Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fourierdlem63 Structured version   Visualization version   GIF version

Theorem fourierdlem63 46198
Description: The upper bound of intervals in the moved partition are mapped to points that are not greater than the corresponding upper bounds in the original partition. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Hypotheses
Ref Expression
fourierdlem63.t 𝑇 = (𝐵𝐴)
fourierdlem63.p 𝑃 = (𝑚 ∈ ℕ ↦ {𝑝 ∈ (ℝ ↑m (0...𝑚)) ∣ (((𝑝‘0) = 𝐴 ∧ (𝑝𝑚) = 𝐵) ∧ ∀𝑖 ∈ (0..^𝑚)(𝑝𝑖) < (𝑝‘(𝑖 + 1)))})
fourierdlem63.m (𝜑𝑀 ∈ ℕ)
fourierdlem63.q (𝜑𝑄 ∈ (𝑃𝑀))
fourierdlem63.c (𝜑𝐶 ∈ ℝ)
fourierdlem63.d (𝜑𝐷 ∈ ℝ)
fourierdlem63.cltd (𝜑𝐶 < 𝐷)
fourierdlem63.o 𝑂 = (𝑚 ∈ ℕ ↦ {𝑝 ∈ (ℝ ↑m (0...𝑚)) ∣ (((𝑝‘0) = 𝐶 ∧ (𝑝𝑚) = 𝐷) ∧ ∀𝑖 ∈ (0..^𝑚)(𝑝𝑖) < (𝑝‘(𝑖 + 1)))})
fourierdlem63.h 𝐻 = ({𝐶, 𝐷} ∪ {𝑥 ∈ (𝐶[,]𝐷) ∣ ∃𝑘 ∈ ℤ (𝑥 + (𝑘 · 𝑇)) ∈ ran 𝑄})
fourierdlem63.n 𝑁 = ((♯‘𝐻) − 1)
fourierdlem63.s 𝑆 = (℩𝑓𝑓 Isom < , < ((0...𝑁), 𝐻))
fourierdlem63.e 𝐸 = (𝑥 ∈ ℝ ↦ (𝑥 + ((⌊‘((𝐵𝑥) / 𝑇)) · 𝑇)))
fourierdlem63.k (𝜑𝐾 ∈ (0...𝑀))
fourierdlem63.j (𝜑𝐽 ∈ (0..^𝑁))
fourierdlem63.y (𝜑𝑌 ∈ ((𝑆𝐽)[,)(𝑆‘(𝐽 + 1))))
fourierdlem63.eyltqk (𝜑 → (𝐸𝑌) < (𝑄𝐾))
fourierdlem63.x 𝑋 = ((𝑄𝐾) − ((𝐸𝑌) − 𝑌))
Assertion
Ref Expression
fourierdlem63 (𝜑 → (𝐸‘(𝑆‘(𝐽 + 1))) ≤ (𝑄𝐾))
Distinct variable groups:   𝐴,𝑖,𝑚,𝑝   𝑥,𝐴,𝑖   𝐵,𝑖,𝑚,𝑝   𝑥,𝐵   𝐶,𝑖,𝑚,𝑝   𝑥,𝐶   𝐷,𝑖,𝑚,𝑝   𝑥,𝐷   𝑘,𝐸,𝑥   𝑓,𝐻   𝑥,𝐻   𝑘,𝐽,𝑥   𝑘,𝐾,𝑥   𝑖,𝑀,𝑚,𝑝   𝑓,𝑁   𝑖,𝑁,𝑚,𝑝   𝑥,𝑁   𝑄,𝑖,𝑘,𝑥   𝑄,𝑝   𝑆,𝑓   𝑆,𝑖,𝑘,𝑥   𝑆,𝑝   𝑇,𝑖,𝑘,𝑥   𝑘,𝑌,𝑥   𝜑,𝑓   𝜑,𝑖,𝑘,𝑥
Allowed substitution hints:   𝜑(𝑚,𝑝)   𝐴(𝑓,𝑘)   𝐵(𝑓,𝑘)   𝐶(𝑓,𝑘)   𝐷(𝑓,𝑘)   𝑃(𝑥,𝑓,𝑖,𝑘,𝑚,𝑝)   𝑄(𝑓,𝑚)   𝑆(𝑚)   𝑇(𝑓,𝑚,𝑝)   𝐸(𝑓,𝑖,𝑚,𝑝)   𝐻(𝑖,𝑘,𝑚,𝑝)   𝐽(𝑓,𝑖,𝑚,𝑝)   𝐾(𝑓,𝑖,𝑚,𝑝)   𝑀(𝑥,𝑓,𝑘)   𝑁(𝑘)   𝑂(𝑥,𝑓,𝑖,𝑘,𝑚,𝑝)   𝑋(𝑥,𝑓,𝑖,𝑘,𝑚,𝑝)   𝑌(𝑓,𝑖,𝑚,𝑝)

Proof of Theorem fourierdlem63
Dummy variable 𝑗 is distinct from all other variables.
StepHypRef Expression
1 fourierdlem63.e . . . . 5 𝐸 = (𝑥 ∈ ℝ ↦ (𝑥 + ((⌊‘((𝐵𝑥) / 𝑇)) · 𝑇)))
21a1i 11 . . . 4 (𝜑𝐸 = (𝑥 ∈ ℝ ↦ (𝑥 + ((⌊‘((𝐵𝑥) / 𝑇)) · 𝑇))))
3 id 22 . . . . . 6 (𝑥 = (𝑆‘(𝐽 + 1)) → 𝑥 = (𝑆‘(𝐽 + 1)))
4 oveq2 7413 . . . . . . . . 9 (𝑥 = (𝑆‘(𝐽 + 1)) → (𝐵𝑥) = (𝐵 − (𝑆‘(𝐽 + 1))))
54oveq1d 7420 . . . . . . . 8 (𝑥 = (𝑆‘(𝐽 + 1)) → ((𝐵𝑥) / 𝑇) = ((𝐵 − (𝑆‘(𝐽 + 1))) / 𝑇))
65fveq2d 6880 . . . . . . 7 (𝑥 = (𝑆‘(𝐽 + 1)) → (⌊‘((𝐵𝑥) / 𝑇)) = (⌊‘((𝐵 − (𝑆‘(𝐽 + 1))) / 𝑇)))
76oveq1d 7420 . . . . . 6 (𝑥 = (𝑆‘(𝐽 + 1)) → ((⌊‘((𝐵𝑥) / 𝑇)) · 𝑇) = ((⌊‘((𝐵 − (𝑆‘(𝐽 + 1))) / 𝑇)) · 𝑇))
83, 7oveq12d 7423 . . . . 5 (𝑥 = (𝑆‘(𝐽 + 1)) → (𝑥 + ((⌊‘((𝐵𝑥) / 𝑇)) · 𝑇)) = ((𝑆‘(𝐽 + 1)) + ((⌊‘((𝐵 − (𝑆‘(𝐽 + 1))) / 𝑇)) · 𝑇)))
98adantl 481 . . . 4 ((𝜑𝑥 = (𝑆‘(𝐽 + 1))) → (𝑥 + ((⌊‘((𝐵𝑥) / 𝑇)) · 𝑇)) = ((𝑆‘(𝐽 + 1)) + ((⌊‘((𝐵 − (𝑆‘(𝐽 + 1))) / 𝑇)) · 𝑇)))
10 fourierdlem63.t . . . . . . . . . . 11 𝑇 = (𝐵𝐴)
11 fourierdlem63.p . . . . . . . . . . 11 𝑃 = (𝑚 ∈ ℕ ↦ {𝑝 ∈ (ℝ ↑m (0...𝑚)) ∣ (((𝑝‘0) = 𝐴 ∧ (𝑝𝑚) = 𝐵) ∧ ∀𝑖 ∈ (0..^𝑚)(𝑝𝑖) < (𝑝‘(𝑖 + 1)))})
12 fourierdlem63.m . . . . . . . . . . 11 (𝜑𝑀 ∈ ℕ)
13 fourierdlem63.q . . . . . . . . . . 11 (𝜑𝑄 ∈ (𝑃𝑀))
14 fourierdlem63.c . . . . . . . . . . 11 (𝜑𝐶 ∈ ℝ)
15 fourierdlem63.d . . . . . . . . . . 11 (𝜑𝐷 ∈ ℝ)
16 fourierdlem63.cltd . . . . . . . . . . 11 (𝜑𝐶 < 𝐷)
17 fourierdlem63.o . . . . . . . . . . 11 𝑂 = (𝑚 ∈ ℕ ↦ {𝑝 ∈ (ℝ ↑m (0...𝑚)) ∣ (((𝑝‘0) = 𝐶 ∧ (𝑝𝑚) = 𝐷) ∧ ∀𝑖 ∈ (0..^𝑚)(𝑝𝑖) < (𝑝‘(𝑖 + 1)))})
18 fourierdlem63.h . . . . . . . . . . 11 𝐻 = ({𝐶, 𝐷} ∪ {𝑥 ∈ (𝐶[,]𝐷) ∣ ∃𝑘 ∈ ℤ (𝑥 + (𝑘 · 𝑇)) ∈ ran 𝑄})
19 fourierdlem63.n . . . . . . . . . . 11 𝑁 = ((♯‘𝐻) − 1)
20 fourierdlem63.s . . . . . . . . . . 11 𝑆 = (℩𝑓𝑓 Isom < , < ((0...𝑁), 𝐻))
2110, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20fourierdlem54 46189 . . . . . . . . . 10 (𝜑 → ((𝑁 ∈ ℕ ∧ 𝑆 ∈ (𝑂𝑁)) ∧ 𝑆 Isom < , < ((0...𝑁), 𝐻)))
2221simpld 494 . . . . . . . . 9 (𝜑 → (𝑁 ∈ ℕ ∧ 𝑆 ∈ (𝑂𝑁)))
2322simprd 495 . . . . . . . 8 (𝜑𝑆 ∈ (𝑂𝑁))
2422simpld 494 . . . . . . . . 9 (𝜑𝑁 ∈ ℕ)
2517fourierdlem2 46138 . . . . . . . . 9 (𝑁 ∈ ℕ → (𝑆 ∈ (𝑂𝑁) ↔ (𝑆 ∈ (ℝ ↑m (0...𝑁)) ∧ (((𝑆‘0) = 𝐶 ∧ (𝑆𝑁) = 𝐷) ∧ ∀𝑖 ∈ (0..^𝑁)(𝑆𝑖) < (𝑆‘(𝑖 + 1))))))
2624, 25syl 17 . . . . . . . 8 (𝜑 → (𝑆 ∈ (𝑂𝑁) ↔ (𝑆 ∈ (ℝ ↑m (0...𝑁)) ∧ (((𝑆‘0) = 𝐶 ∧ (𝑆𝑁) = 𝐷) ∧ ∀𝑖 ∈ (0..^𝑁)(𝑆𝑖) < (𝑆‘(𝑖 + 1))))))
2723, 26mpbid 232 . . . . . . 7 (𝜑 → (𝑆 ∈ (ℝ ↑m (0...𝑁)) ∧ (((𝑆‘0) = 𝐶 ∧ (𝑆𝑁) = 𝐷) ∧ ∀𝑖 ∈ (0..^𝑁)(𝑆𝑖) < (𝑆‘(𝑖 + 1)))))
2827simpld 494 . . . . . 6 (𝜑𝑆 ∈ (ℝ ↑m (0...𝑁)))
29 elmapi 8863 . . . . . 6 (𝑆 ∈ (ℝ ↑m (0...𝑁)) → 𝑆:(0...𝑁)⟶ℝ)
3028, 29syl 17 . . . . 5 (𝜑𝑆:(0...𝑁)⟶ℝ)
31 fourierdlem63.j . . . . . 6 (𝜑𝐽 ∈ (0..^𝑁))
32 fzofzp1 13780 . . . . . 6 (𝐽 ∈ (0..^𝑁) → (𝐽 + 1) ∈ (0...𝑁))
3331, 32syl 17 . . . . 5 (𝜑 → (𝐽 + 1) ∈ (0...𝑁))
3430, 33ffvelcdmd 7075 . . . 4 (𝜑 → (𝑆‘(𝐽 + 1)) ∈ ℝ)
3511, 12, 13fourierdlem11 46147 . . . . . . . . . . 11 (𝜑 → (𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵))
3635simp2d 1143 . . . . . . . . . 10 (𝜑𝐵 ∈ ℝ)
3736, 34resubcld 11665 . . . . . . . . 9 (𝜑 → (𝐵 − (𝑆‘(𝐽 + 1))) ∈ ℝ)
3835simp1d 1142 . . . . . . . . . . 11 (𝜑𝐴 ∈ ℝ)
3936, 38resubcld 11665 . . . . . . . . . 10 (𝜑 → (𝐵𝐴) ∈ ℝ)
4010, 39eqeltrid 2838 . . . . . . . . 9 (𝜑𝑇 ∈ ℝ)
4135simp3d 1144 . . . . . . . . . . . 12 (𝜑𝐴 < 𝐵)
4238, 36posdifd 11824 . . . . . . . . . . . 12 (𝜑 → (𝐴 < 𝐵 ↔ 0 < (𝐵𝐴)))
4341, 42mpbid 232 . . . . . . . . . . 11 (𝜑 → 0 < (𝐵𝐴))
4443, 10breqtrrdi 5161 . . . . . . . . . 10 (𝜑 → 0 < 𝑇)
4544gt0ne0d 11801 . . . . . . . . 9 (𝜑𝑇 ≠ 0)
4637, 40, 45redivcld 12069 . . . . . . . 8 (𝜑 → ((𝐵 − (𝑆‘(𝐽 + 1))) / 𝑇) ∈ ℝ)
4746flcld 13815 . . . . . . 7 (𝜑 → (⌊‘((𝐵 − (𝑆‘(𝐽 + 1))) / 𝑇)) ∈ ℤ)
4847zred 12697 . . . . . 6 (𝜑 → (⌊‘((𝐵 − (𝑆‘(𝐽 + 1))) / 𝑇)) ∈ ℝ)
4948, 40remulcld 11265 . . . . 5 (𝜑 → ((⌊‘((𝐵 − (𝑆‘(𝐽 + 1))) / 𝑇)) · 𝑇) ∈ ℝ)
5034, 49readdcld 11264 . . . 4 (𝜑 → ((𝑆‘(𝐽 + 1)) + ((⌊‘((𝐵 − (𝑆‘(𝐽 + 1))) / 𝑇)) · 𝑇)) ∈ ℝ)
512, 9, 34, 50fvmptd 6993 . . 3 (𝜑 → (𝐸‘(𝑆‘(𝐽 + 1))) = ((𝑆‘(𝐽 + 1)) + ((⌊‘((𝐵 − (𝑆‘(𝐽 + 1))) / 𝑇)) · 𝑇)))
5251, 50eqeltrd 2834 . 2 (𝜑 → (𝐸‘(𝑆‘(𝐽 + 1))) ∈ ℝ)
5311fourierdlem2 46138 . . . . . . 7 (𝑀 ∈ ℕ → (𝑄 ∈ (𝑃𝑀) ↔ (𝑄 ∈ (ℝ ↑m (0...𝑀)) ∧ (((𝑄‘0) = 𝐴 ∧ (𝑄𝑀) = 𝐵) ∧ ∀𝑖 ∈ (0..^𝑀)(𝑄𝑖) < (𝑄‘(𝑖 + 1))))))
5412, 53syl 17 . . . . . 6 (𝜑 → (𝑄 ∈ (𝑃𝑀) ↔ (𝑄 ∈ (ℝ ↑m (0...𝑀)) ∧ (((𝑄‘0) = 𝐴 ∧ (𝑄𝑀) = 𝐵) ∧ ∀𝑖 ∈ (0..^𝑀)(𝑄𝑖) < (𝑄‘(𝑖 + 1))))))
5513, 54mpbid 232 . . . . 5 (𝜑 → (𝑄 ∈ (ℝ ↑m (0...𝑀)) ∧ (((𝑄‘0) = 𝐴 ∧ (𝑄𝑀) = 𝐵) ∧ ∀𝑖 ∈ (0..^𝑀)(𝑄𝑖) < (𝑄‘(𝑖 + 1)))))
5655simpld 494 . . . 4 (𝜑𝑄 ∈ (ℝ ↑m (0...𝑀)))
57 elmapi 8863 . . . 4 (𝑄 ∈ (ℝ ↑m (0...𝑀)) → 𝑄:(0...𝑀)⟶ℝ)
5856, 57syl 17 . . 3 (𝜑𝑄:(0...𝑀)⟶ℝ)
59 fourierdlem63.k . . 3 (𝜑𝐾 ∈ (0...𝑀))
6058, 59ffvelcdmd 7075 . 2 (𝜑 → (𝑄𝐾) ∈ ℝ)
6114adantr 480 . . . . . . 7 ((𝜑 ∧ (𝑄𝐾) < (𝐸‘(𝑆‘(𝐽 + 1)))) → 𝐶 ∈ ℝ)
6215adantr 480 . . . . . . 7 ((𝜑 ∧ (𝑄𝐾) < (𝐸‘(𝑆‘(𝐽 + 1)))) → 𝐷 ∈ ℝ)
6338rexrd 11285 . . . . . . . . . . . 12 (𝜑𝐴 ∈ ℝ*)
64 iocssre 13444 . . . . . . . . . . . 12 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ) → (𝐴(,]𝐵) ⊆ ℝ)
6563, 36, 64syl2anc 584 . . . . . . . . . . 11 (𝜑 → (𝐴(,]𝐵) ⊆ ℝ)
6638, 36, 41, 10, 1fourierdlem4 46140 . . . . . . . . . . . 12 (𝜑𝐸:ℝ⟶(𝐴(,]𝐵))
67 fourierdlem63.y . . . . . . . . . . . . . 14 (𝜑𝑌 ∈ ((𝑆𝐽)[,)(𝑆‘(𝐽 + 1))))
68 elfzofz 13692 . . . . . . . . . . . . . . . . 17 (𝐽 ∈ (0..^𝑁) → 𝐽 ∈ (0...𝑁))
6931, 68syl 17 . . . . . . . . . . . . . . . 16 (𝜑𝐽 ∈ (0...𝑁))
7030, 69ffvelcdmd 7075 . . . . . . . . . . . . . . 15 (𝜑 → (𝑆𝐽) ∈ ℝ)
7134rexrd 11285 . . . . . . . . . . . . . . 15 (𝜑 → (𝑆‘(𝐽 + 1)) ∈ ℝ*)
72 elico2 13427 . . . . . . . . . . . . . . 15 (((𝑆𝐽) ∈ ℝ ∧ (𝑆‘(𝐽 + 1)) ∈ ℝ*) → (𝑌 ∈ ((𝑆𝐽)[,)(𝑆‘(𝐽 + 1))) ↔ (𝑌 ∈ ℝ ∧ (𝑆𝐽) ≤ 𝑌𝑌 < (𝑆‘(𝐽 + 1)))))
7370, 71, 72syl2anc 584 . . . . . . . . . . . . . 14 (𝜑 → (𝑌 ∈ ((𝑆𝐽)[,)(𝑆‘(𝐽 + 1))) ↔ (𝑌 ∈ ℝ ∧ (𝑆𝐽) ≤ 𝑌𝑌 < (𝑆‘(𝐽 + 1)))))
7467, 73mpbid 232 . . . . . . . . . . . . 13 (𝜑 → (𝑌 ∈ ℝ ∧ (𝑆𝐽) ≤ 𝑌𝑌 < (𝑆‘(𝐽 + 1))))
7574simp1d 1142 . . . . . . . . . . . 12 (𝜑𝑌 ∈ ℝ)
7666, 75ffvelcdmd 7075 . . . . . . . . . . 11 (𝜑 → (𝐸𝑌) ∈ (𝐴(,]𝐵))
7765, 76sseldd 3959 . . . . . . . . . 10 (𝜑 → (𝐸𝑌) ∈ ℝ)
7877, 75resubcld 11665 . . . . . . . . 9 (𝜑 → ((𝐸𝑌) − 𝑌) ∈ ℝ)
7960, 78resubcld 11665 . . . . . . . 8 (𝜑 → ((𝑄𝐾) − ((𝐸𝑌) − 𝑌)) ∈ ℝ)
8079adantr 480 . . . . . . 7 ((𝜑 ∧ (𝑄𝐾) < (𝐸‘(𝑆‘(𝐽 + 1)))) → ((𝑄𝐾) − ((𝐸𝑌) − 𝑌)) ∈ ℝ)
81 icossicc 13453 . . . . . . . . . . . . . 14 ((𝑆𝐽)[,)(𝑆‘(𝐽 + 1))) ⊆ ((𝑆𝐽)[,](𝑆‘(𝐽 + 1)))
8214rexrd 11285 . . . . . . . . . . . . . . 15 (𝜑𝐶 ∈ ℝ*)
8315rexrd 11285 . . . . . . . . . . . . . . 15 (𝜑𝐷 ∈ ℝ*)
8417, 24, 23fourierdlem15 46151 . . . . . . . . . . . . . . 15 (𝜑𝑆:(0...𝑁)⟶(𝐶[,]𝐷))
8582, 83, 84, 31fourierdlem8 46144 . . . . . . . . . . . . . 14 (𝜑 → ((𝑆𝐽)[,](𝑆‘(𝐽 + 1))) ⊆ (𝐶[,]𝐷))
8681, 85sstrid 3970 . . . . . . . . . . . . 13 (𝜑 → ((𝑆𝐽)[,)(𝑆‘(𝐽 + 1))) ⊆ (𝐶[,]𝐷))
8786, 67sseldd 3959 . . . . . . . . . . . 12 (𝜑𝑌 ∈ (𝐶[,]𝐷))
88 elicc2 13428 . . . . . . . . . . . . 13 ((𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ) → (𝑌 ∈ (𝐶[,]𝐷) ↔ (𝑌 ∈ ℝ ∧ 𝐶𝑌𝑌𝐷)))
8914, 15, 88syl2anc 584 . . . . . . . . . . . 12 (𝜑 → (𝑌 ∈ (𝐶[,]𝐷) ↔ (𝑌 ∈ ℝ ∧ 𝐶𝑌𝑌𝐷)))
9087, 89mpbid 232 . . . . . . . . . . 11 (𝜑 → (𝑌 ∈ ℝ ∧ 𝐶𝑌𝑌𝐷))
9190simp2d 1143 . . . . . . . . . 10 (𝜑𝐶𝑌)
9260, 77resubcld 11665 . . . . . . . . . . . . 13 (𝜑 → ((𝑄𝐾) − (𝐸𝑌)) ∈ ℝ)
93 fourierdlem63.eyltqk . . . . . . . . . . . . . 14 (𝜑 → (𝐸𝑌) < (𝑄𝐾))
9477, 60posdifd 11824 . . . . . . . . . . . . . 14 (𝜑 → ((𝐸𝑌) < (𝑄𝐾) ↔ 0 < ((𝑄𝐾) − (𝐸𝑌))))
9593, 94mpbid 232 . . . . . . . . . . . . 13 (𝜑 → 0 < ((𝑄𝐾) − (𝐸𝑌)))
9692, 95elrpd 13048 . . . . . . . . . . . 12 (𝜑 → ((𝑄𝐾) − (𝐸𝑌)) ∈ ℝ+)
9775, 96ltaddrpd 13084 . . . . . . . . . . 11 (𝜑𝑌 < (𝑌 + ((𝑄𝐾) − (𝐸𝑌))))
9860recnd 11263 . . . . . . . . . . . . 13 (𝜑 → (𝑄𝐾) ∈ ℂ)
9977recnd 11263 . . . . . . . . . . . . 13 (𝜑 → (𝐸𝑌) ∈ ℂ)
10075recnd 11263 . . . . . . . . . . . . 13 (𝜑𝑌 ∈ ℂ)
10198, 99, 100subsub3d 11624 . . . . . . . . . . . 12 (𝜑 → ((𝑄𝐾) − ((𝐸𝑌) − 𝑌)) = (((𝑄𝐾) + 𝑌) − (𝐸𝑌)))
10298, 100addcomd 11437 . . . . . . . . . . . . 13 (𝜑 → ((𝑄𝐾) + 𝑌) = (𝑌 + (𝑄𝐾)))
103102oveq1d 7420 . . . . . . . . . . . 12 (𝜑 → (((𝑄𝐾) + 𝑌) − (𝐸𝑌)) = ((𝑌 + (𝑄𝐾)) − (𝐸𝑌)))
104100, 98, 99addsubassd 11614 . . . . . . . . . . . 12 (𝜑 → ((𝑌 + (𝑄𝐾)) − (𝐸𝑌)) = (𝑌 + ((𝑄𝐾) − (𝐸𝑌))))
105101, 103, 1043eqtrrd 2775 . . . . . . . . . . 11 (𝜑 → (𝑌 + ((𝑄𝐾) − (𝐸𝑌))) = ((𝑄𝐾) − ((𝐸𝑌) − 𝑌)))
10697, 105breqtrd 5145 . . . . . . . . . 10 (𝜑𝑌 < ((𝑄𝐾) − ((𝐸𝑌) − 𝑌)))
10714, 75, 79, 91, 106lelttrd 11393 . . . . . . . . 9 (𝜑𝐶 < ((𝑄𝐾) − ((𝐸𝑌) − 𝑌)))
10814, 79, 107ltled 11383 . . . . . . . 8 (𝜑𝐶 ≤ ((𝑄𝐾) − ((𝐸𝑌) − 𝑌)))
109108adantr 480 . . . . . . 7 ((𝜑 ∧ (𝑄𝐾) < (𝐸‘(𝑆‘(𝐽 + 1)))) → 𝐶 ≤ ((𝑄𝐾) − ((𝐸𝑌) − 𝑌)))
11034adantr 480 . . . . . . . . 9 ((𝜑 ∧ (𝑄𝐾) < (𝐸‘(𝑆‘(𝐽 + 1)))) → (𝑆‘(𝐽 + 1)) ∈ ℝ)
11160adantr 480 . . . . . . . . . . 11 ((𝜑 ∧ (𝑄𝐾) < (𝐸‘(𝑆‘(𝐽 + 1)))) → (𝑄𝐾) ∈ ℝ)
11252, 34resubcld 11665 . . . . . . . . . . . 12 (𝜑 → ((𝐸‘(𝑆‘(𝐽 + 1))) − (𝑆‘(𝐽 + 1))) ∈ ℝ)
113112adantr 480 . . . . . . . . . . 11 ((𝜑 ∧ (𝑄𝐾) < (𝐸‘(𝑆‘(𝐽 + 1)))) → ((𝐸‘(𝑆‘(𝐽 + 1))) − (𝑆‘(𝐽 + 1))) ∈ ℝ)
114111, 113resubcld 11665 . . . . . . . . . 10 ((𝜑 ∧ (𝑄𝐾) < (𝐸‘(𝑆‘(𝐽 + 1)))) → ((𝑄𝐾) − ((𝐸‘(𝑆‘(𝐽 + 1))) − (𝑆‘(𝐽 + 1)))) ∈ ℝ)
11574simp3d 1144 . . . . . . . . . . . . . 14 (𝜑𝑌 < (𝑆‘(𝐽 + 1)))
11675, 34, 115ltled 11383 . . . . . . . . . . . . 13 (𝜑𝑌 ≤ (𝑆‘(𝐽 + 1)))
11738, 36, 41, 10, 1, 75, 34, 116fourierdlem7 46143 . . . . . . . . . . . 12 (𝜑 → ((𝐸‘(𝑆‘(𝐽 + 1))) − (𝑆‘(𝐽 + 1))) ≤ ((𝐸𝑌) − 𝑌))
118112, 78, 60, 117lesub2dd 11854 . . . . . . . . . . 11 (𝜑 → ((𝑄𝐾) − ((𝐸𝑌) − 𝑌)) ≤ ((𝑄𝐾) − ((𝐸‘(𝑆‘(𝐽 + 1))) − (𝑆‘(𝐽 + 1)))))
119118adantr 480 . . . . . . . . . 10 ((𝜑 ∧ (𝑄𝐾) < (𝐸‘(𝑆‘(𝐽 + 1)))) → ((𝑄𝐾) − ((𝐸𝑌) − 𝑌)) ≤ ((𝑄𝐾) − ((𝐸‘(𝑆‘(𝐽 + 1))) − (𝑆‘(𝐽 + 1)))))
12098adantr 480 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑄𝐾) < (𝐸‘(𝑆‘(𝐽 + 1)))) → (𝑄𝐾) ∈ ℂ)
12152recnd 11263 . . . . . . . . . . . . . 14 (𝜑 → (𝐸‘(𝑆‘(𝐽 + 1))) ∈ ℂ)
122121adantr 480 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑄𝐾) < (𝐸‘(𝑆‘(𝐽 + 1)))) → (𝐸‘(𝑆‘(𝐽 + 1))) ∈ ℂ)
123110recnd 11263 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑄𝐾) < (𝐸‘(𝑆‘(𝐽 + 1)))) → (𝑆‘(𝐽 + 1)) ∈ ℂ)
124120, 122, 123subsubd 11622 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑄𝐾) < (𝐸‘(𝑆‘(𝐽 + 1)))) → ((𝑄𝐾) − ((𝐸‘(𝑆‘(𝐽 + 1))) − (𝑆‘(𝐽 + 1)))) = (((𝑄𝐾) − (𝐸‘(𝑆‘(𝐽 + 1)))) + (𝑆‘(𝐽 + 1))))
12598, 121subcld 11594 . . . . . . . . . . . . . 14 (𝜑 → ((𝑄𝐾) − (𝐸‘(𝑆‘(𝐽 + 1)))) ∈ ℂ)
12634recnd 11263 . . . . . . . . . . . . . 14 (𝜑 → (𝑆‘(𝐽 + 1)) ∈ ℂ)
127125, 126addcomd 11437 . . . . . . . . . . . . 13 (𝜑 → (((𝑄𝐾) − (𝐸‘(𝑆‘(𝐽 + 1)))) + (𝑆‘(𝐽 + 1))) = ((𝑆‘(𝐽 + 1)) + ((𝑄𝐾) − (𝐸‘(𝑆‘(𝐽 + 1))))))
128127adantr 480 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑄𝐾) < (𝐸‘(𝑆‘(𝐽 + 1)))) → (((𝑄𝐾) − (𝐸‘(𝑆‘(𝐽 + 1)))) + (𝑆‘(𝐽 + 1))) = ((𝑆‘(𝐽 + 1)) + ((𝑄𝐾) − (𝐸‘(𝑆‘(𝐽 + 1))))))
129124, 128eqtrd 2770 . . . . . . . . . . 11 ((𝜑 ∧ (𝑄𝐾) < (𝐸‘(𝑆‘(𝐽 + 1)))) → ((𝑄𝐾) − ((𝐸‘(𝑆‘(𝐽 + 1))) − (𝑆‘(𝐽 + 1)))) = ((𝑆‘(𝐽 + 1)) + ((𝑄𝐾) − (𝐸‘(𝑆‘(𝐽 + 1))))))
130 simpr 484 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑄𝐾) < (𝐸‘(𝑆‘(𝐽 + 1)))) → (𝑄𝐾) < (𝐸‘(𝑆‘(𝐽 + 1))))
13152adantr 480 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑄𝐾) < (𝐸‘(𝑆‘(𝐽 + 1)))) → (𝐸‘(𝑆‘(𝐽 + 1))) ∈ ℝ)
132111, 131sublt0d 11863 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑄𝐾) < (𝐸‘(𝑆‘(𝐽 + 1)))) → (((𝑄𝐾) − (𝐸‘(𝑆‘(𝐽 + 1)))) < 0 ↔ (𝑄𝐾) < (𝐸‘(𝑆‘(𝐽 + 1)))))
133130, 132mpbird 257 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑄𝐾) < (𝐸‘(𝑆‘(𝐽 + 1)))) → ((𝑄𝐾) − (𝐸‘(𝑆‘(𝐽 + 1)))) < 0)
134111, 131resubcld 11665 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑄𝐾) < (𝐸‘(𝑆‘(𝐽 + 1)))) → ((𝑄𝐾) − (𝐸‘(𝑆‘(𝐽 + 1)))) ∈ ℝ)
135 ltaddneg 11451 . . . . . . . . . . . . 13 ((((𝑄𝐾) − (𝐸‘(𝑆‘(𝐽 + 1)))) ∈ ℝ ∧ (𝑆‘(𝐽 + 1)) ∈ ℝ) → (((𝑄𝐾) − (𝐸‘(𝑆‘(𝐽 + 1)))) < 0 ↔ ((𝑆‘(𝐽 + 1)) + ((𝑄𝐾) − (𝐸‘(𝑆‘(𝐽 + 1))))) < (𝑆‘(𝐽 + 1))))
136134, 110, 135syl2anc 584 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑄𝐾) < (𝐸‘(𝑆‘(𝐽 + 1)))) → (((𝑄𝐾) − (𝐸‘(𝑆‘(𝐽 + 1)))) < 0 ↔ ((𝑆‘(𝐽 + 1)) + ((𝑄𝐾) − (𝐸‘(𝑆‘(𝐽 + 1))))) < (𝑆‘(𝐽 + 1))))
137133, 136mpbid 232 . . . . . . . . . . 11 ((𝜑 ∧ (𝑄𝐾) < (𝐸‘(𝑆‘(𝐽 + 1)))) → ((𝑆‘(𝐽 + 1)) + ((𝑄𝐾) − (𝐸‘(𝑆‘(𝐽 + 1))))) < (𝑆‘(𝐽 + 1)))
138129, 137eqbrtrd 5141 . . . . . . . . . 10 ((𝜑 ∧ (𝑄𝐾) < (𝐸‘(𝑆‘(𝐽 + 1)))) → ((𝑄𝐾) − ((𝐸‘(𝑆‘(𝐽 + 1))) − (𝑆‘(𝐽 + 1)))) < (𝑆‘(𝐽 + 1)))
13980, 114, 110, 119, 138lelttrd 11393 . . . . . . . . 9 ((𝜑 ∧ (𝑄𝐾) < (𝐸‘(𝑆‘(𝐽 + 1)))) → ((𝑄𝐾) − ((𝐸𝑌) − 𝑌)) < (𝑆‘(𝐽 + 1)))
14084, 33ffvelcdmd 7075 . . . . . . . . . . . 12 (𝜑 → (𝑆‘(𝐽 + 1)) ∈ (𝐶[,]𝐷))
141 elicc2 13428 . . . . . . . . . . . . 13 ((𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ) → ((𝑆‘(𝐽 + 1)) ∈ (𝐶[,]𝐷) ↔ ((𝑆‘(𝐽 + 1)) ∈ ℝ ∧ 𝐶 ≤ (𝑆‘(𝐽 + 1)) ∧ (𝑆‘(𝐽 + 1)) ≤ 𝐷)))
14214, 15, 141syl2anc 584 . . . . . . . . . . . 12 (𝜑 → ((𝑆‘(𝐽 + 1)) ∈ (𝐶[,]𝐷) ↔ ((𝑆‘(𝐽 + 1)) ∈ ℝ ∧ 𝐶 ≤ (𝑆‘(𝐽 + 1)) ∧ (𝑆‘(𝐽 + 1)) ≤ 𝐷)))
143140, 142mpbid 232 . . . . . . . . . . 11 (𝜑 → ((𝑆‘(𝐽 + 1)) ∈ ℝ ∧ 𝐶 ≤ (𝑆‘(𝐽 + 1)) ∧ (𝑆‘(𝐽 + 1)) ≤ 𝐷))
144143simp3d 1144 . . . . . . . . . 10 (𝜑 → (𝑆‘(𝐽 + 1)) ≤ 𝐷)
145144adantr 480 . . . . . . . . 9 ((𝜑 ∧ (𝑄𝐾) < (𝐸‘(𝑆‘(𝐽 + 1)))) → (𝑆‘(𝐽 + 1)) ≤ 𝐷)
14680, 110, 62, 139, 145ltletrd 11395 . . . . . . . 8 ((𝜑 ∧ (𝑄𝐾) < (𝐸‘(𝑆‘(𝐽 + 1)))) → ((𝑄𝐾) − ((𝐸𝑌) − 𝑌)) < 𝐷)
14780, 62, 146ltled 11383 . . . . . . 7 ((𝜑 ∧ (𝑄𝐾) < (𝐸‘(𝑆‘(𝐽 + 1)))) → ((𝑄𝐾) − ((𝐸𝑌) − 𝑌)) ≤ 𝐷)
14861, 62, 80, 109, 147eliccd 45533 . . . . . 6 ((𝜑 ∧ (𝑄𝐾) < (𝐸‘(𝑆‘(𝐽 + 1)))) → ((𝑄𝐾) − ((𝐸𝑌) − 𝑌)) ∈ (𝐶[,]𝐷))
149 id 22 . . . . . . . . . . . . . . 15 (𝑥 = 𝑌𝑥 = 𝑌)
150 oveq2 7413 . . . . . . . . . . . . . . . . . 18 (𝑥 = 𝑌 → (𝐵𝑥) = (𝐵𝑌))
151150oveq1d 7420 . . . . . . . . . . . . . . . . 17 (𝑥 = 𝑌 → ((𝐵𝑥) / 𝑇) = ((𝐵𝑌) / 𝑇))
152151fveq2d 6880 . . . . . . . . . . . . . . . 16 (𝑥 = 𝑌 → (⌊‘((𝐵𝑥) / 𝑇)) = (⌊‘((𝐵𝑌) / 𝑇)))
153152oveq1d 7420 . . . . . . . . . . . . . . 15 (𝑥 = 𝑌 → ((⌊‘((𝐵𝑥) / 𝑇)) · 𝑇) = ((⌊‘((𝐵𝑌) / 𝑇)) · 𝑇))
154149, 153oveq12d 7423 . . . . . . . . . . . . . 14 (𝑥 = 𝑌 → (𝑥 + ((⌊‘((𝐵𝑥) / 𝑇)) · 𝑇)) = (𝑌 + ((⌊‘((𝐵𝑌) / 𝑇)) · 𝑇)))
155154adantl 481 . . . . . . . . . . . . 13 ((𝜑𝑥 = 𝑌) → (𝑥 + ((⌊‘((𝐵𝑥) / 𝑇)) · 𝑇)) = (𝑌 + ((⌊‘((𝐵𝑌) / 𝑇)) · 𝑇)))
15636, 75resubcld 11665 . . . . . . . . . . . . . . . . . 18 (𝜑 → (𝐵𝑌) ∈ ℝ)
157156, 40, 45redivcld 12069 . . . . . . . . . . . . . . . . 17 (𝜑 → ((𝐵𝑌) / 𝑇) ∈ ℝ)
158157flcld 13815 . . . . . . . . . . . . . . . 16 (𝜑 → (⌊‘((𝐵𝑌) / 𝑇)) ∈ ℤ)
159158zred 12697 . . . . . . . . . . . . . . 15 (𝜑 → (⌊‘((𝐵𝑌) / 𝑇)) ∈ ℝ)
160159, 40remulcld 11265 . . . . . . . . . . . . . 14 (𝜑 → ((⌊‘((𝐵𝑌) / 𝑇)) · 𝑇) ∈ ℝ)
16175, 160readdcld 11264 . . . . . . . . . . . . 13 (𝜑 → (𝑌 + ((⌊‘((𝐵𝑌) / 𝑇)) · 𝑇)) ∈ ℝ)
1622, 155, 75, 161fvmptd 6993 . . . . . . . . . . . 12 (𝜑 → (𝐸𝑌) = (𝑌 + ((⌊‘((𝐵𝑌) / 𝑇)) · 𝑇)))
163162oveq1d 7420 . . . . . . . . . . 11 (𝜑 → ((𝐸𝑌) − 𝑌) = ((𝑌 + ((⌊‘((𝐵𝑌) / 𝑇)) · 𝑇)) − 𝑌))
164163oveq1d 7420 . . . . . . . . . 10 (𝜑 → (((𝐸𝑌) − 𝑌) / 𝑇) = (((𝑌 + ((⌊‘((𝐵𝑌) / 𝑇)) · 𝑇)) − 𝑌) / 𝑇))
165160recnd 11263 . . . . . . . . . . . 12 (𝜑 → ((⌊‘((𝐵𝑌) / 𝑇)) · 𝑇) ∈ ℂ)
166100, 165pncan2d 11596 . . . . . . . . . . 11 (𝜑 → ((𝑌 + ((⌊‘((𝐵𝑌) / 𝑇)) · 𝑇)) − 𝑌) = ((⌊‘((𝐵𝑌) / 𝑇)) · 𝑇))
167166oveq1d 7420 . . . . . . . . . 10 (𝜑 → (((𝑌 + ((⌊‘((𝐵𝑌) / 𝑇)) · 𝑇)) − 𝑌) / 𝑇) = (((⌊‘((𝐵𝑌) / 𝑇)) · 𝑇) / 𝑇))
168159recnd 11263 . . . . . . . . . . 11 (𝜑 → (⌊‘((𝐵𝑌) / 𝑇)) ∈ ℂ)
16940recnd 11263 . . . . . . . . . . 11 (𝜑𝑇 ∈ ℂ)
170168, 169, 45divcan4d 12023 . . . . . . . . . 10 (𝜑 → (((⌊‘((𝐵𝑌) / 𝑇)) · 𝑇) / 𝑇) = (⌊‘((𝐵𝑌) / 𝑇)))
171164, 167, 1703eqtrd 2774 . . . . . . . . 9 (𝜑 → (((𝐸𝑌) − 𝑌) / 𝑇) = (⌊‘((𝐵𝑌) / 𝑇)))
172171, 158eqeltrd 2834 . . . . . . . 8 (𝜑 → (((𝐸𝑌) − 𝑌) / 𝑇) ∈ ℤ)
17378recnd 11263 . . . . . . . . . . . 12 (𝜑 → ((𝐸𝑌) − 𝑌) ∈ ℂ)
174173, 169, 45divcan1d 12018 . . . . . . . . . . 11 (𝜑 → ((((𝐸𝑌) − 𝑌) / 𝑇) · 𝑇) = ((𝐸𝑌) − 𝑌))
175174oveq2d 7421 . . . . . . . . . 10 (𝜑 → (((𝑄𝐾) − ((𝐸𝑌) − 𝑌)) + ((((𝐸𝑌) − 𝑌) / 𝑇) · 𝑇)) = (((𝑄𝐾) − ((𝐸𝑌) − 𝑌)) + ((𝐸𝑌) − 𝑌)))
17698, 173npcand 11598 . . . . . . . . . 10 (𝜑 → (((𝑄𝐾) − ((𝐸𝑌) − 𝑌)) + ((𝐸𝑌) − 𝑌)) = (𝑄𝐾))
177175, 176eqtrd 2770 . . . . . . . . 9 (𝜑 → (((𝑄𝐾) − ((𝐸𝑌) − 𝑌)) + ((((𝐸𝑌) − 𝑌) / 𝑇) · 𝑇)) = (𝑄𝐾))
178 ffun 6709 . . . . . . . . . . 11 (𝑄:(0...𝑀)⟶ℝ → Fun 𝑄)
17958, 178syl 17 . . . . . . . . . 10 (𝜑 → Fun 𝑄)
18058fdmd 6716 . . . . . . . . . . 11 (𝜑 → dom 𝑄 = (0...𝑀))
18159, 180eleqtrrd 2837 . . . . . . . . . 10 (𝜑𝐾 ∈ dom 𝑄)
182 fvelrn 7066 . . . . . . . . . 10 ((Fun 𝑄𝐾 ∈ dom 𝑄) → (𝑄𝐾) ∈ ran 𝑄)
183179, 181, 182syl2anc 584 . . . . . . . . 9 (𝜑 → (𝑄𝐾) ∈ ran 𝑄)
184177, 183eqeltrd 2834 . . . . . . . 8 (𝜑 → (((𝑄𝐾) − ((𝐸𝑌) − 𝑌)) + ((((𝐸𝑌) − 𝑌) / 𝑇) · 𝑇)) ∈ ran 𝑄)
185 oveq1 7412 . . . . . . . . . . 11 (𝑘 = (((𝐸𝑌) − 𝑌) / 𝑇) → (𝑘 · 𝑇) = ((((𝐸𝑌) − 𝑌) / 𝑇) · 𝑇))
186185oveq2d 7421 . . . . . . . . . 10 (𝑘 = (((𝐸𝑌) − 𝑌) / 𝑇) → (((𝑄𝐾) − ((𝐸𝑌) − 𝑌)) + (𝑘 · 𝑇)) = (((𝑄𝐾) − ((𝐸𝑌) − 𝑌)) + ((((𝐸𝑌) − 𝑌) / 𝑇) · 𝑇)))
187186eleq1d 2819 . . . . . . . . 9 (𝑘 = (((𝐸𝑌) − 𝑌) / 𝑇) → ((((𝑄𝐾) − ((𝐸𝑌) − 𝑌)) + (𝑘 · 𝑇)) ∈ ran 𝑄 ↔ (((𝑄𝐾) − ((𝐸𝑌) − 𝑌)) + ((((𝐸𝑌) − 𝑌) / 𝑇) · 𝑇)) ∈ ran 𝑄))
188187rspcev 3601 . . . . . . . 8 (((((𝐸𝑌) − 𝑌) / 𝑇) ∈ ℤ ∧ (((𝑄𝐾) − ((𝐸𝑌) − 𝑌)) + ((((𝐸𝑌) − 𝑌) / 𝑇) · 𝑇)) ∈ ran 𝑄) → ∃𝑘 ∈ ℤ (((𝑄𝐾) − ((𝐸𝑌) − 𝑌)) + (𝑘 · 𝑇)) ∈ ran 𝑄)
189172, 184, 188syl2anc 584 . . . . . . 7 (𝜑 → ∃𝑘 ∈ ℤ (((𝑄𝐾) − ((𝐸𝑌) − 𝑌)) + (𝑘 · 𝑇)) ∈ ran 𝑄)
190189adantr 480 . . . . . 6 ((𝜑 ∧ (𝑄𝐾) < (𝐸‘(𝑆‘(𝐽 + 1)))) → ∃𝑘 ∈ ℤ (((𝑄𝐾) − ((𝐸𝑌) − 𝑌)) + (𝑘 · 𝑇)) ∈ ran 𝑄)
191 oveq1 7412 . . . . . . . . 9 (𝑥 = ((𝑄𝐾) − ((𝐸𝑌) − 𝑌)) → (𝑥 + (𝑘 · 𝑇)) = (((𝑄𝐾) − ((𝐸𝑌) − 𝑌)) + (𝑘 · 𝑇)))
192191eleq1d 2819 . . . . . . . 8 (𝑥 = ((𝑄𝐾) − ((𝐸𝑌) − 𝑌)) → ((𝑥 + (𝑘 · 𝑇)) ∈ ran 𝑄 ↔ (((𝑄𝐾) − ((𝐸𝑌) − 𝑌)) + (𝑘 · 𝑇)) ∈ ran 𝑄))
193192rexbidv 3164 . . . . . . 7 (𝑥 = ((𝑄𝐾) − ((𝐸𝑌) − 𝑌)) → (∃𝑘 ∈ ℤ (𝑥 + (𝑘 · 𝑇)) ∈ ran 𝑄 ↔ ∃𝑘 ∈ ℤ (((𝑄𝐾) − ((𝐸𝑌) − 𝑌)) + (𝑘 · 𝑇)) ∈ ran 𝑄))
194193elrab 3671 . . . . . 6 (((𝑄𝐾) − ((𝐸𝑌) − 𝑌)) ∈ {𝑥 ∈ (𝐶[,]𝐷) ∣ ∃𝑘 ∈ ℤ (𝑥 + (𝑘 · 𝑇)) ∈ ran 𝑄} ↔ (((𝑄𝐾) − ((𝐸𝑌) − 𝑌)) ∈ (𝐶[,]𝐷) ∧ ∃𝑘 ∈ ℤ (((𝑄𝐾) − ((𝐸𝑌) − 𝑌)) + (𝑘 · 𝑇)) ∈ ran 𝑄))
195148, 190, 194sylanbrc 583 . . . . 5 ((𝜑 ∧ (𝑄𝐾) < (𝐸‘(𝑆‘(𝐽 + 1)))) → ((𝑄𝐾) − ((𝐸𝑌) − 𝑌)) ∈ {𝑥 ∈ (𝐶[,]𝐷) ∣ ∃𝑘 ∈ ℤ (𝑥 + (𝑘 · 𝑇)) ∈ ran 𝑄})
196 elun2 4158 . . . . 5 (((𝑄𝐾) − ((𝐸𝑌) − 𝑌)) ∈ {𝑥 ∈ (𝐶[,]𝐷) ∣ ∃𝑘 ∈ ℤ (𝑥 + (𝑘 · 𝑇)) ∈ ran 𝑄} → ((𝑄𝐾) − ((𝐸𝑌) − 𝑌)) ∈ ({𝐶, 𝐷} ∪ {𝑥 ∈ (𝐶[,]𝐷) ∣ ∃𝑘 ∈ ℤ (𝑥 + (𝑘 · 𝑇)) ∈ ran 𝑄}))
197195, 196syl 17 . . . 4 ((𝜑 ∧ (𝑄𝐾) < (𝐸‘(𝑆‘(𝐽 + 1)))) → ((𝑄𝐾) − ((𝐸𝑌) − 𝑌)) ∈ ({𝐶, 𝐷} ∪ {𝑥 ∈ (𝐶[,]𝐷) ∣ ∃𝑘 ∈ ℤ (𝑥 + (𝑘 · 𝑇)) ∈ ran 𝑄}))
198 fourierdlem63.x . . . 4 𝑋 = ((𝑄𝐾) − ((𝐸𝑌) − 𝑌))
199197, 198, 183eltr4g 2851 . . 3 ((𝜑 ∧ (𝑄𝐾) < (𝐸‘(𝑆‘(𝐽 + 1)))) → 𝑋𝐻)
200 elfzelz 13541 . . . . . . . . 9 (𝑗 ∈ (0...𝑁) → 𝑗 ∈ ℤ)
201200ad2antlr 727 . . . . . . . 8 (((𝜑𝑗 ∈ (0...𝑁)) ∧ ((𝑆𝐽) < (𝑆𝑗) ∧ (𝑆𝑗) < (𝑆‘(𝐽 + 1)))) → 𝑗 ∈ ℤ)
202 elfzoelz 13676 . . . . . . . . . . 11 (𝐽 ∈ (0..^𝑁) → 𝐽 ∈ ℤ)
20331, 202syl 17 . . . . . . . . . 10 (𝜑𝐽 ∈ ℤ)
204203ad2antrr 726 . . . . . . . . 9 (((𝜑𝑗 ∈ (0...𝑁)) ∧ ((𝑆𝐽) < (𝑆𝑗) ∧ (𝑆𝑗) < (𝑆‘(𝐽 + 1)))) → 𝐽 ∈ ℤ)
205 simpr 484 . . . . . . . . . . 11 (((𝜑𝑗 ∈ (0...𝑁)) ∧ (𝑆𝐽) < (𝑆𝑗)) → (𝑆𝐽) < (𝑆𝑗))
20621simprd 495 . . . . . . . . . . . . 13 (𝜑𝑆 Isom < , < ((0...𝑁), 𝐻))
207206ad2antrr 726 . . . . . . . . . . . 12 (((𝜑𝑗 ∈ (0...𝑁)) ∧ (𝑆𝐽) < (𝑆𝑗)) → 𝑆 Isom < , < ((0...𝑁), 𝐻))
20869ad2antrr 726 . . . . . . . . . . . 12 (((𝜑𝑗 ∈ (0...𝑁)) ∧ (𝑆𝐽) < (𝑆𝑗)) → 𝐽 ∈ (0...𝑁))
209 simplr 768 . . . . . . . . . . . 12 (((𝜑𝑗 ∈ (0...𝑁)) ∧ (𝑆𝐽) < (𝑆𝑗)) → 𝑗 ∈ (0...𝑁))
210 isorel 7319 . . . . . . . . . . . 12 ((𝑆 Isom < , < ((0...𝑁), 𝐻) ∧ (𝐽 ∈ (0...𝑁) ∧ 𝑗 ∈ (0...𝑁))) → (𝐽 < 𝑗 ↔ (𝑆𝐽) < (𝑆𝑗)))
211207, 208, 209, 210syl12anc 836 . . . . . . . . . . 11 (((𝜑𝑗 ∈ (0...𝑁)) ∧ (𝑆𝐽) < (𝑆𝑗)) → (𝐽 < 𝑗 ↔ (𝑆𝐽) < (𝑆𝑗)))
212205, 211mpbird 257 . . . . . . . . . 10 (((𝜑𝑗 ∈ (0...𝑁)) ∧ (𝑆𝐽) < (𝑆𝑗)) → 𝐽 < 𝑗)
213212adantrr 717 . . . . . . . . 9 (((𝜑𝑗 ∈ (0...𝑁)) ∧ ((𝑆𝐽) < (𝑆𝑗) ∧ (𝑆𝑗) < (𝑆‘(𝐽 + 1)))) → 𝐽 < 𝑗)
214 simpr 484 . . . . . . . . . . 11 (((𝜑𝑗 ∈ (0...𝑁)) ∧ (𝑆𝑗) < (𝑆‘(𝐽 + 1))) → (𝑆𝑗) < (𝑆‘(𝐽 + 1)))
215206ad2antrr 726 . . . . . . . . . . . 12 (((𝜑𝑗 ∈ (0...𝑁)) ∧ (𝑆𝑗) < (𝑆‘(𝐽 + 1))) → 𝑆 Isom < , < ((0...𝑁), 𝐻))
216 simplr 768 . . . . . . . . . . . 12 (((𝜑𝑗 ∈ (0...𝑁)) ∧ (𝑆𝑗) < (𝑆‘(𝐽 + 1))) → 𝑗 ∈ (0...𝑁))
21733ad2antrr 726 . . . . . . . . . . . 12 (((𝜑𝑗 ∈ (0...𝑁)) ∧ (𝑆𝑗) < (𝑆‘(𝐽 + 1))) → (𝐽 + 1) ∈ (0...𝑁))
218 isorel 7319 . . . . . . . . . . . 12 ((𝑆 Isom < , < ((0...𝑁), 𝐻) ∧ (𝑗 ∈ (0...𝑁) ∧ (𝐽 + 1) ∈ (0...𝑁))) → (𝑗 < (𝐽 + 1) ↔ (𝑆𝑗) < (𝑆‘(𝐽 + 1))))
219215, 216, 217, 218syl12anc 836 . . . . . . . . . . 11 (((𝜑𝑗 ∈ (0...𝑁)) ∧ (𝑆𝑗) < (𝑆‘(𝐽 + 1))) → (𝑗 < (𝐽 + 1) ↔ (𝑆𝑗) < (𝑆‘(𝐽 + 1))))
220214, 219mpbird 257 . . . . . . . . . 10 (((𝜑𝑗 ∈ (0...𝑁)) ∧ (𝑆𝑗) < (𝑆‘(𝐽 + 1))) → 𝑗 < (𝐽 + 1))
221220adantrl 716 . . . . . . . . 9 (((𝜑𝑗 ∈ (0...𝑁)) ∧ ((𝑆𝐽) < (𝑆𝑗) ∧ (𝑆𝑗) < (𝑆‘(𝐽 + 1)))) → 𝑗 < (𝐽 + 1))
222 btwnnz 12669 . . . . . . . . 9 ((𝐽 ∈ ℤ ∧ 𝐽 < 𝑗𝑗 < (𝐽 + 1)) → ¬ 𝑗 ∈ ℤ)
223204, 213, 221, 222syl3anc 1373 . . . . . . . 8 (((𝜑𝑗 ∈ (0...𝑁)) ∧ ((𝑆𝐽) < (𝑆𝑗) ∧ (𝑆𝑗) < (𝑆‘(𝐽 + 1)))) → ¬ 𝑗 ∈ ℤ)
224201, 223pm2.65da 816 . . . . . . 7 ((𝜑𝑗 ∈ (0...𝑁)) → ¬ ((𝑆𝐽) < (𝑆𝑗) ∧ (𝑆𝑗) < (𝑆‘(𝐽 + 1))))
225224adantlr 715 . . . . . 6 (((𝜑 ∧ (𝑄𝐾) < (𝐸‘(𝑆‘(𝐽 + 1)))) ∧ 𝑗 ∈ (0...𝑁)) → ¬ ((𝑆𝐽) < (𝑆𝑗) ∧ (𝑆𝑗) < (𝑆‘(𝐽 + 1))))
22670ad2antrr 726 . . . . . . . . 9 (((𝜑𝑗 ∈ (0...𝑁)) ∧ (𝑆𝑗) = 𝑋) → (𝑆𝐽) ∈ ℝ)
22775ad2antrr 726 . . . . . . . . 9 (((𝜑𝑗 ∈ (0...𝑁)) ∧ (𝑆𝑗) = 𝑋) → 𝑌 ∈ ℝ)
22830ffvelcdmda 7074 . . . . . . . . . 10 ((𝜑𝑗 ∈ (0...𝑁)) → (𝑆𝑗) ∈ ℝ)
229228adantr 480 . . . . . . . . 9 (((𝜑𝑗 ∈ (0...𝑁)) ∧ (𝑆𝑗) = 𝑋) → (𝑆𝑗) ∈ ℝ)
23074simp2d 1143 . . . . . . . . . 10 (𝜑 → (𝑆𝐽) ≤ 𝑌)
231230ad2antrr 726 . . . . . . . . 9 (((𝜑𝑗 ∈ (0...𝑁)) ∧ (𝑆𝑗) = 𝑋) → (𝑆𝐽) ≤ 𝑌)
232106, 198breqtrrdi 5161 . . . . . . . . . . . 12 (𝜑𝑌 < 𝑋)
233232adantr 480 . . . . . . . . . . 11 ((𝜑 ∧ (𝑆𝑗) = 𝑋) → 𝑌 < 𝑋)
234 eqcom 2742 . . . . . . . . . . . . 13 (𝑋 = (𝑆𝑗) ↔ (𝑆𝑗) = 𝑋)
235234biimpri 228 . . . . . . . . . . . 12 ((𝑆𝑗) = 𝑋𝑋 = (𝑆𝑗))
236235adantl 481 . . . . . . . . . . 11 ((𝜑 ∧ (𝑆𝑗) = 𝑋) → 𝑋 = (𝑆𝑗))
237233, 236breqtrd 5145 . . . . . . . . . 10 ((𝜑 ∧ (𝑆𝑗) = 𝑋) → 𝑌 < (𝑆𝑗))
238237adantlr 715 . . . . . . . . 9 (((𝜑𝑗 ∈ (0...𝑁)) ∧ (𝑆𝑗) = 𝑋) → 𝑌 < (𝑆𝑗))
239226, 227, 229, 231, 238lelttrd 11393 . . . . . . . 8 (((𝜑𝑗 ∈ (0...𝑁)) ∧ (𝑆𝑗) = 𝑋) → (𝑆𝐽) < (𝑆𝑗))
240239adantllr 719 . . . . . . 7 ((((𝜑 ∧ (𝑄𝐾) < (𝐸‘(𝑆‘(𝐽 + 1)))) ∧ 𝑗 ∈ (0...𝑁)) ∧ (𝑆𝑗) = 𝑋) → (𝑆𝐽) < (𝑆𝑗))
241 simpr 484 . . . . . . . . 9 (((𝜑 ∧ (𝑄𝐾) < (𝐸‘(𝑆‘(𝐽 + 1)))) ∧ (𝑆𝑗) = 𝑋) → (𝑆𝑗) = 𝑋)
242198, 139eqbrtrid 5154 . . . . . . . . . 10 ((𝜑 ∧ (𝑄𝐾) < (𝐸‘(𝑆‘(𝐽 + 1)))) → 𝑋 < (𝑆‘(𝐽 + 1)))
243242adantr 480 . . . . . . . . 9 (((𝜑 ∧ (𝑄𝐾) < (𝐸‘(𝑆‘(𝐽 + 1)))) ∧ (𝑆𝑗) = 𝑋) → 𝑋 < (𝑆‘(𝐽 + 1)))
244241, 243eqbrtrd 5141 . . . . . . . 8 (((𝜑 ∧ (𝑄𝐾) < (𝐸‘(𝑆‘(𝐽 + 1)))) ∧ (𝑆𝑗) = 𝑋) → (𝑆𝑗) < (𝑆‘(𝐽 + 1)))
245244adantlr 715 . . . . . . 7 ((((𝜑 ∧ (𝑄𝐾) < (𝐸‘(𝑆‘(𝐽 + 1)))) ∧ 𝑗 ∈ (0...𝑁)) ∧ (𝑆𝑗) = 𝑋) → (𝑆𝑗) < (𝑆‘(𝐽 + 1)))
246240, 245jca 511 . . . . . 6 ((((𝜑 ∧ (𝑄𝐾) < (𝐸‘(𝑆‘(𝐽 + 1)))) ∧ 𝑗 ∈ (0...𝑁)) ∧ (𝑆𝑗) = 𝑋) → ((𝑆𝐽) < (𝑆𝑗) ∧ (𝑆𝑗) < (𝑆‘(𝐽 + 1))))
247225, 246mtand 815 . . . . 5 (((𝜑 ∧ (𝑄𝐾) < (𝐸‘(𝑆‘(𝐽 + 1)))) ∧ 𝑗 ∈ (0...𝑁)) → ¬ (𝑆𝑗) = 𝑋)
248247nrexdv 3135 . . . 4 ((𝜑 ∧ (𝑄𝐾) < (𝐸‘(𝑆‘(𝐽 + 1)))) → ¬ ∃𝑗 ∈ (0...𝑁)(𝑆𝑗) = 𝑋)
249 isof1o 7316 . . . . . . . . 9 (𝑆 Isom < , < ((0...𝑁), 𝐻) → 𝑆:(0...𝑁)–1-1-onto𝐻)
250206, 249syl 17 . . . . . . . 8 (𝜑𝑆:(0...𝑁)–1-1-onto𝐻)
251 f1ofo 6825 . . . . . . . 8 (𝑆:(0...𝑁)–1-1-onto𝐻𝑆:(0...𝑁)–onto𝐻)
252250, 251syl 17 . . . . . . 7 (𝜑𝑆:(0...𝑁)–onto𝐻)
253 foelrn 7097 . . . . . . 7 ((𝑆:(0...𝑁)–onto𝐻𝑋𝐻) → ∃𝑗 ∈ (0...𝑁)𝑋 = (𝑆𝑗))
254252, 253sylan 580 . . . . . 6 ((𝜑𝑋𝐻) → ∃𝑗 ∈ (0...𝑁)𝑋 = (𝑆𝑗))
255234rexbii 3083 . . . . . 6 (∃𝑗 ∈ (0...𝑁)𝑋 = (𝑆𝑗) ↔ ∃𝑗 ∈ (0...𝑁)(𝑆𝑗) = 𝑋)
256254, 255sylib 218 . . . . 5 ((𝜑𝑋𝐻) → ∃𝑗 ∈ (0...𝑁)(𝑆𝑗) = 𝑋)
257256adantlr 715 . . . 4 (((𝜑 ∧ (𝑄𝐾) < (𝐸‘(𝑆‘(𝐽 + 1)))) ∧ 𝑋𝐻) → ∃𝑗 ∈ (0...𝑁)(𝑆𝑗) = 𝑋)
258248, 257mtand 815 . . 3 ((𝜑 ∧ (𝑄𝐾) < (𝐸‘(𝑆‘(𝐽 + 1)))) → ¬ 𝑋𝐻)
259199, 258pm2.65da 816 . 2 (𝜑 → ¬ (𝑄𝐾) < (𝐸‘(𝑆‘(𝐽 + 1))))
26052, 60, 259nltled 11385 1 (𝜑 → (𝐸‘(𝑆‘(𝐽 + 1))) ≤ (𝑄𝐾))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2108  wral 3051  wrex 3060  {crab 3415  cun 3924  wss 3926  {cpr 4603   class class class wbr 5119  cmpt 5201  dom cdm 5654  ran crn 5655  cio 6482  Fun wfun 6525  wf 6527  ontowfo 6529  1-1-ontowf1o 6530  cfv 6531   Isom wiso 6532  (class class class)co 7405  m cmap 8840  cc 11127  cr 11128  0cc0 11129  1c1 11130   + caddc 11132   · cmul 11134  *cxr 11268   < clt 11269  cle 11270  cmin 11466   / cdiv 11894  cn 12240  cz 12588  (,]cioc 13363  [,)cico 13364  [,]cicc 13365  ...cfz 13524  ..^cfzo 13671  cfl 13807  chash 14348
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-rep 5249  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7729  ax-inf2 9655  ax-cnex 11185  ax-resscn 11186  ax-1cn 11187  ax-icn 11188  ax-addcl 11189  ax-addrcl 11190  ax-mulcl 11191  ax-mulrcl 11192  ax-mulcom 11193  ax-addass 11194  ax-mulass 11195  ax-distr 11196  ax-i2m1 11197  ax-1ne0 11198  ax-1rid 11199  ax-rnegex 11200  ax-rrecex 11201  ax-cnre 11202  ax-pre-lttri 11203  ax-pre-lttrn 11204  ax-pre-ltadd 11205  ax-pre-mulgt0 11206  ax-pre-sup 11207
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-nel 3037  df-ral 3052  df-rex 3061  df-rmo 3359  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-int 4923  df-iun 4969  df-iin 4970  df-br 5120  df-opab 5182  df-mpt 5202  df-tr 5230  df-id 5548  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-se 5607  df-we 5608  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-pred 6290  df-ord 6355  df-on 6356  df-lim 6357  df-suc 6358  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-f1 6536  df-fo 6537  df-f1o 6538  df-fv 6539  df-isom 6540  df-riota 7362  df-ov 7408  df-oprab 7409  df-mpo 7410  df-om 7862  df-1st 7988  df-2nd 7989  df-frecs 8280  df-wrecs 8311  df-recs 8385  df-rdg 8424  df-1o 8480  df-2o 8481  df-oadd 8484  df-er 8719  df-map 8842  df-en 8960  df-dom 8961  df-sdom 8962  df-fin 8963  df-fi 9423  df-sup 9454  df-inf 9455  df-oi 9524  df-dju 9915  df-card 9953  df-pnf 11271  df-mnf 11272  df-xr 11273  df-ltxr 11274  df-le 11275  df-sub 11468  df-neg 11469  df-div 11895  df-nn 12241  df-2 12303  df-3 12304  df-n0 12502  df-xnn0 12575  df-z 12589  df-uz 12853  df-q 12965  df-rp 13009  df-xneg 13128  df-xadd 13129  df-xmul 13130  df-ioo 13366  df-ioc 13367  df-ico 13368  df-icc 13369  df-fz 13525  df-fzo 13672  df-fl 13809  df-seq 14020  df-exp 14080  df-hash 14349  df-cj 15118  df-re 15119  df-im 15120  df-sqrt 15254  df-abs 15255  df-rest 17436  df-topgen 17457  df-psmet 21307  df-xmet 21308  df-met 21309  df-bl 21310  df-mopn 21311  df-top 22832  df-topon 22849  df-bases 22884  df-cld 22957  df-ntr 22958  df-cls 22959  df-nei 23036  df-lp 23074  df-cmp 23325
This theorem is referenced by:  fourierdlem79  46214
  Copyright terms: Public domain W3C validator