0} ↔ (𝐴 ≠ 0 ∧ 𝐵 = 0 ∧ 𝐶 = 0)))
12175, 81, 1203bitrd 305 1 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ (𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ ∧ 𝑀𝑁)) → (𝐺 = (𝑋𝐿𝑌) ↔ (𝐴 ≠ 0 ∧ 𝐵 = 0 ∧ 𝐶 = 0)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wo 846  w3a 1087   = wceq 1537  wcel 2108  wne 2946  wral 3067  {crab 3443  Vcvv 3488  wss 3976  {cpr 4650  cop 4654  wf 6569  cfv 6573  (class class class)co 7448  m cmap 8884  cc 11182  cr 11183  0cc0 11184  1c1 11185   + caddc 11187   · cmul 11189  2c2 12348  ℝ^crrx 25436  LineMcline 48461
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261  ax-pre-sup 11262  ax-addf 11263  ax-mulf 11264
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-tp 4653  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-of 7714  df-om 7904  df-1st 8030  df-2nd 8031  df-supp 8202  df-tpos 8267  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-1o 8522  df-2o 8523  df-er 8763  df-map 8886  df-ixp 8956  df-en 9004  df-dom 9005  df-sdom 9006  df-fin 9007  df-fsupp 9432  df-sup 9511  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-div 11948  df-nn 12294  df-2 12356  df-3 12357  df-4 12358  df-5 12359  df-6 12360  df-7 12361  df-8 12362  df-9 12363  df-n0 12554  df-z 12640  df-dec 12759  df-uz 12904  df-rp 13058  df-fz 13568  df-seq 14053  df-exp 14113  df-cj 15148  df-re 15149  df-im 15150  df-sqrt 15284  df-abs 15285  df-struct 17194  df-sets 17211  df-slot 17229  df-ndx 17241  df-base 17259  df-ress 17288  df-plusg 17324  df-mulr 17325  df-starv 17326  df-sca 17327  df-vsca 17328  df-ip 17329  df-tset 17330  df-ple 17331  df-ds 17333  df-unif 17334  df-hom 17335  df-cco 17336  df-0g 17501  df-prds 17507  df-pws 17509  df-mgm 18678  df-sgrp 18757  df-mnd 18773  df-mhm 18818  df-grp 18976  df-minusg 18977  df-sbg 18978  df-subg 19163  df-ghm 19253  df-cmn 19824  df-abl 19825  df-mgp 20162  df-rng 20180  df-ur 20209  df-ring 20262  df-cring 20263  df-oppr 20360  df-dvdsr 20383  df-unit 20384  df-invr 20414  df-dvr 20427  df-rhm 20498  df-subrng 20572  df-subrg 20597  df-drng 20753  df-field 20754  df-staf 20862  df-srng 20863  df-lmod 20882  df-lss 20953  df-sra 21195  df-rgmod 21196  df-cnfld 21388  df-refld 21646  df-dsmm 21775  df-frlm 21790  df-tng 24618  df-tcph 25222  df-rrx 25438  df-line 48463
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator