Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fourierdlem63 Structured version   Visualization version   GIF version

Theorem fourierdlem63 46174
Description: The upper bound of intervals in the moved partition are mapped to points that are not greater than the corresponding upper bounds in the original partition. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Hypotheses
Ref Expression
fourierdlem63.t 𝑇 = (𝐵𝐴)
fourierdlem63.p 𝑃 = (𝑚 ∈ ℕ ↦ {𝑝 ∈ (ℝ ↑m (0...𝑚)) ∣ (((𝑝‘0) = 𝐴 ∧ (𝑝𝑚) = 𝐵) ∧ ∀𝑖 ∈ (0..^𝑚)(𝑝𝑖) < (𝑝‘(𝑖 + 1)))})
fourierdlem63.m (𝜑𝑀 ∈ ℕ)
fourierdlem63.q (𝜑𝑄 ∈ (𝑃𝑀))
fourierdlem63.c (𝜑𝐶 ∈ ℝ)
fourierdlem63.d (𝜑𝐷 ∈ ℝ)
fourierdlem63.cltd (𝜑𝐶 < 𝐷)
fourierdlem63.o 𝑂 = (𝑚 ∈ ℕ ↦ {𝑝 ∈ (ℝ ↑m (0...𝑚)) ∣ (((𝑝‘0) = 𝐶 ∧ (𝑝𝑚) = 𝐷) ∧ ∀𝑖 ∈ (0..^𝑚)(𝑝𝑖) < (𝑝‘(𝑖 + 1)))})
fourierdlem63.h 𝐻 = ({𝐶, 𝐷} ∪ {𝑥 ∈ (𝐶[,]𝐷) ∣ ∃𝑘 ∈ ℤ (𝑥 + (𝑘 · 𝑇)) ∈ ran 𝑄})
fourierdlem63.n 𝑁 = ((♯‘𝐻) − 1)
fourierdlem63.s 𝑆 = (℩𝑓𝑓 Isom < , < ((0...𝑁), 𝐻))
fourierdlem63.e 𝐸 = (𝑥 ∈ ℝ ↦ (𝑥 + ((⌊‘((𝐵𝑥) / 𝑇)) · 𝑇)))
fourierdlem63.k (𝜑𝐾 ∈ (0...𝑀))
fourierdlem63.j (𝜑𝐽 ∈ (0..^𝑁))
fourierdlem63.y (𝜑𝑌 ∈ ((𝑆𝐽)[,)(𝑆‘(𝐽 + 1))))
fourierdlem63.eyltqk (𝜑 → (𝐸𝑌) < (𝑄𝐾))
fourierdlem63.x 𝑋 = ((𝑄𝐾) − ((𝐸𝑌) − 𝑌))
Assertion
Ref Expression
fourierdlem63 (𝜑 → (𝐸‘(𝑆‘(𝐽 + 1))) ≤ (𝑄𝐾))
Distinct variable groups:   𝐴,𝑖,𝑚,𝑝   𝑥,𝐴,𝑖   𝐵,𝑖,𝑚,𝑝   𝑥,𝐵   𝐶,𝑖,𝑚,𝑝   𝑥,𝐶   𝐷,𝑖,𝑚,𝑝   𝑥,𝐷   𝑘,𝐸,𝑥   𝑓,𝐻   𝑥,𝐻   𝑘,𝐽,𝑥   𝑘,𝐾,𝑥   𝑖,𝑀,𝑚,𝑝   𝑓,𝑁   𝑖,𝑁,𝑚,𝑝   𝑥,𝑁   𝑄,𝑖,𝑘,𝑥   𝑄,𝑝   𝑆,𝑓   𝑆,𝑖,𝑘,𝑥   𝑆,𝑝   𝑇,𝑖,𝑘,𝑥   𝑘,𝑌,𝑥   𝜑,𝑓   𝜑,𝑖,𝑘,𝑥
Allowed substitution hints:   𝜑(𝑚,𝑝)   𝐴(𝑓,𝑘)   𝐵(𝑓,𝑘)   𝐶(𝑓,𝑘)   𝐷(𝑓,𝑘)   𝑃(𝑥,𝑓,𝑖,𝑘,𝑚,𝑝)   𝑄(𝑓,𝑚)   𝑆(𝑚)   𝑇(𝑓,𝑚,𝑝)   𝐸(𝑓,𝑖,𝑚,𝑝)   𝐻(𝑖,𝑘,𝑚,𝑝)   𝐽(𝑓,𝑖,𝑚,𝑝)   𝐾(𝑓,𝑖,𝑚,𝑝)   𝑀(𝑥,𝑓,𝑘)   𝑁(𝑘)   𝑂(𝑥,𝑓,𝑖,𝑘,𝑚,𝑝)   𝑋(𝑥,𝑓,𝑖,𝑘,𝑚,𝑝)   𝑌(𝑓,𝑖,𝑚,𝑝)

Proof of Theorem fourierdlem63
Dummy variable 𝑗 is distinct from all other variables.
StepHypRef Expression
1 fourierdlem63.e . . . . 5 𝐸 = (𝑥 ∈ ℝ ↦ (𝑥 + ((⌊‘((𝐵𝑥) / 𝑇)) · 𝑇)))
21a1i 11 . . . 4 (𝜑𝐸 = (𝑥 ∈ ℝ ↦ (𝑥 + ((⌊‘((𝐵𝑥) / 𝑇)) · 𝑇))))
3 id 22 . . . . . 6 (𝑥 = (𝑆‘(𝐽 + 1)) → 𝑥 = (𝑆‘(𝐽 + 1)))
4 oveq2 7398 . . . . . . . . 9 (𝑥 = (𝑆‘(𝐽 + 1)) → (𝐵𝑥) = (𝐵 − (𝑆‘(𝐽 + 1))))
54oveq1d 7405 . . . . . . . 8 (𝑥 = (𝑆‘(𝐽 + 1)) → ((𝐵𝑥) / 𝑇) = ((𝐵 − (𝑆‘(𝐽 + 1))) / 𝑇))
65fveq2d 6865 . . . . . . 7 (𝑥 = (𝑆‘(𝐽 + 1)) → (⌊‘((𝐵𝑥) / 𝑇)) = (⌊‘((𝐵 − (𝑆‘(𝐽 + 1))) / 𝑇)))
76oveq1d 7405 . . . . . 6 (𝑥 = (𝑆‘(𝐽 + 1)) → ((⌊‘((𝐵𝑥) / 𝑇)) · 𝑇) = ((⌊‘((𝐵 − (𝑆‘(𝐽 + 1))) / 𝑇)) · 𝑇))
83, 7oveq12d 7408 . . . . 5 (𝑥 = (𝑆‘(𝐽 + 1)) → (𝑥 + ((⌊‘((𝐵𝑥) / 𝑇)) · 𝑇)) = ((𝑆‘(𝐽 + 1)) + ((⌊‘((𝐵 − (𝑆‘(𝐽 + 1))) / 𝑇)) · 𝑇)))
98adantl 481 . . . 4 ((𝜑𝑥 = (𝑆‘(𝐽 + 1))) → (𝑥 + ((⌊‘((𝐵𝑥) / 𝑇)) · 𝑇)) = ((𝑆‘(𝐽 + 1)) + ((⌊‘((𝐵 − (𝑆‘(𝐽 + 1))) / 𝑇)) · 𝑇)))
10 fourierdlem63.t . . . . . . . . . . 11 𝑇 = (𝐵𝐴)
11 fourierdlem63.p . . . . . . . . . . 11 𝑃 = (𝑚 ∈ ℕ ↦ {𝑝 ∈ (ℝ ↑m (0...𝑚)) ∣ (((𝑝‘0) = 𝐴 ∧ (𝑝𝑚) = 𝐵) ∧ ∀𝑖 ∈ (0..^𝑚)(𝑝𝑖) < (𝑝‘(𝑖 + 1)))})
12 fourierdlem63.m . . . . . . . . . . 11 (𝜑𝑀 ∈ ℕ)
13 fourierdlem63.q . . . . . . . . . . 11 (𝜑𝑄 ∈ (𝑃𝑀))
14 fourierdlem63.c . . . . . . . . . . 11 (𝜑𝐶 ∈ ℝ)
15 fourierdlem63.d . . . . . . . . . . 11 (𝜑𝐷 ∈ ℝ)
16 fourierdlem63.cltd . . . . . . . . . . 11 (𝜑𝐶 < 𝐷)
17 fourierdlem63.o . . . . . . . . . . 11 𝑂 = (𝑚 ∈ ℕ ↦ {𝑝 ∈ (ℝ ↑m (0...𝑚)) ∣ (((𝑝‘0) = 𝐶 ∧ (𝑝𝑚) = 𝐷) ∧ ∀𝑖 ∈ (0..^𝑚)(𝑝𝑖) < (𝑝‘(𝑖 + 1)))})
18 fourierdlem63.h . . . . . . . . . . 11 𝐻 = ({𝐶, 𝐷} ∪ {𝑥 ∈ (𝐶[,]𝐷) ∣ ∃𝑘 ∈ ℤ (𝑥 + (𝑘 · 𝑇)) ∈ ran 𝑄})
19 fourierdlem63.n . . . . . . . . . . 11 𝑁 = ((♯‘𝐻) − 1)
20 fourierdlem63.s . . . . . . . . . . 11 𝑆 = (℩𝑓𝑓 Isom < , < ((0...𝑁), 𝐻))
2110, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20fourierdlem54 46165 . . . . . . . . . 10 (𝜑 → ((𝑁 ∈ ℕ ∧ 𝑆 ∈ (𝑂𝑁)) ∧ 𝑆 Isom < , < ((0...𝑁), 𝐻)))
2221simpld 494 . . . . . . . . 9 (𝜑 → (𝑁 ∈ ℕ ∧ 𝑆 ∈ (𝑂𝑁)))
2322simprd 495 . . . . . . . 8 (𝜑𝑆 ∈ (𝑂𝑁))
2422simpld 494 . . . . . . . . 9 (𝜑𝑁 ∈ ℕ)
2517fourierdlem2 46114 . . . . . . . . 9 (𝑁 ∈ ℕ → (𝑆 ∈ (𝑂𝑁) ↔ (𝑆 ∈ (ℝ ↑m (0...𝑁)) ∧ (((𝑆‘0) = 𝐶 ∧ (𝑆𝑁) = 𝐷) ∧ ∀𝑖 ∈ (0..^𝑁)(𝑆𝑖) < (𝑆‘(𝑖 + 1))))))
2624, 25syl 17 . . . . . . . 8 (𝜑 → (𝑆 ∈ (𝑂𝑁) ↔ (𝑆 ∈ (ℝ ↑m (0...𝑁)) ∧ (((𝑆‘0) = 𝐶 ∧ (𝑆𝑁) = 𝐷) ∧ ∀𝑖 ∈ (0..^𝑁)(𝑆𝑖) < (𝑆‘(𝑖 + 1))))))
2723, 26mpbid 232 . . . . . . 7 (𝜑 → (𝑆 ∈ (ℝ ↑m (0...𝑁)) ∧ (((𝑆‘0) = 𝐶 ∧ (𝑆𝑁) = 𝐷) ∧ ∀𝑖 ∈ (0..^𝑁)(𝑆𝑖) < (𝑆‘(𝑖 + 1)))))
2827simpld 494 . . . . . 6 (𝜑𝑆 ∈ (ℝ ↑m (0...𝑁)))
29 elmapi 8825 . . . . . 6 (𝑆 ∈ (ℝ ↑m (0...𝑁)) → 𝑆:(0...𝑁)⟶ℝ)
3028, 29syl 17 . . . . 5 (𝜑𝑆:(0...𝑁)⟶ℝ)
31 fourierdlem63.j . . . . . 6 (𝜑𝐽 ∈ (0..^𝑁))
32 fzofzp1 13732 . . . . . 6 (𝐽 ∈ (0..^𝑁) → (𝐽 + 1) ∈ (0...𝑁))
3331, 32syl 17 . . . . 5 (𝜑 → (𝐽 + 1) ∈ (0...𝑁))
3430, 33ffvelcdmd 7060 . . . 4 (𝜑 → (𝑆‘(𝐽 + 1)) ∈ ℝ)
3511, 12, 13fourierdlem11 46123 . . . . . . . . . . 11 (𝜑 → (𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵))
3635simp2d 1143 . . . . . . . . . 10 (𝜑𝐵 ∈ ℝ)
3736, 34resubcld 11613 . . . . . . . . 9 (𝜑 → (𝐵 − (𝑆‘(𝐽 + 1))) ∈ ℝ)
3835simp1d 1142 . . . . . . . . . . 11 (𝜑𝐴 ∈ ℝ)
3936, 38resubcld 11613 . . . . . . . . . 10 (𝜑 → (𝐵𝐴) ∈ ℝ)
4010, 39eqeltrid 2833 . . . . . . . . 9 (𝜑𝑇 ∈ ℝ)
4135simp3d 1144 . . . . . . . . . . . 12 (𝜑𝐴 < 𝐵)
4238, 36posdifd 11772 . . . . . . . . . . . 12 (𝜑 → (𝐴 < 𝐵 ↔ 0 < (𝐵𝐴)))
4341, 42mpbid 232 . . . . . . . . . . 11 (𝜑 → 0 < (𝐵𝐴))
4443, 10breqtrrdi 5152 . . . . . . . . . 10 (𝜑 → 0 < 𝑇)
4544gt0ne0d 11749 . . . . . . . . 9 (𝜑𝑇 ≠ 0)
4637, 40, 45redivcld 12017 . . . . . . . 8 (𝜑 → ((𝐵 − (𝑆‘(𝐽 + 1))) / 𝑇) ∈ ℝ)
4746flcld 13767 . . . . . . 7 (𝜑 → (⌊‘((𝐵 − (𝑆‘(𝐽 + 1))) / 𝑇)) ∈ ℤ)
4847zred 12645 . . . . . 6 (𝜑 → (⌊‘((𝐵 − (𝑆‘(𝐽 + 1))) / 𝑇)) ∈ ℝ)
4948, 40remulcld 11211 . . . . 5 (𝜑 → ((⌊‘((𝐵 − (𝑆‘(𝐽 + 1))) / 𝑇)) · 𝑇) ∈ ℝ)
5034, 49readdcld 11210 . . . 4 (𝜑 → ((𝑆‘(𝐽 + 1)) + ((⌊‘((𝐵 − (𝑆‘(𝐽 + 1))) / 𝑇)) · 𝑇)) ∈ ℝ)
512, 9, 34, 50fvmptd 6978 . . 3 (𝜑 → (𝐸‘(𝑆‘(𝐽 + 1))) = ((𝑆‘(𝐽 + 1)) + ((⌊‘((𝐵 − (𝑆‘(𝐽 + 1))) / 𝑇)) · 𝑇)))
5251, 50eqeltrd 2829 . 2 (𝜑 → (𝐸‘(𝑆‘(𝐽 + 1))) ∈ ℝ)
5311fourierdlem2 46114 . . . . . . 7 (𝑀 ∈ ℕ → (𝑄 ∈ (𝑃𝑀) ↔ (𝑄 ∈ (ℝ ↑m (0...𝑀)) ∧ (((𝑄‘0) = 𝐴 ∧ (𝑄𝑀) = 𝐵) ∧ ∀𝑖 ∈ (0..^𝑀)(𝑄𝑖) < (𝑄‘(𝑖 + 1))))))
5412, 53syl 17 . . . . . 6 (𝜑 → (𝑄 ∈ (𝑃𝑀) ↔ (𝑄 ∈ (ℝ ↑m (0...𝑀)) ∧ (((𝑄‘0) = 𝐴 ∧ (𝑄𝑀) = 𝐵) ∧ ∀𝑖 ∈ (0..^𝑀)(𝑄𝑖) < (𝑄‘(𝑖 + 1))))))
5513, 54mpbid 232 . . . . 5 (𝜑 → (𝑄 ∈ (ℝ ↑m (0...𝑀)) ∧ (((𝑄‘0) = 𝐴 ∧ (𝑄𝑀) = 𝐵) ∧ ∀𝑖 ∈ (0..^𝑀)(𝑄𝑖) < (𝑄‘(𝑖 + 1)))))
5655simpld 494 . . . 4 (𝜑𝑄 ∈ (ℝ ↑m (0...𝑀)))
57 elmapi 8825 . . . 4 (𝑄 ∈ (ℝ ↑m (0...𝑀)) → 𝑄:(0...𝑀)⟶ℝ)
5856, 57syl 17 . . 3 (𝜑𝑄:(0...𝑀)⟶ℝ)
59 fourierdlem63.k . . 3 (𝜑𝐾 ∈ (0...𝑀))
6058, 59ffvelcdmd 7060 . 2 (𝜑 → (𝑄𝐾) ∈ ℝ)
6114adantr 480 . . . . . . 7 ((𝜑 ∧ (𝑄𝐾) < (𝐸‘(𝑆‘(𝐽 + 1)))) → 𝐶 ∈ ℝ)
6215adantr 480 . . . . . . 7 ((𝜑 ∧ (𝑄𝐾) < (𝐸‘(𝑆‘(𝐽 + 1)))) → 𝐷 ∈ ℝ)
6338rexrd 11231 . . . . . . . . . . . 12 (𝜑𝐴 ∈ ℝ*)
64 iocssre 13395 . . . . . . . . . . . 12 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ) → (𝐴(,]𝐵) ⊆ ℝ)
6563, 36, 64syl2anc 584 . . . . . . . . . . 11 (𝜑 → (𝐴(,]𝐵) ⊆ ℝ)
6638, 36, 41, 10, 1fourierdlem4 46116 . . . . . . . . . . . 12 (𝜑𝐸:ℝ⟶(𝐴(,]𝐵))
67 fourierdlem63.y . . . . . . . . . . . . . 14 (𝜑𝑌 ∈ ((𝑆𝐽)[,)(𝑆‘(𝐽 + 1))))
68 elfzofz 13643 . . . . . . . . . . . . . . . . 17 (𝐽 ∈ (0..^𝑁) → 𝐽 ∈ (0...𝑁))
6931, 68syl 17 . . . . . . . . . . . . . . . 16 (𝜑𝐽 ∈ (0...𝑁))
7030, 69ffvelcdmd 7060 . . . . . . . . . . . . . . 15 (𝜑 → (𝑆𝐽) ∈ ℝ)
7134rexrd 11231 . . . . . . . . . . . . . . 15 (𝜑 → (𝑆‘(𝐽 + 1)) ∈ ℝ*)
72 elico2 13378 . . . . . . . . . . . . . . 15 (((𝑆𝐽) ∈ ℝ ∧ (𝑆‘(𝐽 + 1)) ∈ ℝ*) → (𝑌 ∈ ((𝑆𝐽)[,)(𝑆‘(𝐽 + 1))) ↔ (𝑌 ∈ ℝ ∧ (𝑆𝐽) ≤ 𝑌𝑌 < (𝑆‘(𝐽 + 1)))))
7370, 71, 72syl2anc 584 . . . . . . . . . . . . . 14 (𝜑 → (𝑌 ∈ ((𝑆𝐽)[,)(𝑆‘(𝐽 + 1))) ↔ (𝑌 ∈ ℝ ∧ (𝑆𝐽) ≤ 𝑌𝑌 < (𝑆‘(𝐽 + 1)))))
7467, 73mpbid 232 . . . . . . . . . . . . 13 (𝜑 → (𝑌 ∈ ℝ ∧ (𝑆𝐽) ≤ 𝑌𝑌 < (𝑆‘(𝐽 + 1))))
7574simp1d 1142 . . . . . . . . . . . 12 (𝜑𝑌 ∈ ℝ)
7666, 75ffvelcdmd 7060 . . . . . . . . . . 11 (𝜑 → (𝐸𝑌) ∈ (𝐴(,]𝐵))
7765, 76sseldd 3950 . . . . . . . . . 10 (𝜑 → (𝐸𝑌) ∈ ℝ)
7877, 75resubcld 11613 . . . . . . . . 9 (𝜑 → ((𝐸𝑌) − 𝑌) ∈ ℝ)
7960, 78resubcld 11613 . . . . . . . 8 (𝜑 → ((𝑄𝐾) − ((𝐸𝑌) − 𝑌)) ∈ ℝ)
8079adantr 480 . . . . . . 7 ((𝜑 ∧ (𝑄𝐾) < (𝐸‘(𝑆‘(𝐽 + 1)))) → ((𝑄𝐾) − ((𝐸𝑌) − 𝑌)) ∈ ℝ)
81 icossicc 13404 . . . . . . . . . . . . . 14 ((𝑆𝐽)[,)(𝑆‘(𝐽 + 1))) ⊆ ((𝑆𝐽)[,](𝑆‘(𝐽 + 1)))
8214rexrd 11231 . . . . . . . . . . . . . . 15 (𝜑𝐶 ∈ ℝ*)
8315rexrd 11231 . . . . . . . . . . . . . . 15 (𝜑𝐷 ∈ ℝ*)
8417, 24, 23fourierdlem15 46127 . . . . . . . . . . . . . . 15 (𝜑𝑆:(0...𝑁)⟶(𝐶[,]𝐷))
8582, 83, 84, 31fourierdlem8 46120 . . . . . . . . . . . . . 14 (𝜑 → ((𝑆𝐽)[,](𝑆‘(𝐽 + 1))) ⊆ (𝐶[,]𝐷))
8681, 85sstrid 3961 . . . . . . . . . . . . 13 (𝜑 → ((𝑆𝐽)[,)(𝑆‘(𝐽 + 1))) ⊆ (𝐶[,]𝐷))
8786, 67sseldd 3950 . . . . . . . . . . . 12 (𝜑𝑌 ∈ (𝐶[,]𝐷))
88 elicc2 13379 . . . . . . . . . . . . 13 ((𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ) → (𝑌 ∈ (𝐶[,]𝐷) ↔ (𝑌 ∈ ℝ ∧ 𝐶𝑌𝑌𝐷)))
8914, 15, 88syl2anc 584 . . . . . . . . . . . 12 (𝜑 → (𝑌 ∈ (𝐶[,]𝐷) ↔ (𝑌 ∈ ℝ ∧ 𝐶𝑌𝑌𝐷)))
9087, 89mpbid 232 . . . . . . . . . . 11 (𝜑 → (𝑌 ∈ ℝ ∧ 𝐶𝑌𝑌𝐷))
9190simp2d 1143 . . . . . . . . . 10 (𝜑𝐶𝑌)
9260, 77resubcld 11613 . . . . . . . . . . . . 13 (𝜑 → ((𝑄𝐾) − (𝐸𝑌)) ∈ ℝ)
93 fourierdlem63.eyltqk . . . . . . . . . . . . . 14 (𝜑 → (𝐸𝑌) < (𝑄𝐾))
9477, 60posdifd 11772 . . . . . . . . . . . . . 14 (𝜑 → ((𝐸𝑌) < (𝑄𝐾) ↔ 0 < ((𝑄𝐾) − (𝐸𝑌))))
9593, 94mpbid 232 . . . . . . . . . . . . 13 (𝜑 → 0 < ((𝑄𝐾) − (𝐸𝑌)))
9692, 95elrpd 12999 . . . . . . . . . . . 12 (𝜑 → ((𝑄𝐾) − (𝐸𝑌)) ∈ ℝ+)
9775, 96ltaddrpd 13035 . . . . . . . . . . 11 (𝜑𝑌 < (𝑌 + ((𝑄𝐾) − (𝐸𝑌))))
9860recnd 11209 . . . . . . . . . . . . 13 (𝜑 → (𝑄𝐾) ∈ ℂ)
9977recnd 11209 . . . . . . . . . . . . 13 (𝜑 → (𝐸𝑌) ∈ ℂ)
10075recnd 11209 . . . . . . . . . . . . 13 (𝜑𝑌 ∈ ℂ)
10198, 99, 100subsub3d 11570 . . . . . . . . . . . 12 (𝜑 → ((𝑄𝐾) − ((𝐸𝑌) − 𝑌)) = (((𝑄𝐾) + 𝑌) − (𝐸𝑌)))
10298, 100addcomd 11383 . . . . . . . . . . . . 13 (𝜑 → ((𝑄𝐾) + 𝑌) = (𝑌 + (𝑄𝐾)))
103102oveq1d 7405 . . . . . . . . . . . 12 (𝜑 → (((𝑄𝐾) + 𝑌) − (𝐸𝑌)) = ((𝑌 + (𝑄𝐾)) − (𝐸𝑌)))
104100, 98, 99addsubassd 11560 . . . . . . . . . . . 12 (𝜑 → ((𝑌 + (𝑄𝐾)) − (𝐸𝑌)) = (𝑌 + ((𝑄𝐾) − (𝐸𝑌))))
105101, 103, 1043eqtrrd 2770 . . . . . . . . . . 11 (𝜑 → (𝑌 + ((𝑄𝐾) − (𝐸𝑌))) = ((𝑄𝐾) − ((𝐸𝑌) − 𝑌)))
10697, 105breqtrd 5136 . . . . . . . . . 10 (𝜑𝑌 < ((𝑄𝐾) − ((𝐸𝑌) − 𝑌)))
10714, 75, 79, 91, 106lelttrd 11339 . . . . . . . . 9 (𝜑𝐶 < ((𝑄𝐾) − ((𝐸𝑌) − 𝑌)))
10814, 79, 107ltled 11329 . . . . . . . 8 (𝜑𝐶 ≤ ((𝑄𝐾) − ((𝐸𝑌) − 𝑌)))
109108adantr 480 . . . . . . 7 ((𝜑 ∧ (𝑄𝐾) < (𝐸‘(𝑆‘(𝐽 + 1)))) → 𝐶 ≤ ((𝑄𝐾) − ((𝐸𝑌) − 𝑌)))
11034adantr 480 . . . . . . . . 9 ((𝜑 ∧ (𝑄𝐾) < (𝐸‘(𝑆‘(𝐽 + 1)))) → (𝑆‘(𝐽 + 1)) ∈ ℝ)
11160adantr 480 . . . . . . . . . . 11 ((𝜑 ∧ (𝑄𝐾) < (𝐸‘(𝑆‘(𝐽 + 1)))) → (𝑄𝐾) ∈ ℝ)
11252, 34resubcld 11613 . . . . . . . . . . . 12 (𝜑 → ((𝐸‘(𝑆‘(𝐽 + 1))) − (𝑆‘(𝐽 + 1))) ∈ ℝ)
113112adantr 480 . . . . . . . . . . 11 ((𝜑 ∧ (𝑄𝐾) < (𝐸‘(𝑆‘(𝐽 + 1)))) → ((𝐸‘(𝑆‘(𝐽 + 1))) − (𝑆‘(𝐽 + 1))) ∈ ℝ)
114111, 113resubcld 11613 . . . . . . . . . 10 ((𝜑 ∧ (𝑄𝐾) < (𝐸‘(𝑆‘(𝐽 + 1)))) → ((𝑄𝐾) − ((𝐸‘(𝑆‘(𝐽 + 1))) − (𝑆‘(𝐽 + 1)))) ∈ ℝ)
11574simp3d 1144 . . . . . . . . . . . . . 14 (𝜑𝑌 < (𝑆‘(𝐽 + 1)))
11675, 34, 115ltled 11329 . . . . . . . . . . . . 13 (𝜑𝑌 ≤ (𝑆‘(𝐽 + 1)))
11738, 36, 41, 10, 1, 75, 34, 116fourierdlem7 46119 . . . . . . . . . . . 12 (𝜑 → ((𝐸‘(𝑆‘(𝐽 + 1))) − (𝑆‘(𝐽 + 1))) ≤ ((𝐸𝑌) − 𝑌))
118112, 78, 60, 117lesub2dd 11802 . . . . . . . . . . 11 (𝜑 → ((𝑄𝐾) − ((𝐸𝑌) − 𝑌)) ≤ ((𝑄𝐾) − ((𝐸‘(𝑆‘(𝐽 + 1))) − (𝑆‘(𝐽 + 1)))))
119118adantr 480 . . . . . . . . . 10 ((𝜑 ∧ (𝑄𝐾) < (𝐸‘(𝑆‘(𝐽 + 1)))) → ((𝑄𝐾) − ((𝐸𝑌) − 𝑌)) ≤ ((𝑄𝐾) − ((𝐸‘(𝑆‘(𝐽 + 1))) − (𝑆‘(𝐽 + 1)))))
12098adantr 480 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑄𝐾) < (𝐸‘(𝑆‘(𝐽 + 1)))) → (𝑄𝐾) ∈ ℂ)
12152recnd 11209 . . . . . . . . . . . . . 14 (𝜑 → (𝐸‘(𝑆‘(𝐽 + 1))) ∈ ℂ)
122121adantr 480 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑄𝐾) < (𝐸‘(𝑆‘(𝐽 + 1)))) → (𝐸‘(𝑆‘(𝐽 + 1))) ∈ ℂ)
123110recnd 11209 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑄𝐾) < (𝐸‘(𝑆‘(𝐽 + 1)))) → (𝑆‘(𝐽 + 1)) ∈ ℂ)
124120, 122, 123subsubd 11568 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑄𝐾) < (𝐸‘(𝑆‘(𝐽 + 1)))) → ((𝑄𝐾) − ((𝐸‘(𝑆‘(𝐽 + 1))) − (𝑆‘(𝐽 + 1)))) = (((𝑄𝐾) − (𝐸‘(𝑆‘(𝐽 + 1)))) + (𝑆‘(𝐽 + 1))))
12598, 121subcld 11540 . . . . . . . . . . . . . 14 (𝜑 → ((𝑄𝐾) − (𝐸‘(𝑆‘(𝐽 + 1)))) ∈ ℂ)
12634recnd 11209 . . . . . . . . . . . . . 14 (𝜑 → (𝑆‘(𝐽 + 1)) ∈ ℂ)
127125, 126addcomd 11383 . . . . . . . . . . . . 13 (𝜑 → (((𝑄𝐾) − (𝐸‘(𝑆‘(𝐽 + 1)))) + (𝑆‘(𝐽 + 1))) = ((𝑆‘(𝐽 + 1)) + ((𝑄𝐾) − (𝐸‘(𝑆‘(𝐽 + 1))))))
128127adantr 480 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑄𝐾) < (𝐸‘(𝑆‘(𝐽 + 1)))) → (((𝑄𝐾) − (𝐸‘(𝑆‘(𝐽 + 1)))) + (𝑆‘(𝐽 + 1))) = ((𝑆‘(𝐽 + 1)) + ((𝑄𝐾) − (𝐸‘(𝑆‘(𝐽 + 1))))))
129124, 128eqtrd 2765 . . . . . . . . . . 11 ((𝜑 ∧ (𝑄𝐾) < (𝐸‘(𝑆‘(𝐽 + 1)))) → ((𝑄𝐾) − ((𝐸‘(𝑆‘(𝐽 + 1))) − (𝑆‘(𝐽 + 1)))) = ((𝑆‘(𝐽 + 1)) + ((𝑄𝐾) − (𝐸‘(𝑆‘(𝐽 + 1))))))
130 simpr 484 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑄𝐾) < (𝐸‘(𝑆‘(𝐽 + 1)))) → (𝑄𝐾) < (𝐸‘(𝑆‘(𝐽 + 1))))
13152adantr 480 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑄𝐾) < (𝐸‘(𝑆‘(𝐽 + 1)))) → (𝐸‘(𝑆‘(𝐽 + 1))) ∈ ℝ)
132111, 131sublt0d 11811 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑄𝐾) < (𝐸‘(𝑆‘(𝐽 + 1)))) → (((𝑄𝐾) − (𝐸‘(𝑆‘(𝐽 + 1)))) < 0 ↔ (𝑄𝐾) < (𝐸‘(𝑆‘(𝐽 + 1)))))
133130, 132mpbird 257 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑄𝐾) < (𝐸‘(𝑆‘(𝐽 + 1)))) → ((𝑄𝐾) − (𝐸‘(𝑆‘(𝐽 + 1)))) < 0)
134111, 131resubcld 11613 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑄𝐾) < (𝐸‘(𝑆‘(𝐽 + 1)))) → ((𝑄𝐾) − (𝐸‘(𝑆‘(𝐽 + 1)))) ∈ ℝ)
135 ltaddneg 11397 . . . . . . . . . . . . 13 ((((𝑄𝐾) − (𝐸‘(𝑆‘(𝐽 + 1)))) ∈ ℝ ∧ (𝑆‘(𝐽 + 1)) ∈ ℝ) → (((𝑄𝐾) − (𝐸‘(𝑆‘(𝐽 + 1)))) < 0 ↔ ((𝑆‘(𝐽 + 1)) + ((𝑄𝐾) − (𝐸‘(𝑆‘(𝐽 + 1))))) < (𝑆‘(𝐽 + 1))))
136134, 110, 135syl2anc 584 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑄𝐾) < (𝐸‘(𝑆‘(𝐽 + 1)))) → (((𝑄𝐾) − (𝐸‘(𝑆‘(𝐽 + 1)))) < 0 ↔ ((𝑆‘(𝐽 + 1)) + ((𝑄𝐾) − (𝐸‘(𝑆‘(𝐽 + 1))))) < (𝑆‘(𝐽 + 1))))
137133, 136mpbid 232 . . . . . . . . . . 11 ((𝜑 ∧ (𝑄𝐾) < (𝐸‘(𝑆‘(𝐽 + 1)))) → ((𝑆‘(𝐽 + 1)) + ((𝑄𝐾) − (𝐸‘(𝑆‘(𝐽 + 1))))) < (𝑆‘(𝐽 + 1)))
138129, 137eqbrtrd 5132 . . . . . . . . . 10 ((𝜑 ∧ (𝑄𝐾) < (𝐸‘(𝑆‘(𝐽 + 1)))) → ((𝑄𝐾) − ((𝐸‘(𝑆‘(𝐽 + 1))) − (𝑆‘(𝐽 + 1)))) < (𝑆‘(𝐽 + 1)))
13980, 114, 110, 119, 138lelttrd 11339 . . . . . . . . 9 ((𝜑 ∧ (𝑄𝐾) < (𝐸‘(𝑆‘(𝐽 + 1)))) → ((𝑄𝐾) − ((𝐸𝑌) − 𝑌)) < (𝑆‘(𝐽 + 1)))
14084, 33ffvelcdmd 7060 . . . . . . . . . . . 12 (𝜑 → (𝑆‘(𝐽 + 1)) ∈ (𝐶[,]𝐷))
141 elicc2 13379 . . . . . . . . . . . . 13 ((𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ) → ((𝑆‘(𝐽 + 1)) ∈ (𝐶[,]𝐷) ↔ ((𝑆‘(𝐽 + 1)) ∈ ℝ ∧ 𝐶 ≤ (𝑆‘(𝐽 + 1)) ∧ (𝑆‘(𝐽 + 1)) ≤ 𝐷)))
14214, 15, 141syl2anc 584 . . . . . . . . . . . 12 (𝜑 → ((𝑆‘(𝐽 + 1)) ∈ (𝐶[,]𝐷) ↔ ((𝑆‘(𝐽 + 1)) ∈ ℝ ∧ 𝐶 ≤ (𝑆‘(𝐽 + 1)) ∧ (𝑆‘(𝐽 + 1)) ≤ 𝐷)))
143140, 142mpbid 232 . . . . . . . . . . 11 (𝜑 → ((𝑆‘(𝐽 + 1)) ∈ ℝ ∧ 𝐶 ≤ (𝑆‘(𝐽 + 1)) ∧ (𝑆‘(𝐽 + 1)) ≤ 𝐷))
144143simp3d 1144 . . . . . . . . . 10 (𝜑 → (𝑆‘(𝐽 + 1)) ≤ 𝐷)
145144adantr 480 . . . . . . . . 9 ((𝜑 ∧ (𝑄𝐾) < (𝐸‘(𝑆‘(𝐽 + 1)))) → (𝑆‘(𝐽 + 1)) ≤ 𝐷)
14680, 110, 62, 139, 145ltletrd 11341 . . . . . . . 8 ((𝜑 ∧ (𝑄𝐾) < (𝐸‘(𝑆‘(𝐽 + 1)))) → ((𝑄𝐾) − ((𝐸𝑌) − 𝑌)) < 𝐷)
14780, 62, 146ltled 11329 . . . . . . 7 ((𝜑 ∧ (𝑄𝐾) < (𝐸‘(𝑆‘(𝐽 + 1)))) → ((𝑄𝐾) − ((𝐸𝑌) − 𝑌)) ≤ 𝐷)
14861, 62, 80, 109, 147eliccd 45509 . . . . . 6 ((𝜑 ∧ (𝑄𝐾) < (𝐸‘(𝑆‘(𝐽 + 1)))) → ((𝑄𝐾) − ((𝐸𝑌) − 𝑌)) ∈ (𝐶[,]𝐷))
149 id 22 . . . . . . . . . . . . . . 15 (𝑥 = 𝑌𝑥 = 𝑌)
150 oveq2 7398 . . . . . . . . . . . . . . . . . 18 (𝑥 = 𝑌 → (𝐵𝑥) = (𝐵𝑌))
151150oveq1d 7405 . . . . . . . . . . . . . . . . 17 (𝑥 = 𝑌 → ((𝐵𝑥) / 𝑇) = ((𝐵𝑌) / 𝑇))
152151fveq2d 6865 . . . . . . . . . . . . . . . 16 (𝑥 = 𝑌 → (⌊‘((𝐵𝑥) / 𝑇)) = (⌊‘((𝐵𝑌) / 𝑇)))
153152oveq1d 7405 . . . . . . . . . . . . . . 15 (𝑥 = 𝑌 → ((⌊‘((𝐵𝑥) / 𝑇)) · 𝑇) = ((⌊‘((𝐵𝑌) / 𝑇)) · 𝑇))
154149, 153oveq12d 7408 . . . . . . . . . . . . . 14 (𝑥 = 𝑌 → (𝑥 + ((⌊‘((𝐵𝑥) / 𝑇)) · 𝑇)) = (𝑌 + ((⌊‘((𝐵𝑌) / 𝑇)) · 𝑇)))
155154adantl 481 . . . . . . . . . . . . 13 ((𝜑𝑥 = 𝑌) → (𝑥 + ((⌊‘((𝐵𝑥) / 𝑇)) · 𝑇)) = (𝑌 + ((⌊‘((𝐵𝑌) / 𝑇)) · 𝑇)))
15636, 75resubcld 11613 . . . . . . . . . . . . . . . . . 18 (𝜑 → (𝐵𝑌) ∈ ℝ)
157156, 40, 45redivcld 12017 . . . . . . . . . . . . . . . . 17 (𝜑 → ((𝐵𝑌) / 𝑇) ∈ ℝ)
158157flcld 13767 . . . . . . . . . . . . . . . 16 (𝜑 → (⌊‘((𝐵𝑌) / 𝑇)) ∈ ℤ)
159158zred 12645 . . . . . . . . . . . . . . 15 (𝜑 → (⌊‘((𝐵𝑌) / 𝑇)) ∈ ℝ)
160159, 40remulcld 11211 . . . . . . . . . . . . . 14 (𝜑 → ((⌊‘((𝐵𝑌) / 𝑇)) · 𝑇) ∈ ℝ)
16175, 160readdcld 11210 . . . . . . . . . . . . 13 (𝜑 → (𝑌 + ((⌊‘((𝐵𝑌) / 𝑇)) · 𝑇)) ∈ ℝ)
1622, 155, 75, 161fvmptd 6978 . . . . . . . . . . . 12 (𝜑 → (𝐸𝑌) = (𝑌 + ((⌊‘((𝐵𝑌) / 𝑇)) · 𝑇)))
163162oveq1d 7405 . . . . . . . . . . 11 (𝜑 → ((𝐸𝑌) − 𝑌) = ((𝑌 + ((⌊‘((𝐵𝑌) / 𝑇)) · 𝑇)) − 𝑌))
164163oveq1d 7405 . . . . . . . . . 10 (𝜑 → (((𝐸𝑌) − 𝑌) / 𝑇) = (((𝑌 + ((⌊‘((𝐵𝑌) / 𝑇)) · 𝑇)) − 𝑌) / 𝑇))
165160recnd 11209 . . . . . . . . . . . 12 (𝜑 → ((⌊‘((𝐵𝑌) / 𝑇)) · 𝑇) ∈ ℂ)
166100, 165pncan2d 11542 . . . . . . . . . . 11 (𝜑 → ((𝑌 + ((⌊‘((𝐵𝑌) / 𝑇)) · 𝑇)) − 𝑌) = ((⌊‘((𝐵𝑌) / 𝑇)) · 𝑇))
167166oveq1d 7405 . . . . . . . . . 10 (𝜑 → (((𝑌 + ((⌊‘((𝐵𝑌) / 𝑇)) · 𝑇)) − 𝑌) / 𝑇) = (((⌊‘((𝐵𝑌) / 𝑇)) · 𝑇) / 𝑇))
168159recnd 11209 . . . . . . . . . . 11 (𝜑 → (⌊‘((𝐵𝑌) / 𝑇)) ∈ ℂ)
16940recnd 11209 . . . . . . . . . . 11 (𝜑𝑇 ∈ ℂ)
170168, 169, 45divcan4d 11971 . . . . . . . . . 10 (𝜑 → (((⌊‘((𝐵𝑌) / 𝑇)) · 𝑇) / 𝑇) = (⌊‘((𝐵𝑌) / 𝑇)))
171164, 167, 1703eqtrd 2769 . . . . . . . . 9 (𝜑 → (((𝐸𝑌) − 𝑌) / 𝑇) = (⌊‘((𝐵𝑌) / 𝑇)))
172171, 158eqeltrd 2829 . . . . . . . 8 (𝜑 → (((𝐸𝑌) − 𝑌) / 𝑇) ∈ ℤ)
17378recnd 11209 . . . . . . . . . . . 12 (𝜑 → ((𝐸𝑌) − 𝑌) ∈ ℂ)
174173, 169, 45divcan1d 11966 . . . . . . . . . . 11 (𝜑 → ((((𝐸𝑌) − 𝑌) / 𝑇) · 𝑇) = ((𝐸𝑌) − 𝑌))
175174oveq2d 7406 . . . . . . . . . 10 (𝜑 → (((𝑄𝐾) − ((𝐸𝑌) − 𝑌)) + ((((𝐸𝑌) − 𝑌) / 𝑇) · 𝑇)) = (((𝑄𝐾) − ((𝐸𝑌) − 𝑌)) + ((𝐸𝑌) − 𝑌)))
17698, 173npcand 11544 . . . . . . . . . 10 (𝜑 → (((𝑄𝐾) − ((𝐸𝑌) − 𝑌)) + ((𝐸𝑌) − 𝑌)) = (𝑄𝐾))
177175, 176eqtrd 2765 . . . . . . . . 9 (𝜑 → (((𝑄𝐾) − ((𝐸𝑌) − 𝑌)) + ((((𝐸𝑌) − 𝑌) / 𝑇) · 𝑇)) = (𝑄𝐾))
178 ffun 6694 . . . . . . . . . . 11 (𝑄:(0...𝑀)⟶ℝ → Fun 𝑄)
17958, 178syl 17 . . . . . . . . . 10 (𝜑 → Fun 𝑄)
18058fdmd 6701 . . . . . . . . . . 11 (𝜑 → dom 𝑄 = (0...𝑀))
18159, 180eleqtrrd 2832 . . . . . . . . . 10 (𝜑𝐾 ∈ dom 𝑄)
182 fvelrn 7051 . . . . . . . . . 10 ((Fun 𝑄𝐾 ∈ dom 𝑄) → (𝑄𝐾) ∈ ran 𝑄)
183179, 181, 182syl2anc 584 . . . . . . . . 9 (𝜑 → (𝑄𝐾) ∈ ran 𝑄)
184177, 183eqeltrd 2829 . . . . . . . 8 (𝜑 → (((𝑄𝐾) − ((𝐸𝑌) − 𝑌)) + ((((𝐸𝑌) − 𝑌) / 𝑇) · 𝑇)) ∈ ran 𝑄)
185 oveq1 7397 . . . . . . . . . . 11 (𝑘 = (((𝐸𝑌) − 𝑌) / 𝑇) → (𝑘 · 𝑇) = ((((𝐸𝑌) − 𝑌) / 𝑇) · 𝑇))
186185oveq2d 7406 . . . . . . . . . 10 (𝑘 = (((𝐸𝑌) − 𝑌) / 𝑇) → (((𝑄𝐾) − ((𝐸𝑌) − 𝑌)) + (𝑘 · 𝑇)) = (((𝑄𝐾) − ((𝐸𝑌) − 𝑌)) + ((((𝐸𝑌) − 𝑌) / 𝑇) · 𝑇)))
187186eleq1d 2814 . . . . . . . . 9 (𝑘 = (((𝐸𝑌) − 𝑌) / 𝑇) → ((((𝑄𝐾) − ((𝐸𝑌) − 𝑌)) + (𝑘 · 𝑇)) ∈ ran 𝑄 ↔ (((𝑄𝐾) − ((𝐸𝑌) − 𝑌)) + ((((𝐸𝑌) − 𝑌) / 𝑇) · 𝑇)) ∈ ran 𝑄))
188187rspcev 3591 . . . . . . . 8 (((((𝐸𝑌) − 𝑌) / 𝑇) ∈ ℤ ∧ (((𝑄𝐾) − ((𝐸𝑌) − 𝑌)) + ((((𝐸𝑌) − 𝑌) / 𝑇) · 𝑇)) ∈ ran 𝑄) → ∃𝑘 ∈ ℤ (((𝑄𝐾) − ((𝐸𝑌) − 𝑌)) + (𝑘 · 𝑇)) ∈ ran 𝑄)
189172, 184, 188syl2anc 584 . . . . . . 7 (𝜑 → ∃𝑘 ∈ ℤ (((𝑄𝐾) − ((𝐸𝑌) − 𝑌)) + (𝑘 · 𝑇)) ∈ ran 𝑄)
190189adantr 480 . . . . . 6 ((𝜑 ∧ (𝑄𝐾) < (𝐸‘(𝑆‘(𝐽 + 1)))) → ∃𝑘 ∈ ℤ (((𝑄𝐾) − ((𝐸𝑌) − 𝑌)) + (𝑘 · 𝑇)) ∈ ran 𝑄)
191 oveq1 7397 . . . . . . . . 9 (𝑥 = ((𝑄𝐾) − ((𝐸𝑌) − 𝑌)) → (𝑥 + (𝑘 · 𝑇)) = (((𝑄𝐾) − ((𝐸𝑌) − 𝑌)) + (𝑘 · 𝑇)))
192191eleq1d 2814 . . . . . . . 8 (𝑥 = ((𝑄𝐾) − ((𝐸𝑌) − 𝑌)) → ((𝑥 + (𝑘 · 𝑇)) ∈ ran 𝑄 ↔ (((𝑄𝐾) − ((𝐸𝑌) − 𝑌)) + (𝑘 · 𝑇)) ∈ ran 𝑄))
193192rexbidv 3158 . . . . . . 7 (𝑥 = ((𝑄𝐾) − ((𝐸𝑌) − 𝑌)) → (∃𝑘 ∈ ℤ (𝑥 + (𝑘 · 𝑇)) ∈ ran 𝑄 ↔ ∃𝑘 ∈ ℤ (((𝑄𝐾) − ((𝐸𝑌) − 𝑌)) + (𝑘 · 𝑇)) ∈ ran 𝑄))
194193elrab 3662 . . . . . 6 (((𝑄𝐾) − ((𝐸𝑌) − 𝑌)) ∈ {𝑥 ∈ (𝐶[,]𝐷) ∣ ∃𝑘 ∈ ℤ (𝑥 + (𝑘 · 𝑇)) ∈ ran 𝑄} ↔ (((𝑄𝐾) − ((𝐸𝑌) − 𝑌)) ∈ (𝐶[,]𝐷) ∧ ∃𝑘 ∈ ℤ (((𝑄𝐾) − ((𝐸𝑌) − 𝑌)) + (𝑘 · 𝑇)) ∈ ran 𝑄))
195148, 190, 194sylanbrc 583 . . . . 5 ((𝜑 ∧ (𝑄𝐾) < (𝐸‘(𝑆‘(𝐽 + 1)))) → ((𝑄𝐾) − ((𝐸𝑌) − 𝑌)) ∈ {𝑥 ∈ (𝐶[,]𝐷) ∣ ∃𝑘 ∈ ℤ (𝑥 + (𝑘 · 𝑇)) ∈ ran 𝑄})
196 elun2 4149 . . . . 5 (((𝑄𝐾) − ((𝐸𝑌) − 𝑌)) ∈ {𝑥 ∈ (𝐶[,]𝐷) ∣ ∃𝑘 ∈ ℤ (𝑥 + (𝑘 · 𝑇)) ∈ ran 𝑄} → ((𝑄𝐾) − ((𝐸𝑌) − 𝑌)) ∈ ({𝐶, 𝐷} ∪ {𝑥 ∈ (𝐶[,]𝐷) ∣ ∃𝑘 ∈ ℤ (𝑥 + (𝑘 · 𝑇)) ∈ ran 𝑄}))
197195, 196syl 17 . . . 4 ((𝜑 ∧ (𝑄𝐾) < (𝐸‘(𝑆‘(𝐽 + 1)))) → ((𝑄𝐾) − ((𝐸𝑌) − 𝑌)) ∈ ({𝐶, 𝐷} ∪ {𝑥 ∈ (𝐶[,]𝐷) ∣ ∃𝑘 ∈ ℤ (𝑥 + (𝑘 · 𝑇)) ∈ ran 𝑄}))
198 fourierdlem63.x . . . 4 𝑋 = ((𝑄𝐾) − ((𝐸𝑌) − 𝑌))
199197, 198, 183eltr4g 2846 . . 3 ((𝜑 ∧ (𝑄𝐾) < (𝐸‘(𝑆‘(𝐽 + 1)))) → 𝑋𝐻)
200 elfzelz 13492 . . . . . . . . 9 (𝑗 ∈ (0...𝑁) → 𝑗 ∈ ℤ)
201200ad2antlr 727 . . . . . . . 8 (((𝜑𝑗 ∈ (0...𝑁)) ∧ ((𝑆𝐽) < (𝑆𝑗) ∧ (𝑆𝑗) < (𝑆‘(𝐽 + 1)))) → 𝑗 ∈ ℤ)
202 elfzoelz 13627 . . . . . . . . . . 11 (𝐽 ∈ (0..^𝑁) → 𝐽 ∈ ℤ)
20331, 202syl 17 . . . . . . . . . 10 (𝜑𝐽 ∈ ℤ)
204203ad2antrr 726 . . . . . . . . 9 (((𝜑𝑗 ∈ (0...𝑁)) ∧ ((𝑆𝐽) < (𝑆𝑗) ∧ (𝑆𝑗) < (𝑆‘(𝐽 + 1)))) → 𝐽 ∈ ℤ)
205 simpr 484 . . . . . . . . . . 11 (((𝜑𝑗 ∈ (0...𝑁)) ∧ (𝑆𝐽) < (𝑆𝑗)) → (𝑆𝐽) < (𝑆𝑗))
20621simprd 495 . . . . . . . . . . . . 13 (𝜑𝑆 Isom < , < ((0...𝑁), 𝐻))
207206ad2antrr 726 . . . . . . . . . . . 12 (((𝜑𝑗 ∈ (0...𝑁)) ∧ (𝑆𝐽) < (𝑆𝑗)) → 𝑆 Isom < , < ((0...𝑁), 𝐻))
20869ad2antrr 726 . . . . . . . . . . . 12 (((𝜑𝑗 ∈ (0...𝑁)) ∧ (𝑆𝐽) < (𝑆𝑗)) → 𝐽 ∈ (0...𝑁))
209 simplr 768 . . . . . . . . . . . 12 (((𝜑𝑗 ∈ (0...𝑁)) ∧ (𝑆𝐽) < (𝑆𝑗)) → 𝑗 ∈ (0...𝑁))
210 isorel 7304 . . . . . . . . . . . 12 ((𝑆 Isom < , < ((0...𝑁), 𝐻) ∧ (𝐽 ∈ (0...𝑁) ∧ 𝑗 ∈ (0...𝑁))) → (𝐽 < 𝑗 ↔ (𝑆𝐽) < (𝑆𝑗)))
211207, 208, 209, 210syl12anc 836 . . . . . . . . . . 11 (((𝜑𝑗 ∈ (0...𝑁)) ∧ (𝑆𝐽) < (𝑆𝑗)) → (𝐽 < 𝑗 ↔ (𝑆𝐽) < (𝑆𝑗)))
212205, 211mpbird 257 . . . . . . . . . 10 (((𝜑𝑗 ∈ (0...𝑁)) ∧ (𝑆𝐽) < (𝑆𝑗)) → 𝐽 < 𝑗)
213212adantrr 717 . . . . . . . . 9 (((𝜑𝑗 ∈ (0...𝑁)) ∧ ((𝑆𝐽) < (𝑆𝑗) ∧ (𝑆𝑗) < (𝑆‘(𝐽 + 1)))) → 𝐽 < 𝑗)
214 simpr 484 . . . . . . . . . . 11 (((𝜑𝑗 ∈ (0...𝑁)) ∧ (𝑆𝑗) < (𝑆‘(𝐽 + 1))) → (𝑆𝑗) < (𝑆‘(𝐽 + 1)))
215206ad2antrr 726 . . . . . . . . . . . 12 (((𝜑𝑗 ∈ (0...𝑁)) ∧ (𝑆𝑗) < (𝑆‘(𝐽 + 1))) → 𝑆 Isom < , < ((0...𝑁), 𝐻))
216 simplr 768 . . . . . . . . . . . 12 (((𝜑𝑗 ∈ (0...𝑁)) ∧ (𝑆𝑗) < (𝑆‘(𝐽 + 1))) → 𝑗 ∈ (0...𝑁))
21733ad2antrr 726 . . . . . . . . . . . 12 (((𝜑𝑗 ∈ (0...𝑁)) ∧ (𝑆𝑗) < (𝑆‘(𝐽 + 1))) → (𝐽 + 1) ∈ (0...𝑁))
218 isorel 7304 . . . . . . . . . . . 12 ((𝑆 Isom < , < ((0...𝑁), 𝐻) ∧ (𝑗 ∈ (0...𝑁) ∧ (𝐽 + 1) ∈ (0...𝑁))) → (𝑗 < (𝐽 + 1) ↔ (𝑆𝑗) < (𝑆‘(𝐽 + 1))))
219215, 216, 217, 218syl12anc 836 . . . . . . . . . . 11 (((𝜑𝑗 ∈ (0...𝑁)) ∧ (𝑆𝑗) < (𝑆‘(𝐽 + 1))) → (𝑗 < (𝐽 + 1) ↔ (𝑆𝑗) < (𝑆‘(𝐽 + 1))))
220214, 219mpbird 257 . . . . . . . . . 10 (((𝜑𝑗 ∈ (0...𝑁)) ∧ (𝑆𝑗) < (𝑆‘(𝐽 + 1))) → 𝑗 < (𝐽 + 1))
221220adantrl 716 . . . . . . . . 9 (((𝜑𝑗 ∈ (0...𝑁)) ∧ ((𝑆𝐽) < (𝑆𝑗) ∧ (𝑆𝑗) < (𝑆‘(𝐽 + 1)))) → 𝑗 < (𝐽 + 1))
222 btwnnz 12617 . . . . . . . . 9 ((𝐽 ∈ ℤ ∧ 𝐽 < 𝑗𝑗 < (𝐽 + 1)) → ¬ 𝑗 ∈ ℤ)
223204, 213, 221, 222syl3anc 1373 . . . . . . . 8 (((𝜑𝑗 ∈ (0...𝑁)) ∧ ((𝑆𝐽) < (𝑆𝑗) ∧ (𝑆𝑗) < (𝑆‘(𝐽 + 1)))) → ¬ 𝑗 ∈ ℤ)
224201, 223pm2.65da 816 . . . . . . 7 ((𝜑𝑗 ∈ (0...𝑁)) → ¬ ((𝑆𝐽) < (𝑆𝑗) ∧ (𝑆𝑗) < (𝑆‘(𝐽 + 1))))
225224adantlr 715 . . . . . 6 (((𝜑 ∧ (𝑄𝐾) < (𝐸‘(𝑆‘(𝐽 + 1)))) ∧ 𝑗 ∈ (0...𝑁)) → ¬ ((𝑆𝐽) < (𝑆𝑗) ∧ (𝑆𝑗) < (𝑆‘(𝐽 + 1))))
22670ad2antrr 726 . . . . . . . . 9 (((𝜑𝑗 ∈ (0...𝑁)) ∧ (𝑆𝑗) = 𝑋) → (𝑆𝐽) ∈ ℝ)
22775ad2antrr 726 . . . . . . . . 9 (((𝜑𝑗 ∈ (0...𝑁)) ∧ (𝑆𝑗) = 𝑋) → 𝑌 ∈ ℝ)
22830ffvelcdmda 7059 . . . . . . . . . 10 ((𝜑𝑗 ∈ (0...𝑁)) → (𝑆𝑗) ∈ ℝ)
229228adantr 480 . . . . . . . . 9 (((𝜑𝑗 ∈ (0...𝑁)) ∧ (𝑆𝑗) = 𝑋) → (𝑆𝑗) ∈ ℝ)
23074simp2d 1143 . . . . . . . . . 10 (𝜑 → (𝑆𝐽) ≤ 𝑌)
231230ad2antrr 726 . . . . . . . . 9 (((𝜑𝑗 ∈ (0...𝑁)) ∧ (𝑆𝑗) = 𝑋) → (𝑆𝐽) ≤ 𝑌)
232106, 198breqtrrdi 5152 . . . . . . . . . . . 12 (𝜑𝑌 < 𝑋)
233232adantr 480 . . . . . . . . . . 11 ((𝜑 ∧ (𝑆𝑗) = 𝑋) → 𝑌 < 𝑋)
234 eqcom 2737 . . . . . . . . . . . . 13 (𝑋 = (𝑆𝑗) ↔ (𝑆𝑗) = 𝑋)
235234biimpri 228 . . . . . . . . . . . 12 ((𝑆𝑗) = 𝑋𝑋 = (𝑆𝑗))
236235adantl 481 . . . . . . . . . . 11 ((𝜑 ∧ (𝑆𝑗) = 𝑋) → 𝑋 = (𝑆𝑗))
237233, 236breqtrd 5136 . . . . . . . . . 10 ((𝜑 ∧ (𝑆𝑗) = 𝑋) → 𝑌 < (𝑆𝑗))
238237adantlr 715 . . . . . . . . 9 (((𝜑𝑗 ∈ (0...𝑁)) ∧ (𝑆𝑗) = 𝑋) → 𝑌 < (𝑆𝑗))
239226, 227, 229, 231, 238lelttrd 11339 . . . . . . . 8 (((𝜑𝑗 ∈ (0...𝑁)) ∧ (𝑆𝑗) = 𝑋) → (𝑆𝐽) < (𝑆𝑗))
240239adantllr 719 . . . . . . 7 ((((𝜑 ∧ (𝑄𝐾) < (𝐸‘(𝑆‘(𝐽 + 1)))) ∧ 𝑗 ∈ (0...𝑁)) ∧ (𝑆𝑗) = 𝑋) → (𝑆𝐽) < (𝑆𝑗))
241 simpr 484 . . . . . . . . 9 (((𝜑 ∧ (𝑄𝐾) < (𝐸‘(𝑆‘(𝐽 + 1)))) ∧ (𝑆𝑗) = 𝑋) → (𝑆𝑗) = 𝑋)
242198, 139eqbrtrid 5145 . . . . . . . . . 10 ((𝜑 ∧ (𝑄𝐾) < (𝐸‘(𝑆‘(𝐽 + 1)))) → 𝑋 < (𝑆‘(𝐽 + 1)))
243242adantr 480 . . . . . . . . 9 (((𝜑 ∧ (𝑄𝐾) < (𝐸‘(𝑆‘(𝐽 + 1)))) ∧ (𝑆𝑗) = 𝑋) → 𝑋 < (𝑆‘(𝐽 + 1)))
244241, 243eqbrtrd 5132 . . . . . . . 8 (((𝜑 ∧ (𝑄𝐾) < (𝐸‘(𝑆‘(𝐽 + 1)))) ∧ (𝑆𝑗) = 𝑋) → (𝑆𝑗) < (𝑆‘(𝐽 + 1)))
245244adantlr 715 . . . . . . 7 ((((𝜑 ∧ (𝑄𝐾) < (𝐸‘(𝑆‘(𝐽 + 1)))) ∧ 𝑗 ∈ (0...𝑁)) ∧ (𝑆𝑗) = 𝑋) → (𝑆𝑗) < (𝑆‘(𝐽 + 1)))
246240, 245jca 511 . . . . . 6 ((((𝜑 ∧ (𝑄𝐾) < (𝐸‘(𝑆‘(𝐽 + 1)))) ∧ 𝑗 ∈ (0...𝑁)) ∧ (𝑆𝑗) = 𝑋) → ((𝑆𝐽) < (𝑆𝑗) ∧ (𝑆𝑗) < (𝑆‘(𝐽 + 1))))
247225, 246mtand 815 . . . . 5 (((𝜑 ∧ (𝑄𝐾) < (𝐸‘(𝑆‘(𝐽 + 1)))) ∧ 𝑗 ∈ (0...𝑁)) → ¬ (𝑆𝑗) = 𝑋)
248247nrexdv 3129 . . . 4 ((𝜑 ∧ (𝑄𝐾) < (𝐸‘(𝑆‘(𝐽 + 1)))) → ¬ ∃𝑗 ∈ (0...𝑁)(𝑆𝑗) = 𝑋)
249 isof1o 7301 . . . . . . . . 9 (𝑆 Isom < , < ((0...𝑁), 𝐻) → 𝑆:(0...𝑁)–1-1-onto𝐻)
250206, 249syl 17 . . . . . . . 8 (𝜑𝑆:(0...𝑁)–1-1-onto𝐻)
251 f1ofo 6810 . . . . . . . 8 (𝑆:(0...𝑁)–1-1-onto𝐻𝑆:(0...𝑁)–onto𝐻)
252250, 251syl 17 . . . . . . 7 (𝜑𝑆:(0...𝑁)–onto𝐻)
253 foelrn 7082 . . . . . . 7 ((𝑆:(0...𝑁)–onto𝐻𝑋𝐻) → ∃𝑗 ∈ (0...𝑁)𝑋 = (𝑆𝑗))
254252, 253sylan 580 . . . . . 6 ((𝜑𝑋𝐻) → ∃𝑗 ∈ (0...𝑁)𝑋 = (𝑆𝑗))
255234rexbii 3077 . . . . . 6 (∃𝑗 ∈ (0...𝑁)𝑋 = (𝑆𝑗) ↔ ∃𝑗 ∈ (0...𝑁)(𝑆𝑗) = 𝑋)
256254, 255sylib 218 . . . . 5 ((𝜑𝑋𝐻) → ∃𝑗 ∈ (0...𝑁)(𝑆𝑗) = 𝑋)
257256adantlr 715 . . . 4 (((𝜑 ∧ (𝑄𝐾) < (𝐸‘(𝑆‘(𝐽 + 1)))) ∧ 𝑋𝐻) → ∃𝑗 ∈ (0...𝑁)(𝑆𝑗) = 𝑋)
258248, 257mtand 815 . . 3 ((𝜑 ∧ (𝑄𝐾) < (𝐸‘(𝑆‘(𝐽 + 1)))) → ¬ 𝑋𝐻)
259199, 258pm2.65da 816 . 2 (𝜑 → ¬ (𝑄𝐾) < (𝐸‘(𝑆‘(𝐽 + 1))))
26052, 60, 259nltled 11331 1 (𝜑 → (𝐸‘(𝑆‘(𝐽 + 1))) ≤ (𝑄𝐾))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wral 3045  wrex 3054  {crab 3408  cun 3915  wss 3917  {cpr 4594   class class class wbr 5110  cmpt 5191  dom cdm 5641  ran crn 5642  cio 6465  Fun wfun 6508  wf 6510  ontowfo 6512  1-1-ontowf1o 6513  cfv 6514   Isom wiso 6515  (class class class)co 7390  m cmap 8802  cc 11073  cr 11074  0cc0 11075  1c1 11076   + caddc 11078   · cmul 11080  *cxr 11214   < clt 11215  cle 11216  cmin 11412   / cdiv 11842  cn 12193  cz 12536  (,]cioc 13314  [,)cico 13315  [,]cicc 13316  ...cfz 13475  ..^cfzo 13622  cfl 13759  chash 14302
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-inf2 9601  ax-cnex 11131  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152  ax-pre-sup 11153
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-int 4914  df-iun 4960  df-iin 4961  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-se 5595  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-isom 6523  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-om 7846  df-1st 7971  df-2nd 7972  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-1o 8437  df-2o 8438  df-oadd 8441  df-er 8674  df-map 8804  df-en 8922  df-dom 8923  df-sdom 8924  df-fin 8925  df-fi 9369  df-sup 9400  df-inf 9401  df-oi 9470  df-dju 9861  df-card 9899  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415  df-div 11843  df-nn 12194  df-2 12256  df-3 12257  df-n0 12450  df-xnn0 12523  df-z 12537  df-uz 12801  df-q 12915  df-rp 12959  df-xneg 13079  df-xadd 13080  df-xmul 13081  df-ioo 13317  df-ioc 13318  df-ico 13319  df-icc 13320  df-fz 13476  df-fzo 13623  df-fl 13761  df-seq 13974  df-exp 14034  df-hash 14303  df-cj 15072  df-re 15073  df-im 15074  df-sqrt 15208  df-abs 15209  df-rest 17392  df-topgen 17413  df-psmet 21263  df-xmet 21264  df-met 21265  df-bl 21266  df-mopn 21267  df-top 22788  df-topon 22805  df-bases 22840  df-cld 22913  df-ntr 22914  df-cls 22915  df-nei 22992  df-lp 23030  df-cmp 23281
This theorem is referenced by:  fourierdlem79  46190
  Copyright terms: Public domain W3C validator