Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fourierdlem63 Structured version   Visualization version   GIF version

Theorem fourierdlem63 46167
Description: The upper bound of intervals in the moved partition are mapped to points that are not greater than the corresponding upper bounds in the original partition. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Hypotheses
Ref Expression
fourierdlem63.t 𝑇 = (𝐵𝐴)
fourierdlem63.p 𝑃 = (𝑚 ∈ ℕ ↦ {𝑝 ∈ (ℝ ↑m (0...𝑚)) ∣ (((𝑝‘0) = 𝐴 ∧ (𝑝𝑚) = 𝐵) ∧ ∀𝑖 ∈ (0..^𝑚)(𝑝𝑖) < (𝑝‘(𝑖 + 1)))})
fourierdlem63.m (𝜑𝑀 ∈ ℕ)
fourierdlem63.q (𝜑𝑄 ∈ (𝑃𝑀))
fourierdlem63.c (𝜑𝐶 ∈ ℝ)
fourierdlem63.d (𝜑𝐷 ∈ ℝ)
fourierdlem63.cltd (𝜑𝐶 < 𝐷)
fourierdlem63.o 𝑂 = (𝑚 ∈ ℕ ↦ {𝑝 ∈ (ℝ ↑m (0...𝑚)) ∣ (((𝑝‘0) = 𝐶 ∧ (𝑝𝑚) = 𝐷) ∧ ∀𝑖 ∈ (0..^𝑚)(𝑝𝑖) < (𝑝‘(𝑖 + 1)))})
fourierdlem63.h 𝐻 = ({𝐶, 𝐷} ∪ {𝑥 ∈ (𝐶[,]𝐷) ∣ ∃𝑘 ∈ ℤ (𝑥 + (𝑘 · 𝑇)) ∈ ran 𝑄})
fourierdlem63.n 𝑁 = ((♯‘𝐻) − 1)
fourierdlem63.s 𝑆 = (℩𝑓𝑓 Isom < , < ((0...𝑁), 𝐻))
fourierdlem63.e 𝐸 = (𝑥 ∈ ℝ ↦ (𝑥 + ((⌊‘((𝐵𝑥) / 𝑇)) · 𝑇)))
fourierdlem63.k (𝜑𝐾 ∈ (0...𝑀))
fourierdlem63.j (𝜑𝐽 ∈ (0..^𝑁))
fourierdlem63.y (𝜑𝑌 ∈ ((𝑆𝐽)[,)(𝑆‘(𝐽 + 1))))
fourierdlem63.eyltqk (𝜑 → (𝐸𝑌) < (𝑄𝐾))
fourierdlem63.x 𝑋 = ((𝑄𝐾) − ((𝐸𝑌) − 𝑌))
Assertion
Ref Expression
fourierdlem63 (𝜑 → (𝐸‘(𝑆‘(𝐽 + 1))) ≤ (𝑄𝐾))
Distinct variable groups:   𝐴,𝑖,𝑚,𝑝   𝑥,𝐴,𝑖   𝐵,𝑖,𝑚,𝑝   𝑥,𝐵   𝐶,𝑖,𝑚,𝑝   𝑥,𝐶   𝐷,𝑖,𝑚,𝑝   𝑥,𝐷   𝑘,𝐸,𝑥   𝑓,𝐻   𝑥,𝐻   𝑘,𝐽,𝑥   𝑘,𝐾,𝑥   𝑖,𝑀,𝑚,𝑝   𝑓,𝑁   𝑖,𝑁,𝑚,𝑝   𝑥,𝑁   𝑄,𝑖,𝑘,𝑥   𝑄,𝑝   𝑆,𝑓   𝑆,𝑖,𝑘,𝑥   𝑆,𝑝   𝑇,𝑖,𝑘,𝑥   𝑘,𝑌,𝑥   𝜑,𝑓   𝜑,𝑖,𝑘,𝑥
Allowed substitution hints:   𝜑(𝑚,𝑝)   𝐴(𝑓,𝑘)   𝐵(𝑓,𝑘)   𝐶(𝑓,𝑘)   𝐷(𝑓,𝑘)   𝑃(𝑥,𝑓,𝑖,𝑘,𝑚,𝑝)   𝑄(𝑓,𝑚)   𝑆(𝑚)   𝑇(𝑓,𝑚,𝑝)   𝐸(𝑓,𝑖,𝑚,𝑝)   𝐻(𝑖,𝑘,𝑚,𝑝)   𝐽(𝑓,𝑖,𝑚,𝑝)   𝐾(𝑓,𝑖,𝑚,𝑝)   𝑀(𝑥,𝑓,𝑘)   𝑁(𝑘)   𝑂(𝑥,𝑓,𝑖,𝑘,𝑚,𝑝)   𝑋(𝑥,𝑓,𝑖,𝑘,𝑚,𝑝)   𝑌(𝑓,𝑖,𝑚,𝑝)

Proof of Theorem fourierdlem63
Dummy variable 𝑗 is distinct from all other variables.
StepHypRef Expression
1 fourierdlem63.e . . . . 5 𝐸 = (𝑥 ∈ ℝ ↦ (𝑥 + ((⌊‘((𝐵𝑥) / 𝑇)) · 𝑇)))
21a1i 11 . . . 4 (𝜑𝐸 = (𝑥 ∈ ℝ ↦ (𝑥 + ((⌊‘((𝐵𝑥) / 𝑇)) · 𝑇))))
3 id 22 . . . . . 6 (𝑥 = (𝑆‘(𝐽 + 1)) → 𝑥 = (𝑆‘(𝐽 + 1)))
4 oveq2 7395 . . . . . . . . 9 (𝑥 = (𝑆‘(𝐽 + 1)) → (𝐵𝑥) = (𝐵 − (𝑆‘(𝐽 + 1))))
54oveq1d 7402 . . . . . . . 8 (𝑥 = (𝑆‘(𝐽 + 1)) → ((𝐵𝑥) / 𝑇) = ((𝐵 − (𝑆‘(𝐽 + 1))) / 𝑇))
65fveq2d 6862 . . . . . . 7 (𝑥 = (𝑆‘(𝐽 + 1)) → (⌊‘((𝐵𝑥) / 𝑇)) = (⌊‘((𝐵 − (𝑆‘(𝐽 + 1))) / 𝑇)))
76oveq1d 7402 . . . . . 6 (𝑥 = (𝑆‘(𝐽 + 1)) → ((⌊‘((𝐵𝑥) / 𝑇)) · 𝑇) = ((⌊‘((𝐵 − (𝑆‘(𝐽 + 1))) / 𝑇)) · 𝑇))
83, 7oveq12d 7405 . . . . 5 (𝑥 = (𝑆‘(𝐽 + 1)) → (𝑥 + ((⌊‘((𝐵𝑥) / 𝑇)) · 𝑇)) = ((𝑆‘(𝐽 + 1)) + ((⌊‘((𝐵 − (𝑆‘(𝐽 + 1))) / 𝑇)) · 𝑇)))
98adantl 481 . . . 4 ((𝜑𝑥 = (𝑆‘(𝐽 + 1))) → (𝑥 + ((⌊‘((𝐵𝑥) / 𝑇)) · 𝑇)) = ((𝑆‘(𝐽 + 1)) + ((⌊‘((𝐵 − (𝑆‘(𝐽 + 1))) / 𝑇)) · 𝑇)))
10 fourierdlem63.t . . . . . . . . . . 11 𝑇 = (𝐵𝐴)
11 fourierdlem63.p . . . . . . . . . . 11 𝑃 = (𝑚 ∈ ℕ ↦ {𝑝 ∈ (ℝ ↑m (0...𝑚)) ∣ (((𝑝‘0) = 𝐴 ∧ (𝑝𝑚) = 𝐵) ∧ ∀𝑖 ∈ (0..^𝑚)(𝑝𝑖) < (𝑝‘(𝑖 + 1)))})
12 fourierdlem63.m . . . . . . . . . . 11 (𝜑𝑀 ∈ ℕ)
13 fourierdlem63.q . . . . . . . . . . 11 (𝜑𝑄 ∈ (𝑃𝑀))
14 fourierdlem63.c . . . . . . . . . . 11 (𝜑𝐶 ∈ ℝ)
15 fourierdlem63.d . . . . . . . . . . 11 (𝜑𝐷 ∈ ℝ)
16 fourierdlem63.cltd . . . . . . . . . . 11 (𝜑𝐶 < 𝐷)
17 fourierdlem63.o . . . . . . . . . . 11 𝑂 = (𝑚 ∈ ℕ ↦ {𝑝 ∈ (ℝ ↑m (0...𝑚)) ∣ (((𝑝‘0) = 𝐶 ∧ (𝑝𝑚) = 𝐷) ∧ ∀𝑖 ∈ (0..^𝑚)(𝑝𝑖) < (𝑝‘(𝑖 + 1)))})
18 fourierdlem63.h . . . . . . . . . . 11 𝐻 = ({𝐶, 𝐷} ∪ {𝑥 ∈ (𝐶[,]𝐷) ∣ ∃𝑘 ∈ ℤ (𝑥 + (𝑘 · 𝑇)) ∈ ran 𝑄})
19 fourierdlem63.n . . . . . . . . . . 11 𝑁 = ((♯‘𝐻) − 1)
20 fourierdlem63.s . . . . . . . . . . 11 𝑆 = (℩𝑓𝑓 Isom < , < ((0...𝑁), 𝐻))
2110, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20fourierdlem54 46158 . . . . . . . . . 10 (𝜑 → ((𝑁 ∈ ℕ ∧ 𝑆 ∈ (𝑂𝑁)) ∧ 𝑆 Isom < , < ((0...𝑁), 𝐻)))
2221simpld 494 . . . . . . . . 9 (𝜑 → (𝑁 ∈ ℕ ∧ 𝑆 ∈ (𝑂𝑁)))
2322simprd 495 . . . . . . . 8 (𝜑𝑆 ∈ (𝑂𝑁))
2422simpld 494 . . . . . . . . 9 (𝜑𝑁 ∈ ℕ)
2517fourierdlem2 46107 . . . . . . . . 9 (𝑁 ∈ ℕ → (𝑆 ∈ (𝑂𝑁) ↔ (𝑆 ∈ (ℝ ↑m (0...𝑁)) ∧ (((𝑆‘0) = 𝐶 ∧ (𝑆𝑁) = 𝐷) ∧ ∀𝑖 ∈ (0..^𝑁)(𝑆𝑖) < (𝑆‘(𝑖 + 1))))))
2624, 25syl 17 . . . . . . . 8 (𝜑 → (𝑆 ∈ (𝑂𝑁) ↔ (𝑆 ∈ (ℝ ↑m (0...𝑁)) ∧ (((𝑆‘0) = 𝐶 ∧ (𝑆𝑁) = 𝐷) ∧ ∀𝑖 ∈ (0..^𝑁)(𝑆𝑖) < (𝑆‘(𝑖 + 1))))))
2723, 26mpbid 232 . . . . . . 7 (𝜑 → (𝑆 ∈ (ℝ ↑m (0...𝑁)) ∧ (((𝑆‘0) = 𝐶 ∧ (𝑆𝑁) = 𝐷) ∧ ∀𝑖 ∈ (0..^𝑁)(𝑆𝑖) < (𝑆‘(𝑖 + 1)))))
2827simpld 494 . . . . . 6 (𝜑𝑆 ∈ (ℝ ↑m (0...𝑁)))
29 elmapi 8822 . . . . . 6 (𝑆 ∈ (ℝ ↑m (0...𝑁)) → 𝑆:(0...𝑁)⟶ℝ)
3028, 29syl 17 . . . . 5 (𝜑𝑆:(0...𝑁)⟶ℝ)
31 fourierdlem63.j . . . . . 6 (𝜑𝐽 ∈ (0..^𝑁))
32 fzofzp1 13725 . . . . . 6 (𝐽 ∈ (0..^𝑁) → (𝐽 + 1) ∈ (0...𝑁))
3331, 32syl 17 . . . . 5 (𝜑 → (𝐽 + 1) ∈ (0...𝑁))
3430, 33ffvelcdmd 7057 . . . 4 (𝜑 → (𝑆‘(𝐽 + 1)) ∈ ℝ)
3511, 12, 13fourierdlem11 46116 . . . . . . . . . . 11 (𝜑 → (𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵))
3635simp2d 1143 . . . . . . . . . 10 (𝜑𝐵 ∈ ℝ)
3736, 34resubcld 11606 . . . . . . . . 9 (𝜑 → (𝐵 − (𝑆‘(𝐽 + 1))) ∈ ℝ)
3835simp1d 1142 . . . . . . . . . . 11 (𝜑𝐴 ∈ ℝ)
3936, 38resubcld 11606 . . . . . . . . . 10 (𝜑 → (𝐵𝐴) ∈ ℝ)
4010, 39eqeltrid 2832 . . . . . . . . 9 (𝜑𝑇 ∈ ℝ)
4135simp3d 1144 . . . . . . . . . . . 12 (𝜑𝐴 < 𝐵)
4238, 36posdifd 11765 . . . . . . . . . . . 12 (𝜑 → (𝐴 < 𝐵 ↔ 0 < (𝐵𝐴)))
4341, 42mpbid 232 . . . . . . . . . . 11 (𝜑 → 0 < (𝐵𝐴))
4443, 10breqtrrdi 5149 . . . . . . . . . 10 (𝜑 → 0 < 𝑇)
4544gt0ne0d 11742 . . . . . . . . 9 (𝜑𝑇 ≠ 0)
4637, 40, 45redivcld 12010 . . . . . . . 8 (𝜑 → ((𝐵 − (𝑆‘(𝐽 + 1))) / 𝑇) ∈ ℝ)
4746flcld 13760 . . . . . . 7 (𝜑 → (⌊‘((𝐵 − (𝑆‘(𝐽 + 1))) / 𝑇)) ∈ ℤ)
4847zred 12638 . . . . . 6 (𝜑 → (⌊‘((𝐵 − (𝑆‘(𝐽 + 1))) / 𝑇)) ∈ ℝ)
4948, 40remulcld 11204 . . . . 5 (𝜑 → ((⌊‘((𝐵 − (𝑆‘(𝐽 + 1))) / 𝑇)) · 𝑇) ∈ ℝ)
5034, 49readdcld 11203 . . . 4 (𝜑 → ((𝑆‘(𝐽 + 1)) + ((⌊‘((𝐵 − (𝑆‘(𝐽 + 1))) / 𝑇)) · 𝑇)) ∈ ℝ)
512, 9, 34, 50fvmptd 6975 . . 3 (𝜑 → (𝐸‘(𝑆‘(𝐽 + 1))) = ((𝑆‘(𝐽 + 1)) + ((⌊‘((𝐵 − (𝑆‘(𝐽 + 1))) / 𝑇)) · 𝑇)))
5251, 50eqeltrd 2828 . 2 (𝜑 → (𝐸‘(𝑆‘(𝐽 + 1))) ∈ ℝ)
5311fourierdlem2 46107 . . . . . . 7 (𝑀 ∈ ℕ → (𝑄 ∈ (𝑃𝑀) ↔ (𝑄 ∈ (ℝ ↑m (0...𝑀)) ∧ (((𝑄‘0) = 𝐴 ∧ (𝑄𝑀) = 𝐵) ∧ ∀𝑖 ∈ (0..^𝑀)(𝑄𝑖) < (𝑄‘(𝑖 + 1))))))
5412, 53syl 17 . . . . . 6 (𝜑 → (𝑄 ∈ (𝑃𝑀) ↔ (𝑄 ∈ (ℝ ↑m (0...𝑀)) ∧ (((𝑄‘0) = 𝐴 ∧ (𝑄𝑀) = 𝐵) ∧ ∀𝑖 ∈ (0..^𝑀)(𝑄𝑖) < (𝑄‘(𝑖 + 1))))))
5513, 54mpbid 232 . . . . 5 (𝜑 → (𝑄 ∈ (ℝ ↑m (0...𝑀)) ∧ (((𝑄‘0) = 𝐴 ∧ (𝑄𝑀) = 𝐵) ∧ ∀𝑖 ∈ (0..^𝑀)(𝑄𝑖) < (𝑄‘(𝑖 + 1)))))
5655simpld 494 . . . 4 (𝜑𝑄 ∈ (ℝ ↑m (0...𝑀)))
57 elmapi 8822 . . . 4 (𝑄 ∈ (ℝ ↑m (0...𝑀)) → 𝑄:(0...𝑀)⟶ℝ)
5856, 57syl 17 . . 3 (𝜑𝑄:(0...𝑀)⟶ℝ)
59 fourierdlem63.k . . 3 (𝜑𝐾 ∈ (0...𝑀))
6058, 59ffvelcdmd 7057 . 2 (𝜑 → (𝑄𝐾) ∈ ℝ)
6114adantr 480 . . . . . . 7 ((𝜑 ∧ (𝑄𝐾) < (𝐸‘(𝑆‘(𝐽 + 1)))) → 𝐶 ∈ ℝ)
6215adantr 480 . . . . . . 7 ((𝜑 ∧ (𝑄𝐾) < (𝐸‘(𝑆‘(𝐽 + 1)))) → 𝐷 ∈ ℝ)
6338rexrd 11224 . . . . . . . . . . . 12 (𝜑𝐴 ∈ ℝ*)
64 iocssre 13388 . . . . . . . . . . . 12 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ) → (𝐴(,]𝐵) ⊆ ℝ)
6563, 36, 64syl2anc 584 . . . . . . . . . . 11 (𝜑 → (𝐴(,]𝐵) ⊆ ℝ)
6638, 36, 41, 10, 1fourierdlem4 46109 . . . . . . . . . . . 12 (𝜑𝐸:ℝ⟶(𝐴(,]𝐵))
67 fourierdlem63.y . . . . . . . . . . . . . 14 (𝜑𝑌 ∈ ((𝑆𝐽)[,)(𝑆‘(𝐽 + 1))))
68 elfzofz 13636 . . . . . . . . . . . . . . . . 17 (𝐽 ∈ (0..^𝑁) → 𝐽 ∈ (0...𝑁))
6931, 68syl 17 . . . . . . . . . . . . . . . 16 (𝜑𝐽 ∈ (0...𝑁))
7030, 69ffvelcdmd 7057 . . . . . . . . . . . . . . 15 (𝜑 → (𝑆𝐽) ∈ ℝ)
7134rexrd 11224 . . . . . . . . . . . . . . 15 (𝜑 → (𝑆‘(𝐽 + 1)) ∈ ℝ*)
72 elico2 13371 . . . . . . . . . . . . . . 15 (((𝑆𝐽) ∈ ℝ ∧ (𝑆‘(𝐽 + 1)) ∈ ℝ*) → (𝑌 ∈ ((𝑆𝐽)[,)(𝑆‘(𝐽 + 1))) ↔ (𝑌 ∈ ℝ ∧ (𝑆𝐽) ≤ 𝑌𝑌 < (𝑆‘(𝐽 + 1)))))
7370, 71, 72syl2anc 584 . . . . . . . . . . . . . 14 (𝜑 → (𝑌 ∈ ((𝑆𝐽)[,)(𝑆‘(𝐽 + 1))) ↔ (𝑌 ∈ ℝ ∧ (𝑆𝐽) ≤ 𝑌𝑌 < (𝑆‘(𝐽 + 1)))))
7467, 73mpbid 232 . . . . . . . . . . . . 13 (𝜑 → (𝑌 ∈ ℝ ∧ (𝑆𝐽) ≤ 𝑌𝑌 < (𝑆‘(𝐽 + 1))))
7574simp1d 1142 . . . . . . . . . . . 12 (𝜑𝑌 ∈ ℝ)
7666, 75ffvelcdmd 7057 . . . . . . . . . . 11 (𝜑 → (𝐸𝑌) ∈ (𝐴(,]𝐵))
7765, 76sseldd 3947 . . . . . . . . . 10 (𝜑 → (𝐸𝑌) ∈ ℝ)
7877, 75resubcld 11606 . . . . . . . . 9 (𝜑 → ((𝐸𝑌) − 𝑌) ∈ ℝ)
7960, 78resubcld 11606 . . . . . . . 8 (𝜑 → ((𝑄𝐾) − ((𝐸𝑌) − 𝑌)) ∈ ℝ)
8079adantr 480 . . . . . . 7 ((𝜑 ∧ (𝑄𝐾) < (𝐸‘(𝑆‘(𝐽 + 1)))) → ((𝑄𝐾) − ((𝐸𝑌) − 𝑌)) ∈ ℝ)
81 icossicc 13397 . . . . . . . . . . . . . 14 ((𝑆𝐽)[,)(𝑆‘(𝐽 + 1))) ⊆ ((𝑆𝐽)[,](𝑆‘(𝐽 + 1)))
8214rexrd 11224 . . . . . . . . . . . . . . 15 (𝜑𝐶 ∈ ℝ*)
8315rexrd 11224 . . . . . . . . . . . . . . 15 (𝜑𝐷 ∈ ℝ*)
8417, 24, 23fourierdlem15 46120 . . . . . . . . . . . . . . 15 (𝜑𝑆:(0...𝑁)⟶(𝐶[,]𝐷))
8582, 83, 84, 31fourierdlem8 46113 . . . . . . . . . . . . . 14 (𝜑 → ((𝑆𝐽)[,](𝑆‘(𝐽 + 1))) ⊆ (𝐶[,]𝐷))
8681, 85sstrid 3958 . . . . . . . . . . . . 13 (𝜑 → ((𝑆𝐽)[,)(𝑆‘(𝐽 + 1))) ⊆ (𝐶[,]𝐷))
8786, 67sseldd 3947 . . . . . . . . . . . 12 (𝜑𝑌 ∈ (𝐶[,]𝐷))
88 elicc2 13372 . . . . . . . . . . . . 13 ((𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ) → (𝑌 ∈ (𝐶[,]𝐷) ↔ (𝑌 ∈ ℝ ∧ 𝐶𝑌𝑌𝐷)))
8914, 15, 88syl2anc 584 . . . . . . . . . . . 12 (𝜑 → (𝑌 ∈ (𝐶[,]𝐷) ↔ (𝑌 ∈ ℝ ∧ 𝐶𝑌𝑌𝐷)))
9087, 89mpbid 232 . . . . . . . . . . 11 (𝜑 → (𝑌 ∈ ℝ ∧ 𝐶𝑌𝑌𝐷))
9190simp2d 1143 . . . . . . . . . 10 (𝜑𝐶𝑌)
9260, 77resubcld 11606 . . . . . . . . . . . . 13 (𝜑 → ((𝑄𝐾) − (𝐸𝑌)) ∈ ℝ)
93 fourierdlem63.eyltqk . . . . . . . . . . . . . 14 (𝜑 → (𝐸𝑌) < (𝑄𝐾))
9477, 60posdifd 11765 . . . . . . . . . . . . . 14 (𝜑 → ((𝐸𝑌) < (𝑄𝐾) ↔ 0 < ((𝑄𝐾) − (𝐸𝑌))))
9593, 94mpbid 232 . . . . . . . . . . . . 13 (𝜑 → 0 < ((𝑄𝐾) − (𝐸𝑌)))
9692, 95elrpd 12992 . . . . . . . . . . . 12 (𝜑 → ((𝑄𝐾) − (𝐸𝑌)) ∈ ℝ+)
9775, 96ltaddrpd 13028 . . . . . . . . . . 11 (𝜑𝑌 < (𝑌 + ((𝑄𝐾) − (𝐸𝑌))))
9860recnd 11202 . . . . . . . . . . . . 13 (𝜑 → (𝑄𝐾) ∈ ℂ)
9977recnd 11202 . . . . . . . . . . . . 13 (𝜑 → (𝐸𝑌) ∈ ℂ)
10075recnd 11202 . . . . . . . . . . . . 13 (𝜑𝑌 ∈ ℂ)
10198, 99, 100subsub3d 11563 . . . . . . . . . . . 12 (𝜑 → ((𝑄𝐾) − ((𝐸𝑌) − 𝑌)) = (((𝑄𝐾) + 𝑌) − (𝐸𝑌)))
10298, 100addcomd 11376 . . . . . . . . . . . . 13 (𝜑 → ((𝑄𝐾) + 𝑌) = (𝑌 + (𝑄𝐾)))
103102oveq1d 7402 . . . . . . . . . . . 12 (𝜑 → (((𝑄𝐾) + 𝑌) − (𝐸𝑌)) = ((𝑌 + (𝑄𝐾)) − (𝐸𝑌)))
104100, 98, 99addsubassd 11553 . . . . . . . . . . . 12 (𝜑 → ((𝑌 + (𝑄𝐾)) − (𝐸𝑌)) = (𝑌 + ((𝑄𝐾) − (𝐸𝑌))))
105101, 103, 1043eqtrrd 2769 . . . . . . . . . . 11 (𝜑 → (𝑌 + ((𝑄𝐾) − (𝐸𝑌))) = ((𝑄𝐾) − ((𝐸𝑌) − 𝑌)))
10697, 105breqtrd 5133 . . . . . . . . . 10 (𝜑𝑌 < ((𝑄𝐾) − ((𝐸𝑌) − 𝑌)))
10714, 75, 79, 91, 106lelttrd 11332 . . . . . . . . 9 (𝜑𝐶 < ((𝑄𝐾) − ((𝐸𝑌) − 𝑌)))
10814, 79, 107ltled 11322 . . . . . . . 8 (𝜑𝐶 ≤ ((𝑄𝐾) − ((𝐸𝑌) − 𝑌)))
109108adantr 480 . . . . . . 7 ((𝜑 ∧ (𝑄𝐾) < (𝐸‘(𝑆‘(𝐽 + 1)))) → 𝐶 ≤ ((𝑄𝐾) − ((𝐸𝑌) − 𝑌)))
11034adantr 480 . . . . . . . . 9 ((𝜑 ∧ (𝑄𝐾) < (𝐸‘(𝑆‘(𝐽 + 1)))) → (𝑆‘(𝐽 + 1)) ∈ ℝ)
11160adantr 480 . . . . . . . . . . 11 ((𝜑 ∧ (𝑄𝐾) < (𝐸‘(𝑆‘(𝐽 + 1)))) → (𝑄𝐾) ∈ ℝ)
11252, 34resubcld 11606 . . . . . . . . . . . 12 (𝜑 → ((𝐸‘(𝑆‘(𝐽 + 1))) − (𝑆‘(𝐽 + 1))) ∈ ℝ)
113112adantr 480 . . . . . . . . . . 11 ((𝜑 ∧ (𝑄𝐾) < (𝐸‘(𝑆‘(𝐽 + 1)))) → ((𝐸‘(𝑆‘(𝐽 + 1))) − (𝑆‘(𝐽 + 1))) ∈ ℝ)
114111, 113resubcld 11606 . . . . . . . . . 10 ((𝜑 ∧ (𝑄𝐾) < (𝐸‘(𝑆‘(𝐽 + 1)))) → ((𝑄𝐾) − ((𝐸‘(𝑆‘(𝐽 + 1))) − (𝑆‘(𝐽 + 1)))) ∈ ℝ)
11574simp3d 1144 . . . . . . . . . . . . . 14 (𝜑𝑌 < (𝑆‘(𝐽 + 1)))
11675, 34, 115ltled 11322 . . . . . . . . . . . . 13 (𝜑𝑌 ≤ (𝑆‘(𝐽 + 1)))
11738, 36, 41, 10, 1, 75, 34, 116fourierdlem7 46112 . . . . . . . . . . . 12 (𝜑 → ((𝐸‘(𝑆‘(𝐽 + 1))) − (𝑆‘(𝐽 + 1))) ≤ ((𝐸𝑌) − 𝑌))
118112, 78, 60, 117lesub2dd 11795 . . . . . . . . . . 11 (𝜑 → ((𝑄𝐾) − ((𝐸𝑌) − 𝑌)) ≤ ((𝑄𝐾) − ((𝐸‘(𝑆‘(𝐽 + 1))) − (𝑆‘(𝐽 + 1)))))
119118adantr 480 . . . . . . . . . 10 ((𝜑 ∧ (𝑄𝐾) < (𝐸‘(𝑆‘(𝐽 + 1)))) → ((𝑄𝐾) − ((𝐸𝑌) − 𝑌)) ≤ ((𝑄𝐾) − ((𝐸‘(𝑆‘(𝐽 + 1))) − (𝑆‘(𝐽 + 1)))))
12098adantr 480 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑄𝐾) < (𝐸‘(𝑆‘(𝐽 + 1)))) → (𝑄𝐾) ∈ ℂ)
12152recnd 11202 . . . . . . . . . . . . . 14 (𝜑 → (𝐸‘(𝑆‘(𝐽 + 1))) ∈ ℂ)
122121adantr 480 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑄𝐾) < (𝐸‘(𝑆‘(𝐽 + 1)))) → (𝐸‘(𝑆‘(𝐽 + 1))) ∈ ℂ)
123110recnd 11202 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑄𝐾) < (𝐸‘(𝑆‘(𝐽 + 1)))) → (𝑆‘(𝐽 + 1)) ∈ ℂ)
124120, 122, 123subsubd 11561 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑄𝐾) < (𝐸‘(𝑆‘(𝐽 + 1)))) → ((𝑄𝐾) − ((𝐸‘(𝑆‘(𝐽 + 1))) − (𝑆‘(𝐽 + 1)))) = (((𝑄𝐾) − (𝐸‘(𝑆‘(𝐽 + 1)))) + (𝑆‘(𝐽 + 1))))
12598, 121subcld 11533 . . . . . . . . . . . . . 14 (𝜑 → ((𝑄𝐾) − (𝐸‘(𝑆‘(𝐽 + 1)))) ∈ ℂ)
12634recnd 11202 . . . . . . . . . . . . . 14 (𝜑 → (𝑆‘(𝐽 + 1)) ∈ ℂ)
127125, 126addcomd 11376 . . . . . . . . . . . . 13 (𝜑 → (((𝑄𝐾) − (𝐸‘(𝑆‘(𝐽 + 1)))) + (𝑆‘(𝐽 + 1))) = ((𝑆‘(𝐽 + 1)) + ((𝑄𝐾) − (𝐸‘(𝑆‘(𝐽 + 1))))))
128127adantr 480 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑄𝐾) < (𝐸‘(𝑆‘(𝐽 + 1)))) → (((𝑄𝐾) − (𝐸‘(𝑆‘(𝐽 + 1)))) + (𝑆‘(𝐽 + 1))) = ((𝑆‘(𝐽 + 1)) + ((𝑄𝐾) − (𝐸‘(𝑆‘(𝐽 + 1))))))
129124, 128eqtrd 2764 . . . . . . . . . . 11 ((𝜑 ∧ (𝑄𝐾) < (𝐸‘(𝑆‘(𝐽 + 1)))) → ((𝑄𝐾) − ((𝐸‘(𝑆‘(𝐽 + 1))) − (𝑆‘(𝐽 + 1)))) = ((𝑆‘(𝐽 + 1)) + ((𝑄𝐾) − (𝐸‘(𝑆‘(𝐽 + 1))))))
130 simpr 484 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑄𝐾) < (𝐸‘(𝑆‘(𝐽 + 1)))) → (𝑄𝐾) < (𝐸‘(𝑆‘(𝐽 + 1))))
13152adantr 480 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑄𝐾) < (𝐸‘(𝑆‘(𝐽 + 1)))) → (𝐸‘(𝑆‘(𝐽 + 1))) ∈ ℝ)
132111, 131sublt0d 11804 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑄𝐾) < (𝐸‘(𝑆‘(𝐽 + 1)))) → (((𝑄𝐾) − (𝐸‘(𝑆‘(𝐽 + 1)))) < 0 ↔ (𝑄𝐾) < (𝐸‘(𝑆‘(𝐽 + 1)))))
133130, 132mpbird 257 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑄𝐾) < (𝐸‘(𝑆‘(𝐽 + 1)))) → ((𝑄𝐾) − (𝐸‘(𝑆‘(𝐽 + 1)))) < 0)
134111, 131resubcld 11606 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑄𝐾) < (𝐸‘(𝑆‘(𝐽 + 1)))) → ((𝑄𝐾) − (𝐸‘(𝑆‘(𝐽 + 1)))) ∈ ℝ)
135 ltaddneg 11390 . . . . . . . . . . . . 13 ((((𝑄𝐾) − (𝐸‘(𝑆‘(𝐽 + 1)))) ∈ ℝ ∧ (𝑆‘(𝐽 + 1)) ∈ ℝ) → (((𝑄𝐾) − (𝐸‘(𝑆‘(𝐽 + 1)))) < 0 ↔ ((𝑆‘(𝐽 + 1)) + ((𝑄𝐾) − (𝐸‘(𝑆‘(𝐽 + 1))))) < (𝑆‘(𝐽 + 1))))
136134, 110, 135syl2anc 584 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑄𝐾) < (𝐸‘(𝑆‘(𝐽 + 1)))) → (((𝑄𝐾) − (𝐸‘(𝑆‘(𝐽 + 1)))) < 0 ↔ ((𝑆‘(𝐽 + 1)) + ((𝑄𝐾) − (𝐸‘(𝑆‘(𝐽 + 1))))) < (𝑆‘(𝐽 + 1))))
137133, 136mpbid 232 . . . . . . . . . . 11 ((𝜑 ∧ (𝑄𝐾) < (𝐸‘(𝑆‘(𝐽 + 1)))) → ((𝑆‘(𝐽 + 1)) + ((𝑄𝐾) − (𝐸‘(𝑆‘(𝐽 + 1))))) < (𝑆‘(𝐽 + 1)))
138129, 137eqbrtrd 5129 . . . . . . . . . 10 ((𝜑 ∧ (𝑄𝐾) < (𝐸‘(𝑆‘(𝐽 + 1)))) → ((𝑄𝐾) − ((𝐸‘(𝑆‘(𝐽 + 1))) − (𝑆‘(𝐽 + 1)))) < (𝑆‘(𝐽 + 1)))
13980, 114, 110, 119, 138lelttrd 11332 . . . . . . . . 9 ((𝜑 ∧ (𝑄𝐾) < (𝐸‘(𝑆‘(𝐽 + 1)))) → ((𝑄𝐾) − ((𝐸𝑌) − 𝑌)) < (𝑆‘(𝐽 + 1)))
14084, 33ffvelcdmd 7057 . . . . . . . . . . . 12 (𝜑 → (𝑆‘(𝐽 + 1)) ∈ (𝐶[,]𝐷))
141 elicc2 13372 . . . . . . . . . . . . 13 ((𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ) → ((𝑆‘(𝐽 + 1)) ∈ (𝐶[,]𝐷) ↔ ((𝑆‘(𝐽 + 1)) ∈ ℝ ∧ 𝐶 ≤ (𝑆‘(𝐽 + 1)) ∧ (𝑆‘(𝐽 + 1)) ≤ 𝐷)))
14214, 15, 141syl2anc 584 . . . . . . . . . . . 12 (𝜑 → ((𝑆‘(𝐽 + 1)) ∈ (𝐶[,]𝐷) ↔ ((𝑆‘(𝐽 + 1)) ∈ ℝ ∧ 𝐶 ≤ (𝑆‘(𝐽 + 1)) ∧ (𝑆‘(𝐽 + 1)) ≤ 𝐷)))
143140, 142mpbid 232 . . . . . . . . . . 11 (𝜑 → ((𝑆‘(𝐽 + 1)) ∈ ℝ ∧ 𝐶 ≤ (𝑆‘(𝐽 + 1)) ∧ (𝑆‘(𝐽 + 1)) ≤ 𝐷))
144143simp3d 1144 . . . . . . . . . 10 (𝜑 → (𝑆‘(𝐽 + 1)) ≤ 𝐷)
145144adantr 480 . . . . . . . . 9 ((𝜑 ∧ (𝑄𝐾) < (𝐸‘(𝑆‘(𝐽 + 1)))) → (𝑆‘(𝐽 + 1)) ≤ 𝐷)
14680, 110, 62, 139, 145ltletrd 11334 . . . . . . . 8 ((𝜑 ∧ (𝑄𝐾) < (𝐸‘(𝑆‘(𝐽 + 1)))) → ((𝑄𝐾) − ((𝐸𝑌) − 𝑌)) < 𝐷)
14780, 62, 146ltled 11322 . . . . . . 7 ((𝜑 ∧ (𝑄𝐾) < (𝐸‘(𝑆‘(𝐽 + 1)))) → ((𝑄𝐾) − ((𝐸𝑌) − 𝑌)) ≤ 𝐷)
14861, 62, 80, 109, 147eliccd 45502 . . . . . 6 ((𝜑 ∧ (𝑄𝐾) < (𝐸‘(𝑆‘(𝐽 + 1)))) → ((𝑄𝐾) − ((𝐸𝑌) − 𝑌)) ∈ (𝐶[,]𝐷))
149 id 22 . . . . . . . . . . . . . . 15 (𝑥 = 𝑌𝑥 = 𝑌)
150 oveq2 7395 . . . . . . . . . . . . . . . . . 18 (𝑥 = 𝑌 → (𝐵𝑥) = (𝐵𝑌))
151150oveq1d 7402 . . . . . . . . . . . . . . . . 17 (𝑥 = 𝑌 → ((𝐵𝑥) / 𝑇) = ((𝐵𝑌) / 𝑇))
152151fveq2d 6862 . . . . . . . . . . . . . . . 16 (𝑥 = 𝑌 → (⌊‘((𝐵𝑥) / 𝑇)) = (⌊‘((𝐵𝑌) / 𝑇)))
153152oveq1d 7402 . . . . . . . . . . . . . . 15 (𝑥 = 𝑌 → ((⌊‘((𝐵𝑥) / 𝑇)) · 𝑇) = ((⌊‘((𝐵𝑌) / 𝑇)) · 𝑇))
154149, 153oveq12d 7405 . . . . . . . . . . . . . 14 (𝑥 = 𝑌 → (𝑥 + ((⌊‘((𝐵𝑥) / 𝑇)) · 𝑇)) = (𝑌 + ((⌊‘((𝐵𝑌) / 𝑇)) · 𝑇)))
155154adantl 481 . . . . . . . . . . . . 13 ((𝜑𝑥 = 𝑌) → (𝑥 + ((⌊‘((𝐵𝑥) / 𝑇)) · 𝑇)) = (𝑌 + ((⌊‘((𝐵𝑌) / 𝑇)) · 𝑇)))
15636, 75resubcld 11606 . . . . . . . . . . . . . . . . . 18 (𝜑 → (𝐵𝑌) ∈ ℝ)
157156, 40, 45redivcld 12010 . . . . . . . . . . . . . . . . 17 (𝜑 → ((𝐵𝑌) / 𝑇) ∈ ℝ)
158157flcld 13760 . . . . . . . . . . . . . . . 16 (𝜑 → (⌊‘((𝐵𝑌) / 𝑇)) ∈ ℤ)
159158zred 12638 . . . . . . . . . . . . . . 15 (𝜑 → (⌊‘((𝐵𝑌) / 𝑇)) ∈ ℝ)
160159, 40remulcld 11204 . . . . . . . . . . . . . 14 (𝜑 → ((⌊‘((𝐵𝑌) / 𝑇)) · 𝑇) ∈ ℝ)
16175, 160readdcld 11203 . . . . . . . . . . . . 13 (𝜑 → (𝑌 + ((⌊‘((𝐵𝑌) / 𝑇)) · 𝑇)) ∈ ℝ)
1622, 155, 75, 161fvmptd 6975 . . . . . . . . . . . 12 (𝜑 → (𝐸𝑌) = (𝑌 + ((⌊‘((𝐵𝑌) / 𝑇)) · 𝑇)))
163162oveq1d 7402 . . . . . . . . . . 11 (𝜑 → ((𝐸𝑌) − 𝑌) = ((𝑌 + ((⌊‘((𝐵𝑌) / 𝑇)) · 𝑇)) − 𝑌))
164163oveq1d 7402 . . . . . . . . . 10 (𝜑 → (((𝐸𝑌) − 𝑌) / 𝑇) = (((𝑌 + ((⌊‘((𝐵𝑌) / 𝑇)) · 𝑇)) − 𝑌) / 𝑇))
165160recnd 11202 . . . . . . . . . . . 12 (𝜑 → ((⌊‘((𝐵𝑌) / 𝑇)) · 𝑇) ∈ ℂ)
166100, 165pncan2d 11535 . . . . . . . . . . 11 (𝜑 → ((𝑌 + ((⌊‘((𝐵𝑌) / 𝑇)) · 𝑇)) − 𝑌) = ((⌊‘((𝐵𝑌) / 𝑇)) · 𝑇))
167166oveq1d 7402 . . . . . . . . . 10 (𝜑 → (((𝑌 + ((⌊‘((𝐵𝑌) / 𝑇)) · 𝑇)) − 𝑌) / 𝑇) = (((⌊‘((𝐵𝑌) / 𝑇)) · 𝑇) / 𝑇))
168159recnd 11202 . . . . . . . . . . 11 (𝜑 → (⌊‘((𝐵𝑌) / 𝑇)) ∈ ℂ)
16940recnd 11202 . . . . . . . . . . 11 (𝜑𝑇 ∈ ℂ)
170168, 169, 45divcan4d 11964 . . . . . . . . . 10 (𝜑 → (((⌊‘((𝐵𝑌) / 𝑇)) · 𝑇) / 𝑇) = (⌊‘((𝐵𝑌) / 𝑇)))
171164, 167, 1703eqtrd 2768 . . . . . . . . 9 (𝜑 → (((𝐸𝑌) − 𝑌) / 𝑇) = (⌊‘((𝐵𝑌) / 𝑇)))
172171, 158eqeltrd 2828 . . . . . . . 8 (𝜑 → (((𝐸𝑌) − 𝑌) / 𝑇) ∈ ℤ)
17378recnd 11202 . . . . . . . . . . . 12 (𝜑 → ((𝐸𝑌) − 𝑌) ∈ ℂ)
174173, 169, 45divcan1d 11959 . . . . . . . . . . 11 (𝜑 → ((((𝐸𝑌) − 𝑌) / 𝑇) · 𝑇) = ((𝐸𝑌) − 𝑌))
175174oveq2d 7403 . . . . . . . . . 10 (𝜑 → (((𝑄𝐾) − ((𝐸𝑌) − 𝑌)) + ((((𝐸𝑌) − 𝑌) / 𝑇) · 𝑇)) = (((𝑄𝐾) − ((𝐸𝑌) − 𝑌)) + ((𝐸𝑌) − 𝑌)))
17698, 173npcand 11537 . . . . . . . . . 10 (𝜑 → (((𝑄𝐾) − ((𝐸𝑌) − 𝑌)) + ((𝐸𝑌) − 𝑌)) = (𝑄𝐾))
177175, 176eqtrd 2764 . . . . . . . . 9 (𝜑 → (((𝑄𝐾) − ((𝐸𝑌) − 𝑌)) + ((((𝐸𝑌) − 𝑌) / 𝑇) · 𝑇)) = (𝑄𝐾))
178 ffun 6691 . . . . . . . . . . 11 (𝑄:(0...𝑀)⟶ℝ → Fun 𝑄)
17958, 178syl 17 . . . . . . . . . 10 (𝜑 → Fun 𝑄)
18058fdmd 6698 . . . . . . . . . . 11 (𝜑 → dom 𝑄 = (0...𝑀))
18159, 180eleqtrrd 2831 . . . . . . . . . 10 (𝜑𝐾 ∈ dom 𝑄)
182 fvelrn 7048 . . . . . . . . . 10 ((Fun 𝑄𝐾 ∈ dom 𝑄) → (𝑄𝐾) ∈ ran 𝑄)
183179, 181, 182syl2anc 584 . . . . . . . . 9 (𝜑 → (𝑄𝐾) ∈ ran 𝑄)
184177, 183eqeltrd 2828 . . . . . . . 8 (𝜑 → (((𝑄𝐾) − ((𝐸𝑌) − 𝑌)) + ((((𝐸𝑌) − 𝑌) / 𝑇) · 𝑇)) ∈ ran 𝑄)
185 oveq1 7394 . . . . . . . . . . 11 (𝑘 = (((𝐸𝑌) − 𝑌) / 𝑇) → (𝑘 · 𝑇) = ((((𝐸𝑌) − 𝑌) / 𝑇) · 𝑇))
186185oveq2d 7403 . . . . . . . . . 10 (𝑘 = (((𝐸𝑌) − 𝑌) / 𝑇) → (((𝑄𝐾) − ((𝐸𝑌) − 𝑌)) + (𝑘 · 𝑇)) = (((𝑄𝐾) − ((𝐸𝑌) − 𝑌)) + ((((𝐸𝑌) − 𝑌) / 𝑇) · 𝑇)))
187186eleq1d 2813 . . . . . . . . 9 (𝑘 = (((𝐸𝑌) − 𝑌) / 𝑇) → ((((𝑄𝐾) − ((𝐸𝑌) − 𝑌)) + (𝑘 · 𝑇)) ∈ ran 𝑄 ↔ (((𝑄𝐾) − ((𝐸𝑌) − 𝑌)) + ((((𝐸𝑌) − 𝑌) / 𝑇) · 𝑇)) ∈ ran 𝑄))
188187rspcev 3588 . . . . . . . 8 (((((𝐸𝑌) − 𝑌) / 𝑇) ∈ ℤ ∧ (((𝑄𝐾) − ((𝐸𝑌) − 𝑌)) + ((((𝐸𝑌) − 𝑌) / 𝑇) · 𝑇)) ∈ ran 𝑄) → ∃𝑘 ∈ ℤ (((𝑄𝐾) − ((𝐸𝑌) − 𝑌)) + (𝑘 · 𝑇)) ∈ ran 𝑄)
189172, 184, 188syl2anc 584 . . . . . . 7 (𝜑 → ∃𝑘 ∈ ℤ (((𝑄𝐾) − ((𝐸𝑌) − 𝑌)) + (𝑘 · 𝑇)) ∈ ran 𝑄)
190189adantr 480 . . . . . 6 ((𝜑 ∧ (𝑄𝐾) < (𝐸‘(𝑆‘(𝐽 + 1)))) → ∃𝑘 ∈ ℤ (((𝑄𝐾) − ((𝐸𝑌) − 𝑌)) + (𝑘 · 𝑇)) ∈ ran 𝑄)
191 oveq1 7394 . . . . . . . . 9 (𝑥 = ((𝑄𝐾) − ((𝐸𝑌) − 𝑌)) → (𝑥 + (𝑘 · 𝑇)) = (((𝑄𝐾) − ((𝐸𝑌) − 𝑌)) + (𝑘 · 𝑇)))
192191eleq1d 2813 . . . . . . . 8 (𝑥 = ((𝑄𝐾) − ((𝐸𝑌) − 𝑌)) → ((𝑥 + (𝑘 · 𝑇)) ∈ ran 𝑄 ↔ (((𝑄𝐾) − ((𝐸𝑌) − 𝑌)) + (𝑘 · 𝑇)) ∈ ran 𝑄))
193192rexbidv 3157 . . . . . . 7 (𝑥 = ((𝑄𝐾) − ((𝐸𝑌) − 𝑌)) → (∃𝑘 ∈ ℤ (𝑥 + (𝑘 · 𝑇)) ∈ ran 𝑄 ↔ ∃𝑘 ∈ ℤ (((𝑄𝐾) − ((𝐸𝑌) − 𝑌)) + (𝑘 · 𝑇)) ∈ ran 𝑄))
194193elrab 3659 . . . . . 6 (((𝑄𝐾) − ((𝐸𝑌) − 𝑌)) ∈ {𝑥 ∈ (𝐶[,]𝐷) ∣ ∃𝑘 ∈ ℤ (𝑥 + (𝑘 · 𝑇)) ∈ ran 𝑄} ↔ (((𝑄𝐾) − ((𝐸𝑌) − 𝑌)) ∈ (𝐶[,]𝐷) ∧ ∃𝑘 ∈ ℤ (((𝑄𝐾) − ((𝐸𝑌) − 𝑌)) + (𝑘 · 𝑇)) ∈ ran 𝑄))
195148, 190, 194sylanbrc 583 . . . . 5 ((𝜑 ∧ (𝑄𝐾) < (𝐸‘(𝑆‘(𝐽 + 1)))) → ((𝑄𝐾) − ((𝐸𝑌) − 𝑌)) ∈ {𝑥 ∈ (𝐶[,]𝐷) ∣ ∃𝑘 ∈ ℤ (𝑥 + (𝑘 · 𝑇)) ∈ ran 𝑄})
196 elun2 4146 . . . . 5 (((𝑄𝐾) − ((𝐸𝑌) − 𝑌)) ∈ {𝑥 ∈ (𝐶[,]𝐷) ∣ ∃𝑘 ∈ ℤ (𝑥 + (𝑘 · 𝑇)) ∈ ran 𝑄} → ((𝑄𝐾) − ((𝐸𝑌) − 𝑌)) ∈ ({𝐶, 𝐷} ∪ {𝑥 ∈ (𝐶[,]𝐷) ∣ ∃𝑘 ∈ ℤ (𝑥 + (𝑘 · 𝑇)) ∈ ran 𝑄}))
197195, 196syl 17 . . . 4 ((𝜑 ∧ (𝑄𝐾) < (𝐸‘(𝑆‘(𝐽 + 1)))) → ((𝑄𝐾) − ((𝐸𝑌) − 𝑌)) ∈ ({𝐶, 𝐷} ∪ {𝑥 ∈ (𝐶[,]𝐷) ∣ ∃𝑘 ∈ ℤ (𝑥 + (𝑘 · 𝑇)) ∈ ran 𝑄}))
198 fourierdlem63.x . . . 4 𝑋 = ((𝑄𝐾) − ((𝐸𝑌) − 𝑌))
199197, 198, 183eltr4g 2845 . . 3 ((𝜑 ∧ (𝑄𝐾) < (𝐸‘(𝑆‘(𝐽 + 1)))) → 𝑋𝐻)
200 elfzelz 13485 . . . . . . . . 9 (𝑗 ∈ (0...𝑁) → 𝑗 ∈ ℤ)
201200ad2antlr 727 . . . . . . . 8 (((𝜑𝑗 ∈ (0...𝑁)) ∧ ((𝑆𝐽) < (𝑆𝑗) ∧ (𝑆𝑗) < (𝑆‘(𝐽 + 1)))) → 𝑗 ∈ ℤ)
202 elfzoelz 13620 . . . . . . . . . . 11 (𝐽 ∈ (0..^𝑁) → 𝐽 ∈ ℤ)
20331, 202syl 17 . . . . . . . . . 10 (𝜑𝐽 ∈ ℤ)
204203ad2antrr 726 . . . . . . . . 9 (((𝜑𝑗 ∈ (0...𝑁)) ∧ ((𝑆𝐽) < (𝑆𝑗) ∧ (𝑆𝑗) < (𝑆‘(𝐽 + 1)))) → 𝐽 ∈ ℤ)
205 simpr 484 . . . . . . . . . . 11 (((𝜑𝑗 ∈ (0...𝑁)) ∧ (𝑆𝐽) < (𝑆𝑗)) → (𝑆𝐽) < (𝑆𝑗))
20621simprd 495 . . . . . . . . . . . . 13 (𝜑𝑆 Isom < , < ((0...𝑁), 𝐻))
207206ad2antrr 726 . . . . . . . . . . . 12 (((𝜑𝑗 ∈ (0...𝑁)) ∧ (𝑆𝐽) < (𝑆𝑗)) → 𝑆 Isom < , < ((0...𝑁), 𝐻))
20869ad2antrr 726 . . . . . . . . . . . 12 (((𝜑𝑗 ∈ (0...𝑁)) ∧ (𝑆𝐽) < (𝑆𝑗)) → 𝐽 ∈ (0...𝑁))
209 simplr 768 . . . . . . . . . . . 12 (((𝜑𝑗 ∈ (0...𝑁)) ∧ (𝑆𝐽) < (𝑆𝑗)) → 𝑗 ∈ (0...𝑁))
210 isorel 7301 . . . . . . . . . . . 12 ((𝑆 Isom < , < ((0...𝑁), 𝐻) ∧ (𝐽 ∈ (0...𝑁) ∧ 𝑗 ∈ (0...𝑁))) → (𝐽 < 𝑗 ↔ (𝑆𝐽) < (𝑆𝑗)))
211207, 208, 209, 210syl12anc 836 . . . . . . . . . . 11 (((𝜑𝑗 ∈ (0...𝑁)) ∧ (𝑆𝐽) < (𝑆𝑗)) → (𝐽 < 𝑗 ↔ (𝑆𝐽) < (𝑆𝑗)))
212205, 211mpbird 257 . . . . . . . . . 10 (((𝜑𝑗 ∈ (0...𝑁)) ∧ (𝑆𝐽) < (𝑆𝑗)) → 𝐽 < 𝑗)
213212adantrr 717 . . . . . . . . 9 (((𝜑𝑗 ∈ (0...𝑁)) ∧ ((𝑆𝐽) < (𝑆𝑗) ∧ (𝑆𝑗) < (𝑆‘(𝐽 + 1)))) → 𝐽 < 𝑗)
214 simpr 484 . . . . . . . . . . 11 (((𝜑𝑗 ∈ (0...𝑁)) ∧ (𝑆𝑗) < (𝑆‘(𝐽 + 1))) → (𝑆𝑗) < (𝑆‘(𝐽 + 1)))
215206ad2antrr 726 . . . . . . . . . . . 12 (((𝜑𝑗 ∈ (0...𝑁)) ∧ (𝑆𝑗) < (𝑆‘(𝐽 + 1))) → 𝑆 Isom < , < ((0...𝑁), 𝐻))
216 simplr 768 . . . . . . . . . . . 12 (((𝜑𝑗 ∈ (0...𝑁)) ∧ (𝑆𝑗) < (𝑆‘(𝐽 + 1))) → 𝑗 ∈ (0...𝑁))
21733ad2antrr 726 . . . . . . . . . . . 12 (((𝜑𝑗 ∈ (0...𝑁)) ∧ (𝑆𝑗) < (𝑆‘(𝐽 + 1))) → (𝐽 + 1) ∈ (0...𝑁))
218 isorel 7301 . . . . . . . . . . . 12 ((𝑆 Isom < , < ((0...𝑁), 𝐻) ∧ (𝑗 ∈ (0...𝑁) ∧ (𝐽 + 1) ∈ (0...𝑁))) → (𝑗 < (𝐽 + 1) ↔ (𝑆𝑗) < (𝑆‘(𝐽 + 1))))
219215, 216, 217, 218syl12anc 836 . . . . . . . . . . 11 (((𝜑𝑗 ∈ (0...𝑁)) ∧ (𝑆𝑗) < (𝑆‘(𝐽 + 1))) → (𝑗 < (𝐽 + 1) ↔ (𝑆𝑗) < (𝑆‘(𝐽 + 1))))
220214, 219mpbird 257 . . . . . . . . . 10 (((𝜑𝑗 ∈ (0...𝑁)) ∧ (𝑆𝑗) < (𝑆‘(𝐽 + 1))) → 𝑗 < (𝐽 + 1))
221220adantrl 716 . . . . . . . . 9 (((𝜑𝑗 ∈ (0...𝑁)) ∧ ((𝑆𝐽) < (𝑆𝑗) ∧ (𝑆𝑗) < (𝑆‘(𝐽 + 1)))) → 𝑗 < (𝐽 + 1))
222 btwnnz 12610 . . . . . . . . 9 ((𝐽 ∈ ℤ ∧ 𝐽 < 𝑗𝑗 < (𝐽 + 1)) → ¬ 𝑗 ∈ ℤ)
223204, 213, 221, 222syl3anc 1373 . . . . . . . 8 (((𝜑𝑗 ∈ (0...𝑁)) ∧ ((𝑆𝐽) < (𝑆𝑗) ∧ (𝑆𝑗) < (𝑆‘(𝐽 + 1)))) → ¬ 𝑗 ∈ ℤ)
224201, 223pm2.65da 816 . . . . . . 7 ((𝜑𝑗 ∈ (0...𝑁)) → ¬ ((𝑆𝐽) < (𝑆𝑗) ∧ (𝑆𝑗) < (𝑆‘(𝐽 + 1))))
225224adantlr 715 . . . . . 6 (((𝜑 ∧ (𝑄𝐾) < (𝐸‘(𝑆‘(𝐽 + 1)))) ∧ 𝑗 ∈ (0...𝑁)) → ¬ ((𝑆𝐽) < (𝑆𝑗) ∧ (𝑆𝑗) < (𝑆‘(𝐽 + 1))))
22670ad2antrr 726 . . . . . . . . 9 (((𝜑𝑗 ∈ (0...𝑁)) ∧ (𝑆𝑗) = 𝑋) → (𝑆𝐽) ∈ ℝ)
22775ad2antrr 726 . . . . . . . . 9 (((𝜑𝑗 ∈ (0...𝑁)) ∧ (𝑆𝑗) = 𝑋) → 𝑌 ∈ ℝ)
22830ffvelcdmda 7056 . . . . . . . . . 10 ((𝜑𝑗 ∈ (0...𝑁)) → (𝑆𝑗) ∈ ℝ)
229228adantr 480 . . . . . . . . 9 (((𝜑𝑗 ∈ (0...𝑁)) ∧ (𝑆𝑗) = 𝑋) → (𝑆𝑗) ∈ ℝ)
23074simp2d 1143 . . . . . . . . . 10 (𝜑 → (𝑆𝐽) ≤ 𝑌)
231230ad2antrr 726 . . . . . . . . 9 (((𝜑𝑗 ∈ (0...𝑁)) ∧ (𝑆𝑗) = 𝑋) → (𝑆𝐽) ≤ 𝑌)
232106, 198breqtrrdi 5149 . . . . . . . . . . . 12 (𝜑𝑌 < 𝑋)
233232adantr 480 . . . . . . . . . . 11 ((𝜑 ∧ (𝑆𝑗) = 𝑋) → 𝑌 < 𝑋)
234 eqcom 2736 . . . . . . . . . . . . 13 (𝑋 = (𝑆𝑗) ↔ (𝑆𝑗) = 𝑋)
235234biimpri 228 . . . . . . . . . . . 12 ((𝑆𝑗) = 𝑋𝑋 = (𝑆𝑗))
236235adantl 481 . . . . . . . . . . 11 ((𝜑 ∧ (𝑆𝑗) = 𝑋) → 𝑋 = (𝑆𝑗))
237233, 236breqtrd 5133 . . . . . . . . . 10 ((𝜑 ∧ (𝑆𝑗) = 𝑋) → 𝑌 < (𝑆𝑗))
238237adantlr 715 . . . . . . . . 9 (((𝜑𝑗 ∈ (0...𝑁)) ∧ (𝑆𝑗) = 𝑋) → 𝑌 < (𝑆𝑗))
239226, 227, 229, 231, 238lelttrd 11332 . . . . . . . 8 (((𝜑𝑗 ∈ (0...𝑁)) ∧ (𝑆𝑗) = 𝑋) → (𝑆𝐽) < (𝑆𝑗))
240239adantllr 719 . . . . . . 7 ((((𝜑 ∧ (𝑄𝐾) < (𝐸‘(𝑆‘(𝐽 + 1)))) ∧ 𝑗 ∈ (0...𝑁)) ∧ (𝑆𝑗) = 𝑋) → (𝑆𝐽) < (𝑆𝑗))
241 simpr 484 . . . . . . . . 9 (((𝜑 ∧ (𝑄𝐾) < (𝐸‘(𝑆‘(𝐽 + 1)))) ∧ (𝑆𝑗) = 𝑋) → (𝑆𝑗) = 𝑋)
242198, 139eqbrtrid 5142 . . . . . . . . . 10 ((𝜑 ∧ (𝑄𝐾) < (𝐸‘(𝑆‘(𝐽 + 1)))) → 𝑋 < (𝑆‘(𝐽 + 1)))
243242adantr 480 . . . . . . . . 9 (((𝜑 ∧ (𝑄𝐾) < (𝐸‘(𝑆‘(𝐽 + 1)))) ∧ (𝑆𝑗) = 𝑋) → 𝑋 < (𝑆‘(𝐽 + 1)))
244241, 243eqbrtrd 5129 . . . . . . . 8 (((𝜑 ∧ (𝑄𝐾) < (𝐸‘(𝑆‘(𝐽 + 1)))) ∧ (𝑆𝑗) = 𝑋) → (𝑆𝑗) < (𝑆‘(𝐽 + 1)))
245244adantlr 715 . . . . . . 7 ((((𝜑 ∧ (𝑄𝐾) < (𝐸‘(𝑆‘(𝐽 + 1)))) ∧ 𝑗 ∈ (0...𝑁)) ∧ (𝑆𝑗) = 𝑋) → (𝑆𝑗) < (𝑆‘(𝐽 + 1)))
246240, 245jca 511 . . . . . 6 ((((𝜑 ∧ (𝑄𝐾) < (𝐸‘(𝑆‘(𝐽 + 1)))) ∧ 𝑗 ∈ (0...𝑁)) ∧ (𝑆𝑗) = 𝑋) → ((𝑆𝐽) < (𝑆𝑗) ∧ (𝑆𝑗) < (𝑆‘(𝐽 + 1))))
247225, 246mtand 815 . . . . 5 (((𝜑 ∧ (𝑄𝐾) < (𝐸‘(𝑆‘(𝐽 + 1)))) ∧ 𝑗 ∈ (0...𝑁)) → ¬ (𝑆𝑗) = 𝑋)
248247nrexdv 3128 . . . 4 ((𝜑 ∧ (𝑄𝐾) < (𝐸‘(𝑆‘(𝐽 + 1)))) → ¬ ∃𝑗 ∈ (0...𝑁)(𝑆𝑗) = 𝑋)
249 isof1o 7298 . . . . . . . . 9 (𝑆 Isom < , < ((0...𝑁), 𝐻) → 𝑆:(0...𝑁)–1-1-onto𝐻)
250206, 249syl 17 . . . . . . . 8 (𝜑𝑆:(0...𝑁)–1-1-onto𝐻)
251 f1ofo 6807 . . . . . . . 8 (𝑆:(0...𝑁)–1-1-onto𝐻𝑆:(0...𝑁)–onto𝐻)
252250, 251syl 17 . . . . . . 7 (𝜑𝑆:(0...𝑁)–onto𝐻)
253 foelrn 7079 . . . . . . 7 ((𝑆:(0...𝑁)–onto𝐻𝑋𝐻) → ∃𝑗 ∈ (0...𝑁)𝑋 = (𝑆𝑗))
254252, 253sylan 580 . . . . . 6 ((𝜑𝑋𝐻) → ∃𝑗 ∈ (0...𝑁)𝑋 = (𝑆𝑗))
255234rexbii 3076 . . . . . 6 (∃𝑗 ∈ (0...𝑁)𝑋 = (𝑆𝑗) ↔ ∃𝑗 ∈ (0...𝑁)(𝑆𝑗) = 𝑋)
256254, 255sylib 218 . . . . 5 ((𝜑𝑋𝐻) → ∃𝑗 ∈ (0...𝑁)(𝑆𝑗) = 𝑋)
257256adantlr 715 . . . 4 (((𝜑 ∧ (𝑄𝐾) < (𝐸‘(𝑆‘(𝐽 + 1)))) ∧ 𝑋𝐻) → ∃𝑗 ∈ (0...𝑁)(𝑆𝑗) = 𝑋)
258248, 257mtand 815 . . 3 ((𝜑 ∧ (𝑄𝐾) < (𝐸‘(𝑆‘(𝐽 + 1)))) → ¬ 𝑋𝐻)
259199, 258pm2.65da 816 . 2 (𝜑 → ¬ (𝑄𝐾) < (𝐸‘(𝑆‘(𝐽 + 1))))
26052, 60, 259nltled 11324 1 (𝜑 → (𝐸‘(𝑆‘(𝐽 + 1))) ≤ (𝑄𝐾))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wral 3044  wrex 3053  {crab 3405  cun 3912  wss 3914  {cpr 4591   class class class wbr 5107  cmpt 5188  dom cdm 5638  ran crn 5639  cio 6462  Fun wfun 6505  wf 6507  ontowfo 6509  1-1-ontowf1o 6510  cfv 6511   Isom wiso 6512  (class class class)co 7387  m cmap 8799  cc 11066  cr 11067  0cc0 11068  1c1 11069   + caddc 11071   · cmul 11073  *cxr 11207   < clt 11208  cle 11209  cmin 11405   / cdiv 11835  cn 12186  cz 12529  (,]cioc 13307  [,)cico 13308  [,]cicc 13309  ...cfz 13468  ..^cfzo 13615  cfl 13752  chash 14295
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-inf2 9594  ax-cnex 11124  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145  ax-pre-sup 11146
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-int 4911  df-iun 4957  df-iin 4958  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-se 5592  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-isom 6520  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-om 7843  df-1st 7968  df-2nd 7969  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-1o 8434  df-2o 8435  df-oadd 8438  df-er 8671  df-map 8801  df-en 8919  df-dom 8920  df-sdom 8921  df-fin 8922  df-fi 9362  df-sup 9393  df-inf 9394  df-oi 9463  df-dju 9854  df-card 9892  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-div 11836  df-nn 12187  df-2 12249  df-3 12250  df-n0 12443  df-xnn0 12516  df-z 12530  df-uz 12794  df-q 12908  df-rp 12952  df-xneg 13072  df-xadd 13073  df-xmul 13074  df-ioo 13310  df-ioc 13311  df-ico 13312  df-icc 13313  df-fz 13469  df-fzo 13616  df-fl 13754  df-seq 13967  df-exp 14027  df-hash 14296  df-cj 15065  df-re 15066  df-im 15067  df-sqrt 15201  df-abs 15202  df-rest 17385  df-topgen 17406  df-psmet 21256  df-xmet 21257  df-met 21258  df-bl 21259  df-mopn 21260  df-top 22781  df-topon 22798  df-bases 22833  df-cld 22906  df-ntr 22907  df-cls 22908  df-nei 22985  df-lp 23023  df-cmp 23274
This theorem is referenced by:  fourierdlem79  46183
  Copyright terms: Public domain W3C validator